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Different Approaches
to the Distribution of Primes

Andrew Granville

Abstract. In this lecture celebrating the 150th anniversary of the sem-

inal paper of Riemann, we discuss various approaches to interesting

questions concerning the distribution of primes, including several that

do not involve the Riemann zeta-function.

1. The prime number theorem, from the beginning

By studying tables of primes, Gauss understood, as a boy of 15 or 16 (in
1792 or 1793), that the primes occur with density 1

log x at around x. In other

words

π(x) := #{primes ≤ x} ≈ Li(x) where Li(x) :=

∫ x

2

dt

log t
.

The existing data lends support to Gauss’s belief (see Table 1.1).

When we integrate by parts we find that a first approximation to Li(x)
is given by x/(log x) so we can formulate a guess for the number of primes
up to x:

lim
x→∞

π(x)

x/ log x
= 1,

which we write as

π(x) ∼ x

log x
.
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x π(x) = #{primes ≤ x} Overcount: [Li(x)− π(x)]

108 5761455 753
109 50847534 1700
1010 455052511 3103
1011 4118054813 11587
1012 37607912018 38262
1013 346065536839 108970
1014 3204941750802 314889
1015 29844570422669 1052618
1016 279238341033925 3214631
1017 2623557157654233 7956588
1018 24739954287740860 21949554
1019 234057667276344607 99877774
1020 2220819602560918840 222744643
1021 21127269486018731928 597394253
1022 201467286689315906290 1932355207
1023 1925320391606803968923 7250186214

Table 1.1. The number of primes up to various x.

This may also be formulated more elegantly by weighting each prime p with
a log p, to give

∑

p≤x

log p ∼ x.

These equivalent estimates, known as the Prime Number Theorem, were all

proved in 1896, by Hadamard and de la Vallée Poussin, following a program
of study laid out almost forty years earlier by Riemann:1

Riemann’s idea was to use a formula of Perron to extend this last sum

to be over all primes p, while picking out only those that are ≤ x. The
special case of Perron’s formula that we need here is

1

2iπ

∫

s: Re(s)=2

ts

s
ds =

{

0 if t < 1,

1 if t > 1,

1One may make more precise guesses from the data in Table 1.1. For example one can

see that the entries in the final column are always positive and are always about half

the width of the entries in the middle column. So perhaps Gauss’s guess is always an

overcount by about
√
x? This observation is, we now believe, both correct and incorrect,

as we will discuss in what follows.
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for positive real t. We apply this with t = x/p, when x is not itself a prime,

which gives us a characteristic function for numbers p < x. Hence

∑

p≤x
p prime

log p =
∑

p prime

log p · 1

2iπ

∫

s: Re(s)=2

(x/p)s

s
ds

=
1

2iπ

∫

s: Re(s)=2

∑

p prime

log p

ps
xs

s
ds.

Here we were able to safely swap the infinite sum and the infinite inte-

gral since the terms are sufficiently convergent as Re(s) = 2. The sum
∑

p(log p)/p
s is almost itself a recognizable function; that is, it is almost

∑

p prime

∑

m≥1

log p

pms
= −ζ ′(s)

ζ(s)
,

where

ζ(s) :=
∑

n≥1

1

ns
=

∏

p prime

(

1− 1

ps

)

. (1.1)

So, by a minor alteration, one obtains the closed formula

∑

p prime
pm≤x
m≥1

log p = − 1

2iπ

∫

s: Re(s)=2

ζ ′(s)

ζ(s)

xs

s
ds.

To evaluate this, Riemann proposed moving the contour from the line

Re(s) = 2, far to the left, and using the theory of residues to evaluate
the integral. What a beautiful idea! However before one can possibly suc-
ceed with that plan one needs to know many things, for instance whether

ζ(s) makes sense to the left, that is one needs an analytic continuation of
ζ(s). Riemann was able to do this based on an extraordinary identity of
Jacobi. Next, to use the residue theorem, one needs to be able to identify
the poles of ζ ′(s)/ζ(s), that is the zeros and poles of ζ(s). The poles are

not so hard, there is just the one, a simple pole at s = 1 with residue 1, so
the contribution of that pole to the above formula is

− lim
s→1

(s− 1)
ζ ′(s)

ζ(s)

xs

s
= − lim

s→1
(s− 1)

( −1

(s− 1)

)

x1

1
= x,

the expected main term. The locations of the zeros of ζ(s) are much more
mysterious. Moreover, even if we do have some idea of where they are,

in order to complete Riemann’s plan, one needs to be able to bound the
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contribution from the discarded contour when one moves the main line of

integration to the left, and hence one needs bounds on |ζ(s)| throughout
the plane. We do this in part by having a pretty good idea of how many
zeros there are of ζ(s) up to a certain height, and there are many other

details besides. These all had to be worked out (see, eg [13], for further
details), after Riemann’s initial plan – this is what took forty years! At the
end, if all goes well, one has an approximation,

∑

p≤x

log p− x = −
∑

ρ: ζ(ρ)=0

xρ

ρ
+ a bounded error. (1.2)

(One counts a zero with multiplicity mρ, mρ times in this sum). It became
apparent, towards the end of the nineteenth century, that to prove the

prime number theorem it was sufficient to prove that all of the zeros of
ζ(s) lie to the left of the line Re(s) = 1.2 Riemann himself suggested that,
more than that, all of the non-trivial zeros lie on the line Re(s) = 1

2 ,
3 the

so-called Riemann Hypothesis, which implies an especially strong form of
the prime number theorem, using (1.2), that

∣

∣

∣

∣

∣

∣

∑

p≤x

log p− x

∣

∣

∣

∣

∣

∣

≤ 2
√
x log2 x,

for x ≥ 100, or, equivalently,4

|π(x)− Li(x)| ≤ 3
√
x log x.

