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Abstract
We show that Kummer’s conjectured asymptotic estimate for the size of the first factor
of the class number of a cyclotomic field is untrue under the assumption of two well-known
and widely believed conjectures of analytic number theory.



1. Introduction

In 1850 Kummer [13] published a review of the main results that he and others had
discovered about cyclotomic fields. In this elegant report he claimed that he had found
an explicit “law for the asymptotic growth” of hq(p), the so-called first factor of the class
number of the cyclotomic field, and would provide a proof elsewhere. This proof never
appeared and we believe that Kummer’s claim is incorrect. More precisely, let p denote
any odd prime, let h(p) be the class number of the cyclotomic field Q((,) (where ¢, is a
primitive pth root of unity) and hz(p) be the class number of the real subfield Q({,+¢, ')
Kummer proved that the ratio hy(p) = h(p)/h2(p) is an integer which he called the first
factor of the class number, and he claimed that

p—1

h1(p) ~2p( P )T = G(p) (1)

472
as p — oo. In support of this conjecture, Ankeny and Chowla [1] established that hy(p) =
G(p)p°"); and Pajunen [18] that 2G(p) < hi(p) < 2G(p) for each prime p < 641. However
such evidence is, we believe, misleading.
Hasse [11] showed that the value of hy(p) is equal to G(p) times the product of the
L-functions of the odd characters x (mod p) at s = 1. By considering the value of this
expression as s goes towards 1 from above, one can deduce that

() = G esn( "5 1)

where

fp= lim fy(x)

r— 00

and

AUED R D DI S

qm qm
m>1 ¢ prime,q" <z g prime,¢" <z
- g™ =1(modp) q™ =—1(modp)

Therefore Kummer’s conjecture (i.e. equation (1)) may be restated as

fp=0(1/p). (2)

The expression for f, allows us to employ any of a number of results of analytic
number theory to estimate its value. For instance, we shall see at the start of section 3
that a simple application of the Siegel-Walfisz Theorem implies that

fo = fp(27) +o(1/p) (3)

for every odd prime p. Therefore we may restrict our attention to the finite sum f,(27). A

similar argument using the Bombieri-Vinogradov Theorem would allow us to restrict our
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attention to the much smaller sum f,(p?>*?) for any 6 > 0, for all but a ‘small’ set of primes
p. However we will need something slightly stronger. By using a well-known conjecture of
Elliott and Halberstam we will show that for any ¢ > 0,

fo= (") + o(1/p),

for all but at most z/ log3 x primes p < x. By some elementary arguments, in section 2,
we will exclude from this sum all prime powers ¢ with m > 2, for all but a few primes p.
Thus Kummer’s conjecture will be shown to imply that for each § > 0,
1 1 1
> o> =), (4)

q p

q prime,q§p1+5 q prime,q§p1+5
g=1(modp) g=—1(modp)

for all but at most 2x/log® = primes p < z.

The idea, in showing that (4) cannot always hold, is to concentrate on those primes p
which contain exactly one “small” prime in the arithmetic progressions +1 (mod p) and for
which, otherwise, the sum of the reciprocals of the primes in the arithmetic progressions
+1 (mod p), up to p'*9, is very small. We shall assume the well-known conjecture of
Hardy and Littlewood [10] that there are > x/log?x primes p < x for which 2p + 1 is also
prime (or we could take 2p — 1), and will deduce the required estimate for a proportion of
these primes, using one of the standard sieve methods. Thus we will show that for such
primes p,

fp=1/(2p+1) +o(1/p),

(or =1/(2p — 1) 4+ o(1/p) if 2p — 1 is prime) which contradicts (2).
We now give explicitly the conjectures that we need: First a weak form of a conjecture
of Hardy and Littlewood [10]:

Conjecture HL. There are >> x/log*x primes p < x for which 2p + 1 is also prime.

