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Abstract. We give a relatively easy proof of the Erdős-Kac theorem via computing moments. We
show how this proof extends naturally in a sieve theory context, and how it leads to several related
results in the literature.

Letω(n) denote the number of distinct prime factors of the natural numbern. The
average value ofω(n) asn ranges over the integers belowx is

1
x

∑

n≤x

ω(n) =
1
x

∑

p≤x

∑

n≤x
p|n

1 =
1
x

∑

p≤x

[
x
p

]
=

1
x

∑

p≤x

(
x
p

+ O(1)

)
= log logx + O(1).

It is natural to ask howω(n) is distributed as one varies over the integersn ≤ x. A
famous result of Hardy and Ramanujan (Hardy and Ramanujan, 1917) tells us that
ω(n) ∼ log logx for almost alln ≤ x; we say thatω(n) hasnormal orderlog logn.
To avoid confusion let us state this precisely: givenε > 0 there existsxε such that
if x ≥ xε is sufficiently large, then (1+ ε) log logx ≥ ω(n) ≥ (1 − ε) log logx
for all but at mostεx integersn ≤ x. The functions log logn and log logx are
interchangeable here since they are very close in value for all but the tiny integers
n ≤ x.

Their proof revolves around the following wonderful inequality which they
established by induction. Defineπk(x) to be the number of integersn ≤ x with
ω(n) = k. There exist constantsc0, c1 > 0 such that for anyk ≥ 0 we have

πk(x) < c0
x

log x
(log logx + c1)k−1

(k− 1)!
, (1)

for all x ≥ 2. Hardy and Ramanujan exploited this by deducing that

∑

|k−log logx|≥ε log logx

πk(x) ≤ c0
x

log x

∑

|k−log logx|≥ε log logx

(log logx + c1)k−1

(k− 1)!
,
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which is easily shown to be aboutx/(log x)α whereα = αε = ε2/2 + O(ε3), far
less thanεx. In fact Hardy and Ramanujan squeezed a little more out of this idea,
showing that ifκ(n)→ ∞ asn→ ∞, no matter how slowly, then

|ω(n) − log logn| ≤ κ(n)
√

log logn (2)

for almost all integersn ≤ x.
Once we know thatω(n) has normal order log logn, we can ask finer questions

about the distribution ofω(n). For instance how isω(n) − log logn distributed?
More specifically, how big is this typically in absolute value? Turán (Tuŕan, 1934)
found a very simple proof of the Hardy–Ramanujan result by showing that

1
x

∑

n≤x

(ω(n) − log logn)2 = {1 + o(1)} log logx. (3)

One deduces easily thatω(n) hasnormal orderlog logn: For, if there aremε(x)
integers≤ x for which |ω(n)− log logn| ≥ ε log logx then by (3),mε(x) ≤ (

1/ε2 +

o(1)
)
x/ log logx, which is≤ εx for sufficiently largex. Indeed the same argument

also gives (2) for almost alln ≤ x.
We have now obtained some information about the distribution ofω(n), its av-

erage value, and the average difference between the value and the mean. Next we
ask whether there is a distribution function forω(n)? In other words if, typically,
the distance betweenω(n) and log logn is roughly of size

√
log logn can we say

anything about the distribution of

ω(n) − log logn√
log logn

? (4)

In the late 1930s Mark Kac noticed that these developments bore more than a
passing resemblance to developments in probability theory. He suggested that
perhaps this distribution isnormal and even conjectured certain number theory
estimates which would imply that. Soon after describing this in a lecture, at which
Paul Erd̋os was in the audience, Erdős and Kac were able to announce the result
(Erdős and Kac, 1940): For anyτ ∈ R, the proportion of the integersn ≤ x for
whichω(n) ≤ log logn + τ

√
log logn tends to the limit

1√
2π

∫ τ

−∞
e−t2/2dt (5)

asx→ ∞. In other words the quantity in (4) is distributed like a normal distribu-
tion with mean 0 and variance 1.

