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Abstract. We give a relatively easy proof of the KistKac theorem via computing moments. We
show how this proof extends naturally in a sieve theory context, and how it leads to several related
results in the literature.

Let w(n) denote the number of distinct prime factors of the natural numbEne
average value ab(n) asn ranges over the integers belovis

%(Zw(n): %(Z 1= %Z[g] - %(Z(FX)+O(1)): log logx + O(2).

n<x pP<X n<x p<x p<x
pin

It is natural to ask howw(n) is distributed as one varies over the integeesx. A
famous result of Hardy and Ramanujan (Hardy and Ramanujan, 1917) tells us that
w(n) ~ loglogx for almaost alln < x; we say thatu(n) hasnormal orderlog logn.
To avoid confusion let us state this precisely: giten 0 there existx, such that
if X > X is suficiently large, then (& €)loglogx > w(n) > (1 — €)loglogx
for all but at mostex integersn < x. The functions loglog and loglogx are
interchangeable here since they are very close in value for all but the tiny integers
n<x

Their proof revolves around the following wonderful inequality which they
established by induction. Defing(x) to be the number of integers < x with
w(n) = k. There exist constantg, ¢; > 0 such that for ank > 0 we have

x (loglogx + c1)< 1
log x (k-12)!

for all x > 2. Hardy and Ramanujan exploited this by deducing that

m(X) < Co , 1)

X (loglogx + cp)*t
log x (k-1)! ’

mk(X) < Co

|k—log logx|=e€ log logx |k—log logx|>€log logx
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which is easily shown to be abomt(logx)® wherea = a. = €2/2 + O(€%), far
less tharex. In fact Hardy and Ramanujan squeezed a little more out of this idea,
showing that ifkc(n) — oo asn — oo, N0 matter how slowly, then

lw(n) — log logn| < «(n) +/log logn 2)

for almost all integers < x.

Once we know thab(n) has normal order log log, we can ask finer questions
about the distribution ofv(n). For instance how is(n) — log logn distributed?
More specifically, how big is this typically in absolute value?8u(Tuan, 1934)
found a very simple proof of the Hardy—Ramanujan result by showing that

;—L( Z(w(n) —loglogn)? = {1 + o(1)} log log . (3)

n<x

One deduces easily thai(n) hasnormal orderlog logn: For, if there arem.(X)
integers< x for which |w(n) — log logn| > elog logx then by (3)m.(x) < (1/€> +
0(1))x/ loglogx, which is< ex for suficiently largex. Indeed the same argument
also gives (2) for almost afl < x.

We have now obtained some information about the distributien(of, its av-
erage value, and the averagéelience between the value and the mean. Next we
ask whether there is a distribution function tofn)? In other words if, typically,
the distance betwean(n) and log logn is roughly of size+/log logn can we say
anything about the distribution of

w(n) —log Iogno
Jloglogn

In the late 1930s Mark Kac noticed that these developments bore more than a
passing resemblance to developments in probability theory. He suggested that
perhaps this distribution isormal and even conjectured certain number theory
estimates which would imply that. Soon after describing this in a lecture, at which
Paul Erds was in the audience, Esland Kac were able to announce the result
(Erdbs and Kac, 1940): For any e R, the proportion of the integers < x for

which w(n) < loglogn + 7 +/log logn tends to the limit

1 fT ~t2/2
—— e /“dt 5
5 ). ()

asx — oo. In other words the quantity in (4) is distributed like a normal distribu-
tion with mean 0 and variance 1.

Erdds and Kac's original proof was based on the central limit theorem, and
Brun'’s sieve. A diferent proof follows from the work of Selberg (Selberg, 1954)
(extending and simplifying the work of (Sathe, 1953)) who obtained an asymptotic

(4)
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formula for i (x) uniformly in a wide range ok. Yet a third proof is provided by
Halberstam (Halberstam, 1955) who showed how to compute the moments

2 (w(n) —loglogx)*, )

n<x

for natural numberk, and showed that these agreed with the moments of a normal
distribution. Since the normal distribution is well-known to be determined by its
moments, he deduced the BedKac theorem.Erdos@ EystKac theorem

In this article, we give a simple method to compute the moments (6), and in
fact we can obtain an asymptotic formula uniformly in a wide rangk. dthen
we discuss how such moments can be formulated for more general sequences
assuming sieve type hypotheses.