Define 7(x) to be the number of primes < z,7(x; ¢, a) the number of those primes
that belong to the arithmetic progression a (mod ¢), ¢(q) to be Euler’s totient function
and E(z;q,a) = w(z;5¢,a) — n(x)/¢(q). Also let E(z;q) = E(x;q,1) — E(z;q, —1)(=
m(xz;q,1) — w(x;q,—1)). Now the Bombieri-Vinogradov Theorem tells us that, for any
given ¢ > 0 and A > 0 we have the estimate > _ i/2-- |E(2;q)] <c 4 Tog7z- Recently
this has been strengthened by Bombieri, Friedlander and Iwaniec [2], so that the sum may

1/2

extend a little beyond x*/< although the error term is not as strong. We need more than

this however and so use a weak form of the Elliott-Halberstam Conjecture [5]:

Conjecture EH. For any fixed e > 0, A > 0,

s
> E(xq)] <ea logha" (5)

T
q<$175



Remark: In a recent paper, Friedlander and the author [7] showed that a certain strong
form of the Elliott-Halberstam Conjecture (with ¢ < /log® x and |E(xz;¢)| replaced by

(aI,I:;)D;l |E(z;q,a)| in (5)) fails to hold; however, we do believe that (5) is true.

By using the methods that are outlined above we shall prove at the end of section 4:
Theorem 1. At least one of the above stated conjectures of Elliott and Halberstam
(Conjecture EH), of Hardy and Littlewood (Conjecture HL) and of Kummer (equation
(1)) is false.

Remark: In order to only prove Theorem 1 the statement of Conjecture EH can be
weakened to:

There exists an explicitly computable value of ¢ > 0 (depending on the implicit constant
in Conjecture HL) and a value of A > 3 for which (5) holds.

We certainly believe the Conjectures EH and HL to be true and that (1) is false.
Moreover our method, outlined above, indicates that for some subsequence of primes p, we
have hy(p) = {e'/* + 0(1)}G(p) (and for some subsequence of those primes p with 2p — 1
prime, we have hy(p) = {e”%/* 4 0(1)}G(p)). It is of interest to determine what actually
is the set of limit points of the sequence

Q= {h1(p)/G(P)}p prime-

If, instead of as above, we consider the set of those primes p for which each of 2p +
1,6p+1 and 8p+1 is prime then we shall be able to deduce that f, =1/(2p+1)+1/(6p+
1)+ 1/(8p+ 1)+ o(1/p) for some subsequence of these primes (under the assumption of
some suitable generalization of Conjecture EH). Then e'9/48 can be seen to be a limit
point of € (Similarly, when each of 2p — 1,6p — 1,8p — 1 are prime we can get the limit

—19/48) " More generally we define the set of integers {0 < r; < 7y < ... <11} to be

point e
admissible if, for each prime g, there exists an integer a(= a4),1 < a < ¢ — 1, such that ¢
does not divide (r; — a)(ry — a)...(ry — a). A weak form of Hardy and Littlewood’s prime

k-tuplets Conjecture states

Conjecture HL2. If{0 < r; < .. <7} is an admissible set of integers then

a) There exist > x/log"*tlz primes p < x for which each of rip + 1,rop + 1,...,7xp + 1
is prime.

b) There exist > z/logh*1z primes p < x for which each of rip — 1,79p — 1,...,74p — 1

is prime.

Define the measure of a finite set of non-zero integers R to be

m(R)= 3"

reR

We shall show, analogously to the above:



Theorem 2. If Conjectures EH and HL2 are both true then, for any admissible set of

m(R)/2 —m(R)/2

integers R, the numbers e and e are both limit points of the sequence ().

In section 7 we establish a recent conjecture made by Paul Erdos:

Theorem 3. There is a sequence of admissible sets Ry, Ra, ... such that lim m(R,) = co.
n—od

As any subset of an admissible set is itself admissible we give, in section 8, the elemen-
tary consequence (of Theorem 3) that for any real number a > 0, there is some sequence
of admissible sets whose measures have limit a. Then we deduce from Theorem 2

Theorem 4. If Conjectures EH and HL2 are both true then () has the set of limit
points [0, 0o].

As a consequence of Theorem 4 it becomes interesting to try to understand how large
and how small the ratio hq(p)/G(p) can get, as a function of p. In section 9 we give some
justification to the following

Conjecture A. For all primes p,
(loglog p) ~"/**°M) < hy(p) /G(p) < (loglogp)"/* o).

These bounds are best possible in the sense that there exists an infinite sequence of primes
p for which

hi(p) = G(p)(loglogp)~/2+e),

and another infinite sequence of primes p for which
hi(p) = G(p)(loglog p) /> o).

