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Some Conjectures in
Analytic Number Theory
And their Connection
With Fermat’s Last Theorem

ANDREW GRANVILLE

Dedicated to P. Bateman on his retirement

1. Introduction

The first case of Fermat’s Last Theorem is the assertion:
For all odd primes p there are no integer solutions x, y, z to

P+y+2 =0 with pAxyz (l)p

In 1823 Sophie Germain showed that if 2p + 1 is also prime then (1),
has no solutions and this has been generalized as follows (see [15]):

Lemma 1. For any fixed positive integer m, with m=2 or 4(mod 6),
define N, to be the product, over all pairs o, B of mth roots of unity, of
(Q+a+P). If p and q=mp+l are both primes, where p does not
dividle m and q does not divide N, then (1), has no solutions in
integers x,y and :z.

By finding prime pairs of the form p, g =mp+1 one hopes to be able to
use Lemma 1 to establish the first case of Fermat’s Last Theorem. Unfor-
tunately it is not presently known how to formulate a ‘reasonable’ conjecture
in analytic number theory that would achieve this goal; however, in this
paper, we examine what exactly a number of quite different conjectures of
analytic number theory actually imply about the set of primes p for which
there is an integer solution x,y,z of (1),.

This paper may be seen as a continuation of [8] where we investigated the
consequences (for Fermat’s Last Theorem) of a variety of conjectures from
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algebraic, combinatorial and transcendental number theory.

2. Statement of Results

In order to exploit Lemma 1 it is obviously necessary to obtain informa-
tion about primes ¢ in the arithmetic progression 1(modp), for which 3
does not divide ¢g-1. A famous result of Linnik [13] implies that there exists
a constant L>0 such that the least such prime ¢ is <p’. A recent result of
Bombieri, Friedlander and Iwaniec [3] implies that we may take L=2 for
almost all primes p. However we actually need to use stronger estimates
than these. We start by assuming a conjecture that has been formulated by
each of Heath-Brown [12], McCurley [14] and Wagstaff [17] independently.

Conjecture 1. There exists a constant c¢; >0 such that, for any given
integer d, the least prime in the arithmetic progression a(mod d) is less
than c,0(d) log’d whenever (a, d) = 1.

From this we will deduce
Theorem 1. If Conjecture 1 is true then

#{primes p <x: (1), has solutions} < log’x.

In a recent paper Adleman and Heath-Brown [1] showed what effect three
conjectures in analytic number theory have on (1),. The third of these con-
jectures was proved by Fouvry [6] and allowed them to state that (1), has
no solutions for > x> prime exponents p < x. Michael Filaseta has noted
that their results imply that there exist arbitrarily large values of x for which
this can be improved to > x/log x prime exponents p <x (we give his
proof in Section 5). We now state a new conjecture, which is a modification
of the one that Fouvry proved. Define, as usual, n(x;d,a) to be the number
of primes < x that are = a(modd), and let

¥ (nd) = m(xd1) - n(x3d,1) .
(= #{primes ¢ < x: ¢ = 1(modd), q # 1(mod3d)})
Conjecture 2. There exists 0, 23 <0 < 1, such that

Y. w*(x p) > xllogh.
P<p<2d

Of the three approaches presented in this paper, perhaps this one has the

greatest chance of success (in the sense that we have real hope of Conjecture
2 being proved in the forseeable future). We will show
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Theorem 2. If Conjecture 2 is true then (1), does not have solutions for
> n(x) primes p < x.

A minor modification of the proof of Theorem 2 leads to a new and
shorter proof of the results of Adleman and Heath-Brown, and of Filaseta (see
section 5).

As early as 1904, Dickson [4] had conjectured that, with certain obvious
restrictions, an arbitrary set of linear polynomials will simultanecously take on
prime values infinitely often. Hardy and Littlewood conjectured asymptotic
formulae for how often this happens for various sets of polynomials in [11].
These conjectures were extended to arbitrary sets of polynomials by Schinzel
and Sierpinski [16] and then modified to obtain greater accuracy by Bateman
and Horn [2]). An explicit form of these conjectures restricted to certain
linear polynomials is given here:

Conjecture 3. Suppose that my, my, ..., m; are given positive integers and
let N(x; my, my, ..., my) be the number of primes p, x <p < 2x, for which
myp+1, mop+l, ..., mp+1 are also prime. Then

NGx; my, my, ... mp) = C(my, ..., mk)o—gi?rl-{l+o(l)}, )

a
1-w, ()
where C(my,.om)= 1 '('aTwu'(?*—f) wo(p) is the number of dis-

tinct solutions y(mod p) of y(ymy+1)(ymy+1) ... (ymy+1) = 0 (mod p).

