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Abstract

We prove that there are 2p/2+o(p) distinct sumsets A + B in Fp where |A|, |B| → ∞
as p →∞.

1 Introduction

For any subsets A and B of a group G we define the sumset

A + B := {a + b : a ∈ A, b ∈ B}.

There are 2n subsets of an n element additive group G and every one of them is a sumset,
since A = A+{0} for every A ⊂ G. However if we restrict our summands to be slightly larger,
then the situation changes dramatically (at least when G = Fp): there are far fewer sumsets,
as the following result shows.

Theorem 1. Let ψ(x) be any function for which ψ(x) → ∞ and ψ(x) ≤ x/4 as x → ∞.
There are exactly 2p/2+o(p) distinct sumsets in Fp with summands of size ≥ ψ(p); that is,
exactly 2p/2+o(p) distinct sets of the form A + B with |A|, |B| ≥ ψ(p) where A,B ⊂ Fp.

Green and Ruzsa [GrRu] proved that there are only 2p/3+o(p) distinct sumsets A+A in Fp.
The count in Theorem 1 cannot be decreased by restricting the size of one of the sets.

Theorem 2. For any given prime p and integer k satisfying k = o(p), there exists A ⊂ Fp

with |A| = k for which there are at least 2p/2+o(p) distinct sumsets of the form A + B with
B ⊂ Fp.
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These results do not give a good idea of the number of distinct sumsets of the form A+B,
as B varies through the subsets of Fp when A has a given small size.

Theorem 3. For each fixed integer k ≥ 1 there exists a constant µk ∈ [
√

2, 2] such that

max
A⊂Fp, |A|=k

#{A + B : B ⊂ Fp} = µ
p+o(p)
k . (1)

We have µ1 = 2, µ2 := 1.754877666 . . ., the real root of x3 − 2x2 + x − 1 and, for each fixed
integer k ≥ 3, we have

√
2 +

1

3k
≤ µk ≤

√
2 + O

(√
log k

k

)
. (2)

Moreover µk ≤ (55/2233)1/5 = 1.960131704 . . . for all k ≥ 2, so that if |A| ≥ 2 then

#{A + B : B ⊂ Fp} ≤ (1.9602)p+o(p).

Remark: With a more involved method the constant 1.9602 in the last bound can be
improved to 1.9184 (see [Ubi]).

We immediately deduce the following complement to Theorem 1.

Corollary 1. Fix integer k ≥ 1. Let µ∗k = max`≥k µ`. There are exactly (µ∗k)
p+o(p) distinct

sumsets in Fp with summands of size ≥ k.

The existence of µk is deduced from the following result involving sumsets over the integers.
Define S(A,G) to be the number of distinct sumsets A+B with B ⊂ G; above we have looked
at S(A,Fp), but now we look at S(A, {1, 2, . . . , N}).
Proposition 1. For any finite set of non-negative integers A with largest element L, there
exists a constant µA such that S(A, {1, 2, . . . , N}) = µ

N+O(L)
A . Moreover

µk = sup
A⊂Z≥0

|A|=k

µA .

By Theorem 3 (or by Theorems 1 and 2 taken together) we know that µk →
√

2 as k →∞.
In fact we believe that it does so monotonically.

Conjecture 1. We have µ1 = 2 > µ2 > µ3 > . . . > µk > . . . >
√

2.

If this is true then µ∗k = µk, evidently.
One can ask even more precise questions, for example for the number of distinct sumsets

A + B where the sizes of A and B are given: Define

Sk,`(G) = #{A + B : A,B ⊂ G, |A| = k, |B| = `}.
for any integers k, ` > 1. By Theorem 1 we know that if k, ` →∞ as p →∞ then Sk,`(Fp) ≤
2p/2+o(p). We wish to determine for which values of k and ` we have that Sk,`(Fp) ≥ 2p/2+o(p).
The Cauchy-Davenport Theorem [Cau] says that for any A,B ⊂ Fp we have |A + B| ≥
min(p, |A| + |B| − 1), hence Sk,`(Fp) = pO(1) whenever k + ` > p− O(1). Let us see what we
can say otherwise
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Theorem 4. Let φ = 1+
√

5
2

and let ψ(x) be any function for which ψ(x) →∞ as x →∞.

