The number of sumsets in a finite field

Noga Alon * Andrew Granville T Adrian Ubis *

Abstract

We prove that there are 2P/2+°(P) distinct sumsets A + B in F,, where |A[,|B| — oo
as p — oo.

1 Introduction
For any subsets A and B of a group G we define the sumset
A+ B:={a+b:a€ Abec B}.

There are 2" subsets of an n element additive group G and every one of them is a sumset,
since A = A+{0} for every A C G. However if we restrict our summands to be slightly larger,
then the situation changes dramatically (at least when G =T,): there are far fewer sumsets,
as the following result shows.

Theorem 1. Let ¢(x) be any function for which ¥(x) — oo and ¥(x) < x/4 as x — 0.
There are exactly 2P/?°®) distinct sumsets in F, with summands of size > 1(p); that is,
exactly 2P/3°®) distinct sets of the form A+ B with |A|,|B| > ¥ (p) where A, B C F,.

Green and Ruzsa [GrRu] proved that there are only 2P/3+(?) distinct sumsets A+ A in F,,.
The count in Theorem 1 cannot be decreased by restricting the size of one of the sets.

Theorem 2. For any given prime p and integer k satisfying k = o(p), there exists A C F,
with |A| = k for which there are at least 2P/>T°P) distinct sumsets of the form A + B with
B CF,.
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These results do not give a good idea of the number of distinct sumsets of the form A+ B,
as B varies through the subsets of IF, when A has a given small size.

Theorem 3. For each fized integer k > 1 there exists a constant py € [\/5, 2] such that

A+B: BCF,\ = 2w 1
aoiax | #{A+ CFp} =, (1)

We have ji; = 2, po = 1.754877666 . .., the real root of x® — 22% + x — 1 and, for each fized
integer k > 3, we have

1 log k
\/§+§§uk§\/§+o< Oi ) 2)

Moreover p, < (5°/223%)Y/° = 1.960131704 ... for all k > 2, so that if |A| > 2 then
#{A+ B: B CTF,} < (1.9602)P"®).

Remark: With a more involved method the constant 1.9602 in the last bound can be
improved to 1.9184 (see [Ubi)).
We immediately deduce the following complement to Theorem 1.

Corollary 1. Fix integer k > 1. Let pf = maxysy pie. There are exactly (u})P*°P) distinct
sumsets in F), with summands of size > k.

The existence of puy is deduced from the following result involving sumsets over the integers.
Define S(A, G) to be the number of distinct sumsets A+ B with B C G; above we have looked
at S(A,F,), but now we look at S(A4, {1,2,...,N}).

Proposition 1. For any finite set of non-negative integers A with largest element L, there

exists a constant pa such that S(A,{1,2,...,N}) = MZJFO(L). Moreover
M = Sup g .
ACZZO
| A=k

By Theorem 3 (or by Theorems 1 and 2 taken together) we know that 1, — /2 as k — oo.
In fact we believe that it does so monotonically.

Conjecture 1. We have g =2 > fig > fig > ... > fig > ... > /2.

If this is true then p; = pg, evidently.
One can ask even more precise questions, for example for the number of distinct sumsets
A+ B where the sizes of A and B are given: Define

Ski(G)=#{A+B: A BCG,|Al =k, |B| =1/}

for any integers k,¢ > 1. By Theorem 1 we know that if k,¢ — oo as p — oo then S (F,) <
2p/2+0(P) . We wish to determine for which values of k and ¢ we have that Sy, ¢(F,) > 2¢/2+o(®),
The Cauchy-Davenport Theorem [Cau| says that for any A, B C F, we have |A + B| >
min(p, |A| + |B| — 1), hence Sy ¢(F,) = p°Y whenever k + ¢ > p — O(1). Let us see what we
can say otherwise



Theorem 4. Let ¢ = %5 and let ¥ (x) be any function for which ¥ (x) — oo as x — 0.

(i) If k+0 < /B then Syo(F,) > (7/%,)/y/min{k, (}
If k+ € < p/2¢ then Sy, (F,) > po® (¥/3))
If ¢p/3 +O(1) > k + € > p/2¢ then Sy (F,) > ¢P~*/p .
Ifp>k+(>¢p/3+ O(1) then Sy (F,) > pd?*=/(p+1—k —0).

