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On average, there are q" + o(qr/g) F4r-rational points on curves of genus g
defined over F4r. This is also true if we restrict our average to genus g curves
defined over Fg, provided r is odd or r > 2g. However, if r = 2,4,6,... or
2g then the average is ¢" + ¢"/2 + o(q’“/2). We give a number of proofs of the
existence of these qT/ 2 “extra” points, and in some cases give a precise formula,
but we are unable to provide a satisfactory explanation for this phenomenom.

1. INTRODUCTION

Let C be a nonsingular, projective, geometrically irreducible curve of
genus g over the finite field Fy with ¢ elements. Weil showed that there
are g algebraic integers ay, as, ..., o, associated to C' such that |a;| = /g
and such that for every r the number N,.(C') of Fyr-rational points on C' is

# C(Fy)=N,.(C)=q"+1—a,(C) where (1)
ar(C) = (o] +a7) + (g +ay) + ...+ (ay +@). (2)

In particular, all the N,.(C') are determined by N1(C),..., N4(C). More
precisely, for every g and r there is a polynomial over Q in the indetermi-
nates ¢, a1, - - -, ag that evaluates to the power sum a, := a,(C). Because of
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complex conjugation and permutation there are generically 29¢! equivalent

choices for the g-tuple (a1, ..., ay), and for our purposes we shall assume
that one of these has been chosen at random.
Define

1
ar(g,q) = ;F: |Aut C/F |/ [Aut(C/F,)’
geHHS(Cq):g germS(C) g

that is, the average of a,(C) as C varies over a set of representatives of
each of the Fg-isomorphism classes of curves of genus g defined over Fy,
weighted by 1/|Aut(C'/F,)| (this will be discussed further in section 7).
An immediate consequence of Weil’s result is that |a.(C)| < 2¢g¢"/? and
therefore |a,(g,q)] < 29¢"/2. One might naively suppose that the real
part of the rth moment of the a;/,/q, as we vary of all curves of fixed
genus g defined over F for large ¢ are distributed roughly symmetrically
about the origin, so that a,(g,q) = o(¢"/?). This is true for odd r, and for
r > 2g; moreover, when r > 2g, the rth moments of the a;//q are roughly
uniformly distributed around the unit circle. On the other hand our naive
supposition is untrue for even r < 2g, in which case the mean of the rth
moments of the a;/,/q is —1/2¢g+ o(1) rather than just o(1): Consequently
ar(9,q) = —{1+0(1)}¢"/? for such r. We also show that the analogues of
these results hold for the hyperelliptic curves of genus g over F,,.

In section 2 we show that these asymptotic results, for genus one, are an
immediate consequence of a result of Birch [1]: One can define the Sato-
Tate distribution, Xgr, to be the unique distribution on the unit circle
such that

—% if r=—-2or2
E(X&r) = 1ifr=0 (3)
O otherwise,

where E(X) is the expected value of the random variable X. Birch [1]
proved that as X varies over all curves of genus 1 defined over F, the
distribution of the values {1 (E)/\/q : E/Fq} on the unit circle tends
to the Sato-Tate distribution as ¢ — oco. Katz and Sarnak [11] proved
the genus g generalization of Birch’s result, and in section 4 we use this
to compute the moments of this generalized Sato-Tate distribution, which
gives our asymptotic results for every genus g.

The Selberg trace formula is tailor-made for giving a precise formula for
ar(1,q) in terms of the trace of Hecke operators on certain vector spaces
of cusp forms (see section 3). For example a2(1,q) = —q — 1/¢, so that the
average of Na(E) is ¢*> + ¢+ 1+ 1/q as E varies over all curves of genus 1
defined over F,. In sections 6 and 7 we use elementary counting arguments
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to determine exact averages for various families of hyperelliptic curves. In
particular we show that Na(C) is ¢ + ¢+ 1 — (=1)9¢' =29, on average, as
C ranges over all hyperelliptic curves of genus g over F,,.

In section 5 we guess at the average of N,.(C) for hyperelliptic curves
of genera 2 and 3 and small r, based on computer experimentation. In-
terestingly the averages that arise in the genus one case (section 3) are
elementary functions of ¢, for 7 < 10. Then, for r = 10 and 12 the formula
is in terms of the Ramanujan tau function, which seems to also occur for
genera 2 and 3, according to our experiments.

So why is as2(1,q) = —q + o(q), whereas a,(1,q) = o(q) for all r > 27
That is, where do the extra g points come from in the quadratic exten-
sion? And, why are there no such extra points over extensions of higher
degree? Moreover what explains the analogous phenomenom for higher
genus curves? We will restrict our discussion here to hyperelliptic curves;
that is, curves of the form

y® = f(x) where f(x) € F,[z] has no repeated roots. (4)

Let ¢ be a power of prime p > 3. Suppose that x is the character of order
two in Fg; that is, x(n) = 1 if n is a nonzero square in Fg, and x(n) = —1
if n is not a square in Fg. The number of (affine) Fg-points on (4) is
4+ 2 mer, X(f(m)). Select a € Fy so that x(a) = —1. Then the number
of (affine) points on y? = f(z) and the number on y? = af(z) is precisely
2q+ 3 ner, (X(f(m)) + x(af(m))) = 2q. There are total of two F, points
at infinity on these two curves after resolving singularities (see Lemma 7.1).
Thus on average they each have ¢ + 1 F, points, so that N1(C) is ¢ +1 on
average. If r is odd then a is not a square in F,- either, and so the same
argument in that field shows that N,(C) is ¢" + 1 on average.