Just as one should view Conjecture 3 as a generalization of Dirichlet’s
Theorem (for primes in arithmetic progressions) from one to many linear
polynomials, so one should view the next conjecture as a generalization of a
weak form of the Siegel-Walfisz Theorem from one to many linear polynomi-
als.

Conjecture 3". For any fixed integer k and positive real d, the error term
o(1) in (2) depends only on k and d whenever each m; < d log x.

A consequence of our Proposition 2 is that Conjecture 3* implies

Conjecture 3*. For any given € >0, there exists a constant c(€) >0 such
that if x is sufficiently large then there are less than €n(x) primes p<x
with mp+1 composite for every m < c(e)logx and not divisible by 3.

In Section 6 we will deduce from Conjecture 3* and Lemmas 1 and 2 that
#{primes p <x: (1), has solutions} = o(n(x)) .
Thus we will have proved

Theorem 3. If Conjecture 3* is true then (1), has no solutions for almost
all primes p; that is #{primes p <x: (1), has solutions} = o(n(x)).




e
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In [9] we saw how the methods used in proving Sophie Germain’s
Theorem could be applied to studying any Diophantine Equation. For the rest
of this section suppose that f(Xi, ..., X,) € Z[X;, ..., X,] is a given homo-
genous polynomial. For a given prime p we investigate whcther there are
integer solutions x;, X, ..., X, tO

AL L) = 0. ),

In [9] we proved a rather technical analogue to Lemma 1:

Lemma 1°. For any given homogenous polynomial f in n variables, there
is a finite (computable) set of positive integers B such that if m is a posi-
tive, even integer, not divisible by any element of P, then there exists a
non-zero integer N, =Nm(f)) such that if p and q=mp+ 1 are both
primes, and q does not divide N, then (3), has no ‘non-trivial' integer
solutions. Moreover there are <;m"" primes q that divide N,

It is clear that Lemma 1’ is useless if 1 or 2 are in the set B (for then all
positive even integers m are divisible by an element of B!). We call f
"admissible" if neither 1 nor 2 are elements of B (it is easily shown that
there are relatively few inadmissible polynomials f).

Now, as any integer =2>3 is divisible by some element of
Q := {4} U ({the odd primes}, we can certainly replace B in Lemma 1’ by
a finite subset B(f) of Q, whenever f is admissible. Then, by the methods
used to prove Theorems 1, 2 and 3 (and by the methods of [1]) we are able to
give various results on (3),.

Theorem 1 generalized. If f is an admissible polynomial and Conjecture 1
is true then

#{primes p<x: (3), has non—trivial solutions} < log?*'x .

For any odd prime p, p ¢ B(f), define

#{primes g<x: plg-1 but bAg-1 forall be B}

>, W) n(x; 2dp, 1) .
dAIlb
bef

na(x;p)

]

Conjecture 2’. For a given finite subset B of Q and positive integer
n 23, there exists 0, 1-1/n< 0 < 1, for which

Y ma(xp) > xlog’ .
Pepd

Theorem 2 generalized. If f is an admissible polynomial and Conjecture
2’ is true then (3), does not have non-trivial solutions for > m(x) primes
<zx
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Theorem 3 generalized. If f is an admissible polynomial and Conjecture
3“ is true then (3), has no non-trivial integer solutions for almost all primes
p; that is

#{primes p<x: (3), has non—trivial solutions} = o(r(x)) .

In a similar fashion we may use Lemma 1’ to apply the ideas of Adleman
and Heath-Brown [1] and of Filaseta, to equation (3),. The conjectures of [1]
(given below as Conjecture 5) can be generalized as follows:

Conjecture 4. For a given finite subset B of Q and integer n 23, there
exists 0, 1 —1/n< 0 <1 for which

@ = | 755 p) - pB) s | < alog’s
PeB(n
where p(B) = {1 - 1/¢(b)}; and
beP

® X mxp) > xlog x.
HPepsx
Evidently the Elliott-Halberstam conjecture implies (a) which itself
implies (b). Moreover, as in [1], we can show

Theorem 4. If f is an admissible polynomial and Conjecture 4(a) is true
then

#{primes p<x: (3), has non-trivial solutions} < x/log’ .