(i) If k + ` ≤ √
p then Sk,`(Fp) À

(
[p/2]

k+`−2

)
/
√

min{k, `}
If k + ` ≤ p/2φ then Sk,`(Fp) ≥ pO(1)

(
[p/2]
k+`

)

If φp/3 + O(1) > k + ` > p/2φ then Sk,`(Fp) À φp−k−`/p .

If p ≥ k + ` ≥ φp/3 + O(1) then Sk,`(Fp) À pφp−k−`/(p + 1− k − `).

In summary, if k + ` ≤ p then Sk,`(Fp) ≥ pO(1) maxh

(
[(p−h)/2]
k+`−h

)

(ii) For any integers with k, ` ≥ ψ(p) and p−k− ` À p, we have Sk,`(Fp) ¿
(

x
k+`

)1+o(1)
with

x such that 2p−x ∼ (
x

k+`

)
.

In particular, if k, ` ≥ ψ(p) then
Sk,`(Fp) = 2p/2+o(p) (3)

if and only if k + ` ∼ p/4.

Note that Theorem 4(ii) cannot hold for k + ` very close to p by the last estimate in
Theorem 4(i). In Theorem 4 the upper and lower bounds are different in general; we guess
that our lower bounds are likely to be nearer to the true size of Sk,l(Fp).

Following the results in this paper, one is led naturally to several open problems: Give
an asymptotic formula for the number of sumsets A + B with |A|, |B| ≥ k, particularly as
k →∞, as well as for the number of sumsets A + A. What sets have > 2cp representations as
A + B? Find an efficient algorithm to determine whether a given set is a sumset A + B with
both A,B large.

2 Lower bounds

For a given integer k let

A = {0, [(p− k)/2] + 1, [(p− k)/2] + 2, . . . , [(p− k)/2] + k − 1}.

For any subset B of {0, 1, 2, . . . , [(p− k)/2]}, we see that A + B ⊂ [0, p− 1] and

B = (A + B) ∩ {0, 1, . . . 2, [(p− k)/2]},

and thus the sets A+B are all distinct. Hence there are at least 2[(p−k)/2]+1 ≥ 2(p−k)/2 distinct
sets A+B as B varies over the subsets of Fp. This implies Theorem 2, hence the lower bound
in Theorem 1 when ψ(p) = o(p), and it also implies the lower bound µk ≥

√
2 in Theorem 3.

Let A = {0} ∪ [x + 1, . . . , x + k − u− 1] ∪ (x + k − u− 1 + A1)

and B = B1 ∪ [x + 1, . . . , x + `− v − 1] ∪ {x + `− v − 1 + y}
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where A1 ⊂ [1, y] with |A1| = u, and B1 ⊂ [1, x] with |B1| = v, where u < k, y, and v < `, x.
Therefore B1 = (A+B)∩[1, x] and N+A1 = (A+B)∩(N+[1, y]) for N = 2x+y+k+`−u−v−2.
Also A + B ⊂ [0, p− 1] provided 2x + 2y + k + `− u− v − 2 < p. Therefore Sk,` ≥

(
y
u

)(
x
v

)
.

If k+` ≤ p/2φ then we select u = k−1, v = `−1, y = [p(k−1)/2(k+`−2)], x = (p−1)/2−y.
This gives Sk,` ≥ pO(1)

(
[p/2]
k+`

)
by Stirling’s formula; Sk,` À

(
[p/2]

k+`−2

)
/
√

min{k, `} if k + ` ≤ √
p.

If k + ` > p/2φ then we select u = [k(p + 1 − k − `)/
√

5(k + `)], v = [`(p + 1 − k −
`)/
√

5(k + `)], y = [φu], x = [φv] to obtain Sk,` À φp−k−`/(p+1−k− `) by Stirling’s formula.
If k + ` ≥ φp/3 + O(1) then we change the above construction slightly: If instead we take
B1 ⊂ [0, x−1] then there is a unique block of ≥ k+ `−u−v−3 consecutive integers in A+B
starting with 2x + 2. Now we can also consider the sums (r + A) + B, for any r (mod p);
notice that we can identify the value of r from A + B, since the longest block of consecutive
integers in A + B starts with 2x + 2 + r. Hence Sk,` À pφp−k−`/(p + 1− k − `).