This reflects what we observed from the data in Table 1.1, that the dif-
ference should be this small; and what an extraordinary way to prove it,

seemingly so far removed from counting the primes themselves. Is it really
necessary to go to the theory of complex functions to count primes? And
to work there with the zeros of an analytic continuation of a function, not

even the function itself? This was something that was hard to swallow in
the 19th century but gradually people came to believe it, seeing in (1.2)
an equivalence, more-or-less, between questions about the distribution of

primes and questions about the distribution of zeros of ζ(s). This is dis-
cussed in the introduction of Ingham’s book [42]: “Every known proof of
the prime number theorem is based on a certain property of the complex

2That there are none to the right is trivial, using the Euler product in (1.1).
3The “trivial zeros” lie at s = −2,−4,−6, . . .
4But not trivially equivalent.
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zeros of ζ(s), and this conversely is a simple consequence of the prime num-

ber theorem itself. It seems therefore clear that this property must be used
(explicitly or implicitly) in any proof based on ζ(s), and it is not easy to see
how this is to be done if we take account only of real values of s. For these

reasons, it was long believed that it was impossible to give an elementary
proof of the prime number theorem.

Riemann remarked in a letter to Goldschmidt that

π(x) < Li(x) (1.3)

for all x < 3×106; and (1.3) is now known to be true for all x < 1023 (as one

might surmise from the data above). One might guess that this is always
so but, in 1914, Littlewood [49] showed that this is not the case, proving
that π(x)−Li(x) infinitely often changes sign. Since (1.3) holds (easily) as

far as we can compute primes, we might ask, in light of Littlewood’s result,
whether we can predict when π(x)−Li(x) is first non-negative? A few years
ago, Bays and Hudson [5] used the first million zeros, in an analogy to (1.2)

for π(x) − Li(x), to predict that the smallest x for which π(x) > Li(x) is
around 1.3982 × 10316. In fact they can prove something like this as an
upper bound on the smallest such x, but no-one knows how to use this
method to get a lower bound since, to do so, one would need to rule out

the extraordinary possibility of a conspiracy of high zeros. These issues are
discussed in more detail in [32].

Let π(x; q, a) denote the number of primes ≤ x that are ≡ a (mod q).
A proof analogous to that proposed by Riemann, reveals that if (a, q) = 1
then

π(x; q, a) ∼ π(x)

φ(q)
, (1.4)

once x is sufficiently large. However in many application one wants to know

just how large x needs to be for the primes to be equi-distributed in arith-
metic progressions mod q. Calculations reveal that the primes up to x are
equi-distributed amongst the arithmetic progressions mod q, once x is just a

tiny bit larger than q, say x ≥ q1+δ for any fixed δ > 0 (once q is sufficiently
large). However the best proven results have x bigger than the exponential
of a power of q, far larger than what we expect. If we are prepared to assume

the unproven Generalized Riemann Hypothesis we do much better, being
able to prove that the primes up to q2+δ are equally distributed amongst
the arithmetic progressions mod q, for q sufficiently large, though notice

that this is still somewhat larger than what we expect to be true.
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So what are the consequences if (1.4) does not hold until x is bigger

than the exponential of a power of q? For one thing one can then deduce that
the Generalized Riemann Hypothesis is false but, as we shall see, there are
other easier to understand, and more elementary, consequences. We shall

return to this a little later.

2. Selberg’s formula

It is not difficult to show that the prime number theorem implies that

log x
∑

p≤x
p prime

log p+
∑

p1p2≤xp1<p2 both prime

log p1 log p2 ∼ 2x log x. (2.1)

(We call an integer which is either a prime p, or the product of two primes,

p1p2, a “P2”.) Selberg [57] gave an elementary proof that (2.1) is true using
sieve methods, and then Erdős [17, 18] was able to deduce the prime number
theorem from (2.1),5 contrary to the aforementioned beliefs of Ingham and

others.6 How can a formula like (2.1) hold without any hint of the zeros of
ζ(s)? Well, as a consequence of (1.2) one can show that

1

log x

∑

p1p2≤x
p1<p2 both prime

log p1 log p2 − x =
∑

ρ: ζ(ρ)=0

xρ

ρ
+ small error,

and when we add this to (1.2) we get (2.1), the contribution of the zeros

canceling.
There is also an analogous formula for primes in arithmetic progres-

sions:

log x
∑

p≤x
p≡a (mod q)

log p+
∑

p1p2≤x
p1p2≡a (mod q)

log p1 log p2 ∼
2x log x

φ(q)
, (2.2)

which holds for each (a, q) = 1 for all suitably large values of x. This formed
the start of Selberg’s elementary proof [59] of the prime number theorem for