Erdős and Kac’s original proof was based on the central limit theorem, and
Brun’s sieve. A different proof follows from the work of Selberg (Selberg, 1954)
(extending and simplifying the work of (Sathe, 1953)) who obtained an asymptotic
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formula forπk(x) uniformly in a wide range ofk. Yet a third proof is provided by
Halberstam (Halberstam, 1955) who showed how to compute the moments

∑

n≤x

(ω(n) − log logx)k, (6)

for natural numbersk, and showed that these agreed with the moments of a normal
distribution. Since the normal distribution is well-known to be determined by its
moments, he deduced the Erdős-Kac theorem.Erdos@Erdős-Kac theorem

In this article, we give a simple method to compute the moments (6), and in
fact we can obtain an asymptotic formula uniformly in a wide range ofk. Then
we discuss how such moments can be formulated for more general sequences
assuming sieve type hypotheses.

THEOREM 1. For any natural numberk we letCk = Γ(k + 1)/
(
2k/2Γ(k/2 + 1)

)
.

Uniformly for even natural numbersk ≤ (log logx)1/3 we have

∑

n≤x

(ω(n) − log logx)k = Ckx(log logx)k/2
(
1 + O

( k3/2

√
log logx

))
,

and uniformly for odd natural numbersk ≤ (log logx)1/3 we have

∑

n≤x

(ω(n) − log logx)k � Ckx(log logx)k/2 k3/2

√
log logx

.

We will deduce this theorem from the following technical proposition.

PROPOSITION 2.Define

fp(n) =


1− 1

p if p | n
− 1

p if p - n.

Letz≥ 106 be a real number. Uniformly for even natural numbersk ≤ (log logz)
1
3

we have

∑

n≤x

(∑

p≤z

fp(n)
)k

= Ckx(log logz)k/2
(
1 + O

( k3

log logz

))
+ O(2kπ(z)k), (7)

while, uniformly for odd natural numbersk ≤ (log logz)1/3, we have

∑

n≤x

(∑

p≤z

fp(n)
)k

� Ckx(log logz)k/2 k3/2

√
log logz

+ 2kπ(z)k. (8)



4 A. GRANVILLE AND K. SOUNDARARAJAN

Deduction of Theorem1. We seek to evaluate
∑

n≤x(ω(n) − log logx)k for
natural numbersk ≤ (log logx)1/3. Setz = x1/k and note that, forn ≤ x,

ω(n) − log logx =
∑

p≤z

fp(n) +
∑

p|n
p>z

1 +

(∑

p≤z

1/p− log logx
)

=
∑

p≤z

fp(n) + O(k).

Thus for some positive constantc we obtain that

(ω(n) − log logx)k =

(∑

p≤z

fp(n)
)k

+ O
( k−1∑

`=0

(ck)k−`
(
k
`

)∣∣∣∣∣
∑

p≤z

fp(n)
∣∣∣∣∣
`)
.

When we sum this up over all integersn ≤ x the first term above is handled

through (7, 8). To handle the remainder terms we estimate
∑

n≤x

∣∣∣∑p≤z fp(n)
∣∣∣` for

` ≤ k − 1. When` is even this is once again available through (7). Suppose` is
odd. By Cauchy–Schwarz we get that

∑

n≤x

∣∣∣∣∣
∑

p≤z

fp(n)
∣∣∣∣∣
`

≤
(∑

n≤x

(∑

p≤z

fp(n)
)`−1)1/2(∑

n≤x

(∑

p≤z

fp(n)
)`+1)1/2

,

and using (7) we deduce that this is

�
√

C`−1C`+1x(log logz)`/2.

Proof of Proposition2. If r =
∏

i pαi
i is the prime factorization ofr we put

fr (n) =
∏

i fpi (n)αi . Then we may write

∑

n≤x

(∑

p≤z

fp(n)
)k

=
∑

p1,...,pk≤z

∑

n≤x

fp1···pk(n).

To proceed further, let us consider more generally
∑

n≤x fr (n).
Supposer =

∏s
i=1 qαi

i where theqi are distinct primes andαi ≥ 1. SetR =∏s
i=1 qi and observe that ifd = (n,R) then fr (n) = fr (d). Therefore, withτ

denoting the divisor function,
∑

n≤x

fr (n) =
∑

d|R
fr (d)

∑

n≤x
(n,R)=d

1 =
∑

d|R
fr (d)

( x
d
ϕ(R/d)

R/d
+ O(τ(R/d))

)

=
x
R

∑

d|R
fr (d)ϕ(R/d) + O(τ(R)).

