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Abstract. We prove that there are more than z?/7 Carmichael
numbers up to z, for all sufficiently large x.

1. Introduction.

On October 18th, 1640, Fermat wrote, in a letter to Frenicle, that p divides a? — a for
all integers a, whenever p is a prime. The question naturally arose as to whether the primes
were the only integers > 1 that satisfied this criterion, but Carmichael [Cal] pointed out,
in 1910, that 561 (= 3 x 11 x 17) divides a®®! — a for all integers a. In 1899, Korselt [Ko]
had noted that one could easily test for such integers by using (what we will call)

Korselt’s criterion: n divides a™ — a for all integers a if and

only if n is squarefree and p — 1 divides n — 1 for all primes p dividing n.

In a series of papers around 1910, Carmichael began an in-depth study of composite
numbers with this property, which have become known as Carmichael numbers. In [Ca2],
Carmichael exhibited an algorithm to construct such numbers and stated, perhaps some-
what wishfully, that “this list (of Carmichael numbers) might be indefinitely extended”.
Indeed, until now, no one has been able to prove that there are infinitely many Carmichael
numbers, though it has long seemed highly likely.

In 1939 Chernick noted that if p = 6m+1,g = 12m+1 and r = 18m + 1 are all prime
then pgr is a Carmichael number. According to Hardy and Littlewood’s widely believed
prime k-tuplets conjecture, these should simultaneously be prime infinitely often, which
would tell us that there are infinitely many Carmichael numbers.

As yet unpublished computations of Richard Pinch have yielded 8,241 Carmichael
numbers up to 10'2, 19,279 up to 103, 44,706 up to 10'* and 105,212 up to 10'°. On
the other hand, numerous authors have supplied upper bounds for C'(z), the number of
Carmichael numbers up to z, the best being ([PSW], though also see [Po])

C(QU) < xl_{1+0(1)}10g10g10gac/ log log x
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for x — oco. We believe that this upper bound probably gives the true size of C(z). Our
belief can be justified by the heuristic argument in [Po|, which is based on ideas of Erdés
[Er2].

In this paper we show that C(z) > z® for all large  and some positive constant .
The precise value of o depends on two other constants that appear in analytic number
theory. We now describe these constants.

Let 7(x) be the number of primes p < z, and let 7(z,y) be the number of these for
which p — 1 is free of prime factors exceeding y. Let £ denote the set of numbers E in the
range 0 < E < 1 for which there exist numbers z1(F), v1(E) > 0 such that
(1.1) m(z,2'7F) >y (B)r ()
for all x > z1(E). Erdés (see [Erl]) proved that there is a small positive number in £.
Larger values were subsequently found by Wooldridge, Goldfeld, Pomerance, Fouvry and
Grupp, Balog, and Friedlander. Currently the best result known ([Fr]) is that any positive
number less than 1 — (2y/e)~! is in £. Erdés has conjectured that any positive number
less than 1 is in &; that is, that £ is the open interval (0, 1).

We remark that it is easy to see that if E € £, then (0, F] C £. In addition one can
show (using the Brun—-Titchmarsh inequality) that if F € £ then E’ € £ for some E' > FE.
That is, £ is an open interval. We give the proof in Section 6.

Define 7(x;d,a) to be the number of primes up to z that belong to the arithmetic
progression a mod d. The prime number theorem for arithmetic progressions states that

(1.2) m(x;d,a) ~ m(x)/p(d) for = — oo,

provided (a,d) = 1, where ¢ is Euler’s function. An important problem in analytic number
theory is to enquire into the possible dependence on d and a in this asymptotic relation.
For example, may d also tend to infinity as x does and if so, how fast? It is conjectured
that (1.2) holds uniformly for all coprime integer pairs a,d with 1 < d < z'7¢, for any fixed
g > 0. Assuming the Riemann hypothesis for Dirichlet L-functions this conjecture can be
proved for the more restricted range 1 < d < xl/2-e, However, the strongest unconditional
such result known is the Siegel-Walfisz theorem, which asserts that (1.2) holds uniformly
for all coprime integer pairs a,d with 1 < d < (logx)*, for any fixed k.