These last three paragraphs together imply the first part of Theorem 4.
Now, given k ≤ p/4, select ` = [p/4] − k so that, by the above, there are ≥ pO(1)

(
[p/2]
[p/4]

)
=

2p/2pO(1) distinct sumsets A + B as A and B vary over the subsets of Fp of size k and `
respectively. This implies the lower bound in Theorem 1.

3 First upper bounds

In this section we shall use a combinatorial argument to bound the number of sumsets A + B
whenever A is small, in which case we can consider A fixed. Throughout we let rC+A(n) (and
rC−A(n)) denote the number of representations of n as c + a (respectively, c− a) with a ∈ A
and c ∈ C.

Proposition 2. Let G be an abelian group of order n and let A ⊂ G be a subset of size k ≥ 2.
Then

#{A + B : B ⊂ G} ≤ n min
2≤`≤k

n∑
j=0

(
n

[j/`]

)
min{2n−j, 2[jk/(k−`+1)]}. (4)

Proof. Given a set B we order the elements of B by greed, selecting any b1 ∈ B, and then
b2 ∈ B so as to maximize (A + {b2}) \ (A + {b1}), then b3 ∈ B so as to maximize (A +
{b3}) \ (A + {b1, b2}), etc. Let B` be the set of bi such that A + {b1, b2, . . . , bi} contains at
least ` more elements than A+{b1, b2, . . . , bi−1}, and suppose that |B` +A| = j. By definition
j = |B` +A| ≥ `|B`|, so that |B`| ≤ [j/`] and so there are no more than

∑
i≤[j/`]

(
n
i

)
choices for

B`. Note that j/` ≤ n/2, for ` ≥ 2, and so
∑

i≤[j/`]

(
n
i

) ≤ n
(

n
[j/`]

)
. Next we have to determine

the number of possibilities for A + B given B` (and hence B` + A).
Our first argument: Since B` + A ⊂ B + A ⊂ G, the number of such sets A + B is at most

the total number of sets H for which B` + A ⊂ H ⊂ G, which equals 2n−j.
Our second argument: Let C = B` +A, and let D be the set of d ∈ G for which rC−A(d) ≥

k + 1− `. If b ∈ B \B` then rC−A(b) = |(b + A)∩ (B` + A)| ≥ k + 1− `, so that b ∈ D. Hence
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(B \ B`) ⊂ D, and so there are ≤ 2|D| possible sets B \ B`, and hence B, and hence A + B.
Now

|D|(k + 1− `) ≤
∑

d∈G

rC−A(d) = |A||C| = kj,

so that |D| ≤ kj/(k + 1− `), and the result follows.

Simplifying the upper bound : The upper bound in Proposition 2 is evidently at most

n2 min
2≤`≤k

max
0≤j≤n

(
n

[j/`]

)
min{2n−j, 2[jk/(k−`+1)]}.

Now
(

n
[j/`]

)
2[jk/(k−`+1)] is a non-decreasing function of j, as ` ≥ 2, and so the above is not

greater than

n2 min
2≤`≤k

max
(k−`+1)
(2k−`+1)

n≤j≤n

(
n

[j/`]

)
2n−j.

The (j + `)th term equals the jth term times (n− [j/`])/2`([j/`] + 1). This is smaller than 1
if and only if n < (2` + 1)[j/`] + 2`. Now

(2` + 1)[j/`] + 2` >
(2` + 1)

`
j ≥ (2` + 1)

`
· (k − ` + 1)

(2k − ` + 1)
n,

and this is greater or equal than n unless ` = k ≤ 4. Hence one minimizes by taking
j = (k−`+1)

(2k−`+1)
n + O(1) at a cost of a factor of at most n. Therefore our bound becomes

O(nO(1)νn
k ) where νk := min2≤`≤k νk,` and

νk,` :=

(
2k(`(2k − ` + 1))2k−`+1

(k − ` + 1)
k−`+1

` (`(2k − ` + 1)− (k − ` + 1))2k−`+1− k−`+1
`

) 1
2k−`+1

,

using Stirling’s formula. A brief Maple calculation yields that νk > 2 for all k ≤ 7 and
ν8 = 1.982301294, ν9 = 1.961945316, ν10 = 1.942349376, . . ., with νk < 1.91 for k ≥ 12,
and νk decreasing rapidly and monotonically (e.g. νk < 1.9 for k ≥ 13, νk < 1.8 for k ≥ 23,
νk < 1.7 for k ≥ 45, and νk < 1.6 for k ≥ 117). In general taking ` so that `2 ∼ k log k/ log 2,
one gets that