In section 10 we will show, under the assumption of a stronger version of Conjecture
EH, that (1) holds for almost all primes p. We also improve the result hi(p) = G(p)p°™"
of Ankeny and Chowla:

Theorem 5. For any sufficiently large constant ¢ > 0, the bounds 1G(p) < hi(p) <
¢G(p) hold for a positive proportion p(c) of the primes p < x, where p(c) tends to 1 as ¢
goes to co. The estimate hy(p) = G(p)(log p)°V) holds for all primes p that don’t belong to
a certain set Py: Under the assumption of the Generalized Riemann Hypothesis P, is the
empty set; Unconditionally P contains only primes that are = 3 (mod 4) and it contains
2

]

no more than one prime in any interval of the form [x,z°] (so that there are < loglogz

primes p < = belonging to P;).



In a forthcoming paper with Gilbert Fung and Hugh C. Williams [8], we compute the
values of hq(p) for each prime p < 3000 and give partial factorizations for p < 2000. As
might be expected from Conjecture A we found that in such ranges the ratio hi(p)/G(p)
is generally fairly close to 1. Indeed there is perhaps no chance of ever finding a prime p
for which h;(p) and G(p) differ by a factor of as much as 2 (as the value of (loglogp)'/?
grows extremely slowly), and so one might never get any indication that (1) is incorrect
from explicit computation.

Acknowledgements: 1 am grateful to John Friedlander, as well as Gilbert Fung, Sid

Graham, Kumar Murty and Hugh Williams, for useful conversations concerning this paper.

2. Dealing with the prime powers ¢ = +1 (mod p) for m > 2.

For a given odd prime p define

1 1
Sy = E — E —
m>2 quil_(modp)
q prime

The main result of this section is

Proposition 1. The equation s, = o(1/p) holds for all primes p that do not belong to
some set Py which contains < /2 log2 x primes p < x.

This result, together with (3), implies that

fp = 9p(2) + 0o(1/p)

for all primes p outside P», where we define

B = S o %

q prime,g<z q prime,g<z
g=1(modp) g=—1(modp)

7

Lemma 1. For any prime p,

1 1 1
S Y =0l
mZQ qu:lzl(rnodp)q p gp

q™m>plog? p

Proof: For any prime g > p,



and for any prime ¢ < p,

5 11 1+1+1+
mgm T 2p? g ¢

qm >p?

IA
‘EN| —_

Therefore

1 1
2w 2 q_mSZ_JrZ plogp ©)

m
m>2 gM=+1(modp) q>p q<p
g™ >p?

by the Prime Number Theorem.
Now, for any fixed m > 2 there are r(< 2m) solutions (mod p) of the congruence
X™ = +£1 (mod p). Therefore if by, bo, ..., b, are all such solutions then

1 1 r 2m
> Ly ¥ < < :
2 — 2 — 2
im=+1moan) qa T i may Plog®p  plog®p — plogTp

plog2 p<qM<p2 q<p2/m

(Note that, as m > 2, there is at most one solution of ¢ = b; (mod p) with ¢ < p*/™.)
Now if ¢™ < p? then m < 4logp and so

[4log p]

1 1 1 2m 8
Zg > < D oo n = plosn
mZQ gM=+1(modp) q m=2 p Og p p gp

plog2 p<qgM<p2

This bound, together with (6), completes the proof of Lemma 1.

The Proof of Proposition 1: By Lemma 1 it suffices to show that

1 1 1
=Y s Y =)
m o q
mZQ gM=+1(modp)
g™ <plog? p

for all primes p outside a set P,. Now

DIEAED DFC D DI~ BN DI

z<p<2z m>2 g prime r<p<2z,p prime
p prime z<qM<3zlog2 x plg2™m —1

Clearly no more than two primes p in the range z < p < 2z can divide any such ¢*™ — 1
and so

I 2 1
2om< X 2 w2 < am

z<p<2z q prime z<gM<3zlog?a q prime
p prime m>2 q<21}1/2 log =



So, if 57, > &/p for > x1/2log x primes p in the range z < p < 2z then Y. vcp<aw 55, > 212%,

p prime

giving a contradiction. The result follows from summing over the intervals [27¢" 1z, 27 z].

We note here a result of Ankeny and Chowla [1] that we will use later:
Lemma 2. For all primes p, s, < 1/p.