If one is prepared to disregard a few possible ‘exceptional’ moduli, then one can
significantly improve the range in the Siegel-Walfisz theorem. In particular, it is possible
to show that if () tends to 0 arbitrarily slowly, then (1.2) holds for all coprime integer
pairs a,d with 1 < d < 2°® but for those d which are multiples of a possible exceptional
modulus dy > log z. Further, if one is willing to relax the asymptotic relation in (1.2), then
one can take 1 < d < xP for some small B > 0 and, by allowing a few more exceptional
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moduli, we can get larger values of B. Specifically, let B denote the set of numbers B in
the range 0 < B < 1 for which there is a number z2(B) and a positive integer Dp, such
that for each © > z9(B), there is a set Dg(x) of at most Dp integers, each exceeding log x,
with

m(y)

(1.3) (y;d,a) > 20(d)

whenever (a,d) = 1, 1 < d < min{z?,y/x' B} and d is not divisible by any member of
Dgp(z).

In Section 3 we show that the interval (0,5/12) C B and, in fact, we show a somewhat
stronger theorem for numbers in this interval. We derive our result from a density theorem
of Huxley [Hu| for the zeros of Dirichlet L-functions. Though our precise statement of
Theorem 3.1 appears to be new, that something like this should be derivable from [Hu]
was known to the experts.

Our theorem on Carmichael numbers depends intimately on the sets £ and B.

Theorem 1.1. For each E € £ and B € B there is a number z¢g = xzo(FE, B) such that
C(x) > P8 for all z > xg.

Since (0,1 — (2y/€)~1) C £ and (0,5/12) C B, we conclude that C(z) > 2°~¢ for any
€ > 0 and all large = depending on the choice of ¢, where

B=(1- (2\/5)—1)15—2 = .290306. . ..

This implies the result announced in the abstract.

Our argument is based on Erdés’s original heuristic [Er2], though with certain modi-
fications. The idea is to construct an integer L for which there are a very large number of
primes p such that p — 1 divides L. Suppose that the product of some of these primes, say
C = p1 -+ Pk, is congruent to 1 mod L. Then C' is a Carmichael number, since each p; — 1
divides L which divides C' — 1, and we may apply Korselt’s criterion above. Indeed the
more such products we can find, the more Carmichael numbers we will have constructed.
How large a set of such primes p must we have to guarantee the existence of such products?
We may view these primes p as elements of the group (Z/LZ)* of reduced residues mod L.
The following result, due to van Emde Boas and Kruyswijk (and extending a theorem
independently due to Kruyswijk and Olson), gives a partial answer.

Theorem 1.2. If G is a finite abelian group in which the maximal order of an element is
m, then in any sequence of at least m(1 + log(|G|/m)) (not necessarily distinct) elements
of G, there is a non-empty subsequence whose product is the identity.

We give a simplified proof of this result in the next section.
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So as to be able to apply Theorem 1.2 to finding Carmichael numbers by our proposed
method, we will need to find an integer L, with at least

A(L) (1 + log ‘i&;) > \(L)

primes p for which p—1 divides L. Here, Carmichael’s lambda function A\(L) (see [Cal]) is
the largest order of an element in (Z/LZ)*. However the number of such primes p cannot
exceed 7(L), the number of divisors of L (since each such p is 1 plus a divisor of L), and
usually A\(L) is much larger than 7(L) (see [EPS]). To avoid this problem we will pick our
L so that A\(L) is surprisingly small, while, at the same time, there are many primes p for
which p — 1 divides L. To do this, we select L to be the product of certain primes ¢ for
which the prime factors of ¢ — 1 are all at most y. This is how a number E € £ enters into
the proof.