In summary, if k+ ¢ < p then Sy (F,) > p°M) max;, ([(]f;?z/hm)

(ii) For any integers with k,¢ > 1 (p) and p—k — £ > p, we have Sk (F,) < (kﬁg)pro(l) with
x such that 2P7% ~ (kié)

In particular, if k, 0 > 1(p) then
Spo(F,) = op/2+0(p) (3)

if and only if k+ (¢ ~ p/4.

Note that Theorem 4(ii) cannot hold for k + ¢ very close to p by the last estimate in
Theorem 4(i). In Theorem 4 the upper and lower bounds are different in general; we guess
that our lower bounds are likely to be nearer to the true size of Sy ;(IF,).

Following the results in this paper, one is led naturally to several open problems: Give
an asymptotic formula for the number of sumsets A + B with |A|, |B| > k, particularly as
k — o0, as well as for the number of sumsets A+ A. What sets have > 2° representations as
A+ B? Find an efficient algorithm to determine whether a given set is a sumset A + B with
both A, B large.

2 Lower bounds
For a given integer k let
A={0,[(p—kK)/2]+L((p—Fk)/2]+2,....[(p—k)/2] + k- 1}.
For any subset B of {0,1,2,...,[(p — k)/2]}, we see that A+ B C [0,p — 1] and
B=(A+B)n{0,1,...2,[(p — k)/2]},

and thus the sets A+ B are all distinct. Hence there are at least 2l(P=%)/2+1 > 2(=k)/2 digtinct
sets A+ B as B varies over the subsets of IF,. This implies Theorem 2, hence the lower bound
in Theorem 1 when ¥ (p) = o(p), and it also implies the lower bound py > /2 in Theorem 3.

Let A={0}U[z+1,....,24+k—u—1U(@@z+k—u—1+4))

and B=BU[z+1,..., 24+l —v—-1|U{z+l—v—1+y}
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where A; C [1,y] with |A;| = u, and By C [1,z] with |B;| = v, where u < k,y, and v < {, .
Therefore By = (A+B)N[1,z] and N+A; = (A+B)N(N+[1,y]) for N = 2z +y+k-+{—u—v—2.
Also A+ B C [0,p — 1] provided 2z + 2y + k + { — u — v — 2 < p. Therefore S, > (u)(x)

If k40 < p/2¢ then we select u = k—1, v = (—1,y = [p(k—1)/2(k+(-2)], x = (p—1)/2—y.
This gives Sy, > po(l)([,fﬁ) by Stirling’s formula; Sy, > (k_%z 2)/\/111111{/{? CHifk+ 0 < \/p.

If k+¢ > p/2¢ then we select u = [k(p+1—k —0)/Vb(k+0)], v =[l(p+1—Fk —
0)/V5(k+0)],y = [¢u], x = [¢v] to obtain Sy, > P+ ¢/(p+1—k —¥) by Stirling’s formula.
If k+¢> ¢p/3+ O(1) then we change the above construction slightly: If instead we take
By C [0,z —1] then there is a unique block of > k+ ¢ —u —v — 3 consecutive integers in A+ B
starting with 2z + 2. Now we can also consider the sums (r + A) + B, for any r (mod p);
notice that we can identify the value of r from A + B, since the longest block of consecutive
integers in A + B starts with 2z + 2 +r. Hence Sy, > po?*~¢/(p+1—k — {).

These last three paragraphs together imply the first part of Theorem 4.

NOW given k < p/4, select £ = [p/4] — k so that, by the above, there are > po(l)([[iﬂ) =

2v/2p00) distinct sumsets A + B as A and B vary over the subsets of F, of size k and ¢
respectlvely This implies the lower bound in Theorem 1.

3 First upper bounds

In this section we shall use a combinatorial argument to bound the number of sumsets A + B
whenever A is small, in which case we can consider A fixed. Throughout we let ¢4 4(n) (and
rc—a(n)) denote the number of representations of n as ¢ + a (respectively, ¢ — a) with a € A
and c € C.

