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0.1. Introduction. One of the basic problems of mathematics is to find all of the
solutions of a given equation. Some equations are easy, like x ` y “ z, and others can
be difficult, like x101 ` y101 “ z101, though the level of difficulty depends largely on
what kind of solutions one is looking for. If we are simply asked for complex numbers
that one can take any complex numbers x and y, and let z be any of the 101st roots of
x101 ` y101. If we are asked for integer solutions then this is a problem of much greater
subtlety and depth, and is the focus of number theory.

One particular, but important, problem is the question of which integers are represented
by a given polynomial. For example, what integers are represented by x` 2y, as x and
y run through all the integers? Or by u2`v2 as u and v run through all of the integers?
Or even by x101 ` y101 ´ z101 as x, y and z run through all the integers?

In this article we will focus on quadratic equations, those of degree two. We know a
lot about this question, but by no means all that we would like to understand: there
are many unsolved problems about representations by quadratic equations still today,
some quite evidently of sublime interest. Our objective is to explain the importance of a
beautiful new construction by Manjul Bhargava, allowing us a new perspective on which
integers are indeed represented by binary quadratic forms. But before we proceed with
quadratic equations, we will review representation by linear equations, and particularly
those aspects that will be relevant to our discussion of quadratic equations.

0.2. Representation by linear equations in integers. Fix non-zero integers a and
b. We wish to determine which integers n can be represented as

n “ ax` by

where x and y are integers. One way to start is to subtract by from both sides and
divide by a so that if we are given an integer y then

x “
n´ by

a
.

However, we have no guarantee that the quantity on the right-hand side here will be an
integer. Not only for a specific value of y but perhaps for any value of y. So we have
not really made any headway on the question of whether or not there are any solutions.
It is not difficult to construct examples for which there are no solutions:

2x` 4y “ 1
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can have no solutions since, no matter what the choice of integers x and y, the left hand
side will always be even, while the right hand side will always be odd. The reason the
left hand side is always even is that 2 divides both terms on the left hand side, because
2 divides both 2 and 4, the coefficients a and b. In fact, 2 is the greatest common divisor
(gcd) of 2 and 4, written 2 “ p2, 4q.

One can generalize this argument: If there are solutions in integers x, y to ax` by “ n
then gcdpa, bq divides both a and b, hence both ax and by, and therefore must divide
ax ` by “ n. Since g “gcdpa, bq divides a, b and n, we can divide this common factor
out from each. To do this we write a “ Ag, b “ Bg and n “ Ng for some integers A,B
and N . Then

Ng “ n “ ax` by “ Agx`Bgy “ pAx`Byqg,

and dividing through by g, leaves us with

N “ Ax`By.

So we have proved that if n is represented by ax` by then n “ Ng for some integer N ,
and N can be represented by Ax`By. For example if n can be represented by 2x` 4y
then n “ 2N for some integer N , that is, n is even, and N can be represented by x`2y.
Evidently every integer N can be represented by x`2y (simply take x “ N and y “ 0),
so every even integer N “ 2n can be represented by 2x` 4y.

This is not the whole story for if we ask what is represented by 2x ´ 3y we cannot so
easily find the representation, since neither coefficient is 1 yet their gcd is 1. The trick
here is to find a representation of 1, for example 2 ¨ 2´ 3 ¨ 1 and then n “ 2 ¨ p2nq´ 3 ¨n;
that is we multiply the representation of 1 through by n. Therefore, for a more general
linear form ax ` by, our question boils down to finding a representation of 1, and this
is supplied by the Euclidean algorithm. We will not spell this out in detail here but
its consequence is that if we are given integers a and b with gcd 1, then the Euclidean
algorithm supplies us with integers u and v for which

au` bv “ 1;

and therefore
n “ ax` by where x “ nu and y “ nv.

0.3. Representation by quadratic equations in integers. Let a, b and c be given
integers. The polynomial

fpx, yq :“ ax2
` bxy ` cy2

is a binary quadratic form (“binary” as in two variable, and “quadratic” as in degree
two. The degree of bxy is also two, since the degree of a term like this is given by the
degree of x, plus the degree of y). We are interested in what integers can be represented
by a given binary quadratic form f . As in the linear case, we can immediately reduce
our considerations to the case that gcdpa, b, cq “ 1.

The first important result of this type was given by Fermat near the beginning of the
Renaissance. He considered the particular example fpx, yq “ x2 ` y2, asking which
integers can be written as the sum of two squares of integers. He proved two things.
Firstly that an odd prime p can be written as the sum of two squares if and only if p ” 1
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pmod 4q (so that 2, 5, 13, 17, 29, 37, 41, . . . can be written as the sum of two squares of
integers, whereas 3, 7, 11, 19, 23, 31, 43, 47, . . . cannot). Secondly that the product of two
integers that can be written as the sum of two squares, can also be written as the sum
of two squares, a consequence of the identity

pu2
` v2qpr2 ` s2q “ pur ` vsq2 ` pus´ vrq2; (1) Comp1

that is, x2 ` y2 where x “ ur ` vs and y “ us ´ vr. One can combine these two facts
to classify exactly which integers are represented by the binary quadratic form x2 ` y2.