There are (¢" —1)/2 nonzero elements in Fg which are squares of other
elements in the field, and thus each have two square roots; and a similar
number which are not squares. Thus, on average, an element of F - has
one square root. The squares seem to be more-or-less randomly distributed
in the field. If one grants that the values taken by a polynomial f(z) are
also randomly distributed in the field then one might expect, on average,
that the number of solutions to (4) is roughly ¢" + O(1). However if f is
defined over F, then f(m) € Fy for every m € F, and so is a square in
F 2. Thus for each of these m there are two F z-solutions to y? = f(m) if
f(m) # 0. Thus we get an “extra” ¢+ O(1) points on (5) over what we had
previously expected — this does seem to explain why as(g,q) = —q+0(q).
However the same argument suggests that a4(g,q) = —¢? + o(q?), but this
is false for g = 1 as we have seen, so our heuristic is misleading! We would
like to see a better elementary explanation (though see [10]).
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Instead of fixing the finite field and varying over curves of a given genus,
one can ask similar questions fixing a curve over Q and reducing modp to
finite fields. For a given elliptic curve define o, = a1(E mod p) when E
reduces to an elliptic curve in F,, (as happens for all but finitely many p):

If E does not have complex multiplication then the Sato-Tate conjec-
ture (which remains open) states that «,/./p is distributed according to
the Sato-Tate distribution, as above. Hence, by (3) the average value of
#E(F,) is p" + o(p™/?) if r # 2; and p? + p+ o(p) for r = 2.

If E does have complex multiplication (which is relatively rare) then we
understand the distribution of the «,: If p does not split in the endomor-
phism ring of E, then a = 4i,/p so that #E(F,-) = p"+1—(i"+(—4)") /D"
If p does split in the endomorphism ring of E then, by Hecke’s equidistri-
bution theorem for L-functions with unitary grossencharacter of infinite
order, the o/ /P are equidistributed around the unit circle. Therefore the
mean value of (a,/\/p)" is o(1) for all » > 1, and so the average value
of #E(F,-), for such p, is p" + o(p’/?). Since p splits half the time, the
average value of #E(Fy-) is p" + 1 — (i" + (—i)" + o(1))/p" /2.

Therefore, whether or not F has complex multiplication the average value
of #E(F,) is p+o(\/P), and the average value of #E(F,2) is p* + p+ o(p).

We can deduce this directly from results in the literature on L-functions
though with a different definition of “average”; that is, a different probabil-
ity measure on the primes. Before we were implicitly defining the expected
value of a function f on the primes by

. Zpgz f(p)
E(f(p) = xh_)nolo m7

but now we define the expected value to be

B0/ (o)) — 1 Sz O/P

T—00 <z l/p

We will prove that E(a,/\/p) = 0 and E(a,2/p) = —1, where a, = oy, + @,
and a,z = a2+ af, = ag — 2p; that is, the a; and as of F mod p.
Wiles et al. [2, 19] have shown that

(B, s) = EIV <1 - %)1 (1 - %)1 for Re(s) > 3/2,

can be analytically continued to the whole complex plane where N is the
conductor. In particular the product converges for s = 3/2, and from the
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usual contour integration one can then deduce that

> bl

p<w b
converges, so that E(a,//p) = 0. Similarly Wiles et al. and Shimura [17]
have shown that the symmetric square L-function

~ a? - a2 -
L(Sym?E, s) = ((s — 1) H ( - p—f) (1 - p—f) for Re(s) > 2,

pIN

can be analytically continued to the whole complex plane and, in particular,
the product converges at s = 2. (Note that by convention Sym?F is not the
usual symmetric product of varieties but rather a variety A/Q such that the
action of Frob,(A) on H?(A) is isomorphic to the action of Sym*Frob, (E)
on Sym?’H(FE) for every p where H' is a Weil cohomology.) Thus we can
deduce

Z 1+ ap/p

p<z p

converges, so that E(ayz/p) = —1.

If one can prove analytic continuation for the L-functions of arbitrary
symmetric powers of F, at least up to and including the edge of the critical
strip, then one can determine that the average value of #E(Fp-) is as
predicted above, as noted by Serre [15]. Recently Bump et al. [3] have
given such a result for the third symmetric power but the fourth symmetric
power seems beyond reach for now.

2. THE SATO-TATE DISTRIBUTION

The Sato-Tate distribution for the random variable X = ¢, -1 < 0 < =&
is given by

1 b 1 °
Prob(agagb):2—/ 23in2tdt:2—/ (1 — cos2t) dt
™ a ™ a

Thus

—r 2 [°
EX"+X ) = E(2cosr9):—/ cosrt sin®t dt

™

1 ™
= —/ (cosrt)(1 — cos2t) dt
™

—T
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1 (7 1 1
et / (cos rt— 5 cos(r 4+ 2)t — 3 cos(r — 2)t> dt

T™J_x

—1 if r=—-2o0r2
= 2 ifr=0
0 ifr#0,—2or2

which implies (3) since the distribution is symmetric about the real axis.
We note that for the Sato-Tate distribution we have

1 b _
Prob (a < {nf mod 27} < b) =4 2r Ja (1 —cost)dt for n=2,
—a)/2w or n >
(b )/2 fi >3
because

n—1 1—cos2t if n=1

1 t+ 2wy
—Zu<+7T]>= 1—cost ifn=2
iz K 1 if n>3

where p(t) = 1 — cos2t. What other probability distributions on the circle
have this property?