Proposition 2. Let G be an abelian group of order n and let A C G be a subset of size k > 2.
Then

n

#{A+B: BCG}<n min ([j7€]> min{2" 7, QUk/(k=tHDIY (4)

2<i<k £
§=0

Proof. Given a set B we order the elements of B by greed, selecting any b; € B, and then
by € B so as to maximize (A + {b2}) \ (A + {b1}), then b3 € B so as to maximize (A +
{b3}) \ (A + {b1,b2}), etc. Let B, be the set of b; such that A + {by,bs,...,b;} contains at
least ¢ more elements than A+ {by,bs,...,b;_1}, and suppose that |B,+ A| = j. By definition
J = |Be+ Al > €|By|, so that | B,| < [j /] and so there are no more than -, ; (") choices for
By. Note that j/¢ <n/2, for £ > 2, and so 3_,(; g (") < n([j%]). Next we have to determine
the number of possibilities for A 4+ B given By (and hence By + A).

Our first argument: Since By + A C B+ A C G, the number of such sets A+ B is at most
the total number of sets H for which B, + A C H C G, which equals 2"77.

Our second argument: Let C' = B, + A, and let D be the set of d € G for which ro_4(d) >
k+1—0.1fbe B\ Bythen re_4(b) = |(b+A)N(B;+ A)| > k+1—¢, so that b € D. Hence



(B\ By) C D, and so there are < 2Pl possible sets B\ By, and hence B, and hence A + B.
Now
ID|(k+1—10) <> re_a(d) = |A||C| = kj,

deG
so that |D| < kj/(k+ 1 —¢), and the result follows. O

Simplifying the upper bound: The upper bound in Proposition 2 is evidently at most

n? min max ([n ) min{anj,Q[jk/(kJH)}}.

2<t<k0<j<n \ [j//]

Now (U%)ﬂjk/ (k=t+1)] ig g non-decreasing function of j, as ¢ > 2, and so the above is not
greater than

. n »
n? min max ( ,g)?" J
2<<k (k—tt1) _
== (2k7£+1>n§j§n []/ ]

The (j + £)th term equals the jth term times (n — [j/€])/2%([j/¢] + 1). This is smaller than 1
if and only if n < (2°+ 1)[5/4] + 2°. Now

(24+1),> 26+1) (k—(+1)

20+ D)[j/0 42" > :
and this is greater or equal than n unless ¢ = k£ < 4. Hence one minimizes by taking
j = (gkk__zz_ﬂ)n + O(1) at a cost of a factor of at most n. Therefore our bound becomes

O(n°Wyr) where vy, := ming<<), vy and

k(U(2k — € + 1))2k—E+L e
Vg = — — 5
(k— 0+ 1) (0(2k — 0+ 1) — (k — £ + 1))2k—tr1=27
using Stirling’s formula. A brief Maple calculation yields that v, > 2 for all & < 7 and
vg = 1.982301294, v9 = 1.961945316, 119 = 1.942349376, ..., with v, < 1.91 for k > 12,

and vy, decreasing rapidly and monotonically (e.g. v, < 1.9 for k > 13, v, < 1.8 for k > 23,
vy < 1.7 for k > 45, and vy, < 1.6 for k > 117). In general taking ¢ so that 2 ~ klogk/log2,

one gets that
1 log2 -logk
v = V2 exp <<§ +0(1)) \/%) )

which implies the upper bound in (2) of Theorem 3, as well as the upper bound implicit in
Theorem 1 when min{|A|, |B|} = o(p).



4 Upper bounds on S;(F,) using combinatorics

The value of z in Theorem 4(ii) must always lie in the range [p/2, p] since (]:M) < 2%, Therefore
if k4 ¢ = o(p) then the number of sumsets A + B is smaller than the number of possibilities

for A and B so that

1+0(1)
P\(P\ _( P Yoottty _ [ T \oot+ey _ [ T
F,) < = 2 = 2 = :
SiaFy) < (k) <£> (k: + 6) (k + E) (k + f)

The Cauchy-Davenport Theorem states that |A + B| > min{|A| + |B| — 1, p}, so that

Sea(Fy) < i @ < (k v 1)

j=k+0-1

for k4-¢ > (1/2+¢)p. For the last part of Theorem 4, note that this is < 287/17 for k-+¢ > 9p/10.

