
AN ALTERNATIVE TO VAUGHAN’S IDENTITY
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Abstract. We exhibit an identity that plays the same role as Vaughan’s

identity but is arguably simpler.

1. Introduction

Let 1y denote the characteristic function of the integers free of prime factors 6 y,
The idea is to work with the identity

Λ(n) = log n−
∑
`m=n
`,m>1

Λ(`), (1.1)

summing it up over integers n 6 x for which 1y(n) = 1, where we might select
y := exp(

√
log x) or larger. In this case the second sum can be written a sum of

terms 1y(`)Λ(`) · 1y(m) which have the bilinear structure that is used in “Type II
sums”. We will see the identity in action in two key results in analytic number
theory:

2. The Bombieri-Vinogradov Theorem

Theorem 1 (The Bombieri-Vinogradov Theorem). If x1/2/(log x)B 6 Q 6 x1/2

then ∑
q6Q

max
(a,q)=1

∣∣∣∣π(x; q, a)− π(x)

φ(q)

∣∣∣∣� Qx1/2(log log x)1/2. (2.1)

This is a little stronger than the results in the literature (for example Davenport
[2] has the (log log x)1/2 replaced by (log x)5). The reason for this improvement is
the simplicity of our identity, and some slight strengthening of the auxiliary results
used in the proof.

Proof. Let y = x1/ log log x . We will instead prove the following result, in which the
ψ function replaces π, and deduce (2.1) by partial summation:∑

q6Q

max
(a,q)=1

∣∣∣∣ψ(x; q, a)− ψ(x)

φ(q)

∣∣∣∣� Qx1/2(log x)(log log x)1/2. (2.2)

Using (1.1) for integers n with 1y(n) = 1, the quantity on the left-hand side of
(2.2) is 6 SI + SII + E where

SI =
∑
q6Q

max
(a,q)=1

∣∣∣∣∣∣∣∣
∑
n6x

n≡a (mod q)

1y(n) log n− 1

φ(q)

∑
n6x

(n,q)=1

1y(n) log n

∣∣∣∣∣∣∣∣
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which is � xu−u+o(u) �A
x

(log x)A
by the small sieve, where x/Q = yu; and E is

the contribution of the powers of primes 6 y, which contribute 6 π(y) log x to each
sum and therefore 6 Qπ(y) log x�A

x
(log x)A

in total. Most interesting is

SII =
∑
q6Q

max
a: (a,q)=1

∣∣∣∣∣∣
∑

n≡a (mod q)

f(n)− 1

φ(q)

∑
(n,q)=1

f(n)

∣∣∣∣∣∣
where f(n) =

∑
`m=n,`,m>y Λ(`)1y(`) · 1y(m). Its bilinearity means that this is a

Type II sum, and we can employ the following general result.1

Theorem 2. For each integer n 6 x we define

f(n) :=
∑
`m=n

α`βm

where {α`} and {βm} are sequences of complex numbers, for which

• The {α`} satisfy the Siegel-Walfisz criterion;
• The {α`} are only supported in the range L0 6 ` 6 x/y ;
•
∑
`6L |α`|2 6 aL and

∑
m6M |βm|2 6 bM for all L,M 6 x.

For any B > 0 we have

∑
q6Q

max
a: (a,q)=1

∣∣∣∣∣∣
∑

n≡a (mod q)

f(n)− 1

φ(q)

∑
(n,q)=1

f(n)

∣∣∣∣∣∣� (ab)1/2Qx1/2 log x, (2.3)

where Q = x1/2/(log x)B, with x/y 6 Q2

(log x)2 and L0 > y, exp((log x)ε).

We deduce that SII � Qx1/2(log x)(log log x)1/2 by Theorem 2 since a � log x

and b� 1
log y = log log x

log x . Then (2.2) follows from which we deduce the result. �

3. A couple of remarks

One can further deduce that∑
q6Q

max
y6x

max
(a,q)=1

∣∣∣∣π(y; q, a)− π(y)

φ(q)

∣∣∣∣� Q1/2x3/4(log log x)1/2. (3.1)

To prove this we select N to be the nearest integer to Q−1/2x1/4 � (log x)B/2, and
then let yk = k

N x for k = 0, 1, . . . , N . For each q select y for which the error term

|π(y; q, a)− π(y)
φ(q) | is maximal, and k = [Ny/x] + 1, in which case this error term is

6

∣∣∣∣π(yk; q, a)− π(yk)

φ(q)

∣∣∣∣+ (π(yk; q, a)− π(y; q, a)) +
π(yk)− π(y)

φ(q)

Since yk − y 6 x
N the second two terms are � 1

φ(q) ·
x/N
log x by the Brun-Titchmarsh

Theorem. Summing over q, and then summing(2.1) for x = yk for each k 6 N , we
deduce (3.1).