Proof: By Lemma 1, we need only consider those prime powers ¢ = +1 (mod p) which
are < plog® p. Now, for any m > 2, there are at most 2m values of ¢ with ¢™ = +1 (mod
p) and < plog? p, and so we maximize our sum by assuming that p =1 and 2p + 1 are
squares, 3p = 1,4p + 1 and 5p £+ 1 are cubes, etcetera. Therefore

1 1 1 %(mz-l-m)—l 1 1 .
sLoy Losd'YUL Ly
m>2 m qM=+1(modp) qm m>2 m T_%(TI’LQ—m) rp + ]_ rp — ]_ D

qM<plog?p

3. The contribution of the “large” primes.

We start the section by proving (3) which gives a good idea of the methods used here.
Define g,(x) as in the previous section and let

gp = lim gp(x).

r—00

By the method of Riemann-Stieltjes integration we have, for any = > y > 3,

00(@) — py) = / | dinttipl) —altp 1) / dE(t; p)

=y =y t

_ {@] + /:@dt (7)

after integrating by parts. The Siegel-Walfisz Theorem gives that

E(x;p) < —

5 for x> 2P,
plog” x

and so

1 r dt 1
xT) — )| <« — +/ —_— << .
|9p(z) — gp(2°)] 3 R loth 2

Therefore g, = g,(27) + O(1/p?). This, together with Lemma 1, gives the unconditional

estimate

fo=h 40 () (3)
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which implies (3).

In order to reduce the size of the sum that we are considering we need stronger uniform
estimates for F(z;p) than those that are available. Thus we must restrict our search to all
but a few primes by using some sort of averaging result on primes in arithmetic progressions

(for example, the aforementioned Bombieri-Vinogradov Theorem). We will prove

Proposition 2. Assume that Conjecture EH is true. Fix 6 > 0. The equation g, —
9p(p**%) = o(1/p) holds for all primes p, outside some set Py which contains < x/log® x
primes p < .

Proof: By summing in (7) we have

> g — g ) < {S(t; x)}:; +/:o SE)

c<p<2x
p prime

where S(t;x) =) e<p<za |E(t; )]

p prime

<

< dt 1
5T 5, < 1 >
log” x g1+ tlog” t log™ x

by taking A=5and 0 <e <§/(1+9) in (5). The result follows immediately.

Now, if we combine Propositions 1 and 2 then we can deduce

Corollary 1. Assume that Conjecture EH is true. For any fixed 6 > 0,

fr= gp(p1+6) +o(1/p) (8)

for all but O(z/log® ) primes p < z.



4. The contribution of the “small” primes.

In this section we will use sieve estimates to get crude upper bounds on gp(pH‘s) —
gp(2p + 1), which will suffice for our purposes. Define

N,;t(a:) =#{p:x<p<2x and p,2p+ 1 and kp £ 1 are all prime}.

It follows from both Brun’s and Selberg’s sieves (see [9], Theorem 5.7) that if k£ < 2 then

Ni@) < I (%) ° if k> 2,

plk(k—2) log™
and
No@ <! ] (L) = if k> 1.
p—1 log” x
plk(k+2)
Therefore
R D DD DI
z<p<2z 2p+ 1 r<p<l2x g==+1 (mod p) q:F 1
p,2p+1 prime p,2p+1 prime q prime §p1+6
q7#2p+1
w‘sfl _
NQk(x)
+ Y
k=1
xé 1
T
“omxir O G o
08" T | ¥ pkran) NP

Now, by a method from [16] one can show that

Z H = (C1+0(1))y

k<y p|k(k+1)
as y — oo, where C1 = [, prime{l +2/p(p — 1)}. Then, by partial summation, we get
Z H = (C1+o0(1))logy
k<y p|k(k+1)
and so, by (9), there exists a constant co > 0 such that

1
146y
> plg(™) 1

z<p<2x
p,2p+1 prime

< 26 .
log2 T
From this we can deduce
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Lemma 3. Fix A\ > 0 and € > 0. There exists a 6 > 0 such that, for sufficiently large

values of x, there are < )\x/log2 x primes p < x such that 2p + 1 is prime and

1 €
>

1—1—5)_7 ]
2p4+ 1|~ 2p

gp(p

Proof: Choose 6 = £)/3cs in equation (10) and the result follows immediately.

Finally we prove

Proposition 3. Suppose that Conjectures EH and HL are both true. Then there are

> x/ log? x primes p < z for which fp= (% + 0(1)) %-

Proof: By Conjecture HL there exists a constant c3 such that there are > csx/ log® x
primes p < z for which 2p + 1 is also prime. Fix ¢ > 0. Letting A = ¢3/2 in Lemma 3 we
find that there are > c3z/2 log2 x primes p < x such that 2p + 1 is prime and

1 €

146
- < —.
) 2p+1 2p

gp(p

Then, by Corollary 1, we see that there are > c3x/3 log? z primes p < z for which 2p + 1
is prime and |f, — 1/2p| < ¢/p, which completes the proof.