Prachar [Pr] (see [APR]) showed that there are infinitely many integers m with more
than 2¢legm/loglogm qiyigors of the form p—1, p prime. Here ¢ > 0 is some constant that de-
pends on a number B € B. One cannot do much better, since 7(m) < 2(1+o(1))logm/loglogm
for all m as m — oco. Prachar’s method is to take a number L which is the product of all of
the primes up to some point and show that there is some integer k with k < L¢ and with
m = kL having many divisors of the form p — 1. For our purposes, we need A(kL) to be
inordinately small in comparison to kL. But the introduction of the mysterious factor &
may ruin things, for there is no reason why A(kL) cannot be fairly large, even if we started
with an L for which A\(L) is very small in comparison to L. In Section 4 we will modify
Prachar’s method, so that now, given L, we can find an integer k£ coprime with L such that
there are many primes p = 1 mod k for which p —1 divides kL. The advantage of this over
Prachar’s construction is that we may still apply Theorem 1.2 with G = (Z/LZ)*, since
each of these primes p is in the subgroup of (Z/kLZ)* of residue classes that are 1 mod k,
and this subgroup is isomorphic to (Z/LZ)*.

As mentioned above, it has been conjectured that &€ = (0,1) and that (1.2) holds
uniformly for all coprime pairs a,d with 1 < d < z17¢, for any fixed ¢ > 0 (and so B =
(0,1)). Assuming these conjectures, we see that Theorem 1.1 implies Erdés’s conjecture
that C(z) > 2~ for any € > 0 and all sufficiently large = (depending on the choice of ).
Actually, we can show that one need only assume that B = (0, 1), for in Section 6 we will
prove the following result.

Theorem 1.3. For each B € B, (0,B) C £.

We remark that, for the proofs of Theorems 1.1 and 1.3, one only needs a weaker
version of the definition of BB, where a is restricted to the value 1. In particular, we record
the following result.



Theorem 1.4. Let ¢ > 0. Suppose there is a number x. such that

m(x;d, 1) >

¢, once x > wx.. Then there is a number x. such that

for all positive integers d < z!'~
C(z) > x'72¢ for all x > z.. In particular, if such an x. exists for each ¢ > 0, then

C(z) = 2'=°W for z — oo.

Our proof of Theorem 1.1 is effective in the sense that if numerical values are given for
7 (E), x1(E), and x9(B), then following our arguments, a numerical value for z¢(E, B) can
be produced. However, the larger values of E that we now know to be in £ are proved to
be in £ via the ineffective Bombieri—Vinogradov theorem. It is possible that Friedlander’s
theorem that every positive number E < 1 — (2y/e)"! is in £ could be proved from a
weaker, but effective version of this theorem, but we do not take up this issue here. It
is interesting to note that Erdds’s original proof that £ contains some positive number F
uses only Brun’s method and is thus effective. Our proof in Section 3, that every positive
number B < 5/12 is in B, is effective. Further, from our proof of Theorem 1.3, we thus
have that values for v (E) and z1(F) are effectively computable for every positive number
E < 5/12. We thus have the following theorem.

Theorem 1.5. For each number « in the range 0 < o < 25/144, there is an effectively
computable number x(a) such that C(z) > z® for all x > z(a).

It may also be of interest to actually compute a numerical value for x(a) for some
specific a > 0, but this may be difficult.

It has long been known how to construct infinitely many pseudoprimes for any given
base a (that is, composite numbers n which divide a™ — a). The best lower bound in the
literature had been [Po] that if E € £, then the number of base a pseudoprimes up to z is
at least

exp ((log x) B )

for all large x depending on the choice of E and a. Evidently this result is majorized by
Theorem 1.1.

Until now Duparc’s problem [Du] as to whether there are infinitely many numbers
that are simultaneously pseudoprime to both bases 2 and 3 was unsolved, but this follows
from Theorem 1.1.

