Teoria dei numeri. — Solution to a problem of Bombieri. Nota(*) di ANDREW
GRANVILLE, presentata dal Socio E. BOMBIERI.

— We solve a problem of Bombieri, stated in connection with the “prime number
theorem” for function fields.

Distribution of Primes; Elementary Proofs; Prime Number Theorem.

— Soluzione della probleme di Bombieri.

In [1], Bombieri states that if a1, a9, ... is a sequence of non—negative real numbers
satisfying the Selberg-type formula

m—1

(1) My, + Z a;iQm—; =2m+ O(1)
i=1

for each m > 1 then a,, = 1+ o(1); however there is an error in the proof as may be seen
by the counterexample a,, = 1 — (—1)". In [2], Bombieri shows that his original result
may be recovered by also having the analogous formula to (1) for the sequence as, aq, .. .;
and, in [4], Zhang improves the error term in this result to a,, =1+ O(1/m).

Herein we return to the original question and solve (slightly more than) a problem
stated by Bombieri in [2]:

Theorem 1. If aqy,as,... is a sequence of non—negative real numbers satisfying
m—1
(2) Ma, + Z i = 2m + o(m)

i=1
for each m > 1 then either (i) ap, =1+ 0(1); or (ii) am=1—(=1)" 4+ 0(1).

In [3] (Theorem 2’), Erdds showed that for any sequence of non—negative real numbers
satisfying (2) we have

(3) Z a; =m+ o(m).

We note also that as each a; > 0, thus ma,, < 2m + o(m) by (2), and so
(4) 0 < am <2+o(l).

Therefore, by taking b; = 1 — a; for each j, we see that Theorem 1 follows immediately

from
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Theorem 2. If by, bs,... is a sequence of real numbers satisfying
(5) |b| < 1+ 0(1)
and
m—1
(6) mb,, = Z bibim i + o(m)
i=1

for each m > 1 then one of the following cases holds:
(i) by, = o(1); (ii) by, = (=1)™ 4+ 0(1); (iii) by, = 14+ 0(1).

Proof: We start by showing that either (i) holds or

(7) B:=limsup |b,,|=1.

m—00

First note that B > 0 by definition, and B < 1 by (5). Now m|b,,| < mB? + o(m) by (6)
and so, choosing m with b,, = B + o(1), we have B < B?. Therefore either B = 0 (in
which case (i) holds), or B > 1, so that B = 1.

Next we show that if (7) holds then

® 2285, Il = 140

as m — oo. Suppose that (8) is false so that there exists § > 0 such that, for certain
arbitrarily large m, we have |b,| < 1 — 106 for all n in the range 2m < n < 3m. From this
we can deduce (by induction on n) that |b,| < 1 — 9 for all n > 3m, if m is sufficiently

large, which contradicts (7). The induction proceeds in a straightforward way, by using
(6) in the form

n—1
nlbn| <D [billb-s| + o(n),
i=1
together with the bounds
O(1) for 7 < jo;

1+6/10 for jo < j < 2m;
1—106 for2m < j < 3m;
1—-9 for3m<j<n-—1,

|b] <

where jy is chosen so that |b;| < 1+ /10 for all j > jo (which is possible, by (5)).

We now prove two lemmas.
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Lemma 1. If|b,,| =1+ 0(1) then |b;| =1+ 0(1) and b;b,,_; = by, + 0o(1) for all but o(m)
values of 1 < m.

Proof: Let ¢; = b;by,—i/by, so that |¢;| <1+ 0(1) by (5) (if m —i — c0) and

St ¢ = m+o(m) by (6). Therefore ¢; = 1+ o(1) for all but o(m) values of i < m,
which is equivalent to the second assertion of the lemma. Moreover ¢; = 1 + o(1) implies
that |b;||bm—i| = 1 + o(1) for such i, whereas both |b;| and |b,,—;| are < 1+ o(1) by (5).
Thus both |b;| and |by,—;| equal 1 + o(1).

Lemma 2. Fix ¢ > 0. For any sufficiently large m and for any integers k and n in the
ranges 1 < k <em, m <n < 2m, for which |b,|, |bn+r| =1+ o(1), we have the estimate

bm—l—k = bmbn—l—k/bn + 0(5)7
where the constant implied by “O” is absolute.

Proof: Let o = 1 if b, and b,; have the same sign, and let ¢ = —1 otherwise. Now,
as |b,| and |b, 4| both equal 1+ o(1), we see that |b;| =1+ o(1), b;b, ; = b, + o(1) and
bibntk—i = bntk +0o(1) for all but o(m) values of i < n, by Lemma 1. Therefore, by taking
Jj =mn —1i, we see that b; = objy, + o(1) for all but o(m) values of j < m. Substituting
this into (6) gives

k m—1
mb,, — o ((m+k)bm+k—z bibm+k_i> Z (bj — 0bj1k)bm—j +0(m) = o(m),
=1

=1

and the result follows from (5) as

k
Bl + 3 1bbmesil = O(k).
=1

Completion of the proof of Theorem 2: Fix ¢ > 0 and suppose that m is sufficiently
large. By (8) there exists n in the range 2m < n < 3m with |b,] = 1 + o(1), and so
|bi| = 1+ o(1) for all but o(m) values of i < 2m, by Lemma 1. Therefore there exists an
integer k in the range 1 < k < em such that both |b,,+r| and |by,42k| = 1 + o(1). Taking
n=m+ k in Lemma 2, we see that b,, = b,k + O(¢); and letting ¢ — 0, we then get

(9) bm| = 1+0(1)

as m — oo.

Now take £k = 1 and n = m + 1 in Lemma 2. By (9) this implies that b,,b,, 12 =
b2, .1+ o(1) =1+ 0(1), so that by, and by, 1o have the same sign if m is sufficiently large.
Therefore there exist constants v and 7, equal to —1 or 1, such that

bom = v + o(1); and bom+1 =1+ o(1).
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Substituting this into (6) for even m we obtain v = (12 + n?)/2 = 1; therefore we get (ii)
if n = —1, and (iii) if n = 1.
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