Proof of Theorem 1: This follows immediately from the equivalence of equations (1)

and (2), and from Proposition 3.

In order to justify the remark following the statement of Theorem 1 we note that in

*t7 r primes p < z) we need

the proof of Proposition 2 (for a set P3 containing < x/log
only take A > 3 4+ 7 . Also if we choose the value of ¢ in the proof of Proposition 3 to
be fized, but less than 1, then f, > {1 — ¢+ o(1)}/2p for > czz/3log” x primes p < z.
However fixing ¢ in Proposition 3 corresponds to fixing ¢ in Lemma 3 and so, by the proof

of Corollary 1, fixing € in Conjecture EH.
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5. Unconditional results ?

The method that is outlined above is unlikely to lead to an unconditional disproof of
(1) as it requires the existence of a “small” prime in one of the arithmetic progressions +1
(mod p) (It seems to be out of the range of current methods to even prove that there are
infinitely many primes p for which there is a prime < %plog p in either of the arithmetic
progressions £1 (mod p) - The result with a constant around 1/4 can probably be proved
by using a method similar to that in [14]). It may however be possible to instead look at
numbers that are the product of at most two primes.

Define, as above, the function f, extended to any positive integer p. Chen’s method
3] enables one to show that there are > 2/log” = integers p < x with < 2 prime factors,
both > z'/19, such that 2p + 1 is prime. We can try to proceed towards an unconditional
proof that | f,| > 1/p for some such integers p, by a similar method to that outlined above:

1) The contribution of the prime powers to the sums is usually insignificant (as in

section 2).

2) The contribution of primes, other than 2p + 1, that are < p'*9, is insignificant for
a proportion of such integers (as in section 4).

3) For the primes > p? we may use the aforementioned result of Bombieri, Friedlander
and Iwaniec [2], in place of Conjecture EH, in the proof of a version of Proposition 2.

4) We are left with the primes between p'*% and p? that are = +1 (mod p). These
seem to be the most difficult to handle. There is perhaps some hope that an application
of the large sieve may allow us to deal with at least a proportion of the remaining values
of p, although I have been unable to do this.

12



6. Arbitrary admissible sets

In this section we outline the proof of

Proposition 4. Suppose that Conjectures EH and HL2 are both true, and that R =
{r1,r2,...,7k} is a given admissible set. Then

a) There are > x/log"t! 2 primes p < x for which f, = {m(R) + 0(1)}%.

b) There are > z/log"**  primes p < & for which f, = {—m(R) + 0(1)}}%.

—r=l

- 2 Jp
The proof of Proposition 4 is much like that given in sections 2-4 for the case R = {2}:

Theorem 2 follows from Proposition 4 by noting again that log(hi(p)/G(p))

1) We use Proposition 1 exactly as before.

2) We take (5) with A = k + 4 in the proof of Proposition 2 (rather than with A =15
as before) to show that g, — g,(p'*°) = o(1/p) holds for all primes p, outside some set Ps

k42

which contains < z/log""~ z primes p < z.

3) Let 0 = 1in a), —1 in b). We will consider those primes p for which rp+ o is prime
for every r € R. Assuming Conjecture HL2 there are > x/ logl‘H'1 x such primes p that
are < x. Now, for any integer ¢/ > 1, let

Néi(a:) =#{p:x <p<2x and p, rp+ o for each r € R and ¢p £+ 1 are all prime}.

As in section 4 we know, by using any sieve method, that for ¢ < z'/2 and 7 = +1, we
have

N, <r Cy except when o =7 and ¢ € R,

x
1 k+2 T
and the constant Cj = H (L) .
p—1
pll HTGR(E—TTU)

As before it does take some work to show that

1
> 700 ={Cr+o(1)}logy,

L<y

where Cr = [, j1imell +wp(R)/p(p—1)} and

wp(R)=#{(:0<{<p—1 and p/¥ H(E—TTJ)}.

reR

Therefore, for any given £, A\ > 0 we have, similar to Lemma 3, a value of ¢ such that

k+1

whenever z is sufficiently large, there are < Az/log""" = primes p < x for which each

rp+ o is prime (i.e. for each r € R) and

g g
gp(pH_é) - Z > —.