5There is a considerable controversy as to whether Erdős behaved appropriately in quickly

deducing the prime number theorem upon hearing of Selberg’s formula. My view is that

the controversy reflects two different perspectives on what is appropriate when one hears

about the latest research of others, and what is not. For more on the controversy, you

can read Selberg’s own words [2], or accounts by Goldfeld [26], or by Strauss [64] who

was caught up in the controversy at the time.
6Though see Ingham’s Math Review [43] of Selberg’s and Erdős’s papers for a thorough

explanation of the ideas in the elementary proof.



Vol. 78 (2009) Distribution of Primes 7

arithmetic progressions. Selberg’s proof implies that (2.2) holds for x ≥ eq.7

So what happens if (1.4) fails to be true (for q, and for no smaller modulus)?
It is then not hard to deduce from (2.2) that the distribution of primes mod
q depends on their quadratic character mod q. That is, one can show that

almost all primes congregate in the arithmetic progressions a (mod q) for

which
(

a
q

)

= −1, or more precisely:

∑

p≤x
p≡a (mod q)

log p =







{2 + o(1)} x
φ(q) if

(

a
q

)

= −1;

o
(

x
φ(q)

)

if
(

a
q

)

= 1.

In other words, almost all primes p up to this point satisfy
(

p
q

)

= −1. But

then how can (2.2) be true? Well if most
(

p
q

)

= −1 then most
(

p1p2
q

)

=

(−1)× (−1) = 1, so we find that

1

log x

∑

p1p2≤x
p1p2≡a (mod q)

log p1 log p2 =







o
(

x
φ(q)

)

if
(

a
q

)

= −1;

{2 + o(1)} x
φ(q) if

(

a
q

)

= 1.

Thus Selberg’s formula (2.2) follows by adding together the last two dis-

played equations. We see that Selberg’s formula (2.2) somehow takes ac-
count of the possibility of this, the only feasible rogue behaviour — amazing!

Note though that this case cannot be true for all x, else L
(

1,
(

.
q

))

= 0

(since
(

p
q

)

= −1 for most primes if this held for all x) which we know to be

untrue thanks to Dirichlet. In fact Dirichlet’s class number formula implies

that L
(

1,
(

.
q

))

≫ 1/
√
q, and so (1.4) cannot fail for x bigger than e

√
q.8

This discussion is still quite deep and analytic – after all what else is

L
(

1,
(

.
q

))

but a special value of a function defined by an infinite sum?9

However we can show that x needs to be very large for (1.4) to hold, without

infinite series, if the class number of the quadratic field Q(
√−q) is small.

To do so, we follow an argument of Ankeny and Chowla [1]: We consider

7In 1981 Friedlander [19] showed that (2.2) holds for all x ≥ qB as B → ∞, using sieve

methods.
8So long as (2.2) is valid in the wide range given by Friedlander [59].
9Though in this case, the definition of L(s, (./q)) is valid for all s to the right of Re(s) = 0,

where we sum χ(n)/ns in the natural order of ascending integer n-values.
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the binary quadratic forms ax2+bxy+cy2 of discriminant −q = b2−4ac.10

Two forms are said to be SL(2,Z)-equivalent if there is a transformation

from one to the other by making the substitution

(

x
y

)

→
(

α β
γ δ

)(

x
y

)

where

(

α β
γ δ

)

∈ SL(2,Z). Gauss’s work implies that in each SL(2,Z)-

equivalence class there is an unique reduced form,11 and that there are
only finitely many; we denote the number of classes by h(−q). If p is a

prime for which
(

p
q

)

= 1 then there are a total of two representations of

p as the value of a reduced binary quadratic form of discriminant −q. If
N ≥ q then there are ≪ N/

√
q values ≤ N taken by each binary quadratic

form of discriminant −q, and so

#

{

p ≤ N :

(

p

q

)

= 1

}

≤ 1

2

∑

f reduced

#{m,n ∈ Z : f(m,n) ≤ N}

≪ h(−q)
N√
q
.

Therefore if a positive proportion of the primes up to N satisfy
(

p
q

)

= 1

then we deduce that

N ≫ ec
√
q/h(−q)

for some constant c > 0. In particular if h(−q) ≤ q1/2−ǫ then N ≫ eq
ǫ
.

Moreover if we know that a positive proportion of the primes up to q2

satisfy
(

p
q

)

= 1 then h(−q) ≫ √
q/ log q.