Thus seting

G(r) :=
1
R

∑

d|R
fr (d)ϕ(R/d) =

∏

qα‖r

(
1
q

(
1− 1

q

)α
+

(−1
q

)α(
1− 1

q

))
,
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we conclude that ∑

n≤x

fr (n) = G(r)x + O(τ(R)).

Observe thatG(r) = 0 unlessr is square-full and so

∑

n≤x

(∑

p≤z

fp(n)
)k

= x
∑

p1,...,pk≤z
p1···pk square-full

G(p1 · · · pk) + O(2kπ(z)k). (9)

Supposeq1 < q2 < . . . < qs are the distinct primes inp1 · · · pk. Note that since
p1 · · · pk is square-full we haves≤ k/2. Thus our main term above is

∑

s≤k/2

∑

q1<q2<...<qs≤z

∑

α1,...,αs≥2∑
i αi=k

k!
α1! · · ·αs!

G(qα1
1 · · ·qαs

s ).

Whenk is even there is a terms = k/2 (and allαi = 2) which gives rise to the
Gaussian moments. This term contributes

k!

2k/2(k/2)!

∑

q1,...,qk/2≤z
qi distinct

k/2∏

i=1

1
qi

(
1− 1

qi

)
.

By ignoring the distinctness condition, we see that the sum overq’s is bounded
above by (

∑
p≤z(1−1/p)/p)k/2. On the other hand, if we considerq1, . . . ,qk/2−1 as

given then the sum overqk/2 is plainly at least
∑
πk/2≤p≤z(1− 1/p)/p where we let

πn denote thenth smallest prime. Repeating this argument, the sum over theq’s
is bounded below by (

∑
πk/2≤p≤z(1− 1/p)/p)k/2. Therefore the term withs = k/2

contributes
k!

(k/2)!2k/2

(
log logz+ O(1 + log logk)

)k/2
. (10)

To estimate the termss < k/2 we use that 0≤ G(qα1
1 · · ·qαs

s ) ≤ 1/(q1 · · ·qs)
and so these terms contribute

≤
∑

s<k/2

k!
s!

(∑

q≤z

1
q

)s ∑

α1,...,αs≥2∑
i αi=k

1
α1! · · ·αs!

.

The number of ways of writingk = α1 + . . . + αs with eachαi ≥ 2 equals the
number of ways of writingk− s = α′1 + . . .+α′s where eachα′i ≥ 1 and is therefore(
k−s

s

)
. Thus these remainder terms contribute

≤
∑

s<k/2

k!
s!2s

(
k− s

s

)(
log logz+ O(1)

)s
. (11)
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Proposition 2 follows upon combining (9), (10), and (11).

The main novelty in our proof above is the introduction of the functionfr (n)
whose expectation over integersn below x is small unlessr is square-full. This
leads easily to a recognition of the main term in the asymptotics of the moments.
Previous approaches expanded out (ω(n)− log logx)k using the binomial theorem,
and then there are several main terms which must be carefully cancelled out before
the desired asymptotic emerges. Our use of this simpler technique was inspired by
(Montgomery and Soundararajan, 2004). Recently Rizwanur Khan (Khan, 2006)
builds on this idea to prove that the spacings between normal numbers obey a
Poisson distribution law.

This technique extends readily to the study ofω(n) in many other sequences.
We formulate this in a sieve like setting:

Let A = {a1, . . . ,ax} be a (multi)-set ofx (not necessarily distinct) natural
numbers. LetAd = #{n ≤ x : d | an}. We suppose that there is a real valued,
non-negative multiplicative functionh(d) such that for square-freed we may write

Ad =
h(d)

d
x + rd.

It is natural to suppose that 0≤ h(d) ≤ d for all square-freed, and we do so below.
Hererd denotes a remainder term which we expect to be small: either small for
all d, or maybe just small on average overd.

