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Abstract. Let A = {0 = a0 < a1 < · · · < a�+1 = b} be a finite set of non-
negative integers. We prove that the sumset NA has a certain easily-described
structure, provided that N � b − �, as recently conjectured (see A. Granville
and G. Shakan [Acta Math. Hungar. 161 (2020), pp. 700–718]). We also

classify those sets A for which this bound cannot be improved.

1. Introduction

What are the possible postage costs that can be made up from an unlimited
supply of 3 cent and 5 cent stamps? One cannot obtain 1c, 2c, 4c, or 7c and it is a
fun challenge to show that one can obtain n cents for every other positive integer
n. In the Frobenius postage stamp problem, one asks the same question given an
unlimited supply of a cent and b cent stamps, with gcd(a, b) = 1.

The situation becomes more complicated if one may use at most N stamps. One
can show that one can cover every integer amount up to 5N cents using at most N
3 and 5 cent stamps, other than 1, 2, 4 and 7, as well as 5N − 3 and 5N − 1.

In the language of additive combinatorics, for a given finite set of integers A we
wish to understand the structure of the sumset NA, where

NA := {a1 + · · ·+ aN : a1, . . . , aN ∈ A},

where the summands are not necessarily distinct. For simplicity we may assume
without loss of generality that the smallest element of A is 0, and that the greatest
common divisor of its elements is 1.1 Since 0 ∈ A we have A ⊂ 2A ⊂ · · · ⊂ NA,
and so

P(A) :=

∞⋃
N=1

NA

is the set of all integers that are expressible as a finite sum of (not necessarily
distinct) elements of A. Similarly, we define the exceptional set

E(A) = {n � 1 : n /∈ P(A)}.
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In the setting of the original postage stamp problem, in this notation we have

E({0, 3, 5}) = {1, 2, 4, 7}.
Let b denote the largest element of A so that {0, b} ⊂ A ⊂ {0, 1, . . . , b} which

implies that NA ⊂ {0, 1, . . . , bN} \ E(A). However, in the A = {0, 3, 5} example
there are exceptions other than E(A). Indeed, if n ∈ NA then bN − n ∈ N(b−A),
where b−A := {b− a : a ∈ A}. Therefore NA ∩ (bN − E(b−A)) = ∅, and thus

NA ⊂ {0, 1, . . . , bN} \ (E(A) ∪ (bN − E(b− A))).

Does equality hold in this expression? In our example b − A = {0, 2, 5} and
E({0, 3, 5}) = {1, 3} which explains the result above. It was shown in [1] that equal-
ity indeed holds for all N ≥ 1 for all three element sets A = {0 < a < b} where
(a, b) = 1. If A = {0, 1, b− 1, b} then equality does not hold for any N ≤ b− 3 since
E(A) = E(b−A) = ∅ and b− 2 	∈ NA for such N .

Our main result gives an improved bound for the smallest N0, such that we
get equality above; that is, (1.1) for all N ≥ N0. This improved bound is “best
possible” in several situations.

Theorem 1 (Main theorem). Let A = {0 = a0 < a1 < · · · < a�+1 = b} be a finite
set of integers with gcd(a1, . . . , a�+1) = 1 and � � 1. If N � b− � then

(1.1) NA = {0, 1, . . . , bN} \ (E(A) ∪ (bN − E(b− A))).

A statement like Theorem 1 was first proved by Nathanson [3], but with the
weaker bound N � b2(�+1). The bound was improved to N �

∑
a∈A, a �=0(a− 1) in

[5], and then to N � 2
 b
2� in [1], where our bound N ≥ b− � was conjectured.

The bound “N � b− �” in Theorem 1 is tight, in that there are examples of sets
A for which (1.1) does not hold when N = b − � − 1. In particular there are the
following families:

• A = {0, 1, . . . , b} \ {a} for some a in the range 2 � a � b − 2. Here
b− �−1 = 1 and E(A) = E(b−A) = ∅, but a 	∈ A, in contradiction to (1.1).

• A = {0, 1, a+ 1, . . . , b − 1, b}, for some a in the range 2 � a � b − 2. Here
b− �− 1 = a− 1 and E(A) = E(b−A) = ∅, but a 	∈ (a− 1)A, contradicting
(1.1).

The previous bounds of [5] and [1] were also tight for certain special values of � and
b, but our Theorem 1 is the first such bound for which tight examples exist for all
b � 4 and for all � in the range 2 � � � b− 2.