Now we consider the case {,p — k — ¢ > p with k < o(p) and k& — oo. For each fixed
A of cardinality k£ and B of cardinality ¢, we proceed as in Proposition 2 (taking ¢ there as
m here, and choosing m = o(k) with m — oo): Hence there exists a subset B,, C B with
|A+ B,| = j and |B,| < j/m < p/m, and a subset D, determined by A and B,,, with
|D| < 75— < j(1+O(m/k)) and B\ B,, C D. Now A+ B = (A+ B,,) U(A+ (B\ By)) so
the number of possibilities for (A+ B)\ (A+ B,,,) is bounded above by the number of subsets
of F, \ (A + B,,), which is 2777, and also by the number of subsets of D with cardinality in

the range [¢ — [j/m], f], which is at most

> (@) =20 (E—JH{;)

i=t—[j/m]

since |D| < j+ o(p) and i = ¢ 4+ k + o(p). Hence the number of possible sumsets A + B
is bounded by (Z) < 2°) the number of possibilities for A, times Zig[p Jm] (f) < 2°0P) the

number of possibilities for B,,, times 2°®) min{ (Zik),
(A+ B) \ (A+ B,,). This gives us the upper bound

2P=7 }, the number of possibilities for

Sis(F,) < 2°@) min{( J

o k) ’ op—j b= 9(1+o(1))(p—2) (5)

where x is chosen as in Theorem 4(ii), noting that p —x > p as £ + k > p.

5 Sumsets from big sets

this section we adapt to our problem the method of q'granular sets”of Green and Ruzsa
[GrRu]. e adaptation is not difficult, t for accuracy and completeness we present a sketch
of the thod, including several simple modifications of the original guments, that arify the
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ideas and slightly improve the bounds. ffalse this section we adapt to our problem Green
and Ruzsa’s method of q‘granular sets”[GrRu]. his is straightforward, d we could even quote
directly from that paper, but we think it is rthwhile for accuracy and completeness to present
a sketch of the thod. Moreover we make a couple of small changes to their arguments at, we
think, clarify the ideas involved (and even improve the bounds little). i For a given set S,
define dS := {ds : s € S}. Let G = Z/mZ. For any A C G define A(z) = Y aca€lax/m). For
a given positive integer L < m let H be the set of integers in the interval [—(L — 1), L — 1].
For a given integer d with 1 < dL < m we partition the integers in [1,m] as best as we can
into arithmetic progressions with difference d and length L. That is for 1 <7 < d we have the
progressions

Ly ={i+jd: kL <j<min{(k+1)L—1,[(m —1)/d]}}

for 0 < k < [(m —i)/Ld]. We then let Ap 4 be the union of the I;; that contain an element
of A (so that A C A 4). Note that there are < [m/L] + d such intervals I, .
Our goal is to prove the following analogy to Proposition 3 in [GrRu]:

Proposition 3. If A, B C Z/mZ, with o = |A|/m and § = |B|/m and
m > (AL) 6Bl e yith [ > 3, (6)

then there exists an integer d, with 1 < d < m/4AL, such that A+ B contains all those values
of n for which ra, 448, ,(n) > €am, with no more than esm exceptions.

In this paragraph we follow the proof of Proposition 3 in [GrRu] (with the obvious modi-
fications):

Lemma 1. If A C Z/mZ then there ezists 1 < d < m/4AL such that

2

N 2
- H(dx) log4L ,
Az)]* |1 - <—="__|A th L >
[A@)] <2L—1> < Tog(myar) Alme with L= 3,

for all x € Z/mZ.