Let P be any set of primes. In sieve theory one attempts to estimate #{n ≤
x : (an,m) = 1} for m =

∏
p∈P p, in terms of the functionh and the error terms

rd. Here we want to understand the distribution of values ofωP(a), as we vary
through elementsa of A, whereωP(a) is defined to be the number of primes
p ∈ P which dividea. We expect that the distribution ofωP(a) is normal with
“mean” and “variance” given by

µP :=
∑

p∈P

h(p)
p

and σ2
P :=

∑

p∈P

h(p)
p

(
1− h(p)

p

)
,

and wish to find conditions under which this is true. There is a simple heuristic
which explains why this should usually be true: Suppose that for each primep
we have a sequence of independent random variablesb1,p, . . . ,bx,p each of which
is 1 with probabilityh(p)/p and 0 otherwise; and we letb j be the product of the
primesp for whichb j,p = 1. Theb j form a probabilistic model for thea j satisfying
our sieve hypotheses, the key point being that, in the model, whether or notb j is
divisible by different primes is independent. One can use the central limit theorem
to show that, asx→ ∞, the distribution ofωP(b) becomes normal with meanµP
and varianceσ2

P.
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PROPOSITION 3.Uniformly for all natural numbersk ≤ σ2/3
P we have

∑

a∈A

(
ωP(a) − µP)k = Ckxσk

P

(
1 + O

( k3

σ2
P

))
+ O

(
µk
P

∑

d∈Dk(P)

|rd|
)
,

if k is even, and

∑

a∈A

(
ωP(a) − µP)k � Ckxσk

P
k

3
2

σP
+ µk
P

∑

d∈Dk(P)

|rd|,

if k is odd. HereDk(P) denotes the set of squarefree integers which are the product
of at mostk primes all from the setP.

Proof. The proof is similar to that of Proposition 2, and so we record only
the main points. We definefp(a) = 1 − h(p)/p if p | a and−h(p)/p if p - a. If
r =

∏
i pαi

i is the prime factorization ofr we put fr (a) =
∏

i fpi (a)αi . Note that
ωP(a) − µP =

∑
p∈P fp(a), and so

∑

a∈A

(
ωP(a) − µP)k =

∑

p1,...,pk∈P

∑

a∈A
fp1···pk(a). (12)

As in Proposition 2, consider more generally
∑

a∈A fr (a). Supposer =
∏s

i=1 qαi
i

where theqi are distinct primes and eachαi ≥ 1. SetR =
∏s

i=1 qi and observe that
if d = (a,R) then fr (a) = fr (d). Note that

∑

a∈A
(a,R)=d

1 =
∑

a∈A

∑

e|(R/d)
de|n

µ(e) =
∑

e|R/d
µ(e)Ade

= x
h(d)

d

∏

p|(R/d)

(
1− h(p)

p

)
+

∑

e|(R/d)

µ(e)rde.

Therefore
∑

a∈A
fr (a) =

∑

d|R
fr (d)

∑

a∈A
(a,R)=d

1

= x
∑

d|R
fr (d)

h(d)
d

∏

p|(R/d)

(
1− h(p)

p

)
+

∑

d|R
fr (d)

∑

e|(R/d)

µ(e)rde

= G(r)x +
∑

m|R
rmE(r,m), (13)

where

G(r) =
∏

qα‖r

(
h(q)

q

(
1− h(q)

q

)α
+

(−h(q)
q

)α(
1− h(q)

q

))
, (14)
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and

E(r,m) =
∏

qα‖r
q|m

((
1− h(q)

q

)α
−

(−h(q)
q

)α) ∏

qα‖r
q|(R/m)

(−h(q)
q

)α
. (15)

We input the above analysis in (12). Consider first the main terms that arise.
Notice thatG(r) = 0 unlessr is square-full, and so the main terms look exactly like
the corresponding main terms in Proposition 2. We record the only small differ-
ence from the analysis there. Whenk is even there is a leading contribution from
the terms withs = k/2 and allαi = 2 (in notation analogous to Proposition 2);
this term contributes

k!

2k/2(k/2)!

∑

q1,...,qk/2∈P
qi distinct

k/2∏

i=1

h(qi)
qi

(
1− h(qi)

qi

)
.