THEOREM 1. For any natural numbek we letCy = I'(k + 1)/(2¥2I'(k/2 + 1)).
Uniformly for even natural numbets< (log logx)Y/® we have

2 (@(n) - loglogx)* = Cix(log IogX)k/Z(l + O(L))

Jloglogx

and uniformly for odd natural numbeks< (log logx)*/® we have

> (@(n) - loglogx)* < Cix(loglogx)/2

K3/
n<x -;ﬁiiiizE;;.
We will deduce this theorem from the following technical proposition.
PROPOSITION 2. Define

1-% ifp|n
_ P
() _{ % if pfn.

Letz > 10° be a real number. Uniformly for even natural numblers (log Iogz)%
we have

> (Z fp(n))k — Cix(log Iogz)k/2(1 ; o(log‘igz)) + 022N,  (7)

n<x - p<z

while, uniformly for odd natural numbeks< (loglogz)!/3, we have

K K312
;( ( é fp(n)) < Cyx(log Iogz)"/z\/ﬁng + 22X (8)
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Deduction of Theorem. We seek to evaluatg ., (w(n) — loglogx)¥ for
natural numberg < (loglogx)'/3. Setz = x'/k and note that, fon < x,

w(n) ~loglogx= Y fo(m) + > 1+ (Z 1/p-log Iogx) = 3 fo(n) + O(K).
p<z pin pP<z p<z
p>z

Thus for some positive constantve obtain that

(w() - loglog ) = ( ) ta(n) +O(Z(ck”()2fp(n)‘

p<z p<z

When we sum this up over all integems< x the first term above is handled

through (7, 8). To handle the remainder terms we estifiatg|>: p<, fp(n)|€ for
¢ < k—1. When( is even this is once again available through (7). Supgase
odd. By Cauchy—-Schwarz we get that

2. S(Z(Zm) )V (X wm) )

n<x'p<z n<x = p<z n<x = p<z

and using (7) we deduce that this is
< +/C;_1Cr11x(loglog2)‘/2.

Proof of Proposition2. If r = [T; p{" is the prime factorization of we put
fr(n) = [T; fp (n)*. Then we may write

N(5H0f = % N0

n<X  p<z 0 Prees Pk<Z N<X

To proceed further, let us consider more genergllyy f,(n).
Suppose = ], q" where theqg; are distinct primes and; > 1. SetR =

.0 and observe that ifl = (n,R) then f;(n) = f,(d). Therefore, withr
denoting the divisor function,

Shm = Y@ Y 1 zfr<d>(g¢§gd> + O(r(R/))

n<x dR n<x
(nR)=d
= = Z fr (d)e(R/d) + O(r(R)).
le
Thus seting

G(r) = Z f(deR/d) = [ | (3(1 - é)a ; (%1)“(1 - é))

dIR alir



we conclude that
Z f,(n) = G(r)x + O(x(R)).

Observe tha6G(r) = 0 unless is square-full and so

k
Z(Z fp(n)) =x )] G(p1--- pr) + O(2*7(2)"). (9)

nsx  psz P1.... k<Z
p1-- Pk square-full

Supposey; < g < ... < (s are the distinct primes ip; - - - px. Note that since
p1--- pk is square-full we have < k/2. Thus our main term above is

k! o «
D oo,
° as.

l..