Our proof shows there are Carmichael numbers with arbitrarily many prime factors,
but we have not been able to show that there are infinitely many Carmichael numbers with
a fixed number of prime factors. We cannot show that there are infinitely many Carmichael
numbers n divisible by some fixed prime factor, nor even with ¢(n)/n < 1 — ¢ for some
fixed ¢ > 0. Our proof is easily modified to show that there are arbitrarily large sets of
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Carmichael numbers such that the product of any subset is itself a Carmichael number.
It seems to be difficult to prove a ‘Bertrand’s postulate for Carmichael numbers’, that is,
that there is always a Carmichael number between x and 2z once x is sufficiently large.

One can modify our proof to show that for any fixed non-zero integer a, there are
infinitely many squarefree, composite integers n such that p—a divides n —1 for all primes
p dividing n. However, we have been unable to prove this for p — a dividing n — b, for b
other than 0 or 1. One can allow more than one (linear) factor p — a to divide n — 1: for
instance, we can show that there are infinitely many squarefree integers n for which p? — 1
divides n — 1 for every prime p that divides n. However we cannot do the same for p? + 1
dividing n — 1, nor for any polynomial in p with other than linear factors. Such questions
have significance for variants of pseudoprime tests, such as the Lucas probable prime test
(see [PSW], [Wi]), strong Fibonacci pseudoprimes (see [LMO]) and elliptic pseudoprimes
(see [GP)).

Our proof can also be modified to show that, for any given finite set S of positive
integers, there are infinitely many integers n which are strong pseudoprimes to every base
in S, as well as being Carmichael numbers. (We say a positive odd integer n is a “strong
pseudoprime to the base a” if n is composite and either a* = 1 mod n or a2t = —1modn
for some integer ¢ < t, where n — 1 = 2'u and w is odd. It is known that if n is odd and
composite, then n fails to be a strong pseudoprime for at least three fourths of the integers
ain {1,2,...,n—1}.) The primality test programmed into many software packages (such
as Mathematica) is based on the given integer passing strong pseudoprime tests to each
base in a fixed finite set S. It was widely suspected that no matter how large the set
S is taken, there will always be composite numbers that are passed off as prime by the
test. Our result confirms this view and in fact we can show the number of such ‘false
Mathematica primes’ up to x is greater than x to a power, for large x.

We intend to take up these and other questions in a future paper.

Throughout the paper the letters p and ¢ shall always denote primes. The constants
¢1,Ca,. .. are all positive, and will always be assumed to be absolute (not dependent on
any variable), as well as effectively computable. We shall use both | | and # to denote

cardinality of a set, reserving the latter symbol for sets written with braces.
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Maier, Hugh Montgomery, Francois Morain, Richard Pinch, John Selfridge, Jeff Shallit
and Bob Vaughan for their comments and advice concerning this paper. The second and
third authors wish to acknowledge support from NSF grant DMS 90-02538.



2. Subsequence products representing the identity in a group.

If G is a group of order m, then any sequence of m elements of the group contains
a subsequence whose product is 1, the identity. For if the sequence is g1, go2,- -, gm, then
the m + 1 products 1, g1, g192,- -, 9192 - - - gm cannot all be distinct (as there are only m
distinct group elements) and if none of the latter m productsis 1, we get g1---¢9; = g1+ - g;
for some ¢ < j, so that g;41---g; = 1. This result cannot be improved for G = Cy,, a
cyclic group of order m, since if g is a generator of C), and g1 = g2 = +++ = gm_1 = ¢,
then no subproduct is 1.

For a finite group G, let n(G) denote the length of the longest sequence of (not
necessarily distinct) elements of G for which no non-empty subsequence has product the
identity. Kruyswijk [Ba] and Olson [Ol] independently evaluated n(G) when G is a finite
abelian p-group. Baker and Schmidt [BS] gave good upper bounds for n(G) for arbitrary
finite abelian groups and for significant generalizations of this problem, and van Emde
Boas and Kruyswijk [EK]| and Meshulam [Me] each gave the result in Theorem 1.2. We
now restate this theorem and give a simplified proof based on that in [EK].