νk =
√

2 exp

((
1

2
+ o(1)

) √
log 2 · log k

k

)
,

which implies the upper bound in (2) of Theorem 3, as well as the upper bound implicit in
Theorem 1 when min{|A|, |B|} = o(p).
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4 Upper bounds on Sk,`(Fp) using combinatorics

The value of x in Theorem 4(ii) must always lie in the range [p/2, p] since
(

x
k+`

) ≤ 2x. Therefore
if k + ` = o(p) then the number of sumsets A + B is smaller than the number of possibilities
for A and B so that

Sk,l(Fp) ≤
(

p

k

)(
p

`

)
=

(
p

k + `

)
2O(k+`) =

(
x

k + `

)
2O(k+`) =

(
x

k + `

)1+o(1)

.

The Cauchy-Davenport Theorem states that |A + B| ≥ min{|A|+ |B| − 1, p}, so that

Sk,l(Fp) ≤
p∑

j=k+`−1

(
p

j

)
¿

(
p

k + `− 1

)

for k+` > (1/2+ε)p. For the last part of Theorem 4, note that this is < 28p/17 for k+` ≥ 9p/10.
Now we consider the case `, p − k − ` À p with k < o(p) and k → ∞. For each fixed

A of cardinality k and B of cardinality `, we proceed as in Proposition 2 (taking ` there as
m here, and choosing m = o(k) with m → ∞): Hence there exists a subset Bm ⊂ B with
|A + Bm| = j and |Bm| ≤ j/m ≤ p/m, and a subset D, determined by A and Bm, with
|D| ≤ kj

k+1−m
≤ j(1 + O(m/k)) and B \Bm ⊂ D. Now A + B = (A + Bm)∪ (A + (B \Bm)) so

the number of possibilities for (A+B) \ (A+Bm) is bounded above by the number of subsets
of Fp \ (A + Bm), which is 2p−j, and also by the number of subsets of D with cardinality in
the range [`− [j/m], `], which is at most

∑̀

i=`−[j/m]

(|D|
i

)
≤ 2o(p)

(
j

` + k

)
,

since |D| ≤ j + o(p) and i = ` + k + o(p). Hence the number of possible sumsets A + B
is bounded by

(
p
k

) ≤ 2o(p), the number of possibilities for A, times
∑

i≤[p/m]

(
p
i

) ≤ 2o(p), the

number of possibilities for Bm, times 2o(p) min{( j
`+k

)
, 2p−j }, the number of possibilities for

(A + B) \ (A + Bm). This gives us the upper bound

Sk,`(Fp) ≤ 2o(p) min{
(

j

` + k

)
, 2p−j } = 2(1+o(1))(p−x) (5)

where x is chosen as in Theorem 4(ii), noting that p− x À p as ` + k À p.

5 Sumsets from big sets

this section we adapt to our problem the method of q‘granular sets”of Green and Ruzsa
[GrRu]. e adaptation is not difficult, t for accuracy and completeness we present a sketch
of the thod, including several simple modifications of the original guments, that arify the
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ideas and slightly improve the bounds. ffalse this section we adapt to our problem Green
and Ruzsa’s method of q‘granular sets”[GrRu]. his is straightforward, d we could even quote
directly from that paper, but we think it is rthwhile for accuracy and completeness to present
a sketch of the thod. Moreover we make a couple of small changes to their arguments at, we
think, clarify the ideas involved (and even improve the bounds little). i For a given set S,
define dS := {ds : s ∈ S}. Let G = Z/mZ. For any A ⊂ G define Â(x) =

∑
a∈A e(ax/m). For

a given positive integer L < m let H be the set of integers in the interval [−(L − 1), L − 1].
For a given integer d with 1 < dL < m we partition the integers in [1,m] as best as we can
into arithmetic progressions with difference d and length L. That is for 1 ≤ i ≤ d we have the
progressions

Ii,k := {i + jd : kL ≤ j ≤ min{(k + 1)L− 1, [(m− i)/d]}}
for 0 ≤ k ≤ [(m − i)/Ld]. We then let AL,d be the union of the Ii,k that contain an element
of A (so that A ⊂ AL,d). Note that there are ≤ [m/L] + d such intervals Ii,k.