Proof. (Sketch) Fix § so that the right side above equals (§m)?, and hence § > 2/m. Let R
be the set of r € Z/mZ such that |A(r)| > m; the result follows immediately for any = & R.
By Parseval’s formula Y |A(z)[> = m|A| we have the bound |R| < §~2|A|/m. Moreover, by
the arithmetic-geometric mean inequality and Parseval’s formula, we have

A A |R| m IR
H\A(r)FS(ﬁZIA(r)P) g(%) | 7

Consider the vectors v; € [0, 1)/l with 7th coordinate 7i/m (mod 1) for each r € R. If we
partition the unit interval for the rth coordinate into intervals of roughly equal length, all not

7



greater than (9m)Y/2/(4L — 1)|A(r)|*/2, then, by the pigeonhole principle, two such vectors,
with 0 <i < j < m/4L, lie in the same intervals since
|R]
[Al/m\ " m
< | 4L < —
- ( (52]R| — AL’

R L1/
A(r) A(r)
1+ 4L -1 < 4L
using (7), the previous bound for |R| and the definition of §. Therefore for d = j — i we have
dr

reR m reR
1/2
’ 1 om /
—l < _
ml| =321 \ JAw)

for all € R, where [[¢[| is the shortest distance from ¢ to an integer. Now Re(1 — e(t)) <
272([t||* and ||7¢|| < []|I£]l, and the result follows from 1 + H(dr)/(2L — 1) < 2 and

1/2

o L-1 . 2719 2
1_H(d7“)_ 1 Z <1—6<M>)§2WL dr < 5Am .
2L —1 2L—1 Byt m 3 m 2|A(r)]
O
Proof of Proposition 3. By Parseval’s formula, and then Lemma 1 we have
. 2|2
T AvdH 1 BdH (N H(dx)
3 |rannt - 2t L5t 1 - (120
_logdL log 4L €3e3m3
A B(z)|* = —————= |A||B|m < 8
log log(m/4L) | ‘Z’ ~ log(m/4L) [AllBm < 16L4 (8)

in this range for m. (Here TA+dH+B+dH(n) denotes the number of representations of n as
a+di+b+dj withae A, be Bandi,je€ H.) Now if g € Ap 4 then there exists j € H
such that g +dj € A, by definition, and hence r4.q4r(g9) > 1. Hence raiqn(g) > 74, ,(9)
for all g € G, so that rajqmyran(n) > 14, 448, ,(n) for all n. Therefore if N is the set of
n ¢ A+ B such that ra, ,.p, ,(n) > eam, then 7ayam i Bran(n) > €am, raip(n) = 0 and (8)
yields |N| < ezm. O

Next we prove a combinatorial lemma based on Proposition 5 of [GrRu]:

Proposition 4. For any subsets C, D of F,, and any m < r < min(|C|, |D|), there are at
least min(|C| + |D|,p) —r — (m — 1)p/r values of n (mod p) such that rcyp(n) > m.

Proof. Pollard’s generalization of the Cauchy-Davenport Theorem [Pol] states that

> min{r,reip(n)} = rmin(p, |C| + |D| ) > r[min(p, [C] + D) —1].

The left hand side here is < (m — 1)(p — Ny) + 7N, where Ny, is the number of n (mod p)
such that rcyp(n) > m. The result follows since p — N,,, < p. O
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Proof of upper bounds on Sy ¢(F,) using Fourier analysis:

Suppose that L is given and d < p/4L, and that M and N are unions of some of the
arithmetic progressions I; ;. Note that there are < 2P/L*+d such sets M (given d), and hence a
total of e?®/L) possibilities for d, M and N.

We now bound the number of distinct sumsets A + B for which A 4, =M and By 4= N
in two different ways:

First, since A C M and B C N there can be no more than (“\]fl) (“Xl) < ('M]{[ﬁM) < 9IMI+IN|
such pairs.

Second, select 2¢;p < min(|M]|,|N|) and 2e3p < max(|M|, |N|). Let @ be the values of n
(mod p) such that 7y, y(n) > €2p. Taking r = ¢;p and m = €ip in Proposition 4, we have
|Q| > R := min(|M|+ |N|,p) — 2¢1p. By Proposition 3, A+ B is given by @ less at most e3p
elements, union some subset of F,, \ ). Hence the number of distinct sumsets A + B is

a2 (1Q) e |Q‘> max(p—|M|—|N10) elp< p )
=2 Z( )<p2 ([6317] =12 e lesp)

=0

as |Q| > R > 2esp.