At first sight it looks like it might be difficult to work with the example fpx, yq “
x2` 20xy` 101y2. However, this can be rewritten as px` 10yq2` y2, and so represents
exactly the same integers as gpx, yq “ x2 ` y2. To see this we remark that if

n “ fpu, vq then n “ gpu` 10v, vq

and if

n “ gpr, sq then n “ fpr ´ 10s, sq.

Thus every representation of n by f corresponds to one by g, and vice-versa. This is
known as a 1-to-1 correspondence. It is obtained using the linear transformation u, v Ñ
u ` 10v, v, which is invertible via the inverse linear transformation r, s Ñ r ´ 10s, s.
Such a pair of quadratic forms, f and g, are said to be equivalent; and we have just
seen how equivalent binary quadratic forms represent exactly the same integers.

It would take a whole book to fully describe the theory of binary quadratic forms. Our
objective here is to study generalizations of the identity (

Comp1
1).

0.4. Composition and Gauss. In (
Comp1
1) we see that the product of two integers repre-

sented by the binary quadratic form x2`y2 is also an integer represented by that binary
quadratic form; we are now looking for further such identities. One easy generalization
is given by

pu2
` dv2qpr2 ` ds2q “ x2

` dy2 where x “ ur ` dvs and y “ us´ vr. (2) Comp2

Therefore the product of two integers represented by the binary quadratic form x2`dy2

is also an integer represented by that binary quadratic form. For general diagonal binary
quadratic forms (that is, having no “cross-term” bxy) we have

pau2
` cv2qpar2 ` cs2q “ x2

` acy2 where x “ aur ` cvs and y “ us´ vr. (3) Comp3

Notice here that the quadratic form on the right hand side is different from those on
the left; that is the product of two integers represented by the binary quadratic form
ax2 ` cy2 is an integer represented by the binary quadratic form x2 ` acy2.

One can come up with a similar identity no matter what the quadratic form, though
one proceeds slightly differently depending on whether the coefficient b is odd or even.
In the even case we have (with b “ 2B)

pau2
` 2Buv ` cv2qpar2 ` 2Brs` cs2q “ x2

` pac´B2
qy2 (4) Comp4

where x “ aur `Bpvr ` usq ` cvs and y “ us´ vr. (5)
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What is the connection between the quadratic form on the left and that on the right?
The most important thing to notice is that their discriminants are the same (the dis-
criminant of ax2`bxy`cy2 is b2´4ac and one can show that equivalent binary quadratic
forms have the same discriminant). Notice that ac´B2 “ ´1

4
pb2 ´ 4acq in (

Comp4
4).

What about two different binary quadratic forms. Can one multiply together their
values? For example,

p4u2
` 3uv ` 5v2qp3r2 ` rs` 6s2q “ 2x2

` xy ` 9y2

by taking x “ ur´ 3us´ 2vr´ 3vs and y “ ur`us` vr´ vs. These are three different
(that is, inequivalent) binary quadratic forms of discriminant ´71. Gauss called this
composition, that is, finding, for given binary quadratic forms f and g of the same
discriminant, a third binary quadratic form h of the same discriminant for which

fpu, vqgpr, sq “ hpx, yq,

where x and y are quadratic polynomials in u, v, r, s. Gauss proved that this can always
be done. The formulas above can mislead one in to guessing that this is simply a
question of finding the right generalization, but that is far from the truth. (

Comp1
1), (

Comp2
2), (

Comp3
3)

and (
Comp4
4) are so explicit only because they are very special cases in the theory. In Gauss’s

proof he had to prove that various other equations could be solved in integers in order
to find h and the quadratic polynomials x and y. This was so complicated that some
of the intermediate formulas took two pages to write down, and are very difficult to
make sense of. See article 234 and beyond in Gauss’s book Disquisitiones Arithmeticae
(1804).

0.5. Dirichlet Composition. Dirichlet claimed that when he was a student, working
with Gauss, he slept with a copy of Disquisitiones under his pillow, every night for three
years. It worked as Dirichlet found a way to better understand Gauss’s proof of com-
position,which amounted to a straightforward algorithm to determine the composition
of two given binary quadratic forms f and g of the same discriminant. The key was
to prove that there exist quadratic forms F px, yq “ ax2 ` bxy ` cy2 , equivalent to f ,
and Gpx, yq “ Ax2 ` bxy ` Cy2 , equivalent to g, for which pa,Aq “ 1. Notice that the
middle coefficients of F and G are the same. Since these have the same discriminant
we deduce that ac “ AC and so there exists an integer h for which

F px, yq “ ax2
` bxy ` Ahy2 and Gpx, yq “ Ax2

` bxy ` ahy2.