h D+ 0o 2p

13



4) Finally, as in the proof of Proposition 3, we have

fo=>

reER

+olb

™D+ O P

for > x/ log'“Ll x primes p < z, and

7. Erdos’s Conjecture: Admissible sets with arbitrarily large measure.

In a lecture given during the recent NATO Advanced Study Institute at Banff, Alberta
in the Spring of 1988, Professor Erdos conjectured that our Theorem 3 held - that is
that there exist admissible sets with arbitrarily large measure. He was interested in this
question in connection with an entirely different question - champion numbers with respect
to certain functions connected with the prime divisors of an integer - see his paper with
J.L. Nicolas [6].

The main problem that one encounters in trying to prove Theorem 3 is that the seem-
ingly most likely method to succeed - one based in some way on the beautiful construction
of Hensley and Richards [12] - is difficult to do. We look at the problem in a rather different
way:

The reason that we wish to construct admissible sets R = {ry,ra,..., 7t} is so as to
find primes p for which each of rip+1,7op+1,...,7ep+ 1 is prime. We do, of course, know
that such sets R exist for each given prime p, which we can construct as follows:

For the given prime p and for any finite set of primes Q = {¢1 < ¢2 < .. < q¢} in the
arithmetic progression 1 (mod p), define Ry to be the set {ry,rs, ..., ¢} where r; = (¢;—1)/p
for each 7. We must ask ourselves: Is Ry an admissible set and, if not, why not ?

Suppose that t is a prime where t # p and t ¢ Q. Let a; be the least non-negative
residue of —1/p (mod t) and so r # a; (mod t) for every r € Ry (else t divides ¢ = rp+1 € @
and, as t and ¢ are both prime, so t = ¢ € @, giving a contradiction). Therefore if Ry
is not admissible then it is because it lacks a suitable congruence class either for a prime
in @ or for the prime p. The idea now is to remove elements from Ry so as to (i) Create
suitable values of a; for each t € Q U {p} and (ii) Maximize the measure of the remaining
set R. We do this by using the following recursive algorithm:

Let go = p. Fori=0,1,2,..., ¢ choose a4, to be the value of bin therange 1 <b < ¢;—1
that maximizes the measure of the set

{reR;:r#b(mod ¢)},

14



and then call this set R;;1; clearly

(B = Jmz,

¢ —1
By going through this procedure ¢ + 1 times we end up with an admissible set R = R4

mR)=p ][] (1—qil>z L (11)

-1
q€QU{p} qeQ q

It remains to choose p and @ so that the quantities in (11) are as large as we like:

where

Now, for any prime p pick values of  and y with « > y? and y > 2P, and let @ be the
set of primes between y and x that are =1 (mod p). Then, by a simple application of the
Siegel-Walfisz Theorem we have,

1 1 1 1
Z 1: 110g(10gx)—|—0( Tos? )
o p 0gy plog’y

By taking the exponential of both sides we can deduce

() = (62) " {reo ()
iy U £ o (1)) "

(logm) p—T p

logy

Proof of Theorem 3: Fix M > 1. For each prime p we let y = 2P and = = y¥ where
N = e*M . Then, by (12),

Then, by (11),

R

( 5} = 2M{1+0(— My s

for all sufficiently large p.

It is certainly of interest to find out how large the measure of an admissible set can
be with respect to its largest element:

For each prime p in the interval [z, 2z], let Q,, be the set of primes in [y, z] that belong
to the arithmetic progression 1 (mod p) (Here y = 2® and z = €3%"). Define

se Yy - ()
e ey qg—1 p-—1 log x

p prime

15



Now, for each prime p,

1 /mem¢>
t

g—1 J, t-1

_ b lo x_Q +/ZL

T p—1 & log x y t(t—1)logt

E(t;p,1)]7 “ E(t;p, 1
{<m,q . <,n;ﬁ}

i—1 |, L =1

ow — ogt < 1/z°logx and so, summing over the primes in |X,2x|, we
Now [~ dt/t(t —1)logt < 1/a%1 d i he primes in [x,2

qup

get
1 St;x)]? = S(t;
5 < L [5E2) +/ () .,
z3logx t y Syt
1
< 2
log” x

from using the Bombieri-Vinogradov Theorem in the form S(t;z) < t/ log® t whenever
t > 23. Therefore we certainly have a prime p in the interval [z, 2z] for which

Z 1 . 1 lo .7/’2 —|—O 1
g—1 p-—1 & log x zlogx )~

q€Qp

= TEN o (1))

> 2logz + O(loglog x).