Moreover, it turns out that the families listed above are the only obstructions to
improving Theorem 1:

Theorem 2. Let � � 1 and A = {0 = a0 < a1 < · · · < a�+1 = b} be a finite set of
integers with gcd(a1, . . . , a�+1) = 1. If N � max(1, b− �− 1) then

NA = {0, 1, . . . , bN} \ (E(A) ∪ (bN − E(b− A))),

unless either A or b−A is a set in one of the two families listed above.

Our goal in proving Theorems 1 and 2 was to establish tight bounds in the
venerable Frobenius postage stamp problem. These bounds can now be applied to
what we hope is a cornucopia of questions in additive combinatorics (for example,
Corollary 1.8, Lemma 5.1, and Lemma 5.2 in [2]) where explicit tight bounds are
needed.
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Our methods also show that, if b � 9 and � � 5, then (1.1) holds for all N �
max(1, b − � − 2) unless A or b − A belong to one of the two families listed above
or one of the following new families:

• A = {0, 1, b}∪({a+1, . . . , b−1}\{d}) for some a in the range 2 � a � b−2
and some d in the range a+ 2 � d � b− 1, where a 	∈ (a− 1)A;

• A = {0, 1, . . . , b} \ {a, c} for some 2 � a, c � b− 2, where a 	∈ A;
• A = {0, 1, 2, 6, . . . , b}, where 5 	∈ 2A;
• A = {0, 1, 3, 6, . . . , b}, where 5 	∈ 2A.

Indeed, our proofs are sufficiently flexible that one can go on and prove that (1.1)
holds for all N � max(1, b − � − Δ), for ever larger values of Δ, except in some
explicit finite set of families of sets A, though the number of cases seems to grow
prohibitively with Δ.

The final parts of the proofs of Theorems 1 and 2 come in Section 4. These
will rely on a number of auxiliary lemmas and use some terminology from [1], all
of which we will introduce in the preceding sections. There are a few families of
examples, like A = {0, h, b− h, b} with (h, b) = 1, for which our general arguments
for Theorems 1 and 2 fail, and for these examples we verify the theorems explicitly
in Appendix A.

2. Placing elements in NA

Throughout we fix a set A ⊂ Z with minimum element 0 and maximum element
b, where A \ {0, b} has � elements, and gcd(a : a ∈ A) = 1. Let B be the reduction
of A (mod b) so that |B| = �+ 1, and its elements can be represented by A \ {b}.

For a in the range 1 � a � b− 1 we write

na,A := min{n � 1 : n ∈ P(A), n ≡ a (mod b)}
and

Na,A := min{N � 1 : na,A ∈ NA}, with N∗
A := max

1�a�b−1
Na,A.

We always have Na,A ≤ b − 1 for if not we write na,A = a1 + · · · + aN with each
ai ∈ A and N = Na,A. Then at least two of b+ 1 subsums

0, a1, a1 + a2, . . . , a1 + · · ·+ ab

must be congruent mod b, say a1 + · · ·+ ai ≡ a1 + · · ·+ aj (mod b) with i < j, and
then

a1 + · · ·+ ai + aj+1 · · ·+ aN ≡ a1 + · · ·+ aN = na,A ≡ a (mod b),

contradicting the minimality of na,A.
It was observed in [1] that

(2.1) E(A) =
b−1⋃
a=1

{n � 1 : n < na,A, n ≡ a (mod b)}

so that {0, 1, . . . , bN} \ (E(A) ∪ (bN − E(b−A))) equals

b−1⋃
a=1

{n : na,A � n � bN − nb−a,b−A, n ≡ a (mod b)}.

Therefore the equality (1.1) holds if and only if the arithmetic progressions

(2.2) {n : na,A � n � bN − nb−a,b−A, n ≡ a (mod b)}, 1 � a � b− 1
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are contained in NA. Our first lemma shows that, under certain conditions on the
sumset of B, elements of the arithmetic progressions in (2.2) do belong to NA.

Lemma 2.1. Let a be in the range 1 � a � b − 1, let k � 1 and suppose that
|kB| � b−Na,A. Then na,A + (k − 1)b ∈ NA whenever N � 2k + b− |kB| − 1.