Let T be the set of primes for which (3), has no solutions, and let

)= Y 1.
peTp=x

Theorem 5. If f is an admissible polynomial and Conjecture 4(b) is true
then

) )y 10gp o 1ogx
peTpsx p
(i ) > 2
(iii) There are arbitrarily large values of x for which
nr(x) > nx).
Theorems 5(i) and (ii) generalize results in [1] while Theorem 5(iii) gen-
eralizes Lemma 4(iii) (due to Filaseta) given below.




316 FERMAT'S LAST THEOREM

3. Exceptional Prime Pairs p,q

In order to be able to apply lemma 1 it is evidently necessary to estimate
how many values of g divide N,,.

Lemma 2. There exists a constant c, > 0 such that
#{prime pairs p,q=mp + 1. plmor gIN,} < con?,
for all positive integers m =2 or 4 (mod 6).

Proof: Foreach o and B, 11 +a+Bl<3 and so N, < 3" Therefore
there are O(m?) distinct primes ¢ dividing N,, and trivially O(m) dividing
m.

4. The Proof of Theorem 1

Proof: For a given prime p in the range x < p < 2x, we know, by Conjec-
ture 1, that there is a prime ¢, < 7cyx log2x in the arithmetic progression a,
(mod 3p) where a,=p+l if p=1 (mod 3), 2p+l otherwise. So if
g, =mp+1 then m=2or4 (mod 6) and m < 7c;log’. Therefore, by Lem-
mas 1 and 2 we have

#{primes p: x<p <2x and (1), has solutions} < Y e
mdcllogzz
m=2 or 4 (mod 6)

< log®x.

Summing over the intervals [271x,27%] gives the result.

5. The Adleman-Heath-Brown approach

The Bombieri-Vinogradov Theorem states that for any €, A > 0,
max max In(y; q,a ——RLL)I <, Xlog'x

where Q = x'2¢. Elliott and Halberstam [3] conjectured that this can be
extended to Q =x'"t. This implies the case B = {3}, n=3 of Conjecture
4a), namely

Conjecture 5a. There exists 0, 2/3 <0 <1, such that

oo _ E(X)
3<pzsxe I x; p) 20 | « xlog.
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This, in turn, implies the case B = {3}, n=3 of Conjecture 4b):
Conjecture 5b. There exists 0, 2/3 <0 < 1, such that
Y n'(xp) > xlogx.
xOpzx
Adleman and Heath-Brown [1] showed

Lemma 3. If Conjecture 5a) is true then (1), has solutions for < x/log?x
prime exponents p<x.

Let T be the set of primes for which (1), has no solutions. Adleman
and Heath-Brown [1] also showed the first two parts of Lemma 4; the last
part is due to Filaseta.

Lemma 4. If Conjecture 5b) is true then

@) Y logp log x;
Spseper P
(ii) (x) > x°.

(iii) There are arbitrarily large values of x for which ni(x) > n(x).
Lemma 4(iii) follows immediately from Lemma 4(i) and

Lemma 5. If T is a set of primes such that Y, Eﬁ_ﬂ > ¢3 log x for
psxpeT
all x> xy (for some constant c3 > Q) then there are arbitrarily large values

of x for which mt(x) > SN
2 logx’

c
Proof. Suppose not, so that 7{x) < —21 lo; . for all x > x;(> xp). Then,

by forming a Riemann-Stieltjes integral, we have

y logp _ I—-g-—l" 2 dnylz) + O(1)
psxpeT P x z
= 182 ey [ 822D 6ya 4 0
Z
X
L] log z 2z
2 J- 2 log:z dz+0Q)
X
< S iogx+0q),

2
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giving a contradiction.

In 1985, Fouvry [6] showed that Conjecture S5b) holds for some
0 > 0.6687. From Lemma 4 one can immediately deduce a number of conse-
quences for the set T.

Our approach here (that is, through Conjecture 2) evidently corresponds to
assuming Conjecture 5b) on diadic intervals. This slight strengthening of the
(already proved) Conjecture 5b) implies a significantly stronger result.

- The next result not only implies Theorem 2 but also a different proof of
Lemmas 4(ii) and (iii).
Proposition 1. Suppose that ¢, >0 and 1< A <3/2 are fixed constants.
If, for given values of z and x, with x <z, we have
Y, m*x p) 2 caxllog @)
2<pS2z
then

#{z<p<2z p primeand pe T} > zlog:

We see that Theorem 2 follows immediately by taking A = 1/6 in Propo-
sition 1. Moreover Conjecture 5b) implies that, for any given x, there are
» logx values of z of the form 2% satisfying (4), in the range x® <z < x.
Therefore we see, from Proposition 1:

Corollary 1. If Conjecture 5b) is true then (ii) and (iii) follow.
Proof of Proposition 1: Let y=x/z so that