-

s<k/2 Q1<02<...<Us<Z qn,....as>2 1
iai=k

Whenk is even there is a terra = k/2 (and alle; = 2) which gives rise to the
Gaussian moments. This term contributes

k/2
k! 1 1
.- ~(1-2)
24/2(k/2)! 2 D qi( G
Oa,....Ok2<z 1=1
q; distinct
By ignoring the distinctness condition, we see that the sum @ges bounded
above by F ,,(1-1/p)/p)¥/2. On the other hand, if we consid@y, . .., Gi/2-1 as
given then the sum ove,2 is plainly at leasf.,, ,<p<,(1 — 1/p)/p where we let
nn denote thenth smallest prime. Repeating this argument, the sum ovegq'she
is bounded below byX, ,<p<-(1 -1/ p)/p)¥/2. Therefore the term witls = k/2
contributes Y
! k/2
W( loglogz+ O(1 + log logk))™ . (10)
To estimate the terms < k/2 we use that & G(q;*---ds®) < 1/(q1--- Q)
and so these terms contribute

k! ( 1)3 1
S s a - -
s;/:z sl QZ; q Ql,%:szz ! ag
i ai=kK

The number of ways of writingx = a1 + ... + as with eache; > 2 equals the
number of ways of writink— s = @} +. .. +aswhere eacly] > 1 and is therefore

(kgs). Thus these remainder terms contribute

K (k- .
< SZK;Z N ;S( - S)( log logz+ O(1))". (11)



6 A. GRANVILLE AND K. SOUNDARARAJAN
Proposition 2 follows upon combining (9), (10), and (11).

The main novelty in our proof above is the introduction of the functidn)
whose expectation over integardelow x is small unless is square-full. This
leads easily to a recognition of the main term in the asymptotics of the moments.
Previous approaches expanded ax(nj — log logx)¥ using the binomial theorem,
and then there are several main terms which must be carefully cancelled out before
the desired asymptotic emerges. Our use of this simpler technique was inspired by
(Montgomery and Soundararajan, 2004). Recently Rizwanur Khan (Khan, 2006)
builds on this idea to prove that the spacings between normal numbers obey a
Poisson distribution law.

This technique extends readily to the study.gh) in many other sequences.
We formulate this in a sieve like setting:

Let A = {a1,...,ax} be a (multi)-set ofx (not necessarily distinct) natural
numbers. LetAg = #{n < x : d | a,}. We suppose that there is a real valued,
non-negative multiplicative functian(d) such that for square-frasbwe may write

Ag = @H rg.

Itis natural to suppose thatOh(d) < d for all square-freel, and we do so below.
Herery denotes a remainder term which we expect to be small: either small for
all d, or maybe just small on average ower

Let # be any set of primes. In sieve theory one attempts to estimate: #
X (ah,m) = 1} form = []pep p, in terms of the functiom and the error terms
rq. Here we want to understand the distribution of valuesgfa), as we vary
through elements of A, wherewy(a) is defined to be the number of primes
p € P which dividea. We expect that the distribution afp(a) is normal with
“mean” and “variance” given by

p:zzﬁg)) and o3 ::Z@(l—&?),

and wish to find conditions under which this is true. There is a simple heuristic
which explains why this should usually be true: Suppose that for each grime
we have a sequence of independent random variéplgs. . , by p each of which

is 1 with probabilityh(p)/p and O otherwise; and we b} be the product of the
primesp for whichbj , = 1. Theb; form a probabilistic model for tha; satisfying

our sieve hypotheses, the key point being that, in the model, whether by isot
divisible by diferent primes is independent. One can use the central limit theorem
to show that, ag — oo, the distribution otwe(b) becomes normal with meap

and variancers.



PROPOSITION 3. Uniformly for all natural numbersk < o2/° we have

k3
Z (wp(d) _M))k = Ckxcr';)(l + O(—z)) + O(,u'; Z Irdl),
acA O-p dEDk(P)
if kis even, and
3

k k2
Z (wp(a) — up)” < CkXO'; — +,u;'§) Z Iral,
acA ap deDy(P)

if kis odd. HereDy (%) denotes the set of squarefree integers which are the product
of at mostk primes all from the se®.