Therefore, by (12),

However R, C [1, 2] and so, as loglogz = 2logx + O(1) we have proved

Proposition 5. For any sufficiently large x there is an admissible set S, which is a
subset of [1, x|, with m(S) > {1+ o(1)} loglog .

We believe that Proposition 5 is the best possible such result in the sense that any
admissible subset S of [1,z] has m(S) < {1+ 0(1)}loglogx. We can prove a result in this
direction quite easily:

It is well known that, by any sieve method, if we remove one arithmetic progression
(mod p) from [1,z] for each prime p then we will be left with < x/logx integers. But
any admissible set R has the property that it does not contain any integer in at least one
arithmetic progression (mod p) for every prime p, and so, for all z, | RN [1,z]| < z/logz.
Then, by partial summation, we see that we can prove

16



Lemma 4. There exists a constant c4 > 0 such that if S is an admissible subset of [1, z],
then m(S) < cqloglogz.

With some care it may be shown that we can take the constant ¢4 = 2 in Lemma 4,
provided that x is sufficiently large.

8. The set of limit points.

Let M be the set of measures m(R) of admissible sets R, and let M be the closure
of M; that is the set of limit points of sequences of elements of M that do converge. We

prove

Proposition 6. Assume that Conjectures EH and HL2 are both true. If a € M then
—a and a are limit points of the sequence {pf,}p prime-

Proof: Fix ¢ > 0. Let 0 = —1 or 1, according to whether we’re proving the result
for —a or a. Let Ry, Ra,... be a sequence of admissible sets for which lim m(R,) = a.

n—oo

Thus, if n is sufficiently large then |m(R,,) — a| < /2. Now, by Proposition 4, there are
> z/ log!FnIT1
values of z. Therefore for any such prime p, |pf, — oa| < e.

x primes p < z for which |pf, —om(R,,)| < /2 for all sufficiently large

Proposition 7. M = [0, o0].

Proof: By noting that {n} is an admissible set for every even integer n, we see that
1/n € M and so 0 € M. Moreover, by Theorem 3, co € M.

Let a be any fixed positive real number and choose ¢ in the range a > ¢ > 0. Fix n to
be an integer > 1/¢ and let ¢, be the measure of the set of integers < n. By Theorem 3
we can pick an admissible set R with m(R) > a + ¢,. Now let S be the subset of integers
in R that are > n: Note that m(S) > m(R) — ¢, > a. If S is the set {s; < s9 < ... < s¢}
then define T to be the set {s; < s2 < ... < si} where k is chosen so that m(T) > a
but a > m(T) — 1/s. Therefore T' is admissible (as any subset of an admissible set is
admissible) as T'C R, and |m(T) — a| < 1/sx < 1/n < . Therefore a € M.

Proof of Theorem 4: By Propositions 6 and 7 we see that the set of limit points of
the sequence {pfp}p prime is [—00,00]. The result follows from noting, once again, that

h1(p)/G(p) = exp(EF* f,).
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9. On the maximal and minimal order of h(p)/G(p).

The methods of this section are highly conjectural and are only intended as a guide to
making a plausible conjecture as to the maximal and minimal order of h;(p)/G(p). Now,
for a =1 and —1 it seems likely that

1/2
E(z;p,a) < (g) exp((logz)*/?)  whenever > p,
and

(x;p,a) <K whenever 2 > plog® p.

plogx

By taking the first of these estimates when 2 > pexp(3(log p)'/?) = xy, and the second for
when zy > z > plog® p, we can use partial summation and Lemma 2 to show that

_ 3 1
fr = p(plog"p) +O (p(logp)m) '

Now, by the Brun-Titchmarsh Theorem there exists a constant ¢5 > 0 for which 7(x; p, a) <
csz/(p —1)log(z/p) for all > 2p — 1. Therefore, by using a Riemann-Stieltjes integral,
it is easy to deduce that

1 c
gplplog’p) < > - < f{logloglogp+0(1)}-

g==+1(modp) q

2p—1<q<plog3 p

Therefore |f,| < <{logloglogp + O(1)}, and so
hi(p)

(loglog p)~%/% <« Gl < (loglogp)°s/2. (13)

Montgomery and Vaughan [17] have shown that we may take c5 = 2 and it is conjectured
that one may take c¢5 = 1 4 o(1). This gives the bounds in Conjecture A.