Then

Hpur ´ hvs, aus` Avr ` bvsq “ F pu, vqGpr, sq where Hpx, yq “ aAx2
` bxy ` hy2.

Dirichlet went on to interpret this in terms of what we would today call ideals; and this
in turn led to the birth of modern algebra by Dedekind. In this theory one is typically
not so much interested in the identity, writing H as a product of f and g (which is
typically very complicated and none too enlightening), but rather in determining H
from f and g (which has an important interpretation in terms of group theory that will
take us too far afield for this article).
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0.6. Bhargava Composition. 1 Let us begin with one further explicit composition,
a tiny variant on (

Comp4
4) (letting sÑ ´s there):

pau2
` 2Buv ` cv2qpar2 ´ 2Brs` cs2q “ x2

` pac´B2
qy2

where x “ aur `Bpvr ´ usq ´ cvs and y “ us` vr.

Combining this with the results of the previous section suggests that if the discriminant
d is divisible by 4 (which is equivalent to b being even) then

F pu, vqGpr, sqHpm,nq “ P px, yq (6) Comp5

where P px, yq “ x2´ d
4
y2 and x and y are cubic polynomials in m,n, r, s, u, v. Analogous

remarks can be made if the discriminant is odd.

In 2004 Bhargava came up with an entirely new way to find all of the triples F,G,H
of binary quadratic forms of the same discriminant for which (

Comp5
6) holds: We begin with

a 2-by-2-by-2 cube, the corners of which are labeled with the integers a, b, c, d, e, f, g, h.
There are six faces of a cube, and these can be split into three parallel pairs. To each
such parallel pair consider the pair of 2-by-2 matrices given by taking the entries in each
face, those entries corresponding to opposite corners of the cube, always starting with
a. Hence we get the pairs

M1px, yq :“

ˆ

a b
c d

˙

x`

ˆ

e f
g h

˙

y “

ˆ

ax` ey bx` fy
cx` gy dx` hy

˙

,

M2px, yq :“

ˆ

a c
e g

˙

x`

ˆ

b d
f h

˙

y “

ˆ

ax` by cx` dy
ex` fy gx` hy

˙

,

M3px, yq :“

ˆ

a b
e f

˙

x`

ˆ

c d
g h

˙

y “

ˆ

ax` cy bx` dy
ex` gy fx` hy

˙

,

where we have, in each, appended the variables, x, y, to create matrix function of x and
y. The determinant, ´Qjpx, yq, of each Mjpx, yq, is a quadratic form in x and y. (The

determinant of a 2-by-2 matrix

ˆ

a b
c d

˙

is given by ad´ bc.) Incredibly Q1, Q2 and Q3

all have the same discriminant and their composition equals P , just as in (
Comp5
6). Let’s

work though an example: Plot the cube in 3-dimensions and label each corner with its
Cartesian co-ordinates (each 0 or 1), and then label the corner with this as a binary
number, 4x` 2y ` z, squared. Hence

a, b, c, d, e, f, g, h “ 22, 62, 02, 42, 32, 72, 12, 52,

leading to three binary quadratic forms of discriminant ´7 ¨ 44:

Q1 “ ´42
p4x2

`13xy`11y2q, Q2 “ ´22
px2
´2xy`29y2q, and Q3 “ 42

p8x2
`5xy`y2q.

1There is no Nobel prize in mathematics; the nearest equivalent is the Fields’ medal. though this
is only given to people 40 years of age or younger. They are awarded every four years, up to four
each time, the most recent being last Wednesday (August 13th, 2014) in Korea. One of the laureates
was Manjul Bhargava for a body of work which begins with his version of composition, as discussed
here, and allows him to much better understand many classes of equations, especially cubic. Bhargava
was born in Hamilton, Ontario, and was the first Canadian to receive this most prestigous award in
mathematics.
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After some work one can verify that

Q1pm,nqQ2pr, sqQ3pu, vq “ 4px2
` 43

¨ 7y2q,

where x and y are the following cubic polynomials in m,n, r, s, u, v:

x “ 8p´11mru´ 3mrv ` 25msu` 17msv ´ 17nru´ 4nrv ` 59nsu` 32nsvq

and y “ mru`mrv ` 21msu` 5msv ` 3nru` 2nrv ` 31nsu` 6nsv.

Bhargava proves his theorem, inspired by a 2-by-2-by-2 Rubik’s cube. The idea is to
apply an invertible linear transformation simultaneously to a pair of opposite sides.
For example, if one applies an invertible linear transformation to the first pair of sides,
then the binary quadratic form Q1 is transformed in the usual way, whereas Q2 and Q3

remain the same. One can do this with any pair of sides.This allows one to proceed in
“reducing” the three binary quadratic forms to equivalent forms that are easy to work
with (rather like in Dirichlet’s proof). This brings to mind the twists of the Rubik’s
cube, though in that case one has only finitely many possible transformations, whereas
here there are infinitely many possibilities!
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