If |M| + |N| < p/2 then the number of sumsets is < 2P/2 by the first argument. Let
L = [(logp)*/'°] and €, = €3 = 1/2L. If |A|,|B| > p/L then |M| > |A| > 2¢;p and |N| >
|B| > 2€1p, so the second argument is applicable; therefore if | M|+ |N| > p/2 then the number
of sumsets is < 2?/2LO9®/L) Hence the total number of sumsets A + B with |A|,|B| > p/L
is at most 2P/2LO®/L) which implies the upper bound in Theorem 1 (taken together with the
argument, for min{|A|, |B|} = o(p), given at the end of section 3).

Assume that £ > k > p/(log p)'/* with p — k — £ > p. We select ¢; = k/2ploglogp, €3 =
¢/2ploglogp and L = [(logp)*/?"], so that the second argument above is applicable. Taking
x = |M|+ |N| we have that

/
Ses(F,) < max min {(ki £>72maxp " 0)} (1 e5)0te) — 9(1+o0)p—2)000)

0<z'<2p

as in (5). This completes the proof of Theorem 4(ii), combined with the results of the previous
section.
Finally, (3) follows noting that 2 p/2 unless k + ¢ ~ p/4, in which case x ~ p/2.

6 Sumsets in finite fields and the integers

Let A C F, be of given size k > 2, and let d = [p'~'/¥]. Consider the sets iA, the least
residues of ia,a € A, for 0 < ¢ < p— 1. Two, say iA and jA with ¢ Z j (mod p), must
have those least residues between the same two multiples of p'~!/* for each a € A (since there
are < (p/p'~'/*)* = p possibilities), and so the least residues of fa,a € A, with £ = i — j
are all < d in absolute value. Hence the elements of d + (A are all integers in [0, 2d]; and



S(A,F,) = S(d+ (A,F,) as may be seen by mapping A+ B — (d + (A) + ({B). Hence we
may assume, without loss of generality, that A is a set of integers in [0, L] where L < 2p'~'/%,
The case k = 2 is of particular interest since then S(A,F,) = S({0,1},F,) by taking
¢=1/(b—a), d=—al when A = {a,b}.
We now compare S(A,F,) with S(A4,{1,2,...,p}). When we reduce A + B, where A C
{0,...,L} and B C {0,...,p — 1} are sets of integers, modulo p, the reduction only affects
the residues in {0,...,L — 1} (mod p). Hence

S(A{1,2,...,p})27F < S(AF,) < S(A,{1,2,...,p}). (9)

Now suppose A C {0,...,L} is a set of integers. Suppose that Mr < N < M(r + 1) for
positive integers M,r, N. We see that

S(A{1,2,...,N}) < S(A,{1,2,..., M(r+1)}) < S(A,{1,2,..., M},

the last inequality coming since the sumsets A + B with B C {1,2,...,M(r + 1)} are the
union of the sumsets A + B; with B; C {Mi+ 1,2,..., M(i+ 1)} for i = 0,1,2,...,r. In
particular for m4(N) := S(A4,{1,2,..., N)YY we have m(N) < m(M)**/7. This implies
that limsupy ma(N) < mu(M) for any fixed M, and then lim sup m4(N) = liminf y m 4 (V)
so the limit, say 4, exists and satisfies

S(A,{1,2,...,M}) > ul. (10)

In the other direction we note that if B = U;B; where B; C {(M + L)i+ 1,(M + L)i +
2,...,(M + L)i + M} then distinct {A + B;}o<i<r—1 give rise to distinct A + B. Hence
S(A{1,2,....M})" <S(A,{1,2,...,7(M + L)}) and letting » — oo we have

S(Aa{LQaaM}) S,LLJXIJFL (11)
Finally, by the inequalities (9), (10) and (11) we arrive at
S(A,F,) = bl = uﬁeo(pl’”k) — sz;ro(p).

This proves Proposition 1, as well as the first part of Theorem 3.

6.1 Precise bounds when £ = 2

By the previous section we know that py = pyo13. Now S is a sumset of the form {0,1} + B
if and only if, when one writes the sequence of 0’s and 1’s given by s, = 1 if n € .S, otherwise
s, =01if n € S, there are no isolated 1’s.