3. Primes in Arithmetic Progressions, without
L-functions

Selberg [58] proved (1.4), the prime number theorem for arithmetic pro-
gressions, based on his formula (2.1). His proof (easily) yields the result for
x > ecq, and with Friedlander’s improved range of validity [19], one can

10The classical theory of Gauss and Dirichlet tells us that there is a 1-to-1 correspondence

between the binary quadratic forms ax2 + bxy + cy2 and the ideals (2a,−b+
√−q). We

shall discuss things here in the language of quadratic forms but there is an equivalent

theory of ideals.
11ax2 + bxy + cy2 is reduced if −a < b ≤ a ≤ c, and if b ≥ 0 when a = c.
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deduce (1.4) when x > ec
√
q. It is unlikely that one can do much better di-

rectly without gaining some understanding of the class number of Q(
√−q).

Indeed, as we discussed just above, if (1.4) is true then x ≫ ec
√
q/h(−q).

Let us suppose for now that h(−q) ≫ √
q/ log q.12 In this case there

are now two elementary proofs that

π(x; q, a) = {1 + ou→∞(1)} π(x)

φ(q)
where x = qu, (3.1)

for any (a, q) = 1. That is (1.4) holds for x = qu as u → ∞, and in

particular one can deduce that there exists a constant A > 0 such that
there is a prime ≪ qA in every arithmetic progression a (mod q) with
(a, q) = 1.13 The most recent such proof, to appear in a forthcoming book

of Friedlander and Iwaniec [22], uses elementary but difficult small sieve
methods. The first elementary proof, due to Elliott [14] (and strengthened
in [4]), is based on the pretentious large sieve which implies that there exists

a character χ (mod q) such that if x = qu ≥ q1+δ then

π(x; q, a) =
π(x)

φ(q)
+

χ(a)

φ(q)

∑

p≤x

χ(p) + ou→∞

(

π(x)

φ(q)

)

; (3.2)

and we may remove the χ term unless χ is a real-valued character. This

fails to imply (3.1) if and only if χ(p) is not equally often 1 and −1 as we
run through the primes p up to x.

The key idea in proving (3.2) is that
∑

rs=n µ(r) log s equals 0 un-

less n is a power of some prime p, in which case it equals log p. Hence
counting primes up to x that are ≡ a (mod q) is equivalent to estimating
∑

rs≤x, rs≡a (mod q) µ(r) log s, and since log is such a smooth function, this

is equivalent to showing that µ(r) is o(1) on average as r runs through any

arithmetic progression (mod q) (see section 2.1 of [46] for more details on
this equivalence).

It turns out that the
∑

p≤x χ(p) term is large in (3.2) if and only if

χ(p) = µ(p) for “almost all” primes p ≤ x. The “pretentious methods” in
the proof of (3.2) do not use, at all, the fact that µ(p) = −1 for all primes
p. In fact the only assumption is that µ is an example of a multiplicative

function f such that |f(n)| ≤ 1 for all n ≥ 1. In this generality one can

12As is believed, and as certainly follows from the Generalized Riemann Hypothesis.
13When using zeros of L-functions this is a tough thing to prove since one needs various

difficult explicit estimates. Linnik’s original proof [48] (see also [7]) is a tour-de-force.
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show that for a given x, and for all q ≤ Q = x1/u, we either have
∑

n≤x
n≡a (mod q)

f(n) = ou→∞

(

x

q

)

whenever (a, q) = 1, or there exists a primitive character χ of conductor r
such that in the cases where r|q we have

∑

n≤x
n≡a (mod q)

f(n) =
χ(a)

φ(q)

∑

n≤x
(n,q)=1

f(n)χ(n) + ou→∞

(

x

q

)

whenever (a, q) = 1. This theorem, first proved for µ by Gallagher [23]
though in the language of prime counting, has long been considered to

lie deep and to be intimately connected with the distribution of zeros of
Dirichlet L-functions. The generality of the new result suggests that this
cannot be so deep (indeed it can be proved using only elementary methods).

Although we do not believe that this exceptional character χ exists for µ,
it does exist for certain f , for example if we take f = χ, so the effect of a
putative exceptional character certainly needs to be accounted for in any

theorem of this generality about the distribution of multiplicative functions
in arithmetic progressions.

It remains to give a proof of (1.4), or something like it, in the case

that h(−q) is small, that is h(−q) ≪ √
q/ log q. From what we noted above,

(1.4) cannot hold unless N ≫ ec
√
q/h(−q), which will be surprisingly large in

this case. In the proofs involving zeros of L-functions one gets an explicit
formula, in this case, of the shape

π(x; q, a) =
1

φ(q)

x− χ(a)x
β

β

log x
{1 + ou→∞ (1)}, (3.3)

where β is a real zero of L(s, χ) that is close to 1. This will be large unless

χ(a) = 1. In this case if u → ∞ but is not too large (that is u(1−β) log q =
o(1)) then the main term becomes

∼ x− xβ

φ(q) log x
∼ (1− β)x

φ(q)
,

which is not the same as (1.4), though it does provide a lower bound for
π(x; q, a) in this case. Note that we obtain (1.4) from (3.3) when u(1 −
β) log q → ∞.

Without using of zeros of L-functions we can prove something similar

by reverting to the theory of binary quadratic forms of discriminant −q:



Vol. 78 (2009) Distribution of Primes 11

If p|f(m,n) where χ(p) = −1 then p|(m,n). If p|f(m,n) where χ(p) = 1

then the ratio m : n (mod p) lies in two of the p + 1 possibilities. Hence
if there are surprisingly few primes p with χ(p) = 1 we can use the small
sieve on the values of the binary quadratic form that are ≡ a (mod q).

