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On the number of solution of the equation Zz‘/d‘ =0 (mod 1),
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Abstract  Let I(d;,**+,d,) denote the number of solutions to equation
FHE A+ I=0mad D, I<a<d—1, i= L

We investigate the numbers 7(d;, ***,d,) which provide bounds for the number of solutions
Z; - ,7, to diagonal equations c,z)1 + ++« + ¢, 2,5 = 0 where ¢;,+=* ,c, are given elements of
a finite field and d;, -+ ,d, are given positive integers. We obtain sharp general lower bounds
for I(dy,+**,d.).
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Let F, be a finite field of ¢ elements, where g = ¥, I 2> 1, pis an odd prime. Let¢;(i = 1,,

n) be nonzero elements of F,. Suppose that d,*+ ,d, are fixed positive integers and d;divides ¢ — 1 for

alli. Let N = N(dy,+=*,du;y,**,C,) be the number of solutions (z1,*,2,) € F{ to the diagonal
equation

ez + oo + b = 0. ’ @)

It is well known (for example, see page 147 of [1]) that | N — ¢~ < I(dyy-++,d.) (g — 1)g* 72,

where 1(d,,**,d,) denotes the number of solutions of the equation
§+;—;+\--- 2 =0@mod ), ISu<a— 1, i=1,0m (2
1 .

Thus I(d;,***,d,) and its estimations play an important role in studying diagonal equations over a finite
field. ’ ‘
A trivial upper bound for I(d,,+--,d,) is given by
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I(dy, oo sd) < (dy— 1) (dp— 1)eee(da — 1)
In 1991, sun Qi and D. Wan proved that

I(dyy e sd) = TCuyye ya) (3
where u; = Scd(dj! dl"' ./d‘)y ] = 1, ,a, so that for all j(l < j < ﬂ)
Iy, ,d) < [ — D ' @)
’ %)

(see Theorems 1 and 2 in [3]).
Recently Sun Qi and P. Yuan(see [4]) gave the following identity for N (d;, =« ,d,; C1y°s. yC0) ;

N(dyyeeeydys €1y 96) = N(ty,o ythy; €15425C,) )
In this paper we obtain the following theorems and corollaries.
Theorem 1 (i) It w; = ged(d;, lem[dy, s dimyy digq,o,d,]) for i = 1, ,a, then
I(dyy v 1d) = I(wy,o ,00) 5 (6)
Gi) w; = ged(wyy lem[wy, oo,y Wipysoee,0,]). , €]
Part (i) of the theorem says that there is a reduction process for I(d;,-*-,d,). Part (ii) of the
theorem says that this reduction terminates at the second step.

Proof of theorem 1; Consider the equation
£+...+%Eo(m1>,1<,‘<w‘-1,e=1,'--,¢ (8)

We claim that z; = yd;/w, gives an one-one correspondence between the solutions of equation (2) and
the solutions of equation (8). Part (i) of theorem 1 follows from this correspondence. To prove the
claim, it is sufficient to prove that any solu.tion (2, ,z,) of equation (2) satisfies z; = yd,/w, for
some integers (1 << i < n). )

Let (b, by,+++,b,) be a solution of (2). Thus, there is a positive integer Z such that

&
Multiply both sides of (9) by dilem [dz,+++ ,d,]/w,, we have

lcm[d_z,---,d.] b + dllcm]llz,"-,i.] é_z_ + vee + dllcm[dz,'"’d.]ﬁ dl lcm[dzv'" ’dn] z
w . w, ds wy d, w; )

.‘I;_‘+...+.b;=z. : (9
1

1

(10)
Since ged (dy/wy, lem[dy, - ,d.]/wy) = 1 and each lem [dg, < ,d,]/dyis an integer, t 2> 2, we have
b = 0 (mod d;/w;) by(10). In the same way we have 3 = 0 (mod d&/w), i = 2,+,n. Thus b; =
diyi/w; fér some integers 3;(} << i1<<a). Since 0 < b; < dithus 0 < ;< w;for all §, and claim is ‘roved.
Now let us consider the second part of the theorem. Let ! be a prime number dividing & t;) the
exact power of ®. Suppose that the exact powers of I dividing dy, < ,d.are.in descending order, k; = &,
== ky>= «»» = k,. Then the exact power of [ dividing w;is %%, The sequences of powers ot I dividing
Wy, ,w, are thus, in descending order, k2= ko= ky 2> ++- 2>k, So if Piis the exact power of ¢ dividing

w;then [in Gkl = 1 divides ged (s lem[wyy e ywimyy Wip1se=,0,]) and the result follows.
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Theorem 2 (i) Forall j (1 << j<»)

