DON’T BE SEDUCED BY THE ZEROS!
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1. The explicit formula. Once we know that there are infinitely many primes it is
natural to ask how many there are up to z. By studying tables of the primes up to 3 x 10°

Gauss understood, as a boy of 15, that the primes occur with density @ at around z,

and so the number of primes up to x is approximately f; 15%' This formula is fairly
cumbersome, and can be simplified by weighting each prime p with logp. Then Gauss’s

guesstimate predicts that Zp<:v log p is approximately z. So far, all primes up to 103 have
been calculated, and the error term never much exceeds /.

How can we approach Gauss’s conjecture? We can identify all the composite numbers
(and hence all the primes) in (y/z, z] by test-dividing by the primes up to y/z. This is the
sieve of Eratosthenes. Nobody has found a way to use this, or any other sieve procedure, to
accurately estimate the number of primes up to x. Indeed there is no successful approach
known based on simple intuitive reasoning.

In a nine page memoir written in 1859, Riemann outlined an extraordinary plan to
attack the elementary question of counting prime numbers using deep ideas from complex
function theory. His approach begins with the Riemann zeta-function, {(s) := )+, 1/n°.
This can be extended, in a unique way, to a function that is analytic in the whole complex
plane (except at s = 1, where it has a pole of order 1). With this analytic continuation,
Riemann gave the following remarkable explicit formula:
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If, as Riemann hypothesized, all zeros p of ((p) = 0 have real part < %, then each |z°| <
x'/2, and one can deduce that the error term in Gauss’s guesstimate does not exceed

3v/x log z.
The Riemann Hypothesis is far from proved, but we can deduce more from the explicit
formula. For example, fix 1 > f > 1/2. Then all zeros of ((s) satisfy Re(s) < g iff

Zp<m logp — w‘ < CpgxP. This is unproved, but the prime number theorem (that the

number of primes up to z is about z/logz) was established by Hadamard and de la
Vallée Poussin in 1896, by establishing that there are no zeros of ((s) very close to the
1-line. Using the explicit formula, we can reformulate many different problems about
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primes as problems about zeros of zeta-functions, which we can approach through analysis.
Mathematicians love to build bridges between apparently disconnected fields, hoping to
get a better perspective of both.

These observations are so seductive that they have stimulated most research into the
distribution of prime numbers ever since. Moreover, there are many other good questions
about prime numbers, number fields, finite fields, curves, and varieties, which can be re-
cast in terms of appropriate zeta-functions, so there is no end to what such methods can
investigate.

2. Other approaches. Given this tautology between primes and zeros, no lesser author-
ities than Hardy, Ingham, and Bohr asserted that it is impossible to find an elementary
proof of the prime number theorem, a feat achieved, however, by Selberg and Erdds in the
late 1940s. (Ingham’s brilliant Math Review shows how zeta functions lurk just beneath
the surface of their work, so that the avoidance of zeros seems more as a clever trick than
a fundamentally new proof.) There are many other important results about prime num-
bers whose proofs do not revolve around zeta functions, for instance theorems involving
gaps between consecutive primes. Nonetheless, these proofs tend to use whatever tools
are needed, including information gathered from zeta function methods, as well as sieve
methods, so they tend to be viewed as ad hoc.

New and quite different techniques have recently achieved great results where zeta
function methods fail to yield much, in the wonderful work of Green and Tao on primes in
arithmetic progressions, as well as their recent theorems, with Tammy Ziegler, on a wide
variety of prime patterns.

3. The pretentious approach. A multiplicative function f is one for which f(mn) =
f(m)f(n) whenever m and n are coprime integers. Important examples include n® for
fixed t € R, x(n) where x is a Dirichlet character, and others that appear in arithmetic as
a consequence of the Chinese Remainder Theorem, as well as u(n), defined by u(p) = —
and p(p*) = 0 for all k > 2, for all primes p. One can show, in an elementary way, that
the prime number theorem holds if and only if the mean value of pu(n) up to N, tends to
0as N — oo.

If we restrict to multiplicative functions satisfying |f(n)| < 1 for all n, when does the
mean value of f(n) not tend to 07 An obvious example is 1, or any example much like 1
(i.e., when we perturb the value at each prime by just a small amount). Another example

is n’ since the mean value is approximately - fON ultdt = %, in this case we see that
the mean value does not tend to a limit as N — oo, but rather rotates around a circle
of radius 1/4/1 + t2. Haldsz’s great 1971 theorem proves that these are essentially all the
examples: If the mean value of f does not tend to 0 then f looks a lot like n for some t,
that is f pretends to be n'*. Haldsz’s proof involves Dirichlet series to the right of 1 and
Parseval’s identity, but doesn’t use analytic continuation.

Soundararajan and I have improved known results in analytic number theory using
Halasz’s ideas. We worked on the size of character sums, the sizes of L-function values,
least non-residues, and convexity problems for L-functions. Most recently Soundararajan
and Holowinsky completed the proof of Arithmetic Quantum Unique Ergodicity. Halész’s
theorem is bound to be a better tool to study more general analytic problems than classical
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analytic methods since the Dirichlet series arising from the given multiplicative function
does not need to be analytic (which is the main point of using zeta-functions).

Linnik’s Theorem states that there exist constants ¢, L > 0, such that if (a,q) = 1
there is a prime = a (mod ¢) that is < cq®. Previous proofs have been difficult and
important. In November 2009, Friedlander and Iwaniec presented a new proof, based on
sieve methods, for the first time entirely avoiding zeros of zeta functions. This method
inspired Soundararajan and I to further develop an idea we had for a pretentious large
sieve, yielding what is surely the shortest and technically easiest proof of Linnik’s Theorem
(though bearing much in common with an earlier proof of Elliott.)

More importantly, our work on Linnik’s Theorem revealed that we could prove all
of the basic results of analytic number theory without ever using analytic continuation.
In the past year we have been developing this new approach. Our goal is to reprove the
key results in Davenport’s Multiplicative Number Theory and Bombieri’s Le Grand Crible
using only “pretentious methods.” The past semester I taught the first ever “pretentious
introduction to analytic number theory” in Montréal, and 40 junior researchers have signed
up to participate in an AMS Mathematical Research Community this summer and we hope
will go on and further develop our methods.

It is believed that the L in Linnik’s Theorem can be taken to be any number > 1;
the current record is 5.2. We do not yet know what our method will yield, but we await a
talented, energetic researcher who will advance our ideas and beat the current record!