Proof. Suppose that

na,A = a1 + · · ·+ aL where L := Na,A,

for some ai ∈ A not necessarily distinct. Consider then the set M of subsums

a1 + · · ·+ aM , a1 + · · ·+ aM+1, . . . , a1 + · · ·+ aL

where M = Na,A − (b − |kB|), where if M = 0 we consider the first (empty) sum
to be equal to 0.

We make several observations. First, since b � |kB| � b−Na,A we have Na,A �
M � 0, so the construction of M is valid. Second, we observe that the members of
M are distinct mod b by the definition of na,A. To justify this second part, we note
that if two members of M were the same modulo b then there would be a subsum
of a1 + · · · + aL congruent to 0 mod b, say

∑
s∈S as. Furthermore we know that

as � 1 for all s, by the minimality of Na,A. But then n := na,A −
∑

s∈S as satisfies
n < na,A, n ≡ a mod b, and n ∈ P(A), which contradicts the minimality of na,A.

Now |M| + |kB| � b+ 1 and the elements of M are distinct mod b. Therefore,
by the pigeonhole principle, there exists an integer m ∈ [M,L] for which

a1 + · · ·+ am ∈ kB mod b;

that is, there exists an integer i and b1, . . . , bk ∈ A \ {b} for which

a1 + · · ·+ am + ib = b1 + · · ·+ bk.

We may extract some bounds for i. Indeed, note that ib � a1 + · · · + am + ib =
b1 + · · ·+ bk < kb and so i � k − 1. Also

na,A+ib=(a1+· · ·+am+ib)+(am+1+· · ·+aL)=(b1+· · ·+bk)+(am+1+· · ·+aL)∈P(A)

and so i � 0 by the minimality of na,A.
Therefore

na,A + (k − 1)b = (b1 + · · ·+ bk) + (am+1 + · · ·+ aL) + (k − 1− i)b

∈ k(A \ {b}) + (Na,A −m)A+ (k − 1− i)b

⊂ (k + (b− |kB|) + k − 1)A ⊂ NA,

since i � 0 and Na,A −m � Na,A −M = b− |kB|. �

We will combine this lemma with some lower bounds on the growth of the sumset
|kB|. Our main tool is Kneser’s theorem [4, Theorem 5.5], which states that if U, V
are subsets of a finite abelian group G then

|U + V | � |U +H|+ |V +H| − |H|
where H = H(U + V ) is the stabilizer of U + V , defined in general by

H(W ) := {g ∈ G : g +W = W}.
One notes in particular that V +H is a union of cosets of H, so its size is a multiple
of |H|. Therefore if 0 ∈ V but V 	⊂ H then |V +H| − |H| � |H|.

Lemma 2.2. Assume that � � 2. For all k � 2, |kB| � min(b, |(k − 1)B|+ 2).
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Proof. By Kneser’s theorem we have

|kB| � |(k − 1)B +H(kB)|+ |B +H(kB)| − |H(kB)|
� |(k − 1)B|+ |B +H(kB)| − |H(kB)|.

If H(kB) = Z/bZ then |kB| = b and we are done, so we may assume that H(kB) is
a proper subgroup of Z/bZ. Since B generates all of Z/bZ we see that B 	⊂ H(kB)
and so |B +H(kB)| − |H(kB)| � |H(kB)|. Therefore if H(kB) 	= {0} then |kB| �
|(k − 1)B|+ 2. If on the other hand we have H(kB) = {0} then

|kB| � |(k − 1)B|+ |B| − 1 = |(k − 1)B|+ � � |(k − 1)B|+ 2

since � � 2. �

We make a deduction, phrased in a suitably general way so as to apply in the
setting of both Theorems 1 and 2.

Corollary 2.1. Assume that � � 2, and let N = b− �−Δ for some Δ � 0. Let K
be the smallest integer such that K � 2 and |KB| � min(b, 2K + � +Δ − 1), and
assume that N � N∗

A +K − 2. Then n ∈ NA for all n � bN/2 with n /∈ E(A).

Proof. We will show that na,A + kb ∈ NA for all k < N/2 and all a in the range
1 � a � b− 1, which implies the result, by (2.1).

Note that N � N∗
A � Na,A. Therefore if 0 � k � N −Na,A we have na,A + kb ∈

Na,AA + (N − Na,A)A = NA, so without loss of generality we may assume that
k � N −Na,A + 1, so that k + 1 � N −Na,A + 2 � N −N∗

A + 2 � K.
From Lemma 2.2 and induction, this means that

|(k + 1)B| � min(b, 2(k + 1) + �+Δ− 1).