Let C), be the number of sequences of 0’s and 1’s of length n such that there are no isolated
1’s. One can check that C),1; = 2C,, — C,—1 + C,,_3 so that C,, ~ cuj for some constant ¢ > 0,
where 5 is as in Theorem 3, implying a strong form of the first part of Theorem 3 for k£ = 2.

By a more precise analysis we could even estimate the number of sets C' = {0, 1} + B with
either C' or B of given size.
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6.2 Precise bounds when £ =3

It is not hard to generalize the procedure for the case |A| = 2 to any A C Z finite, namely to
prove that g4 is the root of a polynomial with integer coefficients (and degree smaller than
22141 when A € {0,1,...,L}), and also that pi.arq = pa for any ¢, d € Z, ¢ # 0.

Therefore, in the special case of three elements is enough to deal with A = {0,a,b} for
a, b coprime positive integers. By a suitable bijection, one can show that pap — g« as
a+b— oo (with (a,b) = 1), where we define

= lim #{B+{(0,0),(1,0),(0,1)} : B C F, x F,}*/**,
p—00

which one can prove exists, and is < pp. Therefore either pz = jifoq4 for some a and b or
p3 = jix. Maple experimentation leads us to guess that ps = o143 = 1.6863. .., a root of
an irreducible polynomial of degree 21. All this is detailed in Chapter 3 of the third author’s
PhD. thesis [Ubi].

6.3 Lower bounds on

That pu, > V2 follows by choosing A = 1 U 2A’ with A’ C Z any finite set. Let A, =
{1,3,...,3* 1} and write B C {1,2,...,3n} as B = 3By U (3B, — 1) with By, B; C
{1,2,...,n}. Since Ax.; = 1U3A, we have

(B+ Apr) \3Z = (3(Br + Ay) — 1) U (3By + 1),
which shows that S(Ax.1,{1,2,...,3n}) > S(Ax, {1,2,...,n}) 2", and so

1 1
Hdpyr 2 23:uilk'

Since p4, = 2, an induction argument implies p, > pa, > 2237/

bound for py, in (2).

, which gives the lower

7 A non-trivial bound for fixed k£ > 2

Let A be any set of given size k& > 2 in [F,. For any two distinct elements a,b € A we can
map  — (z —a)/(b—a) so that 0,1 € A, and this will not effect the count of the number of
sumsets containing A.

The number of sumsets C' = A + B with B C [F, is obviously bounded above by

2 3
#{B: |B]§Ep}—|—#{0: \cyzgp}
2p 3p
+#<C: 3B E<|B|<|C|<EandB+{O,1}CC’ .
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The first two terms have size < 2p([2 ;’/5]), the third requires some work: We observe that

such C' must have at least 2p/5 pairs of consecutive elements; so if ¢ is the smallest integer
> 1 that belongs to C then we suppose that C = U, (c + I;) and C = U™, (c + J;) where
L, Ji, 15, Jo, ... Ly, Jo is a partition of {0,...,p — 1} into non-empty set of integers from
intervals taken in order. Any such set partition will do provided, for i, = |Ix| and jx = |Jk|,

we have each iy, jp > 1,
—_— > Z’Lk > m+ -

since |C] =Y 1" ig and > -, (i, — 1) > |B|, and Y, ix + Y ey jx = p- Now there are < p
possible values for ¢, and the number of possible sets of values of i), such that ), i =z is
(;fl 1) and of 7 is (pmm_ ) Therefore the number of possible such C' is

2 VNS SR G | G |

m<p/52p/5+m<x<3p/5

=7 Z/ (2m - 2) p3<[2z55_ : 2]) < pg(mzﬂ)'

(Note that () (5) < (ZI;) follows from defining () to be the number of ways of choosing b
elements from a.) Hence the number of sumsets A + B is < p ([2p /5]) = P+ where ¢ =

(5°/223%)1/°> = 1.960131704 . . . This implies the bound s, < ¢ for all k > 2 of Theorem 3; and
we deduce the last part of Theorem 3 immediately from this taken together with Theorem 1.
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