PROPOSITION 2.1. Let

wu(t) = ao + Z(an cos(nt) + by, sin(nt))

n>1

be a real function with period 27 and ag = 5= fOZW u(t)dt = 1. Then

N

—1 .
1 O+2m5\
N,Z”( N >1

Jj=0

for all 6 and all integers N > m if and only a, = b, =0 for n > m.

Proof.
= exp(inf/N) if N|n
(1/N) -Zg exp(in(f + 2mj)/N) = { 0 otherwise.
=

since we get a sum over N/nth roots of unity. Thus the hypothesis is
equivalent to >-, g Nn(@n cos(nt) + by sin(nt)) = 0 for every N > m and
every t. So by the uniqueness of the Fourier expansion this is equivalent
to a, = b, = 0 for every n divisible by some N > m. In particular
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= N implies our result. Conversely, if a, = b, = 0 for every n >

m then certainly a,, = b, = 0 for every n divisible by some N > m. |

Note that for such a distribution function E(cos(r)) = aj,/2 if r # 0,
which again gives us (3).

3. SELBERG’S TRACE FORMULA

Selberg’s trace formula [13] implies that for all even integers k > 0

1 ak 1*04161
ot 1=t 3 T ®

E/Fy

where the sum is over representatives of the F,-isomorphism classes of
elliptic curves weighted by 2/|Aut(E/F))|, where ag = a1 (E), and o (T})
is the trace of the Hecke operator T}, acting on the cusp forms of weight k
in SL(2,Z) for k > 4, with 0¢(Z},) = 0 and 02(1},) = —p—1 (for k =0 and
2 this follows from Y. 1 =2p.) Now since

E/F,
ktl okl k-1  —k—1
) Og Qp  —Qp ok —k
- — = af+ag
ap — Qg O — OFp

we deduce that

mean (ak(E)) _ 1 Z ar(B) _ on(Tp) +1  opa(Tp) +1 (©)

k)2 o k/2 k/2 k/2+1
p ey p p

for even k > 2. Now o (1,) =0 for k = 4,6,8,10,14 and o12(1}) = 7(p),
Ramanujan’s 7-function, so that

mean (#E(F2)) =p* +p+1+1/p

mean (#E(F,)) =p" +1/p for k =4,6,8
mean (#E(pr)) M

mean (£E(Fya)) = pi2 — 7(p) + 1/p.

By Deligne’s proof [4, 5] of the Ramanujan-Petersson conjecture o (1},) =
O(p*=1/2+¢) "and so we have

mean(#E(Fx)) = p* + O(p*F=V/2+¢) " for even k > 4,

or in other words mean(ay(E)/p*/?) = O(p~1/?t¢) = o(1).
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More generally for ¢ a power of a prime p, the average number of points
over F» on an elliptic curve over F, is

14 op2(Ty) = P ogsa Ty p2) —
qk_|_ q p q/p —O'k(Tq)+pk 1Uk(Tq/p2)

where we set 02(T;) = —(pg—1)/(p—1) and o1 (T1) equal to the dimension
of the space of cusp forms of weight k in SL(2, Z). In particular if & = 10 the
average is ¢*° +1/q+7'(¢q)/q, and if k = 12 the average is ¢*2 +1/q—7'(q),
where 7/(¢q) = 7(q) if ¢ = p and is equal to 7(¢) — p*'7(g/p?) if ¢ is a higher
power of p.

4. THE GENERALIZED SATO-TATE DISTRIBUTION

We are now going to study the distribution of (a1, aa, ..., ay), asin (1.1),
as we vary all curves of genus g, defined over F,. Note that these come in
conjugate pairs and we do not distinguish a and @. Since each |aj| = /g
we renormalize and ask for the distribution of (%1, ez, ... ¢"%) where
o = \/aewf. In section 2 we saw the distribution function for g = 1.
In the remarkable book [11] Katz and Sarnak show that such distribution
functions for families of varieties satisfying certain monodromy conditions,
are intimately related with the distribution functions for the eigenvalues of
the compact classical groups in their standard representations. In the case
of the curves of genus g, that classical group in question is USp(2g). Weyl
[18] gave the distribution law for these eigenvalues:

1 b1 by
Pr(a,l§01§b1,...,a9§99§bg)zw/ / p(@l,...,f)g)dé)g...dé)l,
Jay ag
where

1
p(01,....0g) = — H (2cosf; — 2cosB;)? H (2sin’ 6;).

" 1<i<j<g 1<i<g

Note that p is symmetric and even in all the variables. Let t; = % . Note
that p has degree 2¢ in both ¢; and 1/t;, so we may write

P01 0y) = S ST elkry k)Rt (7)

|k1]<2g  [kg|<2g

_# a2/ 1)\2 M
= H (ti —t;)"(tit; — 1) H tfg ‘

_ !
(=2)79" | ey 1<i<g
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for some coefficients ¢(k). These coefficients are just the product moments
because E(t{* ...tg%)

—1 ai+ky— a _
- (zmi)gj{"'?{z"'zc(h""’kg)t11+ I
k1 kg
NS el kgD,
k1 kg

= ¢(—a1,...,—ag) =c(a1,...,aq).