Theorem 1.2. If G is a finite abelian group and m is the maximal order of an element
in G, then n(G) < m(1 + log(|G|/m)).

Proof. Let g1,92,...,9, be a sequence of elements of G and assume that n > m(1 +
log(|G|/m)). Choose ¢ to be any prime with ¢ = 1 mod m and let F, denote the field of ¢
elements. If we multiply out the product

(al - gl)(a2 - 92) S (an - gn) = Z kgg

geG
in the group ring Fy[G], where ay,as,...,a, € F;, and suppose that no subsequence
of g1,92,...,9, has product equal to 1, then k; = ajas...a,. Thus if we can find
ai,az,...,an € F such that
(2.1) (a1 —g1)(az — g2) ... (an — gn) =0,

then k1 = 0 and we have a contradiction; implying that, in fact, there must be a subse-
quence whose product is 1.

Any character x : G — Fj in the character group G, may be extended to a ring
homomorphism x : Fo[G] — Fy by letting x(3_,cqkq9) = > cq kgx(g). From the
orthogonality relations for group characters, one can show that if b € F,[G] then b = 0 if
and only if x(b) = 0 for all x € G. Thus, since x ([T, (a; — ¢:)) = [Ti—y(a: — x(g:)), we
see that (2.1) holds for a given choice of ai,as,...,a, € F} if

(2.2) for each x € G there exists j, 1 < j <n, such that x(g;) = a;.
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Therefore it suffices to show that one may select a1, as, . .., a, € F; so that (2.2) holds.
To do this, we shall proceed by the “greedy algorithm” of picking a; so that x(g1) = a3
holds for as many y € G as possible, picking as so that x(g2) = a2 holds for as many of
the remaining x € G as possible, and so on. The key observation is that each x(g;) is an
mth root of 1 in F,, and so can be one of only m different values. Thus if S is any subset
of G and g is any element of G, then there is some a € F; with x(g9) = a holding for at
least |S|/m characters x € S. That is, x(¢g) = a does not hold for at most |S|(1 — 1/m)
characters y € §. Thus applying the greedy algorithm sequentially to g1, g, . . ., gk, Where
k = [mlog(|G|/m)] + 1, we may choose ai,az,...,ar € F; so that the residual set of
characters x € G with x(g;) # a;, for each j =1,2,..., k, has cardinality at most

1G)(1—1/m)* = |G|(1 - 1/m)* < |Gle™ "™ < m.

Call the remaining characters x1, x2,..., X», where 0 <r <m—1. Sincen>k+m—1>
k+r, we still have ag41,agy2, ..., ar, remaining to be chosen. We choose them by letting
ap+j = Xj(gr+jy) for j =1,2,...,r. If k+r < n, we may choose the remaining a;’s as

arbitrary members of F}. Thus (2.2) holds and the theorem is proved.

Remark. In 1966 Davenport asked for the best possible bound in Theorem 1.2, since this
gives the largest number of prime (ideal) divisors that can divide an irreducible integer in
an algebraic number field with class group G. For this and other applications, it is still of
great interest to get the best possible result above. Our argument here may be sharpened
to give the bound m(y + ¢ + log(|G|/m)) provided m and |G|/m are each sufficiently large
(as a function of ¢), for any given & > 0, where + is the Euler-Mascheroni constant.

The next result allows us to construct many such products.

Proposition 2.1. Let G be a finite abelian group and let r >t > n = n(G) be integers.
Then any sequence of r elements of G contains at least (:) / (;) distinct subsequences of
length at most t and at least t — n, whose product is the identity.
Proof. Let R be a sequence of r elements of G. Since r > n there is, by the definition of
n(G), some subsequence of R whose product is 1. Let S be the longest such subsequence,
with cardinality s, say. Then s > r — n, since otherwise R\ S contains a subsequence
whose product is 1, and this subsequence might be appended to S, increasing its size,
which contradicts the maximality of S.