1y, ,d) < T Go— D). an
i) ’
(ii) ' . N3y )d;icls"' 16) == N(wyy+ w5015 G (12)

Proof To prove (11), it is sufficient to show that there is at most one y; saﬁsfying equation
(8) for each choice of {;; 1 <Ti<<R,i7 j). Givenasetof y, (1K< << — 1, i = 2,000,8),
assuming that there are two choices for y,, say y and z,, satisfying (8), then we have
(n — 2)/wy =0 (mod 1),
so that 31 = z; (mod wy ). Since 1 < ¥, 21 << wy — 1, thus g; == 2 and so (11) holds.
Using Jacobi sums (see [2]), we have
N(dyyoeesday 0100 56) = ¢*~1 + Z (o) e Mo (er™) Jo(Atyee, X5)

2)/dy+oo+s,/d mO(mod 1)
1‘?;‘1’—1 sjmlyee,m

and . . g
Ny, v was yeeey0) = ¢+ > M () oo A (T DITo (Al ooe , A

yy/w ety fro, m0(mod 1)
1,0~ 1) jm=1,0 08

where Jo(X1,+°*,%,) = Z Xy (ay) ~+X,(a,) is the Jacobi sum with X;(a) = e@med®/4and 2(a)
8y Fecctn =0
.).elr'. g P

= e@rnd@)/w; for g € F}, j=1,+,a. In the proof of Theorem 1 we know that z; = y.d,/w; gives an

.

one to one correspondence between the solutions of (2) and the solutions of (8). Similarly we find
that .
Xy(a) = e@rimt i)y = oUmindhfe) = 24(a), a € FF, j= 1, ,a.
Therefore N (dy, s ,du; €1,%*,6) = N(wy,+,w,; ¢;,°**,6,), Which complates the proof.
Corollary If I(d;,*,d,) = 1, then 2|nand

N(dyyoreyde; Cryoees6a) = N(Z,"',Z;Cl,'.",c.).
5 a2
Proof In [3] Sun Qi and D. Wan proved that I (d;,++ ,d,) =1 if and only if 2|, for some j,

4= 2'm;(¢ > 0) and & = 2m;, ¢ 5= j, 1 < i <X n, where my,+,m, are odd integers and pairwise
coprime. )
Thus if 7(d;,**-,d,) = 1, then 2|sand s = 2, i = 1,+, 8. So

N(dyy oo ydas €500 46) = N(wyy0 s, C1yoo05C) = N(2,°,2;¢15°"56,).
St
22
The corollary is proved.

Now, we may assume that I(d;,,d,) > 0. _

By theorem 1 we may assume that &;divides lcm [d: i 7% J] without loss of generality. Note that
itd) = 2 then z; = 1. So 1(2,2,dy,dys+,d,) = I(dy,dy,+,d.). Thus we need only to consider the
Cases where I(dy,++,d,), d;llem[di:i 7 j], & = 3, j = 1,2,+,8, and I(2,dy, +, d.),
4;/2|tlem{d;+é 7 5], if d; are odd for all i except d;is even and d; = 2 (mod 4) for one j; d;|lcm [d:
7 j], otherwise, where d; > 3, j = 1,2, ,n. We shall prove -
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Theorem 3
1) oot dy-+dy ..L.
I(dy, e ydu) and 1(2,dyse=5da) 2 Temldn ] 77

Proof Writed; = H:_lp‘p, the factorization of d; into powers of distinct primes. Let gfi be the
largest prime power dividing d, that is g = max gagupi for ‘eachi. Since d; = 3 thus gfi => 3 for each
i In I(dyseessda) 'and‘I' = I(2,dy,* ,ds) We count solutions to

. T | 1
d1+dz+ +d_€:Zand z+2

respectively , with each z, satisfying 1<a<d— 1.
To get a lower bound we select z, by the Chinese Remainder Theorem so that

::.Ex..]_—_[ s (mod pi=) » for I<m< M,

. jEm
where
-:;_—;_+;T;"_+---+-;._—';ez, (13)
(or Z + 1/2 if pa = 2 and we are looking at I’). We only allow that
1< tm<p=—1, it pm 7 gy 3 (14
141,.5§p3-—1,‘ if go= = gh. (15)

(this guarantees that & = 0 (mod dy).