The generating function of the product moments (7) implies that E(5* ... t];g) =
0if Y~ k; is odd or if [kg(1)+---+ky()| > (29 —t+1)t for some permutation
o of the indices and some t < g.

We note that the density function for m# is

1 01+27Tj1 0g+27rjg o
Ly % p< B2 _ o0, 0),

0<ji<m—1  0<jg<m—1

for m > 2g + 1. In other words the vectors (e im0z . . ¢"mbs) are
equidistributed on the g-dimensional torus, once m > 2g + 1. (Note that
we observed this for g = 1 in section 2).

In order to determine the mean of (af +@7) + (a5 +@a3) +...+ (ay +ay)
we can use our formula above for p: Because of its symmetry this equals
20E(a}) = 29q"/?¢(r,0,0,...,0) = 29¢"/>E(cos(r6:)), and so we might as
well determine the distribution function for 6y:

1 b1 1 27 27
PT(CLl S 91 S b1> = g‘/al {7(271_)91 /0 ‘/0 p(61,...,eg)d9g...d02}d01
1 [
= o > e(k1,0,0,...,0)ty doy.
TJan [k1]<2g

Now if m > 2g + 1 then

Loy % p(al,Q?,...,%): S ek 0. 0)k,

m9
0<j2<m—1  0<jy<m—1 k1| <2g

Note that p(.) = 0 if any j; = 0 or if any j; = %jr mod m. So, select-
ing m = 2g + 1 we find that the only non-zero values of p occur when
{72, 73, .., Jg} = {£1,£2,...,£g} \ {£:}, for some 7. At such a point
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p = c1hi(01)/g'hi(27i/m) where

hi(0) = 4sin® 0 H (2 cos @ — 2 cos(2mj /m))?
1<j<g,i7#i

and

aa= [] (2cos(2mj/m)—2cos(2xk/m))* [ (2sin*(27j/m))

1<j<k<g 1<j<g

From 2(cosx — cosy) = e~ (e — eW)(e'® — e~%) we deduce that (writing
9:01 andt:tl)

hi(0) = —t~ "D (e + 1)(E" = 1)/t = )t = ¢)?,

and thus h;(27i/m) = m?/(1 — ¢*)(1 — ¢%) where ¢ = €*/™. Similarly
c1 = (m/2)9. Since each possibility occurs 2971 (g — 1)! times, we thus have

297161 h(0)
k,0,0,...,0)t" = i
Z C( ,0,07 70) mgflg Z hz(Zﬂ"l/m)

=t 1<i<g
I e [ DEm = 1) \?
= T 2 e (= anien)

Now (¢12 = ¢72)(t + 1)(t™ = 1)/(¢ = Ot = ¢71) = 7751 (¢TT/? —

¢~971/2)t, and so the above becomes

—(m—1 m—1 m—1
— t : Z Z(£j+1/2 - ffjfl/z)tj Z(€k+1/2 - ffkfl/z)tk
dgm & Em=1 j=0 k=0
¢y e 1 kAl | p—j—k—1 _ cj—k _ ch—j
= — DRl DI Al — gt gt
9 o<jkem-1 & gm=1
t—(m—1) B . 1 tm—tm
= —— "= Y )= (m— (ﬁ))
g 0<j<m—1 g
1 sin((2g + 1)0) 1< ,
= — (24122 ) 1= 26).
29 < g9+ sin 6 Q;COS( 30)

So we have proved

1 /b1 in((2g 4+ 1)0
Pr(agelgb):§/%<29+1—W)d0, (8)



MORE POINTS THAN EXPECTED 11

generalizing the Sato-Tate measure. (Note that the case ¢ = 1 is as in
section 2 since (1/2)(3 — sin(30)/sin @) = 2sin?#). Therefore,

1 2T 9
2gE(cos(ry)) = Py / 2cos(rf) | g — Z cos(2j0) | df = -1
0 =

if r =42,44,...,£2g9, = 2¢ if r =0, and = 0 otherwise. Thus, the result
of Katz and Sarnak implies the following result:

THEOREM 4.1.  Curves of genus g defined over Fy have, on average,
qr—i—o(qr/Q) points in Fyr, except if r = 25 for some j in the range 1 < j < g,
in which case the average is q¢" + q"/% + o(q"/?).

Remark 1. In light of Deligne’s proof of the Ramanujan-Petersson
conjecture it is natural to conjecture that as C varies over all curves of
genus g over F, the average number of F,--rational points on C is ¢" +
q"2+0(q"=V/2+€) if r is even and r < 2g and ¢" +0(q("~1/2+€) otherwise.
Indeed this is essentially the Symplectic Higher Degree Excess Theorem of
Katz [10].