Our goal is to prove the following analogy to Proposition 3 in [GrRu]:

Proposition 3. If A, B ⊂ Z/mZ, with α = |A|/m and β = |B|/m and

m > (4L)1+16αβL4ε−2
2 ε−1

3 , with L ≥ 3, (6)

then there exists an integer d, with 1 ≤ d ≤ m/4L, such that A + B contains all those values
of n for which rAL,d+BL,d

(n) > ε2m, with no more than ε3m exceptions.

In this paragraph we follow the proof of Proposition 3 in [GrRu] (with the obvious modi-
fications):

Lemma 1. If A ⊂ Z/mZ then there exists 1 ≤ d ≤ m/4L such that

|Â(x)|2
∣∣∣∣∣∣
1−

(
Ĥ(dx)

2L− 1

)2
∣∣∣∣∣∣

2

≤ log 4L

log(m/4L)
|A|m, with L ≥ 3,

for all x ∈ Z/mZ.

Proof. (Sketch) Fix δ so that the right side above equals (δm)2, and hence δ ≥ 2/m. Let R
be the set of r ∈ Z/mZ such that |Â(r)| ≥ δm; the result follows immediately for any x 6∈ R.
By Parseval’s formula

∑
x |Â(x)|2 = m|A| we have the bound |R| ≤ δ−2|A|/m. Moreover, by

the arithmetic-geometric mean inequality and Parseval’s formula, we have

∏
r∈R

|Â(r)|2 ≤
(

1

|R|
∑
r∈R

|Â(r)|2
)|R|

≤
(

m|A|
|R|

)|R|
. (7)

Consider the vectors vi ∈ [0, 1)|R| with rth coordinate ri/m (mod 1) for each r ∈ R. If we
partition the unit interval for the rth coordinate into intervals of roughly equal length, all not
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greater than (δm)1/2/(4L − 1)|Â(r)|1/2, then, by the pigeonhole principle, two such vectors,
with 0 ≤ i < j ≤ m/4L, lie in the same intervals since

∏
r∈R


1 + (4L− 1)

∣∣∣∣∣
Â(r)

δm

∣∣∣∣∣

1/2

 ≤

∏
r∈R

4L

∣∣∣∣∣
Â(r)

δm

∣∣∣∣∣

1/2

≤
(

4L

( |A|/m
δ2|R|

)1/4
)|R|

≤ m

4L
,

using (7), the previous bound for |R| and the definition of δ. Therefore for d = j − i we have

∥∥∥∥
dr

m

∥∥∥∥ ≤
1

4L− 1

(
δm

|Â(r)|

)1/2

for all r ∈ R, where ‖t‖ is the shortest distance from t to an integer. Now Re(1 − e(t)) ≤
2π2‖t‖2 and ‖jt‖ ≤ |j|‖t‖, and the result follows from 1 + Ĥ(dr)/(2L− 1) ≤ 2 and

1− Ĥ(dr)

2L− 1
=

1

2L− 1

L−1∑

j=−(L−1)

(
1− e

(
jdr

m

))
≤ 2π2L2

3

∥∥∥∥
dr

m

∥∥∥∥
2

≤ δm

2|Â(r)| .

Proof of Proposition 3. By Parseval’s formula, and then Lemma 1 we have

∑
n

∣∣∣∣rA+B(n)− rA+dH+B+dH(n)

(2L− 1)2

∣∣∣∣
2

=
1

m

∑
x

|Â(x)|2|B̂(x)|2
∣∣∣∣∣∣
1−

(
Ĥ(dx)