Sy:= Y, #{pprime: z<p<2z, ¢ = mp+1 is prime, pin, gN,,}

msy, 3m
= Y #{m<y: 3 and mp+l is prime} + O( 3 n?)
7<p<2z msy
by Lemma 2

> Y n*(xp)+ 0G°) > xlogix
2<p<2z
by (4), as y3 = o(x/logzx). On the other hand, it is well known that if
r<s<y then N(zrs) < C(r,s) z/log3z (see [10], Theorem 5.7). Therefore
for B = (3},
Sy = Y N@zr,s)

r<ssy
s

< Fyp(y)z/log’z
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where F,g(y) = 2, C(r.s). In Proposition 3 below we shall accurately
r<ssy, 3rs
estimate F,p(y), but here a crude argument suffices:

By noting that, for d = s-r >0,

r d r+d
€0 < 30 WD 0
we see that
d r r+d
F30) < L 3@ Z 560 90+

r % Y
d r r+d
<2 [§¢<>n [Z;[wwn
by Cauchy'’s inequality,
n N2
<y

from elementary considerations. Thus S, < y’z/log’z, and so by Cauchy’s
inequality and Lemma 1, we have

n{(22) — n(z2) > S%S, > zllog 2.

6. The Number of Small Primes in Arithmetic Progressions

In order to prove Theorem 3, we will use Conjecture 3* to count, in a
very precise way, the number of "small" primes in the arithmetic progression
1(mod p). More precisely, for given subset B of Q and d >0 we define,
for each g=20, B(x, g) to be the number of primes p, x<p < 2x, for
which there are exactly g distinct integers my, ..., m,, not divisible by any
be B and less than dlog x, such that each of myp+1, mop+1, ..., mp+1 is
prime. We shall prove:

Proposition 2. Suppose that Conjecture 3* is true. Given any finite subset

B of Q and d >0 we have

e x
! logx

B(x, ) ~ (as x — )

for any fixed non-negative integer t, where )= dp(p).
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Assuming Proposition 2 we can now give the
Proof of Theorem 3: Fix €>0. By taking B={(3}, t=0 and
d=-4loge (= c(¢)) in Proposition 2, we see that Conjecture 3" follows
from Conjecture 3%,

Now by taking the integers m=2 or 4 (mod 6) with m < dlogx in
Lemma 1 we have
#{primes p: x <p £2x and (1), has solutions}

< #{primes p: x < p < 2xand there does not exist a prime mp+1
withm<dlogx and m=2 or 4(mod 6)}

+ Y, #{primes p: plm or qg=mp+11N,]}
m < d log x, m=2 or 4mod 6)

< en(x) + O(log>s)
by Conjecture 3* and Lemma 2,
< 2en(x)
for all sufficiently large x. Summing over the intervals [27'x, 27%x] gives

the result.

The proof of Proposition 2 is very similar to that of Theorem 5 in [7]
where we estimated, for any fixed a#0, the number of integers n,
x<n<2x for which there are exactly g integers my, ..., m, each less
than d log x, such that each of m;n+a, myn+a, ..., mynta, is prime. In our
proof we shall miss out some technical details that are identical to the proof
of that result.

Now, for any fixed «,

4
z [k] B(x’ g) = Z] N(X; m, my, ..., mk)
g2k 1sm,<..<m;<d log x
bm; for all befB
X
= Fip(dlog x)——— {1+ o0(1 h)
1p(d log x) og ™ { (D} )
by Conjecture 3% where Fig(y) = 3, C(my, ..., mp) and Y is the sum
over sets of k positive integers m; <m, < - -+ <m, <y, none of which

are divisible by any b € B.

In Section 7 we will prove
Proposition 3. For any fixed subset B of Q, integer k=21 and real
€ > 0, we have the estimate
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Fig®) = 2 GBW* {1+062) . ©

The main idea of the proof of Proposition 2 is to use the combinatorial
identity

B(x,g, ()

k
B(x, ) = Y, Aux), where Ayx) = (-1 )""[] >, [i

k2t g2k

for each ¢ >0, together with the estimates (5) and (6). Unfortunately, as the
o(1) in (2) depends on k, we cannot use the infinite sum in (7), but we are

able to approximate B(x, f) by Y, A(x) for n large to prove the result.
’ k=t

Now, by (2) and (6) we have

: L! (_X)k—t x
A = T Gl Togx

r S
£ ]
for any fixed n 2> t+1,

l TS (—1)*“[ ] [’f] B, g>|
g2n+l | k=0

5, 1] oo
« [] g0

<2
N (1) log

{1+0,(1)}. ®

s
Moreover, as < [r] for any integers 7, s =1, we have,

‘B(x, N -3 A)
k=t

IA

{1+0o(1)} ®

by (8). Define s, = Z (-\)%k! which tends to 0 as n — eo. Then

IB(x, N - F log = < lB(x, 0 - é Ak(x)l

A +£ x Z(l"“
! (k! logx t! logx (k—D!