Proof. The proof is similar to that of Proposition 2, and so we record only
the main points. We defing(a) = 1 - h(p)/pif p | aand-h(p)/pif pta. If
r = [, p" is the prime factorization of we put f;(a) = []; fn(a)*. Note that
wp(@) — fp = T pep Tp(@), and so

D wr@=—pp) = 3 > fona). (12)

acA P1,...,PkEP aeA

As in Proposition 2, consider more generdlly. 4 fi(a). Suppose =[], q"
where theg; are distinct primes and eaeh > 1. SetR = [] , g; and observe that
if d = (&, R) thenf,(a) = f,(d). Note that

D, 1= D uE= ) uE A

acA acA ¢(R/d) eR/d
(aR)=d den
= x@ 1_[ (1—@)+ Z w(erge.
pI(R/d) el(R/d)
Therefore
D@ = DR Y1
aceA dR acA
(@R)=d
= x> @ "X ] (1-"2)4 3 t@) Y e
dR pI(R/d) dR a(R/d)
= G(X+ Y rmE(r,m), (13)
mR
where
G(r) = ﬂ(h(qq)(1— h;q)) N (_héq)) (1— hg‘) )) (14)

a“lir
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and

h(a)\*  (—h(a)\” —h(g)\*
E = LA _ —* NS
-m ]—[((1 q) (q))n(q) (15)
odlly q“llr
aim ql(R/m)

We input the above analysis in (12). Consider first the main terms that arise.
Notice thatG(r) = 0 unless is square-full, and so the main terms look exactly like
the corresponding main terms in Proposition 2. We record the only snfit-di
ence from the analysis there. Whieis even there is a leading contribution from
the terms withs = k/2 and alle; = 2 (in notation analogous to Proposition 2);
this term contributes

K 7 hta)(, _ hia)
DY N rn Gy

qg; distinct

The sum oveq's is bounded above bzy;; and is bounded below by

[ 3 et =
peP

p=mis2(P)

where we letr,($) denote then-th smallest prime i? and made use of the fact
that 0< (h(p)/p)(1 — h(p)/p) < 1/4. The remainder of the argument is exactly
the same as in Proposition 2.

Finally we need to deal with the “error” term contribution to (12). To estimate
the error terms that arise in (12), we use &y - - - p, M| < [Tpm h(pi)/ pi-
Thus the error term is

k
h(pi)
< r ——.
>, rml ) ]—[ >
=1  m=q;..q/>1 P1,.-»PkEP PifM
OL<Q<--<0reP mip1-+ Pk
Fix mand letej = #i : pi = q;} foreachj, 1 < j < ¢. Then there areyp :=
K—(eL+---+¢€) < k- ¢ primesp; which are not equal to any;, and so their
contribution to the final sum is ,u;‘). Therefore the final sum is

K\ e (k= &)
Z (eo)’up Z el el
O<ep<k—¢ e1+-+e=k—eg
eachg>1

k _
< Z (eo)ugofk ® < (up + OF < 2,u;),
O<ep<k-1



sincek® < 02) < up. This completes the proof of the proposition.

One way of using Proposition 3 is to takketo be the set of primes below
z wherez is suitably small so that the error term arising from thgs is neg-
ligible. If the numbersa in A are not too large, then there cannot be too many
primes larger tharz that dividea, and so Proposition 3 furnishes information
aboutw(a). Note that we used precisely such an argument in deducing Theorem
1 from Proposition 2.

In this manner, Proposition 3 may be used to prove thé&iac theorem for
many interesting sequences of integers. For example, Halberstam (Halberstam,
1956) showed such a result for the shifted primpesl, which the reader can now
deduce from Proposition 3 and the Bombieri—Vinogradov theorem.

Similarly, one can takeA = {f(n) : n < x} for f(t) € Z[t]. In this caseh(p)
is bounded by the degree bfexcept at finitely many primes, and the prime ideal
theorem implies thaip, o = mlog logx+0O(1) wheremis the number of distinct
irreducible factors off. Again this example was first considered by Halberstam
(Halberstam, 1956).

Alladi (Alladi, 1987) proved an Eris—Kac theorem for integers without large
prime factors. Proposition 3 reduces this problem to obtaining information about
multiples ofd in this set of “smooth numbers.” We invite the reader to fill in this
information.

In place ofw(a) we may study more generally the distribution of values of
g(a) whereg is an “additive function.” Recall that an additive function satisfies
g(1) = 0, andg(mn) = g(m) + g(n) whenevem andn are coprime. Its values are
determined by the prime-power valuggX). If in additiong(pX) = g(p) for all k >
1 we say that the functiogis “strongly additive.” The strongly additive functions
form a particularly nice subclass of additive functions and for convenience we
restrict ourselves to this subclass.