2L− 1

)2
∣∣∣∣∣∣

2

≤ log 4L

log(m/4L)
|A|

∑
x

|B̂(x)|2 =
log 4L

log(m/4L)
|A||B|m ≤ ε2

2ε3m
3

16L4
(8)

in this range for m. (Here rA+dH+B+dH(n) denotes the number of representations of n as
a + di + b + dj with a ∈ A, b ∈ B and i, j ∈ H.) Now if g ∈ AL,d then there exists j ∈ H
such that g + dj ∈ A, by definition, and hence rA+dH(g) ≥ 1. Hence rA+dH(g) ≥ rAL,d

(g)
for all g ∈ G, so that rA+dH+B+dH(n) ≥ rAL,d+BL,d

(n) for all n. Therefore if N is the set of
n 6∈ A + B such that rAL,d+BL,d

(n) > ε2m, then rA+dH+B+dH(n) > ε2m, rA+B(n) = 0 and (8)
yields |N | ≤ ε3m. 2

Next we prove a combinatorial lemma based on Proposition 5 of [GrRu]:

Proposition 4. For any subsets C,D of Fp, and any m ≤ r ≤ min(|C|, |D|), there are at
least min(|C|+ |D|, p)− r − (m− 1)p/r values of n (mod p) such that rC+D(n) ≥ m.

Proof. Pollard’s generalization of the Cauchy-Davenport Theorem [Pol] states that
∑

n

min{r, rC+D(n)} ≥ r min(p, |C|+ |D| − r) ≥ r[min(p, |C|+ |D|)− r].

The left hand side here is ≤ (m− 1)(p−Nm) + rNm where Nm is the number of n (mod p)
such that rC+D(n) ≥ m. The result follows since p−Nm ≤ p.
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Proof of upper bounds on Sk,`(Fp) using Fourier analysis:
Suppose that L is given and d ≤ p/4L, and that M and N are unions of some of the

arithmetic progressions Ii,j. Note that there are ≤ 2p/L+d such sets M (given d), and hence a
total of eO(p/L) possibilities for d,M and N .

We now bound the number of distinct sumsets A + B for which AL,d = M and BL,d = N
in two different ways:

First, since A ⊂ M and B ⊂ N there can be no more than
(|M |

k

)(|N |
`

) ≤ (|M |+|N |
k+`

) ≤ 2|M |+|N |

such pairs.
Second, select 2ε1p ≤ min(|M |, |N |) and 2ε3p ≤ max(|M |, |N |). Let Q be the values of n

(mod p) such that rM+N(n) ≥ ε2
1p. Taking r = ε1p and m = ε2

1p in Proposition 4, we have
|Q| ≥ R := min(|M |+ |N |, p)− 2ε1p. By Proposition 3, A + B is given by Q less at most ε3p
elements, union some subset of Fp \Q. Hence the number of distinct sumsets A + B is

≤ 2p−|Q|
[ε3p]∑
i=0

(|Q|
i

)
≤ p2p−|Q|

( |Q|
[ε3p]

)
≤ p2max(p−|M |−|N |,0)+2ε1p

(
p

[ε3p]

)

as |Q| ≥ R > 2ε3p.
If |M | + |N | ≤ p/2 then the number of sumsets is ≤ 2p/2 by the first argument. Let

L = [(log p)1/10] and ε1 = ε3 = 1/2L. If |A|, |B| > p/L then |M | ≥ |A| > 2ε1p and |N | ≥
|B| > 2ε1p, so the second argument is applicable; therefore if |M |+|N | > p/2 then the number
of sumsets is ≤ 2p/2LO(p/L). Hence the total number of sumsets A + B with |A|, |B| > p/L
is at most 2p/2LO(p/L) which implies the upper bound in Theorem 1 (taken together with the
argument, for min{|A|, |B|} = o(p), given at the end of section 3).

Assume that ` ≥ k ≥ p/(log p)1/4 with p− k − ` À p. We select ε1 = k/2p log log p, ε3 =
`/2p log log p and L = [(log p)1/20], so that the second argument above is applicable. Taking
x = |M |+ |N | we have that

Sk,`(Fp) ≤ max
0≤x′≤2p

min

{(
x′

k + `

)
, 2max(p−x′,0)

}
(1/ε3)

O(ε3p) = 2(1+o(1))(p−x)2o(p)

as in (5). This completes the proof of Theorem 4(ii), combined with the results of the previous
section.

Finally, (3) follows noting that x & p/2 unless k + ` ∼ p/4, in which case x ∼ p/2.