On the other hand, suppose that R is an admissible set containing k elements from
[1, z]. In [10] explicit constants were given for Conjecture HL2 and it can easily be shown
that these are > 1/(log 2)?*; that is we would certainly expect > x/(log xlog z)?* primes
p < x for which rp £ 1 is prime for each » € R. Taking, say, z = z'°% this gives more than

Tz 10z

2" such primes p. So let p be such a prime with p ~ z'%* (and so z =~ logp/10 log log p).

Now, by Proposition 7 we can pick such a set R with

m(R) > {1+ o(1)}loglogz > {1+ o(1)} logloglogp,

_ {o+o(1)}logloglogp for
P b
o = +1. Thus we see that hi(p)/G(p) essentially attains the bounds given in Conjecture

A.

and so, using the methods of earlier in the paper, we’d expect f,

18



10. The usual order of hi(p)/G(p).
A strong form of Conjecture EH would state that

Conjecture EH2. We have the estimate

S(t;r) <

log3 t
uniformly for any t > x exp((logz)'/?) = t.

Then, by a similar argument to Proposition 2,

log? 2z

> g —g(to)l <

r<p<22zx
p prime

Also

1
Z |pgp(to)\2 < Z ] #{r<p<2x:pkpt1land lp+1 areall prime}
z<p<2z k<to/x

p prime

x
<

log2 z’
by using either Brun’s or Selberg’s sieve and then summing (as in the proof of Lemma 3).
Combining these two bounds with Proposition 1 gives

Proposition 8. Assume that Conjecture EH2 is true. Then (1) holds for all primes
except those belonging to a certain set Ps. For any given function (z) that — oo as
x — 00 there are O (d}(a:)log%m) primes p < x that are contained in Ps if x is sufficiently

large.
Combining the above equations with Proposition 3 gives

Proposition 9. Assume that Conjectures EH2 and HL are both true. Then, for any
fixed \,1/2 > X\ > 0, there are

a) =y bgL?x primes p < x for which f, > \/p.

b) =, I%Lzm primes p < z for which f, < —\/p.

We now look at what can be proved without assuming any hypothesis:
Proof of Theorem 5: Using Lemma 2, equation (7) with z = oo and y = 2p — 1, and
the Brun-Titchmarsh Theorem, we see that

o /:o E(:Qap) dt + O (k)gl%) (14)

P

where z, = exp(log4 p). We can bound E(t;p) when ¢t > z,, by using the following well
known results of analytic number theory (see [4], p.94 and 123):
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Lemma 5. There exists a constant cg > 0 such that if Py is the set of primes for which

L(s, xp) (where x, is the real non-principal character (mod p)) has a zero 3 in the range

B>1—cg/logp (15)

then i) Py is empty if the Generalized Riemann Hypothesis holds; and ii) Ps contains at
most one prime in any interval of the form [z, 2*] unconditionally. If p € Ps then the above

value of 3 is unique and we have

Bl p) = 21 1 i +O< ° ) (16)

p—1 Blog x p]ogzx

in the range x > exp(log® p). If p ¢ Ps then E(x;p) = O (plo“ég x) in the same range.

Note that if p € Ps and p = 1 (mod 4) then x,(—1) = 1 (as x, is essentially the
Legendre symbol (mod p)) and so, by (16), we have E(z;p) = O <p1022x>. Thus, if
pé Pr={pe€ Ps:p=3(mod 4)} we get, using Lemma 5, that

< E(t; 1 [ dt 1
/ (2p Jat « 1 / — < —.
P P Jy, tlog”t  plog”p

p p

Therefore, by (14), f, < logl%. This gives the first part of Theorem 5.
By using sieve methods, as in section 4, one can easily prove, analogously to (10), the

inequality
3 T
> plop@®)| < g2
m<p§2m
p prime

By using the Bombieri-Vinogradov Theorem, instead of Conjecture EH, in the proof of

Proposition 2, one can show that

3 r .
> Plor—a(P”)] <
z<p§21 Og x
p prime
and finally, from the proof of Proposition 1,
x
Z plfp — 9yl <<1 2 -
m<p§2:v Og x
p prime
Adding these three inequalities together gives
x
Z p|fp| < 1—’
og T
x<p§2@
p prime

so that |f,| > 2l;gc for < z/(logclogx) primes p in the interval x < p < 2x.
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