The distribution functions of the eigenvalues of all of the compact classi-
cal groups lend themselves to analogous observations: O_(2¢g + 2) has the
same distribution function as USp(2g). For SO(2¢g) we have the density
function

1

2
311 H (2cos0; — 2cosb;)*,

1<i<j<g

in which case m# are uniformly distributed on the g-dimensional torus once
m > 2g — 1. The probability distribution function for each eigenvalue is

1 <Qg_ 14+ M) =1+ lgi:cos(QjQ)

7 =1

so that E(cos(r61)) = 1/2g if r = 2,4,...,2(g — 1) and = 0 otherwise, for
r > 0.
For SO(2¢g + 1) we have the density function

l' H (2cos; — 2cos6;)? H (2sin%(0;/2));

9" 1<i<j<g 1<i<g
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here the m# are uniformly distributed on the g-dimensional torus once
m > 2g. The probability distribution function for each eigenvalue is

_ Lsin@0) ;Zlcos(@j ~10)

2g sin@
so that E(cos(rf1)) = —1/2¢g if r = 1,3,...,2g — 1) and = 0 otherwise, for
r > 0.
For U(g) we have the density function

1 . )
— H |610]- _ 610k|2;

9% 1<j<k<g

here the m# are uniformly distributed on the g-dimensional torus once
m > ¢g. The probability distribution function for each eigenvalue is 1,
that is, they are uniformly distributed, though this is not true of pairs of
eigenvalues.

5. EXPERIMENTAL RESULTS

It is feasible that we will be able to deduce further trace formulae for
higher genus curves. For example, we can try to use the Deligne Equidis-
tribution Theorem though the problem will certainly be to understand the
restrictions of monodromy in such families. For now we have some experi-
mental results. It seems that, on average, #C(Fgr), as C varies over curves
of genus 2 defined over Fg, is ¢" + 1 for r odd, and

P Hrq+1-1/¢ for r =2

G+ 1+1/g+ 1) 1/ forr=4

@ +1/q for r =6

@ +1/qg+1/¢* =1/ forr =8

@+ (/PP (@) +1+1/g—1/¢ for r =10
7)) —1+1/q+1/¢* for r =12

where 7/(q) is the modified Ramanujan tau function defined in section 3.
As C varies over hyperelliptic curves of genus 3 we get ¢" + 1 for r for odd,
and

CHq+1+1/¢° forr =2
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@+ +1/g+1/ -1/ +1/¢°  forr =4
q6+q3+q+1/q+1/q3+1/q5 forr =6
@ —1+1/q+1/¢*—1/¢*+1/¢° for r =8
A+ 7)) +1— 1/ +1/¢"  forr =10

Here we are weighting by 1/|Aut(C/F,)| as explained in the section 7.

6. EXTRA POINTS ON HYPERELLIPTIC CURVES IN Fg-

Hyperelliptic curves are a special case of cyclic covers of the projective
line, for which we prove the following theorem.

THEOREM 6.1. Letk > 1 and f(z) € Fq[z]. The average number of F gr-
rational affine points on the q" curves y* = f(x)+g(z), where g(z) € Fy[x]
runs through all polynomials of degree less than r, is

7+ (0 £ - DI — )

m|r

Here (-,-) is the greatest common divisor and I,,,(¢) = Zd‘mu(d)qm/d
where p(d) is the Mobius p function. By inclusion-exclusion or Mébius
inversion I,,,(¢) is the number of elements of Fym that are in no proper
subfield containing F,, and therefore I,,(¢)/m is the number of monic
irreducible polynomials of degree m over F,. Note that the average taken
in Theorem 4.1 depends on ¢, r, and k but not f(z), so we get the same
result if we average over all polynomials of a given degree at least r.

Proof. The number of affine Fyr-rational points on the curve y* =
fla) +g(z) is

7+ Y > x(f(@) +g@).

z€Fgr x: x*=x0, X#Xo

Here x is a multiplicative character of Fy-, and xq is the trivial character.
Let F;m denote those elements of F = that are in no subfield containing F,
and therefore Iy, (q) = |Fgm|. For a fixed x the average of 3, cp . x(f(z)+

g(x)) over all ¢’s is

q% Z Z x(f(@) +ar 12"+ .. Farx+ag)  (9)

z€F r ag,a1,...,ar—1€F,
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Z Z Z X(f(z)+arflxril+---+alm+ag)

m|r zEF;m ap,a1,...,ar—1€F,

Do D d ™)

m|r xEF;m zEFgm

S In(g)g™ Y x(2)
m|r

ze€Fm

=

Y=

since Fym = {am_12™ ' + ...+ a0 : ag,...am-1 € F,} and f(z) +
Q12"+ L a,a™ € F,m. Suppose x has order exactly j > 1 which
divides k. Every element of F,m is a jth power of an element of F- if and
only if (¢™ — 1)|(¢" — 1)/j. Hence,

(0 it j(gm —1) g — 1
2 X(z)‘{q’“—lif -1l -1

ZEqu

The number of characters with order exactly j is ¢(j) if j|(¢" — 1) and 0
otherwise where ¢ is the Euler ¢-function. Thus, summing (4.1) over all
X # Xo we obtain

Soosl) D> Iml@(—q™).

1<j[(k,q"—1) j(qm—T)‘IT(qT—l)

Switching the order of summation and noting that jln ®(j) = n finishes
the proof. |

CoRrOLLARY 6.1. Let f(z) € Fy[z]. The average number of F 4 -rational
affine points on the q" curves y* = f(z) + g(z), where g(x) € Fy[z] runs
through all polynomials of degree less than r, is q" if q is even or r is odd.
If q is odd and r is even then the average is

In(q) p(t)

r r/2 4T r/2 _

7 +q Z o +q 7(r/2) Z Iy
m|r/2 dt|t(>r{2)

= ¢ +q¢? —7(r/2)+0(1/q).

where, here, T(d) denotes the number of divisors of d.

