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Squares in Arithmetic Progressions and
Infinitely Many Primes

Andrew Granville

Abstract. We give a new proof that there are infinitely many primes, relying on van der Waer-
den’s theorem for coloring the integers, and Fermat’s theorem that there cannot be four squares
in an arithmetic progression. We go on to discuss where else these ideas have come together
in the past.

1. INFINITELY MANY PRIMES. Levent Alpoge recently gave a rather different
proof [1] that there are infinitely many primes. His starting point was the famous result
of van der Waerden (see, e.g., [9]).

van der Waerden’s Theorem. Fix integers m ≥ 2 and � ≥ 3. If every positive integer
is assigned one of m colors, in any way at all, then there is an �-term arithmetic
progression of integers which each have the same color.

Using a clever coloring in van der Waerden’s theorem, and some elementary number
theory, Alpoge deduced that there are infinitely many primes. We proceed from van der
Waerden’s theorem a little differently, employing a famous result of Fermat (see, e.g.,
[6]).

Fermat’s Theorem. There are no four-term arithmetic progressions of distinct integer
squares.

From these two results (the proofs of which do not assume that there are infinitely
many primes) we deduce the following.

Theorem 1. There are infinitely many primes.

Proof. If there are only finitely many primes p1, . . . , pk , then every integer n can be
written as pe1

1 · · · pek
k for some integers e1, e2, . . . , ek ≥ 0. We can write each of these

exponents e j as

e j = 2q j + r j , where r j is the “remainder” when dividing e j by 2,

and equals 0 or 1. Therefore if we let

R = pr1
1 · · · prk

k ,

then R is a squarefree integer that divides n, and

n/R is the square of an integer.

(In fact, n/R = Q2 where Q = pq1
1 · · · pqk

k .)
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We will use 2k colors to color the integers: Integer n is colored by the vector
(r1, . . . , rk). By van der Waerden’s theorem there are four integers in arithmetic
progression

A, A + D, A + 2D, A + 3D, with D ≥ 1,

which all have the same color (r1, . . . , rk). Now R = pr1
1 · · · prk

k divides each of these
numbers, so it also divides D = (A + D) − A. Letting a = A/R and d = D/R, we
see that

a, a + d, a + 2d, a + 3d are four squares in arithmetic progression,

contradicting Fermat’s theorem.

These ideas have come together before to make a rather different, not-too-obvious
deduction.

2. THE NUMBER OF SQUARES IN A LONG ARITHMETIC PROGRES-
SION. Let Q(N ) denote the maximum number of squares that there can be in an
arithmetic progression of length N . A slight refinement of the Erdős–Rudin conjec-
ture states that the maximum number is attained by the arithmetic progression

{24n + 1 : 0 ≤ n ≤ N − 1}

which contains
√

8
3 N squares, plus or minus one. From Fermat’s theorem one easily

sees that

Q(N ) ≤ 3N + 3

4
,

but it is difficult to see how to improve the bound to, say, Q(N ) ≤ δN + b for some
constant δ < 3

4 .
It was this problem that inspired one of the most influential results [8] in combina-

torics and analysis (see, e.g., [5]).

Szemerédi’s Theorem. Fix δ > 0 and integer � ≥ 3. If N is sufficiently large (depend-
ing on δ and �), then any subset A of {1, 2, . . . , N } with at least δN elements must
contain an �-term arithmetic progression.

van der Waerden’s theorem is a consequence of Szemerédi’s theorem, because if
we let δ = 1/m and we color the integers in {1, 2, . . . , N } with m colors, then at least
one of the colors is used for at least N/m integers. We apply Szemerédi’s theorem to
this subset A of {1, 2, . . . , N }, to obtain an �-term arithmetic progression of integers
that each have the same color.

In [7], Szemerédi applied his result to the question of squares in arithmetic progres-
sions.

Theorem 2 (Szemerédi). For any constant δ > 0, if N is sufficiently large, then
Q(N ) < δN.