In this way we prove that there are ∼ κN prime values of the quadratic
form up to N which are ≡ a (mod q), for some constant κ > 0, and so
complete the proof of Linnik’s theorem.14 From Gauss’s theory, we know

that each prime with χ(p) = 1 is represented exactly twice in total over
all the reduced binary quadratic forms of discriminant −q, and so we can
deduce, now in an elementary manner, that π(x; q, a) ∼ κ′x/φ(q), for some

constant κ′ > 0, provided u → ∞ and is not too large. Hence 1 − β ∼ κ′

where κ′ is derived as a sieving constant. This allows us to recover a version
of the result of Goldfeld [25].

It is still an open question whether one can recover precisely the for-
mula (3.3) by elementary means, though I showed in [28], starting now from

(2.2), that the transition between when π(x; q, a) looks like κ′x/φ(q), and
when it looks like π(x)/φ(q), is more-or-less exponential, that is there exist
constants 0 < β−, β+ < 1 such that

xβ−

β−
≪ x− φ(q)π(x; q, a) log x ≪ xβ+

β+
.

4. Primes in Short Intervals

Riemann’s approach gives a good way to determine the number of primes

up to x, but Gauss was looking for primes in intervals around x. So we can
ask whether we can estimate the number of primes in intervals [x, x + y]?
The Riemann Hypothesis allows us to find the number of primes in intervals

with y ≥ √
x log x. If we add in some plausible hypotheses about the vertical

distribution of the zeros of ζ(s) then we can improve this [39] to y ≥
ǫ
√
x log x, but we know of no approach to prove that there are primes

in all intervals [x, x +
√
x]. The outstanding question in this area, which

beautifully highlights our ignorance, asks
Is there a prime in the interval

(n2, (n + 1)2)
for all integers n ≥ 1?

14The elementary proofs given for this case in [14, 22] can be interpreted as sieving on

the union, counting multiplicities, of the set of values of all reduced binary quadratic

forms of discriminant −q.
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If we cannot prove something like this for all intervals, maybe we can

show that there are primes in “almost all” short intervals? This was accom-
plished by Selberg [57] in 1949, proving that

π(x+ y)− π(x) ∼ y

log x
(4.1)

when y = y(x) > (log x)2+ǫ, for almost all x. It was believed that this would

surely be true for all x, a belief supported by a widely quoted heuristic of
Cramér [12]. However this is not true. In 1984, Maier [50] gave a delightful
sieve theory argument to show that for any constant A > 2 there exists a
constant δA > 0 such that there are arbitrarily large integers x and X for

which

π(x+ logA x)− π(x) ≥ (1 + δA) log
A−1 x, and

π(X + logA X)− π(X) ≤ (1− δA) log
A−1X.

This type of poor distribution result is true for all “arithmetic sequences”

[33].

Cramér’s heuristic (see [29] for a discussion, and [53] for a different

perspective) led him to conjecture that there is always a prime in the in-
terval [x, x + {1 + o(1)} log2 x]. More precisely, if p1 = 2, p2 = 3, . . . is the
sequence of primes then

lim sup
n→∞

pn+1 − pn

log2 pn
= 1.

The latest best data is as follows:

pn pn+1 − pn (pn+1 − pn)/ log
2 pn

113 14 .6264
1327 34 .6576
31397 72 .6715
370261 112 .6812
2010733 148 .7026
20831323 210 .7395
25056082087 456 .7953
2614941710599 652 .7975
19581334192423 766 .8178
218209405436543 906 .8311
1693182318746371 1132 .9206

Table 4.1. (Known) record-breaking gaps between primes.
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Evidently the record-breaking values in the last column are slowly creeping

upwards but will they ever reach 1? Based on Maier’s ideas, I showed [29]
that Cramér’s heuristic should be modified to conjecture an even bigger
constant, that

lim sup
n→∞

pn+1 − pn

log2 pn
≥ 2e−γ ≈ 1.1229 . . .

It is hard to conclude from the data which conjecture is correct, if either.

5. Sieve methods

I have mentioned sieve methods several times already without properly
saying what they are. They all derive from the sieve of Eratosthenes: In
the sieve of Eratosthenes one deletes every second integer up to x after

2, then keeps the first undeleted integer > 2, which is 3, and then deletes
every third integer up to x after 3, then keeps the first undeleted integer
> 3, which is 5, and then deletes every fifth integer up to x after 5, etc.

This leaves the primes up to x and suggests a way to guess at how many
there are: After sieving by 2 one is left with roughly half the integers up to
x; after sieving by 3, one is left with roughly two-thirds of those that had

remained and continuing like this we expect to have about

x
∏

p≤y

(

1− 1

p

)

integers left by the time we have sieved with all the primes up to y. Once

y =
√
x the undeleted integers are 1 and the primes up to x, since every

composite has a prime factor no bigger than its square-root. However this
does not turn out to be such a good approximation for the number of primes

up to x when y =
√
x, because the heuristic was based on an assumption

of independence of divisibility by different primes, that is divisibility by
d = p1p2 . . . pk, which is not exactly correct (as is clear when we take d > x).