ZM@— —])
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AN x A
< t‘ log X {(n t)' + 0,,(1) + lsn—H-ll}
by (8) and (9),

7. Technical stuff: The Proof of Proposition 3

We evaluate Fpg(x) as x — oo, using essentially the same method as in
the proof of Theorem 6 of [7]. In keeping control of the error term the
details become extremely technical. We avoid these details here as they are
very similar and refer the reader to [7].

Now w,(p) counts precisely the number of distinct residue classes (mod
p) that contain an m; (=0, 1, ..., k) where my=0.
We define ¢p(d)= II (p—*k) foreach d=1, and
pidp>k

— O ()P
r (1-1/p)¥t ~

It is easy to see that

- - wm(p)
Clm, ... my) ple(m) ¢k+1(P) (10)

k

where 0(m) = [Hl

m; [191;1& (m; — m,-)], and so the product in (10) is finite.

Therefore

s Yy X M l'I

d\0(m)

Fa) [,, — O (p) - w,..<p)]

e (P)
= gip % {1+ Op(x*")}

after a considerable amount of rearrangement (exactly as in [7]) where

= M 11
8kp = Cs L 0@ ad)" MZ(:) L d[p b @) —wa@)] , (1)

a=blE'I b and ), is the sum over 1<my,..,m<ad with bAm; for
each i and be B.
Now, in order to evaluate the sum in (11) we need:
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Lemma 6. For each k=>1 we have

@ Mp) = ) wap) = p* - (-D,
OSml, csey m&l
® M) = 2 waP) = p(-1)* - (-D)(p-2)*, and
1<m,, ..., m<p-1
© Y wm(2) = 23— 1.
lsﬂll, enag mkS3

Proof: (@) Let A.;(p) denote the number of k-tuples (my, ..., my), with
0<my, .., m<p-1, for which there are exactly j non-zero residue
classes (mod p) that contain an m;. We shall prove our result by induction
on k. For k=1,

M@) = 20,0) + 1A 0() = 2(-1) +1 = p* - (-1)*.
Now, by using the identity
A @) = (+1) Mf0) + (0) Mjar @) (12)

we have
k+1

M @) = X G+ M (@)
=0

= é (P + @-1G+D) M) ,
using (12),

= P+ @e-D Mlp) = P - -7,
by the induction hypothesis.

hy
(b) It is easy to see that A,(p) = i (]) Ai(p) and so,
0

_ k sk
e = 3 () ae)
=0

,é, (f,) 1y (M = -1y)

by (a),

-1 - (-1)(P-2"* .
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(© As w,(2) =2 unless each m; equals 2, the result is immediate.

Now, for a fixed value of d we have

3, 1 [p - @) - wap)] = T T, 11, 1O, 13)

de(m) P\

where

=0 3 [p-0m®-wo]

1 [#o-0) - 10 = 11 [0 - p* 000

pld pid

by Lemma 6(a),

E
Tk _ D (p1)].
( p¢k+1<p))[1 e (& )},
a
I, = I )y 1= I G-,
(Zj)il 15my, ..., my<b-1 (:;il
Il = I(I} N h [P - Oe1(p) — Wm(P)]
pp23 0smy, ..., msp?-1
pmy ... m
- 1 le-0G-0me) - o]
p23

- 1 o062t - 01 o))

P23
by Lemma 6(b),
k
_ - k _ @) (p2) .
= I oD ¢k+1<p))[1 (& ]

p23
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L= 3 [1-w»]=201-3,
Osm, . msT

by Lemma 6(c), if 4eB and 2ld; my =1 otherwise.

Therefore, by (11) and (13), and a little rearrangement, we have

k
1 _e) (1),
oo = o5 1L (1 )Zu(d) ,,[1 1 (1 ﬁp)] ,

where ry=1-1/3* if 4€ B and 2id,1 otherwise, and €,=1 if pla,
0 otherwise,

= s a-3) [ %(p) (L) } re (<r1>2)

where s3=(2/3)* if 4 € B, 1 otherwise,

( - ¢(B) = p(B)k .

The result follows immediately.
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