For each m let B, = MaX|igfim SinCE d,divides lem [d;,i7 7], we can select distinct j, and jz
so that gjm = 8« = E.. (the only possible exception is if p% = 2 and we are looking at I’ and there is
just one even ¢; — in that case We must have z;odd). Soif j = ji, jechoose Zjato be any value in the
ranges (14) or (15). If (13) is to be satisfied, that means that Z;a« + Zje = (fixed value) (mod
pi). Thus z;. can take any value (mod pia) which determines zja, except 0 if we have the range
(15) for z;,», and also except the value that forees z;. = 0if we have the range (15) for 2;

Therefore the total number of such sets {x,-_} for a given pais at least

. % (Pl — 2}
ST TU S o~ x=u Lk
I 11 (1-3%) ﬁ-{ =D

e 1 otherwise.

Therefore taking the product over all primes pa; 1 < m<< M and since lem [y rda] = Hf_,f'i' we
have (checking the one special case for I' with pf= = 2).
I(dy,+e»ds) and J(2Zydys=e yda)

(16>

dyseed, L _i
i B

=i pldyee g3 dyody

1
(1 = 1)2) an
mm;":ﬂ.{,=1{g‘3

We now examine these products. Since each gj == 3 thus 1— 1/eb>=>2/3. gl = gfgp» Then our

factor is 1 — 2/gh = 1/3. thus the factor corresponding to dyis > 1/ </ 3. The result follows.
With the same hypothesis as above dy++d, == lem[dy, -+ ,da]?, and so we get
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Corollary .
dyoee
Iy, d0) and 12, &y, d) 32 (Bfiyin,
Let us revise our estimate above corresponding to prime p. Suppose that villdy 1< j<nand

E = max{e;1<Ci<a}. Rearrange the & ;s so.that Ev-al:-‘c,. Then the factor arising from p in the
right side of (16) is '

=G~ 2) H (i — 1) H P

J’Sv’m j=3,9 j=2
> (H”")W' a-—- %) H (_L_ll)z/z( H POV,
=1 j=3,p"i8 J=3,p im2
Now if p*s > 3 then (p% — 1)%/ps = 4/3 > 1. So the above is > (H p’:)”z(l — 2/p® in

general.
When E = 1 and pis an.odd prime, we can improve this estimation as follows. Without loss

generality, let us suppose that p || &, i = 1,+>+,8 and p does not divide d;, § > &, Then (13) becomes

242t t2ez

which has solutions at least (p — 1)"’(7 - 2) when s ; 3,0orp—1 when g§=2, Fors> 3,
(p—-1)"2(p—2) = p[(p+ 1/p — 2) 221 — 2/p)]
“,uz—
itp=> 3, orp = 3and s > 10,
13 ifp=23 and 8 << 9. d

Therefore by denoting A = lcm[dl, e yd,], _
I(2y dyyee td-) and I(dy, - ,ds)
= 7oV — —)) PR a-
11 il ,- HH IT

j=1 widpl A oddp§ A
FPONCIPN # (dupld =2

(18)

'ﬁlr—
~—

1
~ 2
(the last 1/-/ 2 occurs in the case of 1(2,d;, - ,d,) where exactly one d; is even).

Since H aA-2/ =2 Hrm(l — 2/p?) is convergent, we have
O, 532

Theorem 4 Let D = d,---d,. With the notations and hypothesis as above

1
(2, dlr'"y n) and I(dly"'y -) cp\v? l—_[ (1 - 7)’

214, 8 (gl =2
where € = + /273 ][, ..(1 — 2/#) > 0. 0878 > 5/57.

Since # {p prime; p|1cm [dy,++,4,]) <’°8<lcm£:zs,i oda]) 1, cay, and dyoed, > emld,,

*++,d,]2/2 (which implies that logs D << 2L — 1), then, by using Mertens! Theorem,

: 1 1 c:
1-==1]10-= 1——)>
rIA.';[(IpIJ)-z( 4 e J{I( P) H( 108L/log logD

im]

For some constants C;, ;> 0, where py = 3 < pp < -+ is the sequence of odd primes. Thus we have
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Corollary With the same notations and hypothesis as in Theorem 4,
C,D\?
1(2,dy,+,dy) and I(dy, =+ ,d) > m’—T—.gD,
for some explicitly. computable constant:Cy > 0.
We note that this is just about best possible (up to the value of Cy) in general, for if 3 é n<p:
<& +ee < pg are the sequence of odd/ primes then

- = 1 e—*pl/2
.ee pa— — 1/2 — e} o —
I(prsP1sP2sP2sP3sP3s " 2 Pms Pm) i|=|l (x—1)=D ;LI; a 1h) g

where D = (py++-pa)?and y == 0. 0577 is the Euler-Mascheroni constant.
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