Our goal is to apply Lemma 2.1 with k replaced by k + 1 so we need to verify its
hypotheses:

• If |(k + 1)B| = b then |(k + 1)B| � b−Na,A � N −Na,A trivially, and

2(k + 1) + b− |(k + 1)B| − 1 = 2k + 1 � N

since k < N
2 ;

• Otherwise |(k + 1)B| � 2(k + 1) + �+Δ− 1, and so we have both

2(k + 1) + b− |(k + 1)B| − 1 � b− �−Δ = N

and

|(k + 1)B| � 2(N −Na,A + 2) + �− 1 +Δ � N + �+Δ−Na,A + 3 = b−Na,A + 3

as N � Na,A.

Therefore Lemma 2.1 implies that na,A + (k + 1 − 1)b = na,A + kb ∈ NA, as
desired. �

3. Bounds on |2B| and N∗
A

In order to use Corollary 2.1, two further bounds will be useful: a lower bound
on |2B| and an upper bound on N∗

A. We will achieve both of these objectives in
this section (bar a few special cases which we will deal with separately).

Lemma 3.1. Suppose that B is a subset of Z/bZ which contains 0, generates all
of Z/bZ, and has � � 2 non-zero elements. Then |2B| � min(b, � + 3). Moreover
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|2B| � min(b, �+4), except in the following families of examples (where A = B∪{b}
for later convenience):

• A = {0 < h < 2h < b} with (h, b) = 1;
• A = {0 < 2h− b < h < b} with (h, b) = 1;
• A = {0 < h < b− h < b} with (h, b) = 1;
• A = {0 < h, b

2 < b} with (h, b
2 ) = 1;

• A = {0 < h < h+ b
2 < b} with (h, b

2 ) = 1;

• A = {0 < h < b/2 < h+ b
2 < b} with (h, b

2 ) = 1.

Proof. We aim to prove that |2B| � min(b, �+ 3+Δ) for Δ = 0 or 1. By Kneser’s
theorem we have

|2B| � 2|B +H| − |H|,
where H = H(2B). If |H| = b then |2B| = b and we are done.

IfH = {0} then we derive |2B| � 2�+1 � �+3+Δ, provided � � 2+Δ. Therefore
we are done unless Δ = 1 and � = 2 with |2B| � 5. In this case B = {0, h, k} with
(h, k, b) = 1 and at least two of 0, h, k, 2h, h+ k, 2k must be congruent mod b. One
obtains the first five families of examples in the result from a case-by-case analysis
(letting k = 2h, 2h− b, b− h, b

2 and h+ b
2 , respectively).

Now we may assume that 2 � |H| � b− 1. If B is not a union of H-cosets then
|B + H| � |B| + 1 = � + 2. Also, since B generates Z/bZ and |H| 	= b we have
B 	⊂ H, and so |B +H| � 2|H|. Thus

|2B| � |B +H|+ (|B +H| − |H|) � �+ 2 + |H| � �+ 4.

Finally assume that B is the union of r H-cosets with r � 2, so that

|2B| � (2r − 1)|H| = (2− 1
r )|B| = (2− 1

r )(�+ 1).

This is at least � + 3 + Δ unless � < r
r−1(1 + 1

r + Δ), where r, � ≥ 2 and r is a
proper divisor of � + 1, and so � 	= 2 or 4. For Δ = 0 this implies � < 3, which
is impossible. If Δ = 1 the inequality implies � < 2 + 3

r−1 ≤ 5, so that the only

possibility is � = 3 and r = 2, so that |H| = 2. Therefore b is even, H = {0, b
2} and

we obtain the sixth family of examples. �

We now present some bounds on N∗
A.

Lemma 3.2. Suppose that 2 � � � b − 2. Then we have N∗
A � b − � − 1, except

when:

• A = {0, 1, . . . , b} \ {a} for some a in the range 1 � a � b− 1, in which case
Na,A = 2 and N∗

A = 2 = b− �; or when
• A = {0, 1, a + 1, . . . , b − 1, b} for some a in the range 2 � a � b − 2, in
which case na,A = a× 1, Na,A = a = b− � and N∗

A = b− �.