Proof. In Theorem 6.1 with k = 2 if ¢ is even ¢"—1 is odd so the summa-
tion is 0. If ¢ and r are odd ;Im:ll is odd so again the summation is 0. If ¢ is

odd and r is even then 2(¢"™ —1)|(¢" — 1) if and only if m|r/2. To conclude




MORE POINTS THAN EXPECTED 15

note that Zm\r/z I,,(q) is the number of elements in F .2, which is q?,

and the lead term of I,,,(q) is ¢™. |

Corollary 6.2 is a corollary to both the Corollary 6.1 and the following
proposition and will be needed in section 7 to prove Theorem 7.1. Corollary
6.1 and Proposition 6.1 for r = 2 support the asymptotic result in Theorem
4.1.

PROPOSITION 6.1.  Let f(x,y) be any function Fp2 x Fp2 — Fp such
that image of the restriction Fq x Fy is in Fq. (For example, f(z,y) €
Fy(z,y].) The average number of F 2 -rational affine points on the q> curves
flx,y) +ax+ by +c, a,b,c € Fy, is ¢* + ¢ — 1. The average number of
F,-rational affine points is q.

Proof. For z,y € Fp and a,b € F, we have ¢ € F satisfying f(z,y) +
az +by +c = 0if and only if f(z,y) + az + by € Fq. Note that if t € F(,
then Fp» = {mt +n : m,n € Fy}, so that if g € F» then there exists
m € Fg such that g — mt € Fy.

Thus, for each x € F;2 4 € Fp2,b € Fy there is a unique such a. Also for
each y € F’qz,a, x € Fg there is a unique such b. Finally if z,y € F, then
any a,b € F, will do. Thus there is a total of (¢* — ¢)¢® + (¢®> — ¢)¢*> + ¢* =
¢®(¢* + ¢ — 1) on these ¢* curves. |

COROLLARY 6.2. Assume q is odd and d > 2. The average number of
F 2-rational affine points on the q@ curves y*> = f(x), where f(z) € Fy[z]
runs through all polynomials of degree less than d, is ¢*> +q — 1.

7. AN EXACT FORMULA FOR THE AVERAGE NUMBER
OF QUADRATIC POINTS

In this section we give an exact formula for the average number of F ;-
rational points on an hyperelliptic curve of genus g over F; when ¢ is odd.

THEOREM 7.1. Fix integer ¢ > 1 and an odd prime power q. The
weighted average number of F »-rational points on an hyperelliptic curve
of genus g over F is exactly ¢* + q+1— (—1)9¢*29.

We begin by determining the number of rational points at co on a given
hyperelliptic curve, though leave the proof as an exercise.

LEMMA 7.1. There is exactly one Fy-rational point on (4) at oo if the
degree of f is odd. If the degree of f is even then let a be the leading
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coefficient of f: If a is a square in ¥y, then there are two Fg-rational
points on (4) at 0o, once we have resolved the singularity there. If a is not
a square in ¥, then there are no F,-rational points on (4) at oc.

In the introduction we defined our “weighted average”, which we now
motivate. The first step is the following lemma, which has appeared in
[7, 5.1] and [11, 10.7.5]. For elliptic curves it appeared in [8, 2.2] but was
known to Serre as early as 1984. Denote the algebraic closure of a field k
by k.

LEMMA 7.2. Let C be a curve (or a pointed curve) over F, with finite

(geometric) automorphism group whose isomorphism class is Gal(Fy/F,)-
invariant. Then

1
2 T x/Ey)

where the sum is over representatives of the Fg-isomorphism classes of
curves X/F 4 that are F,-isomorphic to C.

Let N, (X) denote the number of F »-rational points on X, and define

Na(X)
No = Nal©) = 3 Trar (7T

(Note that we have abused the notation in that the meaning of N,, depends
on whether the argument is a curve over F, or Fy.) Ofer Gabber has
sketched a proof that IV, is always an integer and has given a geometric
interpretation of N,,.

EXAMPLE 7.1.  The curve
C: 2t + y4 + 24+ x2y2 + 2222 + y2z2 + xgyz + chQZ + fz:y22 =0

is the Klein curve over Fa, for which Aut(C/F3) = Aut(C/F3) = GL3(F3),
the simple group of order 168. There are five other Fo-isomorphism classes
that are Fa-isomorphic to C, namely

ot 4+ my?’ +x23 + y2z2 + mQyz =
374+y4+z4+m3y+y32+23x+x2yz =

x3y + y?’z + 2%z + x2y2 + y2z2 +a23z =

ot + xyg + 223+ y222 + m2yz + a?2y2 +a23 =
x3y + y?’z + 2%z =

o oo oo
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with Fs-automorphism groups of orders 8, 7, 7, 4, and 3, respectively; note
that 1 = ﬁ + % + % + % + % + % (The fourth curve above is isomorphic
to the curve of genus 3 with 7 points mentioned in [16].) These six curves
have respective Weil polynomials

21(t) = 1 =3t 49t — 13t3 +18t* — 12° + 8t°,
2o(t) = 1+t+ 52+ 3t + 10t* + 4¢° + 8¢5,
23(t) = 1—3t4 262 + 3 + 4t — 12t° 4 8¢5,
z4(t) = 1+4t+ 96> + 1563 + 18t* + 16t° + 8t°,
z5(t) = 1—t— 1% +3t5 — 2t* — 4¢° 4 815,

z6(t) = 1+ 5%+ 8¢5

The generating function

S 24(1) __9®
22 +1 - Np)t" = t;Zi(t)|Aut(Ci/F2)| I ()

where ¢(t) € Z[t] (and has degree 36), thus proving that in this case all
N,,’s are integers.