Proof. Suppose that there are at least δN squares in the arithmetic progression {r +
ns : n = 1, 2, . . . , N } with s ≥ 1; that is, there exists a subset A of {1, 2, . . . , N } with
at least δN elements for which

r + ns is a square, whenever a ∈ A.
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Szemerédi’s theorem with � = 4 then implies that A contains a four-term arithmetic
progression, say u + jv for j = 0, 1, 2, 3. For these values of n, we have r + ns =
a + jd, where a = r + us and d = vs > 1. That is, we have shown that

a, a + d, a + 2d, a + 3d are four squares in arithmetic progression,

contradicting Fermat’s theorem.

3. MORE HEAVY MACHINERY. One day over lunch, in late 1989, Bombieri
showed me a completely different proof of Theorem 2, this time relying on one of
the most influential results in algebraic and arithmetic geometry, Faltings’ theorem [3].
Faltings’ theorem is not easy to state, requiring a general understanding of an algebraic
curve and its genus. The basic idea is that an equation in two variables with rational
coefficients has only finitely many rational solutions (that is, solutions in which the
two variables are rational numbers), unless the equation “boils down to” an equation
of degree 1, 2, or 3. To be precise about “boiling down” involves the concept of genus,
which is too complicated to explain here (see, e.g., [3]). Here we only need a simple
consequence of Faltings’ theorem.

Corollary to Faltings’ Theorem. Let b1, b2, . . . , bk be distinct integers with k ≥ 5.
Then there are only finitely many rational numbers x for which

(x + b1)(x + b2) · · · (x + bk) is the square of a rational number.

Another proof of Theorem 2. Fix an integer M > 6/δ. Let B(M) be the total number
of rational numbers x and integer 6-tuples b1 = 0 < b2 < · · · < b6 ≤ M − 1 for which
(x + b1)(x + b2) · · · (x + b6) is the square of a rational number. Faltings’ theorem
implies that B(M) is some finite number, as there are only finitely many choices for
the b j . We let N ≥ M(B(M) + 5) be an integer.

The interval [0, N − 1] is covered by the subintervals I j for j = 0, 1, 2, . . . , k − 1,
where I j denotes the interval [ j M, ( j + 1)M), and k M is the smallest multiple of M
that is greater than N .

Let N := {n : 0 ≤ n ≤ N − 1 and a + nd is a square}, where the arithmetic pro-
gression is chosen so that |N | = Q(N ). Let N j = {n ∈ N : n ∈ I j } for each integer
j . Let J be the set of integers j for which N j has six or more elements.

Now if n1 < n2 < · · · < n6 all belong to N j , write x = a/d + n1 and bi = ni − n1

for i = 1, . . . , 6, so that

b1 = 0 < b2 < · · · < b6 ≤ M − 1

and each x + bi = a/d + ni = (a + ni d)/d, which implies that

(x + b1)(x + b2) · · · (x + b6) = (a + n1d)(a + n2d) · · · (a + n6d)

d6

is the square of a rational number. This gives rise to one of the B(M) solutions counted
above, and all the solutions created in this way are distinct (since given x, d, b1, . . . , b6

we have each a + n j d = d(x + b j )). Therefore the set N j gives rise to
(|N j |

6

)
such

solutions, and so in total we have

∑
j∈J

(|N j |
6

)
≤ B(M).
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It is easy to verify that r ≤ 5 + (r
6

)
for all integers r ≥ 1, and so

Q(N ) = |N | =
k−1∑
j=0

|N j | ≤
k−1∑
j=0

5 +
∑
j∈J

(|N j |
6

)
≤ 5k + B(M),

as |N j | ≤ 5 if j �∈ J . Finally, as k ≤ N/M + 1 we have

Q(N ) ≤ 5k + B(M) ≤ 5N

M
+ (B(M) + 5) ≤ 6N

M
< δN ,

as desired.

Bombieri [2] went on, together with Granville and Pintz, to combine these two
proofs (along with much more arithmetic geometry machinery), to prove that

Q(N ) < N c

for any c > 2
3 , for sufficiently large N . Bombieri and Zannier [4] improved this to

c > 3
5 with a rather simpler proof. The conjecture that Q(N ) behaves more like a

constant times N 1/2 remains open.
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