Proof. Choose some a in the range 1 � a � b − 1, and let na,A = a1 + · · · + aL
where L := Na,A, with each ai ∈ A. All subsums are non-zero mod b, as both
na,A and L are minimal (see the proof of Lemma 2.1 for a longer explanation of
this fact). Furthermore a subsum with more than one element cannot be congruent
mod b to an element of B else we can replace that subsum by the single element,
contradicting the minimality of L. Hence the residue classes mod b of

(3.1) a1 + a2, . . . , a1 + · · ·+ aL
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are all distinct and do not belong to B mod b. This yields L − 1 distinct residue
classes of (Z/bZ) \ B, and so Na,A � b − �. Therefore either N∗

A � b − � − 1, in
which case we are done, or we are in a case where Na,A = b− �.

If Na,A = b − � then the displayed values (3.1) yield all the residue classes of
(Z/bZ) \ B. This is also true if we list the ai in a different order, so we can swap
a2 and a3 and find that a1 + a2 ≡ a1 + a3 (mod b) (as this element is the only
difference between the two lists). Thus a2 = a3. But this is true for any ordering
of the ai’s, so na,A is given by L = Na,A copies of some h ∈ A. Therefore

(3.2) A = {0, 1, . . . , b} \ {(2h)b, (3h)b, . . . , (Lh)b},
where (t)b denotes the least positive residue of t (mod b), and a ≡ Lh (mod b).

We split into two cases according to the value of the greatest common divisor
(h, b). If (h, b) > 1 then 1 ∈ A (since 1 	≡ 0 mod (h, b)). Therefore na,A = a = Lh.
Moreover a− 1 ∈ A (since a− 1 ≡ −1 	≡ 0 mod (h, b)) and a = (a− 1) + 1 implies
that Na,A � 2. But Na,A = b−� ≥ 2, and so � = b−2. Hence A = {0, 1, . . . , b}\{a}.

We may now assume that (h, b) = 1. Then na,A = Lh, so that

a ≡ Lh ≡ ((L+ j)h)b + ((b− j)h)b

for 1 ≤ j ≤ � − 1. Since L = b − � we have both L + 1 � L + j � b − 1 and
L+1 � b−j � b−1. Therefore by (3.2) we have ((L+j)h)b ∈ A and ((b−j)h)b ∈ A
for each j. Thus

((L+ j)h)b + ((b− j)h)b ∈ P(A) and na,A ≤ ((L+ j)h)b + ((b− j)h)b < b+ b = 2b.

Therefore
((L+ j)h)b + ((b− j)h)b = Lh or Lh+ b.

If ((L+ j)h)b + ((b− j)h)b = Lh = na,A then Na,A � 2. Since Na,A = b− � ≥ 2 we
conclude that Na,A = 2 and � = b− 2, and so A = {0, 1, . . . , b} \ {a} again.

Otherwise Lh < b and ((L + j)h)b + (−jh)b = Lh + b for all j in the range
1 � j � �− 1. This means that for all such j we have

(3.3) b > ((L+ j)h)b = Lh+ (b− (−jh)b) > Lh.

This implies that ((L+j)h)b = (L+j)h for all j in the range 1 � j � �−1. Indeed,
suppose for contradiction that j in that range is minimal such that ((L+ j)h)b <
(L+ j)h. Then ((L+ j−1)h)b = (L+ j−1)h < b, by the assumption of minimality
if j � 2, or by (3.3) if j = 1. So ((L+ j)h)b < h � Lh. This is a contradiction to
(3.3).

Choosing j = � − 1 in the equation ((L + j)h)b = (L + j)h we deduce that
(b−1)h < b and so h = 1. Therefore A = {0, 1, a+1, . . . , b−1, b} with a = L = b−�
and so 2 � a � b − 2. Thus we have established that N∗

A � b − � − 1 except when
A has one of the two special forms listed in the statement of the lemma. �

4. Proofs of Theorems 1 and 2

The result [1, Theorem 4] showed that (1.1) holds for all N � 1 when � = 1 (and
so it holds for all N � b−�). Furthermore, (1.1) holds for trivial reasons if � = b−1,
i.e. if A = {0, 1, . . . , b}. So without loss of generality may assume 2 � � � b− 2 in
these two proofs.