Katz and Sarnak [11, 10.7.4] define the intrinsic cardinality of the set
My (F,) of all Fg-isomorphism classes of curves X of genus g to be

IntrinCard (Mg (F Z |Aut( X/F )|

(For g = 1 we should perhaps write “pointed curves of genus 1,” through-
out; that is, elliptic curves.) In light of Lemma 7.2 we could define this
intrinsic cardinality to be the number of Fy-isomorphism classes of curves
C of genus g that are Gal(F,/F,)-invariant. Likewise we could define the
intrinsic cardinality of any Gal(F,/F,)-invariant subset, such as H,(F,) of
all Fg-isomorphism classes of hyperelliptic curves of genus g. By Lemma
7.2 intrinsic cardinalities are indeed integers. By “the average number of
Fn-rational points on an hyperelliptic curve of genus g over F,” we shall
mean

>c Nu(C)
IntrinCard(Hy(Fy))

where the sum is over all Fq—isomorphism classes of genus g hyperellip-
tic curves C that are Gal(F,/F,)-invariant. In other words, it is the
average number of points on such C, where we weight each curve X by
L/|Aut(X/F,).
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Our next task is to compute the denominator, IntrinCard(Hy(F4)). Lemma
7.3 appears in [6, Proposition 13], is alluded to in [11, 10.5.12], and was

known to Michael Larsen as early as 1984.

ProposiTION 7.1. IntrinCard(Hy(F,)) = ¢*9~! for any g > 1.

To prove this we will need the following lemma.

d—1

LEMMA 7.3. There are exactly ¢* — q monic squarefree polynomials

of degree d > 1 in F[z].

Proof. Let ng be the number of monic squarefree polynomials of degree
d. Clearly the number of monic polynomials of degree d is ¢%. Any monic
f(z) € Fy[z] can be written uniquely as f(z) = g(x)k(z)? where g(x) is
monic and squarefree and k(xz) is monic. Counting the number of possible
polynomials on both sides of the equation we see that

q" = ng +ng-oq +ng_aq® +---.

Subtracting ¢ times this from the equation for d 4 2 gives ng o = ¢%t2 —

g™t as required. |

Proof of Proposition 7.1. We shall only prove the result when ¢ is odd,
since we only apply it then (and since our proof is too long when g is even).

Every hyperelliptic curve over F, of genus ¢ is isomorphic to a curve of
the form y? = f(x) where f(x) is squarefree of degree 2g + 2 or 29+ 1. By
Lemma 7.3 there are (¢2972 — ¢?971) + (¢?91! — ¢%9) = ¢?92 — ¢%9 such
monic f; and so there are (¢ — 1)(¢> — q)¢®9~! such f. To determine the
number of curves isomorphic to a given curve, note that all isomorphisms
between such curves are given by a linear fractional map on x, and a scalar
multiple of y. There are (¢> —1)(¢> — q)/(q— 1) elements of PGLy(F,) and
(q — 1) scalar multiples, giving a total of (¢ — 1)(¢*> — ¢) such isomorphic
curves. |

Thus IntrinCard(Ms(F,)) = ¢*, and we conjecture that
IntrinCard(M3(Fy)) = ¢® +¢° + 1.

Proof of Theorem 7.1 Let P; be the set of monic squarefree polynomials
in F,[z], and ng = |Py| which equals ¢? — ¢?~! for d > 2 by Lemma 7.3.
Let rq4 be the proportion of f € Py for which f(0) = 0. Note that f € Py
with f(0) = 0 if and only if we can write f(z) = zg(z) where g € Py
with ¢(0) # 0, so that

ngrd +Nd—1rd—1 = Nd—1.
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Let aq. be the average number of affine F,» points on the curves y? =
f(z)g(x)?, where f € Py and g(x) € F[z] is monic of degree e; and write
aq = aq,0. Note that, for a given a, we have the same number of solutions
to y? = f(a) as to y> = f(a)g(a)? if g(a) # 0. Now, the proportion of the
degree e monics for which g(a) = 01is 1/¢ if e > 1 and 0 if e = 0 when
a € Fy; whereas it is 1/¢* if e > 2 and 0 if e=0 or 1 when a € F/.. Thus
we deduce that

ad,e = Qd,e—1 When e > 3.

Also agq1 — agqy is the mean value of 1 — #{y € Fp : 3> = f(a)}, over
f€Pjand a € Fy. Asa € F, thus f(a) € F,, and so there are two square
roots of f(a) in F, unless f(a) = 0. Letting © — = — a we deduce that

aq,1 — ad,o =74 — 1.