PROPOSITION 4. Let A be a (multi)-set ok integers, and leh(d) andry be
as above. LeP be a set of primes, and lgtbe a real-valued, strongly additive
function with|g(p)| < M for all p e P. Let

ZOEDY g(p)%)), and op(g) =) g(p)z%p)(l - @)

peP peP P

Then, uniformly for all even natural numbekss (op(g)/M)?/3,

>(X g(p)—up(w)k - Courp(@{1+ 0 )

<A pa +o(|v|k(zm)k Z Irdl),

peP
peP P deDy(P)
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while for all odd natural numberk < (op(g)/M)?/3,

Z( 2 g(p>—ﬂp<g>) < Coop(@F 3/2(2") + Mk(Ziﬁ))k > Tl

aeA ' pla peP deDy(P)
peP

Proof. We follow closely the proofs of Propositions 2 and 3, making appropri-
ate modifications. Lef;(n) be as in the proof of Proposition 3. Then we wish to
evaluate

(> g(p)fp(a))k = 3 ap) IR o (a.

acA peP Py, PKEP acA

We may now input the results (13, 14, 15) here. Consider first the error terms that
arise. Sinceg(p)l < M for all p € P this contribution is at mosmK times the
corresponding error in Proposition 3. To wit, the error terms are

< Mk(zm)k Z Irql.

peP P deDy(P)

As for the main term, note th&(r) = O unlesg is square-fulland so ifj; < gz <
.. < Qs are the distinct primes among tipg, . . ., px our main term is

DINDINEDY ﬁgg(qi)“is(qil---q‘?). (16)

s<k/2 gi<..<Qs ai,...@s>2
gieP 2 ai=k

Whenk is even there is a term with= k/2 and alle; = 2 which is the leading
contribution to (16). This term contributes

k/2

k! h(q) h(a;)
X2k/2(k/2)! 2 | e == ( g )

..... O2eP =1 G
qI dIS'[InCt

If we fix gy, ..., Qk/2-1, then the sum ovedk)z is op(g)? + O(M?K), sincelg(p)| <
M for all p € £, and 0< h(p) < p. Therefore the contribution of the tersn= k/2
to (16) is

21,2
Contrp(@ + OMZ0)* = Cuxrp(@{1+ o 22 )

sincekM < op(Q).
Now consider the termss < k/2 in (16). Since|G(q;* < gsd) <

S (h(g)/a)(1 - h(g)/a), and T2, lg(G)l® < MK T8 1|g(q.)|2 we see that
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these terms contribute an amount whose magnitude is

Xy gmk—zs(;lg(q)lzg(l—@)) > —alf'a'

s<k/2 ai,...,xs>2 s

> aj=k

IA

Kl (k—s k-2s 2s

SXZ S'_ZS( S)M op(9)”,
s<k/2

using that(*;®) equals the number of ways of writiig= ¥, o; with eacha; > 2.

The proposition follows.

One way to apply Proposition 4 is to taketo be the set of all primes beloav
with |g(p)| small. If there are not too many values pfvith |g(p)| large, then we
would expect thag(a) is roughly the same ag(a) for mosta. In such situations,
Proposition 4 which furnishes the distributionggf(a) would also furnish the dis-
tribution ofg(a). In this manner one can deduce the result of Kubilius and Shapiro
(Shapiro, 1956) which is a powerful generalization of the@sreKac theorem
for additive functions. Indeed we can derive such a Kubilius—Shapiro result in the
more general sieve theoretic framework given above, and for all additive functions
rather than only for the subclass of strongly additive functions.

There are many other interesting number theory questions in which és-Erd
Kac type theorem has been proved. We have collected some of these references
below! and invite the reader to determine which of thesedsrdkac type theorems
can be deduced from the results given herein. The reader may also be interested
in the textbooks (Elliott, 1979; Kubilius, 1964; Tenenbaum, 1995) for a more
classical discussion of some of these issues, and to the elegant essays (Billingsley,
1973; Kac, 1959).
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