6 Sumsets in finite fields and the integers

Let A ⊂ Fp be of given size k ≥ 2, and let d = [p1−1/k]. Consider the sets iA, the least
residues of ia, a ∈ A, for 0 ≤ i ≤ p − 1. Two, say iA and jA with i 6≡ j (mod p), must
have those least residues between the same two multiples of p1−1/k for each a ∈ A (since there
are < (p/p1−1/k)k = p possibilities), and so the least residues of `a, a ∈ A, with ` = i − j
are all ≤ d in absolute value. Hence the elements of d + `A are all integers in [0, 2d]; and
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S(A,Fp) = S(d + `A,Fp) as may be seen by mapping A + B → (d + `A) + (`B). Hence we
may assume, without loss of generality, that A is a set of integers in [0, L] where L ≤ 2p1−1/k.

The case k = 2 is of particular interest since then S(A,Fp) = S({0, 1},Fp) by taking
` = 1/(b− a), d = −a` when A = {a, b}.

We now compare S(A,Fp) with S(A, {1, 2, . . . , p}). When we reduce A + B, where A ⊂
{0, . . . , L} and B ⊂ {0, . . . , p − 1} are sets of integers, modulo p, the reduction only affects
the residues in {0, . . . , L− 1} (mod p). Hence

S(A, {1, 2, . . . , p})2−L ≤ S(A,Fp) ≤ S(A, {1, 2, . . . , p}). (9)

Now suppose A ⊂ {0, . . . , L} is a set of integers. Suppose that Mr ≤ N < M(r + 1) for
positive integers M, r,N . We see that

S(A, {1, 2, . . . , N}) ≤ S(A, {1, 2, . . . , M(r + 1)}) ≤ S(A, {1, 2, . . . ,M})r+1,

the last inequality coming since the sumsets A + B with B ⊂ {1, 2, . . . , M(r + 1)} are the
union of the sumsets A + Bi with Bi ⊂ {Mi + 1, 2, . . . , M(i + 1)} for i = 0, 1, 2, . . . , r. In
particular for mA(N) := S(A, {1, 2, . . . , N})1/N we have mA(N) ≤ mA(M)1+1/r. This implies
that lim supN mA(N) ≤ mA(M) for any fixed M , and then lim supN mA(N) = lim infN mA(N)
so the limit, say µA, exists and satisfies

S(A, {1, 2, . . . , M}) ≥ µM
A . (10)

In the other direction we note that if B = ∪iBi where Bi ⊂ {(M + L)i + 1, (M + L)i +
2, . . . , (M + L)i + M} then distinct {A + Bi}0≤i≤r−1 give rise to distinct A + B. Hence
S(A, {1, 2, . . . , M})r ≤ S(A, {1, 2, . . . , r(M + L)}) and letting r →∞ we have

S(A, {1, 2, . . . , M}) ≤ µM+L
A . (11)

Finally, by the inequalities (9), (10) and (11) we arrive at

S(A,Fp) = µp
AeO(L) = µp

AeO(p1−1/k) = µ
p+o(p)
A .

This proves Proposition 1, as well as the first part of Theorem 3.

6.1 Precise bounds when k = 2

By the previous section we know that µ2 = µ{0,1}. Now S is a sumset of the form {0, 1}+ B
if and only if, when one writes the sequence of 0’s and 1’s given by sn = 1 if n ∈ S, otherwise
sn = 0 if n 6∈ S, there are no isolated 1’s.

Let Cn be the number of sequences of 0’s and 1’s of length n such that there are no isolated
1’s. One can check that Cn+1 = 2Cn−Cn−1 +Cn−2 so that Cn ∼ cµn

2 for some constant c > 0,
where µ2 is as in Theorem 3, implying a strong form of the first part of Theorem 3 for k = 2.

By a more precise analysis we could even estimate the number of sets C = {0, 1}+B with
either C or B of given size.
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6.2 Precise bounds when k = 3

It is not hard to generalize the procedure for the case |A| = 2 to any A ⊂ Z finite, namely to
prove that µA is the root of a polynomial with integer coefficients (and degree smaller than
22L+1 when A ⊂ {0, 1, . . . , L}), and also that µcA+d = µA for any c, d ∈ Z, c 6= 0.