Proof of Theorem 1. We have N∗
A � b− � by Lemma 3.2, and |2B| � min(b, �+ 3)

by Lemma 3.1. Taking Δ = 0 and K = 2 in Corollary 2.1, we deduce that if
N = b − � then n ∈ NA for all n � bN/2 with n /∈ E(A). Applying the same
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argument with the set A replaced by the set b − A we conclude that if N = b − �
then m ∈ N(b−A) for all m � bN/2 with m /∈ E(b−A).

So, if 1 � n < bN and n 	∈ (E(A) ∪ (bN − E(b−A))) then either 1 � n � bN/2,
in which case n ∈ NA by the applying the first argument to n, or bN/2 � n < bN ,
in which case n ∈ NA by applying the second argument to m = bN − n. Since
bN ∈ NA for trivial reasons, we have established (1.1) for N = b− �.

The result [1, Lemma 2] established that if (1.1) holds for some N0 � N∗
A then it

holds for all N � N0. So (1.1) holds for all N � b−�, and Theorem 1 is proved. �

Proof of Theorem 2. Following the proof of Theorem 1, we have N∗
A � b − � − 1

except in the two exceptional cases of Lemma 3.2, and |2B| � min(b, �+ 4) except
in the six exceptional cases of Lemma 3.1. Outside these exceptional cases, the
proof then follows analogously to the proof of Theorem 1, taking Δ = 1 and K = 2
in Corollary 2.1.

It remains to consider the exceptional cases. All of the exceptional cases in
Lemma 3.2 are excluded in the statement of Theorem 2, except for when A or b−A
equals {0, 2, 3, . . . , b}. In this instance, E(A) = {1} or E(b−A) = {1}, respectively,
and (1.1) manifestly holds for all N � 1 = b− �− 1.

Regarding the exceptional cases from Lemma 3.1, the example A = {0, 1, b−1, b}
is excluded from Theorem 2. We will prove that equation (1.1) holds forN � b−�−1
for all of the other exceptional cases from Lemma 3.1 (in the five cases of Section
A.1, and in Case 6 of Appendix A). This completes the proof of Theorem 2. �

Appendix A. A catalogue of exceptional cases

A.1. Resolving the five exceptional families of A for which |A| = 4 and
|2B| � 5. A key tool will be [1, Corollary 2], which showed that if n ≡ a (mod b)
and na,A � n � bN − nb−a,b−A then n ∈ NA for all N � 1 if and only if Na,A =
1
b (na,A + nb−a,b−A) for all a.

Case 1. If A = {0 < a < 2a < b} with (a, b) = 1, then (1.1) holds for all N � 1.

Proof. Let A′ := b−A = {0 < 2a′−b < a′ < b} with a′ = b−a. For 1 � k � (b−1)/2
we have n2ka,A = 2k×a = k×2a while nb−2ka,b−A = n2ka′,A′ = k× (2a′−b); in the
range 0 � k � (b − 2)/2, we have n(2k+1)a,A = a + k × 2a while nb−(2k+1)a,b−A =
n(2k+1)a′,A′ = a′ + k× (2a′ − b). So N2ka,A = k and N(2k+1)a,A = k+ 1, and so for

all 1 � r � b− 1 we have Nr,A = 1
b (nr,A + nb−r,b−A). Thus [1, Corollary 2] shows

(1.1) holds for all N � 1. �

Case 2. If A = {0 < 2a− b < a < b} with (a, b) = 1, then (1.1) holds for all N � 1.

Proof. This follows from the previous case by symmetry. �

Case 3. If A = {0 < a, b
2 < b} with (a, b

2 ) = 1, then (1.1) holds for all N � 1.

Proof. Here b−A = {0 < b−a, b
2 < b} is of the same form. By performing a simple

case analysis, we deduce that for 1 � k < b
2 we have nka,A = k×a and nb−ka,b−A =

nk(b−a),b−A = k × (b − a), while for 0 � k < b
2 we have n

ka+
b
2 ,A

= k × a + b
2 and

n b
2−ka,b−A

= n
k(b−a)+

b
2 ,A

= k × (b − a) + b
2 . Then (1.1) holds for all N � 1 by

[1, Corollary 2], as described above. �
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Case 4. If A = {0 < h < b − h < b} with (h, b) = 1 then (1.1) holds for all
N � b− 1− h. In particular if h 	= 1 then (1.1) holds for all N � b− 3 = b− �− 1.