To be more precise, the error term in our approximation is something like
2π(y), which is enormous for the sort of y-values that we are talking about.
To make such a method useful it needs to be modified so that the effect of

large divisors d is less pronounced.
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The first successful approach, a clever version of “the principle of

inclusion-exclusion”, was initially developed by Brun, and led to his fa-
mous proof that

∑

p,p+2 both prime

1

p
< ∞.

Brun’s method was used in many interesting ways by Paul Erdős, and the
theory was significantly developed by Rosser, and more recently by Iwaniec,
e.g., [45].

The other key modification is due to Selberg [60]–[63], who introduced

various general weights and clever identities to reduce the effect of the large
d. Selberg formulated sieve problems with abstract hypotheses, allowing
him to remove the number theory so as to completely resolve the abstract

problem using the “calculus of variations”. This has the great benefit that
such problems can be completely solved, but has the disadvantage of being
somewhat removed from the original number theory problems, and indeed

only attack a restricted class of questions. For example, Selberg’s methods
cannot distinguish between integers with an even or odd number of prime
factors, the so-called “parity problem”. (This can be seen in Selberg’s iden-

tity (2.1) which counts P2’s, the number of integers with at most two prime
factors). This issue has been largely misunderstood in the literature — if
one reformulates Selberg’s sieve hypotheses then one might be able to over-

come this difficulty, though too many people have mistaken this to mean
that such problems cannot be overcome by sieve methods.

Iwaniec [44] was the first to circumvent these issues so as to use sieve
methods to show that there are infinitely many primes in an interesting

infinite sequence, namely the integers represented by any given two variable
polynomial where every monomial has degree ≤ 2. We will discuss other
more recent work of this type, a little later.

6. Gaps between primes

The number n! + k is divisible by k whenever 1 ≤ k ≤ n, and so each of
n!+2, n!+3, . . . , n!+n is composite. Hence if pr is the largest prime ≤ n!+1

then pr+1 ≥ n! + n+ 1 and so pr+1 − pr ≥ n. Therefore lim supr→∞ pr+1 −
pr = ∞. This proof can be found in many elementary textbooks, and if we
use Stirling’s formula to recall that log n! ∼ n log n then this proof gives

pr+1 − pr & log pr/ log log pr. We can do a little better quantitatively by
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replacing n! with
∏

p≤n p and using much the same argument to obtain

pr+1 − pr & log pr.

With the prime number theorem we can also obtain this, the largest
gap being at least as big as the average:

max
pr≤x

(pr+1 − pr) ≥
1

π(x)

∑

pr≤x

(pr+1 − pr) ≥
pR+1 − 2

π(x)
≥ x− 1

π(x)
∼ log x,

where pR is the largest prime ≤ x. So next one might ask whether gaps
between primes get significantly larger; for example, is it true that

lim sup
n→∞

pn+1 − pn
log pn

= ∞ ?

In 1931 Westzynthuis [65] proved this using a slightly more sophisticated
version of our argument above, and his argument has been gradually im-
proved until now [16, 52] we know that there are infinitely many n such

that

pn+1 − pn & 2eγ log pn
log log pn

(log log log pn)2
log log log log pn. (6.1)

The constant in front, 2eγ , is the culmination of many improvements ap-
pearing in a series of papers over the last 70 years; Erdős long ago offered

ten thousand dollars to anyone who could show that one can take an arbi-
trarily large constant here, his most lucrative prize.15

We believe that there are infinitely many twin primes, that is prime

pairs p, p+ 2, but we seem to be far from proving that. The smallest gaps
between primes around x are obviously smaller than the average, that is

min
x<pr≤2x

(pr+1 − pr) . log x,

and we might ask whether we can prove that

lim inf
n→∞

pn+1 − pn
log pn

= 0 ? (6.2)

(the average result gives that this is ≤ 1.) This question inspired Bombieri
and Davenport [6] to develop the large sieve yet for all their extraordinary
ingenuity they simply improved the upper bound to ≤ .466 . . ..16 Subse-

quent work by Huxley [41] and Maier [51] improved this to just a little
better than ≤ 1

4 .

15Given Cramèr’s conjecture, we believe that far more is true, but the complicated func-

tion on the right side of (6.1) seems to be the limit of this method.
16Of course, this work of Bombieri and Davenport has had a big impact on so many

important questions!
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The general belief was that this is a tough question that would not

succumb to a simple proof so it came as rather a shock when, in 2009,
Goldston, Pintz and Yildirim [27] proved (6.2) using a simple variant of
the Selberg sieve. This was especially surprising as they used their sieve

method to identify primes, yet the “parity principle” seemed to suggest
that this was impossible with Selberg’s method. However, as we explained
above, this misbelief stems from a mis-conception of the precise formulation

of Selberg’s sieve method.