The sum overq’s is bounded above byσk
P, and is bounded below by

( ∑

p∈P
p≥πk/2(P)

h(p)
p

(
1− h(p)

p

))k/2

≥ (σ2
P − k/8)k/2,

where we letπn(P) denote then-th smallest prime inP and made use of the fact
that 0≤ (h(p)/p)(1 − h(p)/p) ≤ 1/4. The remainder of the argument is exactly
the same as in Proposition 2.

Finally we need to deal with the “error” term contribution to (12). To estimate
the error terms that arise in (12), we use that|E(p1 · · · pk,m)| ≤ ∏

pi -m h(pi)/pi .
Thus the error term is

≤
k∑

`=1

∑

m=q1...q`≥1
q1<q2<···<q`∈P

|rm|
∑

p1,...,pk∈P
m|p1···pk

∏

pi -m

h(pi)
pi

.

Fix m and letej = #{i : pi = q j} for each j, 1 ≤ j ≤ `. Then there aree0 :=
k − (e1 + · · · + è ) ≤ k − ` primespi which are not equal to anyq j , and so their
contribution to the final sum is≤ µe0

P . Therefore the final sum is

≤
∑

0≤e0≤k−`

(
k
e0

)
µe0
P

∑

e1+···+è =k−e0
eachei≥1

(k− e0)!
e1! · · · è !

≤
∑

0≤e0≤k−1

(
k
e0

)
µe0
P `

k−e0 ≤ (µP + `)k � 2µk
P,
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sincek3 ≤ σ2
P ≤ µP. This completes the proof of the proposition.

One way of using Proposition 3 is to takeP to be the set of primes below
z wherez is suitably small so that the error term arising from the|rd|’s is neg-
ligible. If the numbersa in A are not too large, then there cannot be too many
primes larger thanz that dividea, and so Proposition 3 furnishes information
aboutω(a). Note that we used precisely such an argument in deducing Theorem
1 from Proposition 2.

In this manner, Proposition 3 may be used to prove the Erdős-Kac theorem for
many interesting sequences of integers. For example, Halberstam (Halberstam,
1956) showed such a result for the shifted primesp−1, which the reader can now
deduce from Proposition 3 and the Bombieri–Vinogradov theorem.

Similarly, one can takeA = { f (n) : n ≤ x} for f (t) ∈ Z[t]. In this caseh(p)
is bounded by the degree off except at finitely many primes, and the prime ideal
theorem implies thatµP, σP = mlog logx+O(1) wherem is the number of distinct
irreducible factors off . Again this example was first considered by Halberstam
(Halberstam, 1956).

Alladi (Alladi, 1987) proved an Erd̋os–Kac theorem for integers without large
prime factors. Proposition 3 reduces this problem to obtaining information about
multiples ofd in this set of “smooth numbers.” We invite the reader to fill in this
information.

In place ofω(a) we may study more generally the distribution of values of
g(a) whereg is an “additive function.” Recall that an additive function satisfies
g(1) = 0, andg(mn) = g(m) + g(n) wheneverm andn are coprime. Its values are
determined by the prime-power valuesg(pk). If in additiong(pk) = g(p) for all k ≥
1 we say that the functiong is “strongly additive.” The strongly additive functions
form a particularly nice subclass of additive functions and for convenience we
restrict ourselves to this subclass.

PROPOSITION 4. LetA be a (multi)-set ofx integers, and leth(d) and rd be
as above. LetP be a set of primes, and letg be a real-valued, strongly additive
function with|g(p)| ≤ M for all p ∈ P. Let

µP(g) =
∑

p∈P
g(p)

h(p)
p
, and σP(g)2 =

∑

p∈P
g(p)2h(p)

p

(
1− h(p)

p

)
.

Then, uniformly for all even natural numbersk ≤ (σP(g)/M)2/3,

∑

a∈A

( ∑

p|a
p∈P

g(p) − µP(g)

)k

= CkxσP(g)k
(
1 + O

( k3M2

σP(g)2

))

+O
(
Mk

(∑

p∈P

h(p)
p

)k ∑

d∈Dk(P)

|rd|
)
,
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while for all odd natural numbersk ≤ (σP(g)/M)2/3,

∑

a∈A

( ∑

p|a
p∈P

g(p) − µP(g)

)k

� CkxσP(g)k k3/2M
σP(g)

+ Mk
(∑

p∈P

h(p)
p

)k ∑

d∈Dk(P)

|rd|.