Proof. If a 	≡ 0 (mod b) then the summands in na,A are either all h or all b−h since
if we had both we could remove one of each, contradicting minimality. Therefore

(A.1) Nkh,A =

{
k

b− k
and nkh,A =

{
kh if 1 � k < b− h

(b− k)(b− h) if b− h � k � b− 1.

If k � h then nkh,A = kh and nb−kh,b−A = nk(b−h),A = k × (b − h). Then the
structure (1.1), restricted to the arithmetic progression n ≡ kh (mod b), follows
from [1, Corollary 2].

If h < k � b
2 then nkh,A = kh and nb−kh,b−A = n(b−k)h,A = (b− k)h. Therefore

we wish to show that if n is in the range kh � n � Nb− (b− k)h = kh+ (N − h)b
and n ≡ kh (mod b) then n ∈ NA (as long as N � b− 1− h).

If we write n = k × h + j × b for j ∈ [0, N − k] then this covers such n with
kh � n � kh+(N−k)b; and if we write n = (b−k)×(b−h)+i×b for i ∈ [0, N+k−b]
then we cover such n with kh+(b−k−h)b � n � kh+(N−h)b. Together these two
ranges cover the entire range of n, provided b− k− h � N − k+1. This inequality
holds, since N � b− 1− h.

To deal with the remaining arithmetic progressions kh (mod b) for k > b
2 we

note that NA = bN − NA, and so the result follows from the above using the
arithmetic progression −kh (mod b). �

Case 5. If A = {0 < a < a+ b
2 < b} with (a, b

2 ) = 1 then (1.1) holds for all N � b
2 .

Proof. Note first that b− A = {0 < b
2 − a < b− a < b}, which is of the same form

as A. The proof splits into four subcases, which we will deal with in two sets of
two.

If 1 � k � b
2 with k even then nka,A = k × a and nb−ka,b−A = k × ( b2 − a).

Therefore, from (2.2), we wish to represent all n ≡ ka (mod b) with ka � n �
ka+ b(N − k

2 ) by an element in NA.

If 1 � k � b
2 with k odd then nka,A = k× a and nb−ka,b−A = (k− 1)× ( b2 − a)+

(b − a), so we wish to represent n ≡ ka (mod b) with ka � n � ka + b(N − k+1
2 )

by an element in NA.
We let

n = (k − 2i)× a+ 2i× (a+ b
2 ) + j × b = ka+ (i+ j)b

for 0 � 2i � k and 0 � j � N − k. We have n ∈ (k + j)A ⊂ NA, and we obtain
the full range of n in each case, provided N � k. This is satisfied if N � b

2 .

If 1 � k < b
2 with k odd then n

ka+
b
2 ,A

= (k− 1)× a+ (a+ b
2 ) and n b

2−ka,b−A
=

k × ( b2 − a), so we wish to represent n ≡ ka+ b
2 (mod b) with

ka+ b
2 � n � ka+ b

2 + b(N − k+1
2 )

by an element of NA.
If 1 � k < b

2 with k even then n
ka+

b
2 ,A

= (k− 1)× a+(a+ b
2 ) and n b

2−ka,b−A
=

(k − 1) × ( b2 − a) + (b − a), so we wish to represent n ≡ ka + b
2 (mod b) with

ka+ b
2 � n � ka+ b

2 + b(N − 1− k
2 ) by an element of NA.

We let

n = (k − 2i− 1)× a+ (2i+ 1)× (a+ b
2 ) + j × b = ka+ b

2 + (i+ j)b
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for 0 � 2i+1 � k and 0 � j � N − k. We have n ∈ (k+ j)A ⊂ NA, and we obtain
the full range provided N � k. This is satisfied if N � b

2 . �
A.2. Resolving the exceptional cases in which H(2B) 	= {0}.

Case 6. If A = {0 < a < b
2 < a + b

2 < b} with b even and (a, b
2 ) = 1 then (1.1)

holds for N � b
2 − 1.

Proof. If A′ := {0 < a < a + b/2 < b} then P(A) = P(A′) ∪ {n � 0 : n ≡ b/2
(mod b)}, and P(b−A) = P(b−A′)∪{n � 0 : n ≡ b/2 (mod b)}. From the proof of
Case 5, we see that (1.1) holds provided N � b

2 − 1 except possibly for the residue
class n ≡ b/2 (mod b).

However, since nb/2,A = nb/2,b−A = b/2, [1, Corollary 2] finishes the matter. �
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