These methods do not allow one to take Q > x1/2. This has been achieved by
Bombieri, Friedlander and Iwaniec [1] for a fixed with a weaker error term, and for
larger Q but with restricted moduli q in Yitang Zhang’s famous work [5]. Maynard
has recently announced some further improvements.

1This can be obtained by taking the ideas in proving (5) of chapter 28 of [2], along with the
method of proof of Theorem 9.16 of [3]; in any case it is only a minor improvement on either of
these results. For full details see chapter 59 of [4].
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4. A general bound for a sum over primes

Proposition 1. For any given function F (.) and y 6 x we have∣∣∣∣∣∣∣∣
∑
n6x
p(n)>y

Λ(n)F (n)

∣∣∣∣∣∣∣∣� SI log x+ (SII x(log x)5)1/2

where SI is the Type I sum given by

SI := max
t6x

∣∣∣∣∣∣∣∣
∑
n6t

p(n)>y

F (n)

∣∣∣∣∣∣∣∣ 6
∑
d>1

P (d)6y

∣∣∣∣∣∣
∑
m6t/d

F (dm)

∣∣∣∣∣∣ ,
and SII is the Type II sum given by

SII := max
y<L6x/y
y<m62x/L

∑
m/2<n62m

∣∣∣∣∣∣∣∣
∑

L<`62L
`6 x

m , xn

F (`m)F (`n)

∣∣∣∣∣∣∣∣
This simplifies, and slightly improves chapter 24 of [2], which is what is used

there to bound exponential sums over primes.

Proof. We again use (1.1) so that∑
n6x
p(n)>y

Λ(n)F (n) =
∑
n6x
p(n)>y

F (n) log n−
∑
`

p(`)>y

Λ(`)
∑

m6x/`
p(m)>y

F (`m).

where p(n) denotes the smallest prime factor of n. Now

∑
n6x
p(n)>y

F (n) log n =
∑
n6x
p(n)>y

F (n)

∫ n

1

dt

t
=

∫ x

1

∑
t6n6x
p(n)>y

F (n)
dt

t
6 2 log x·max

t6x

∣∣∣∣∣∣∣∣
∑
n6t

p(n)>y

F (n)

∣∣∣∣∣∣∣∣ .
Moreover for P =

∏
p6y p,∑

n6t
p(n)>y

F (n) =
∑
n6t

F (n)
∑

d|P,d|n

µ(d) =
∑
d|P

µ(d)
∑
m6t/d

F (dm).

For the second sum we first split the sums into dyadic intervals (L < ` 6 2L,M <
m 6 2M) and then Cauchy, so that the square of each subsum is

6
∑

`:p(`)>y

Λ(`)2 ·
∑
`

∣∣∣∣∣∣∣∣
∑

m6x/`
p(m)>y

F (`m)

∣∣∣∣∣∣∣∣
2

� L logL
∑

M<m,n62M
p(m),p(n)>y

∑
`6 x

max{m,n}

F (`m)F (`n)

� x log x · max
M<m62M

∑
m/2<n62m
p(n)>y

∣∣∣∣∣∣∣∣
∑

L<`62L
`6 x

m , xn

F (`m)F (`n)

∣∣∣∣∣∣∣∣
since m,n ∈ (M, 2M ], and the result follows. �
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5. Genesis

The idea for using (1.1) germinated from reading the proof of the Bombieri-
Vinogradov Theorem (Theorem 9.18) in [3], in which Friedlander and Iwaniec used
Ramaré’s identity, that if

√
x < n 6 x and n is squarefree then

1P(n) = 1−
∑
pm=n

p prime6
√
x

1

ω√x(m)

where 1P is the characteristic function for the primes, and ωz(m) = 1+
∑
p|m, p6z 1.

They also had to sum this over all integers free of prime factors > y.

6. Uniformity

Although this method to employ type II sums on questions about prime number
asymptotics is somewhat easier than those already in the literature, it seems harder
to incorporate strong estimates for various exponential sums to get better and more
uniform results in wide ranges.
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