More recently, Goldston, Pintz and Yildirim, together with Sid Gra-

ham, have also gone beyond Selberg’s methods by proving many things
about the distribution of integers with exactly two prime factors, rather
than P2s (which are the integers with at most two prime factors).

Goldston, Pintz and Yildirim not only proved (6.2) but developed an
approach that, perhaps for the first time, makes one feel that the twin prime

conjecture can perhaps be tackled by current methods: They prove that if
(1.4) holds for all (a, q) = 1 whenever x ≥ q1.05 then there are infinitely
many pn such that

pn+1 − pn ≤ 16.

In fact one deduce this under the weaker assumption that (1.4) holds for

“almost all” q in this range.

7. The asymptotic sieve

Selberg’s parity principle implies that it is difficult to use sieve methods
to identify primes; somehow one has to circumvent the issues identified

by Selberg. It was Bombieri [8] who suggested an “asymptotic sieve” that
would do so, provided certain additional hypotheses are satisfied. Develop-
ing Bombieri’s idea [21] led Friedlander and Iwaniec in 1998 to show that

there are infinitely many primes of the form m2 + n4 [20]. Subsequently
Heath-Brown and Moroz [40] showed that for any irreducible binary cubic
form f(x, y) ∈ Z[x, y] with no fixed divisor, there are infinitely many pairs

of integers m,n such that f(m,n) is prime. Stunning!

The most desired open problem in this area is to show that

4a3 + 27b2

is prime for infinitely many pairs of integers a, b (this is of interest because
if 4a3 + 27b2 is prime then it is usually the conductor of the elliptic curve

y2 = x3 + ax+ b).
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8. Primes in what (polynomial) sequences ?

One can ask many questions of this type:

− Are there infinitely many pairs of twin primes p, p + 2?

− How about primes of the form n2 + 1 ?

− Is it true that for any integer N ≥ 3 there is a pair of primes p, 2N−p?

− Are there infinitely many pairs of Sophie Germain twin primes p, 2p+1?

− Are there infinitely many primes of the form a2+b3+c5? Or 4a3+27b2?

We believe we know the answer to all of these questions and any ques-

tions like this. To state the general conjecture we must first see when there
are only finitely many primes in such sequences. For example there can only
be finitely many pairs of primes p, p+1 because one of these must be even,

similarly there can only be finitely many triples of primes p, p + 2, p + 10
because one of these must be divisible by 3. Another good example is
n2−3n+4, which is always even. So we have to avoid these local difficulties;
and the conjecture is that if we can then we have infinitely many tuples of

such primes. To be more precise, suppose that f1, f2, . . . , fk ∈ Z[x1, . . . , xn]
are all irreducible, and that there is no fixed prime divisor of f1f2 . . . fk
(that is, for any prime p, one can substitute in integer values for the vari-

ables so that the product is not divisible by p). Then we call our set of
polynomials admissible, and conjecture that there are infinitely n-tuples of
integers a1, a2, . . . , an such that

fj(a1, a2, . . . , an) is prime for each j in the range 1 ≤ j ≤ k.

The only cases in which unconditional results have been proven, have all of
the fj linear. For example it has long been known that there are infinitely
many triples of primes in arithmetic progression, which corresponds to the

triple of polynomials x, x+y, x+2y. A little more complicated is the lovely
example due to Balog [3], of a 3-by-3 array of primes, with each row and
column in arithmetic progression, that is that there are infinitely many
simultaneous prime values of the nine polynomials

x, x+ y, x+ 2y,

x+ z, x+ w, x+ 2w − z,

x+ 2z, x+ 2w − y, x+ 4w − 2z − 2y;

(notice that each row and each column is a three term arithmetic progres-

sion), for example forming the two dimensional 3-by-3 array of primes,
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11 17 23
59 53 47
107 89 71

He also showed that there are infinitely many three dimensional 3-by-3-by-3
arrays of primes in arithmetic progression such as

47 383 719
179 431 683
311 479 647

149 401 653
173 347 521
197 293 389

251 419 587
167 263 359
83 107 131

(Here each row and each column of each 3-by-3 square, which is a layer of
the 3-by-3-by-3 Balog cube, is an arithmetic progression of primes, and also
the (i, j)th elements of each of the three 3-by-3 squares form an arithmetic

progression of primes for each fixed 1 ≤ i, j ≤ 3: for example, for i =
1, j = 3 we have 719, 653, and 587.) and even with an arbitrary number of
dimensions.

For many years there did not seem to be methods to go further than

three term arithmetic progressions of primes. That all changed with the
seminal paper of Green and Tao [34] in 2008 when they showed that there
are infinitely many k-term arithmetic progressions of primes and much else

besides. One of my favorite consequences (see [31] for this and more) is a
neatening up of Balog’s theorem, so that the 3-by-3 array can be taken to
be the polynomials x+ iy + jz, 0 ≤ i, j ≤ 2 such as

5 17 29
47 59 71
89 101 113 and

29 41 53
59 71 83
89 101 113

Moreover one can extend the length of the sides to be length 4, such as

503 1721 2939 4157
863 2081 3299 4517
1223 2441 3659 4877
1583 2801 4019 5237

and even to be of arbitrary side length N , as well as an arbitrary number
of dimensions D, for any N,D ≥ 2.