Therefore, in the special case of three elements is enough to deal with A = {0, a, b} for
a, b coprime positive integers. By a suitable bijection, one can show that µ{0,a,b} → µ∗ as
a + b →∞ (with (a, b) = 1), where we define

µ∗ = lim
p→∞

#{B + {(0, 0), (1, 0), (0, 1)} : B ⊂ Fp × Fp}1/p2

,

which one can prove exists, and is < µ2. Therefore either µ3 = µ{0,a,b} for some a and b or
µ3 = µ∗. Maple experimentation leads us to guess that µ3 = µ{0,1,4} = 1.6863 . . ., a root of
an irreducible polynomial of degree 21. All this is detailed in Chapter 3 of the third author’s
PhD. thesis [Ubi].

6.3 Lower bounds on µk

That µk ≥
√

2 follows by choosing A = 1 ∪ 2A′ with A′ ⊂ Z any finite set. Let Ak =
{1, 3, . . . , 3k−1}, and write B ⊂ {1, 2, . . . , 3n} as B = 3B0 ∪ (3B1 − 1) with B0, B1 ⊂
{1, 2, . . . , n}. Since Ak+1 = 1 ∪ 3Ak we have

(B + Ak+1) \ 3Z = (3(B1 + Ak)− 1) ∪ (3B0 + 1),

which shows that S(Ak+1, {1, 2, . . . , 3n}) ≥ S(Ak, {1, 2, . . . , n}) 2n, and so

µAk+1
≥ 2

1
3 µ

1
3
Ak

.

Since µA1 = 2, an induction argument implies µk ≥ µAk
≥ 21/2+31−k/2, which gives the lower

bound for µk in (2).

7 A non-trivial bound for fixed k ≥ 2

Let A be any set of given size k ≥ 2 in Fp. For any two distinct elements a, b ∈ A we can
map x → (x− a)/(b− a) so that 0, 1 ∈ A, and this will not effect the count of the number of
sumsets containing A.

The number of sumsets C = A + B with B ⊂ Fp is obviously bounded above by

#

{
B : |B| ≤ 2p

5

}
+ #

{
C : |C| ≥ 3p

5

}

+#

{
C : ∃B :

2p

5
< |B| < |C| < 3p

5
and B + {0, 1} ⊂ C

}
.
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The first two terms have size ≤ 2p
(

p
[2p/5]

)
, the third requires some work: We observe that

such C must have at least 2p/5 pairs of consecutive elements; so if c is the smallest integer
≥ 1 that belongs to C then we suppose that C = ∪m

k=1(c + Ik) and C = ∪m
k=1(c + Jk) where

I1, J1, I2, J2, . . . , Im, Jm is a partition of {0, . . . , p − 1} into non-empty set of integers from
intervals taken in order. Any such set partition will do provided, for ik = |Ik| and jk = |Jk|,
we have each ik, jk ≥ 1,

3p

5
≥

m∑

k=1

ik ≥ m +
2p

5
,

since |C| = ∑m
k=1 ik and

∑m
k=1(ik − 1) ≥ |B|, and

∑m
k=1 ik +

∑m
k=1 jk = p. Now there are ≤ p

possible values for c, and the number of possible sets of values of ik such that
∑m

k=1 ik = x is(
x−1
m−1

)
, and of jk is

(
p−x−1
m−1

)
. Therefore the number of possible such C is

≤ p
∑

m≤p/5

∑

2p/5+m≤x≤3p/5

(
x− 1

m− 1

)(
p− x− 1

m− 1

)
.

≤ p2
∑

m≤p/5

(
p− 2

2m− 2

)
≤ p3

(
p− 2

[2p/5− 2]

)
¿ p3

(
p

[2p/5]

)
.

(Note that
(

a
b

)(
c
d

) ≤ (
a+c
b+d

)
follows from defining

(
a
b

)
to be the number of ways of choosing b

elements from a.) Hence the number of sumsets A + B is ¿ p3
(

p
[2p/5]

)
= cp+o(p) where c =

(55/2233)1/5 = 1.960131704 . . . This implies the bound µk ≤ c for all k ≥ 2 of Theorem 3; and
we deduce the last part of Theorem 3 immediately from this taken together with Theorem 1.
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