Proof.We follow closely the proofs of Propositions 2 and 3, making appropri-
ate modifications. Letfr (n) be as in the proof of Proposition 3. Then we wish to
evaluate

∑

a∈A

(∑

p∈P
g(p) fp(a)

)k

=
∑

p1,...,pk∈P
g(p1) · · · g(pk)

∑

a∈A
fp1···pk(a).

We may now input the results (13, 14, 15) here. Consider first the error terms that
arise. Since|g(p)| ≤ M for all p ∈ P this contribution is at mostMk times the
corresponding error in Proposition 3. To wit, the error terms are

� Mk
(∑

p∈P

h(p)
p

)k ∑

d∈Dk(P)

|rd|.

As for the main term, note thatG(r) = 0 unlessr is square-full and so ifq1 < q2 <
. . . < qs are the distinct primes among thep1, . . . , pk our main term is

x
∑

s≤k/2

∑

q1<...<qs
qi∈P

∑

α1,...,αs≥2∑
i αi=k

k!
α1! · · ·αs!

s∏

i=1

g(qi)
αiG(qα1

1 · · ·qαs
s ). (16)

Whenk is even there is a term withs = k/2 and allαi = 2 which is the leading
contribution to (16). This term contributes

x
k!

2k/2(k/2)!

∑

q1,...,qk/2∈P
qi distinct

k/2∏

i=1

g(qi)
2h(qi)

qi

(
1− h(qi)

qi

)
.

If we fix q1, . . . ,qk/2−1, then the sum overqk/2 isσP(g)2 + O(M2k), since|g(p)| ≤
M for all p ∈ P, and 0≤ h(p) ≤ p. Therefore the contribution of the terms = k/2
to (16) is

Ckx
(
σP(g)2 + O(M2k)

)k/2
= CkxσP(g)k

(
1 + O

( M2k2

σP(g)2

))
,

sincekM ≤ σP(g).
Now consider the termss < k/2 in (16). Since |G(qα1

1 · · · qαs
s )| ≤∏s

i=1(h(qi)/qi)(1− h(qi)/qi), and
∏s

i=1 |g(qi)|αi ≤ Mk−2s∏s
i=1 |g(qi)|2, we see that
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these terms contribute an amount whose magnitude is

≤ x
∑

s<k/2

k!
s!

Mk−2s
(∑

q∈P
|g(q)|2h(q)

q

(
1− h(q)

q

))s ∑

α1,...,αs≥2∑
αi=k

1
α1! · · ·αs!

≤ x
∑

s<k/2

k!
s!2s

(
k− s

s

)
Mk−2sσP(g)2s,

using that
(
k−s

s

)
equals the number of ways of writingk =

∑
αi with eachαi ≥ 2.

The proposition follows.

One way to apply Proposition 4 is to takeP to be the set of all primes belowz
with |g(p)| small. If there are not too many values ofp with |g(p)| large, then we
would expect thatg(a) is roughly the same asgP(a) for mosta. In such situations,
Proposition 4 which furnishes the distribution ofgP(a) would also furnish the dis-
tribution ofg(a). In this manner one can deduce the result of Kubilius and Shapiro
(Shapiro, 1956) which is a powerful generalization of the Erdős–Kac theorem
for additive functions. Indeed we can derive such a Kubilius–Shapiro result in the
more general sieve theoretic framework given above, and for all additive functions
rather than only for the subclass of strongly additive functions.

There are many other interesting number theory questions in which an Erdős–
Kac type theorem has been proved. We have collected some of these references
below1 and invite the reader to determine which of these Erdős–Kac type theorems
can be deduced from the results given herein. The reader may also be interested
in the textbooks (Elliott, 1979; Kubilius, 1964; Tenenbaum, 1995) for a more
classical discussion of some of these issues, and to the elegant essays (Billingsley,
1973; Kac, 1959).
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