Legendre observed that the polynomial X2 +X +41 is prime for X =

0, 1, 2, . . . , 39, and although no polynomial can always be prime, one can ask
whether there are quadratic polynomials whose first N values are prime.
This indeed follows from the work of Green and Tao, though not (yet) for

a monic quadratic polynomial.
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Green and Tao have also proposed a program [34]–[36] to prove a large

chunk of the conjecture for linear polynomials: If their program works out
then we will know that any set of admissible linear polynomials, such that
no two are linearly dependent over the integers,17 simultaneously take on

prime values infinitely often.

9. A strange polynomial

There is one reducible polynomial worth mentioning in this context, namely

F (a, b, . . . , z) := (k + 2)×
(

1− (n+ l + v − y)2 − (2n + p+ q + z − e)2

− (16(k + 1)3(k + 2)(n + 1)2 + 1− f2)2

− ((gk + 2g + k + 1)(h + j) + h− z)2

− (z + pl(a− p) + t(2ap − p2 − 1)− pm)2

− (p + l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m)2

− (wz + h+ j − q)2 − (q + y(a− p− 1)

+ s(2ap + 2a− p2 − 2p− 2)− x)2 − (ai+ k + 1− l − i)2

− ((a2 − 1)l2 + 1−m2)2 − ((a2 − 1)y2 + 1− x2)2

− (e3(e+ 2)(a + 1)2 + 1− o2)2− (16r2y4(a2− 1) + 1− u2)2

− (((a + u2(u2 − a))2 − 1)(n + 4dy)2 + 1− (x+ cu)2)2
)

,

constructed by several logicians [47] based on ideas of Matijasevic. This
polynomial has the remarkable property that, although it is not often pos-
itive, when it is, it is prime valued, and every prime is a value of the

polynomial. However, from my perspective the polynomial is an artificial
construct, indeed it is even reducible, so it is hard to see how this could
be of much use to someone exploring the analytic properties of primes, but

you have to admire its beauty!

10. Fast growing sequences

− Are there infinitely many primes of the form 2n − 1?

17That is, satisfying a linear equation afi + bfj = c, with a, b, c ∈ Z.



20 A. Granville Vol. 78 (2009)

− Are there infinitely many primes of the form 2n + 1?

− How about numbers of the form 1111 . . . 1111, that is of the form
(10n − 1)/9?

− Are there infinitely many Fibonacci primes Fn, the nth Fibonacci num-

ber?

These are all examples of sequences that grow exponentially fast and we
really don’t know what to expect. In the first case, Father Mersenne showed
that if 2n−1 is prime then n is prime, and the participants of Great Internet

Mersenne Prime Search (GIMPS) continue to identify primes of this sort. In
the second case one can show that if 2n+1 is prime then n is a power of 2.
The first five elements of this sequence are prime, and Fermat conjectured

that they all are, but Euler showed that that is false; in fact no other primes
have been identified in this sequence.

Despite not even knowing how to conjecture the right answer in these
cases of exponential growth, there has been spectacular progress recently

for other types of sequences that grow very fast. Indeed Bourgain, Gamburd
and Sarnak [9, 10] consider the co-ordinates of points under the action of
matrices generated by words constructed from a finite set of matrices. In

this case it is not so clear how to order the points (in that there are several
candidates) so, instead, if the points lie on a variety, their goal is to show
that points with prime co-ordinates are Zariski dense on that variety. At the

moment, they have some beautiful results for certain expanders, showing
that points whose co-ordinates have a bounded number of prime factors are
indeed Zariski dense. The key inputs come from the theory of expanders

and from sieve methods.

Take any three touching circles each with rational radii rj. Then select
the smallest positive integer m such that each m/rj is an integer, and call
that the curvature. In certain cases the largest circle that can be inscribed

in the “lune” in-between the three given circles also has integer curvature.
Then one can inscribe a largest circle in each of the resulting four lunes,
each of which also has integer curvature, etc. This gives rise to an infinite

sequence of circles of integer curvature, and one can ask about arithmetic
properties of their curvatures! Sarnak [55] proves the striking result that
infinitely many of these curvatures are prime numbers, and even that there

are infinitely many pairs of touching circles each with prime curvature.
The mathematics behind this involves the co-ordinates of points under the
action of matrices generated by words constructed from four simple ma-

trices in SL(4,Z), namely three that involve swapping the first co-ordinate
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with any other, and also the matrix whose first column is (−1, 2, 2, 2) and

otherwise looks like the identity. Delightful!

There has been a very recent and startling development due to Bour-
gain and Kontorovich [11]: Suppose that S is a subgroup of SL(2,Z) such
that the limit set, in the reals, of the orbit of any point in the upper plane,

under the action of S, is of Hausdorff dimension > 1 − η for some η > 0.
Then almost all admissible18 primes appear in the bottom right hand corner
of some matrix of S. What’s more, almost every admissible integer appears

in the bottom right hand corner of some matrix of S.
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