Finally ag2 — aq, is I>(g)/q® times the mean value of 1 — #{y € Fp :

y? = f(a)}, varying over f € Py and a € F;2. This equals the mean value

of 1 —#{y € Fpz : y*> = f(a)}, varying over f € P; and a € F 2, minus
(1/q) times the mean value varying only over a € F,. Combining this with
the previous paragraph gives

ag —aq1 =1—aq/q® — (ra —1)/q.
By Corollary 6.2 we have, for d > 2,
ld/2]
(q2 +q-— l)qd = Z ad72e,end72eqe- (10>
e=0

For d > 4 we subtract ¢ times (10)4_2 away from (10)4 to get the right
hand side

agng + qna—2(aa—2,1 — ad—2,0) + ¢*na—a(aa—a,2 — ag—4,1).
Using the equations above we deduce that for d > 6,
aa—aa-s/¢" = +q—1+1/q—2/¢". (11)

The average we are looking for is p1g = ((a2g4+1+1) +q(azg+2+2))/(¢+1),
which takes account of the points at co, as explained in Lemma 7.1. Adding
(11)2441 to g times (11)9442 we deduce

(g — (@ +q+ 1)) = g(uﬂ (@ q+1)

for all g > 3. Using the above equations to evaluate py for g = 0,1,2 we
then can prove by induction that py, — (¢> + ¢+ 1) = —(=1)9/¢*9~ . |



20 BROCK AND GRANVILLE

ACKNOWLEDGMENTS

The first author would like to thank Michael Zieve for observing that curves with
many points over a finite field often could be written over the prime field, which points
toward some of these results, and for connecting him with the second author. He also
thanks Nick Katz, Ofer Gabber, Noam Elkies, and Peter Sarnak for generously answering
numerous questions by email, and Kevin Iga for a fruitful conversation. The first author
used Magma to perform the numerical experiments in section 6 while he was at the
Center for Communications Research in Princeton. The second author would like to
thank William Stein for a discussion that led to this paper, and Tom Tucker for useful
conversations.

REFERENCES

1. B.J. Birch, “How the number of points of an elliptic curve over a fixed prime field
varies”, J. London Math. Soc. 43 (1968), 57-60.

2. C. Breuil, B. Conrad, F. Diamond, R. Taylor, “On the modularity of elliptic curves
over Q”, hittp://math.harvard.edu/~rtaylor/st.dvi, preprint.

3. D. Bump, D. Ginzburg, J. Hoffstein, “The symmetric cube”, Invent. Math., 125
(1996), 413-449.

4. P. Deligne, “Formes modulaires et representations l-adiques”, Seminaire Bourbaks,
Vol. 1968/69, Exp. 355, Lecture Notes in Math. 179, Springer-Verlag, New York,
1971.

5. P. Deligne, “La conjecture de Weil 1, Inst. Hautes Etudes Sci. Publ. Math. 43(1974),
273-307.

6. P. Fleischmann, I. Janiszczak, R. Knérr, “The number of regular semisimple classes
of special linear and unitary groups”, Linear Algebra Appl., 274(1998)17-26.

7. G. van der Geer, M. van der Vlugt, “Supersingular curves of genus 2 over finite fields
of characteristic 2”, Math. Nachr. 159(1992), 73-81.

8. E.W. Howe, “On the group orders of elliptic curves over finite fields”, Compositio
Math. 85(1993), 229-247.

9. P.I. Katsylo, “Rationality of the moduli spaces of hyperelliptic curves”,
Izv. Akad. Nauk SSSR Ser. Mat., 48(1984), 705-710.

10. N.M. Katz, “Frobenius-Schur indicator and the ubiquity of Brock-Granville quadratic
excess”, (to appear).

11. N.M. Katz, P. Sarnak, “ Random Matrices, Frobenius Eigenvalues, and Monodromy”,
AMS Colloquium Publications vol. 45, Providence, Amer. Math. Soc., 1999.

12. R. Schoof, “Nonsingular plane cubic curves over finite fields” J. Combin. Theory
Ser. A, 46 (1987), 183-211.

13. A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Rie-
mannian spaces with applications to Dirichlet series”, J. Indian Math. Soc. 20
(1956), 47-88.

14. A. Selberg, “On the estimation of Fourier coefficients of modular forms”,
Proc. Amer. Math. Soc., Symp. Pure Math. VIII: Theory of Numbers, Pasadena,
1963, 1-15.

15. J.-P. Serre, “Abelian Il-adic Representations and Elliptic Curves”, New York, Ben-
jamin, 1968, 1-15.



16.

17.

18.
19.

20.

MORE POINTS THAN EXPECTED 21

J.-P. Serre, “Sur le nombre des points rationnels d’une courbe algébrique sur un corps
fini”, C. R. Acad. Sci. Paris Sér. I Math., 296 (1983), 397-402; Oeuvres. Collected
Papers, Vol. IIT1 1972-1984, Springer-Verlag, New York, 1986, pp. 658-663.

G. Shimura, “On the holomorphy of certain Dirichlet series”, Proc. London
Math. Soc. (3) 31(1975) 79-98.

H. Weyl, “Classical Groups”, Princeton U. Press, Princeton, 1946.

A. Wiles, “Modular elliptic curves and Fermat’s last theorem”, Ann. of Math. (2)
141 (1995), 443-551.

D. Zagier, “The Eichler-Selberg trace formula on SL2(Z)”, Appendix to S. Lang’s
Introduction to Modular Forms, Grundlehren der Mathematischen Wissenschaften
vol. 222, Springer-Verlag, New York, 1976, 44-54.