Let T be any subsequence of S of cardinality t — n. If the product of the elements of
T is g then the product of the elements of S\ T is g~!'. Let U be the smallest (possibly

1. Evidently U has cardinality at most

empty) subsequence of S\ 7" whose product is g~
n else, by hypothesis, there exists a subsequence of U that has product 1 and this can be

removed from U to make it smaller.



So V = TUU is a subsequence of S (and thus R), in which the product of the elements
is 1, and which has size at most (¢ —n) + n =t and at least ¢t — n.

The number of ways of choosing such a pair of sequences (T, U) is at least the number
of ways of choosing T" and is thus at least ( t_sn). The maximum possible number of different
sequences T' which give rise to the same sequence V' = T'UU is at most ( t'l/n) < ( t_tn) = (i)
Therefore the number of different subsequences V' that we have created is at least

(2a)/G) = G2)/G) = ()/6)

This completes the proof of Theorem 1.2.

3. Primes in arithmetic progressions.

For each Dirichlet character y and real numbers o, T in the ranges 1/2 < o < 1,7 > 0,
let N(o,T,x) be the number of zeros s = (3 + iy of the Dirichlet L-function L(s, x) inside
the box 0 < <1 and |y| < T. Let A be the set of real numbers A > 2 for which there
exists a number y5(A), such that forallc >1—-1/A and T > 1,

(3.1) N(o,T,d):= >  N(0,T,x) < 72(A)(Td)*~),

One form of the ‘density hypothesis for Dirichlet L-functions’ asserts that every number
A > 2 is in A, though the best that is currently known unconditionally is that every
A > 12/5 is in A, which can be derived from a result of Huxley [Hu|. Note that (3.1)
cannot hold for any A < 2 (with ¢ = 1/2), since the number of zeros of L(s,x) up to
height 7" in the critical strip is of order of magnitude T'log(7'd) — see [Da|, Chapter 16. In

particular, there is an absolute, effectively computable constant ¢; such that
(3.2) N(1/2,T,d) < c1Tdlog(T'd)

for each integer d > 1 and number 7" > 2. Note that (3.2) gives a better result than (3.1)
for fixed o in the range 1/2 <o <1 —1/A.

The following result shows that if A € A, then all B with 0 < B < 1/A are in B. In
particular, since (12/5,00) C A, we have (0,5/12) C B.

Theorem 3.1. Let A€ A, £ >0, 6 > 0 be arbitrary. There are numbers z. s, D. s such
that for each x > x. 5 there is a set D, s(x) of at most D, 5 integers, each exceeding logz,
for which

ﬂ-(ya d7 a’) -



whenever (a,d) = 1, 1 < d < min{z'/A~% y/x'=1/A+%} and d is not divisible by any
element of D, s(x). Furthermore, every member of D, 5(x), but for possibly one element,
exceeds x", where 1 = 1. s is a positive number that depends only on the choice of ¢ and 9.

Proof. One may assume throughout that ¢ and ¢ are extremely small, depending on the
choice of A; the result for larger values of €, ¢ follows as an immediate consequence of the
result for small €, 4. Also the estimate for 7(y; d, a) is given by the prime number theorem
for arithmetic progressions when 1 < d <logy (see [Da], p. 123, eq. (9) and the following
display), so we need only consider values of y and d in the ranges

(3.3) da' /AT < y<e® and logr<d< /A0

Let R =36 tlog(s 16 1).

From Chapters 16, 19 and 20 in [Da] we can deduce the following explicit formula for
prime numbers in an arithmetic progression. For integers a, d with (a,d) =1, d > 1 and
numbers y > 2, 1" > 2, one has

p=a mod d

yﬁ+w
B+ iy

2
+0 ( 1210g2(Td) + ylog#@dy)) |

¥ ¥ x mod d L(B+iv,x)=0

B>1/2, [7|<T

We take T = 2? so that from (3.3) the big oh terms are together at most ‘-ey/¢(d) once
x is sufficiently large. Moreover the double summation may be bounded by noting that

each |x(a)| = 1, |y?T| = y% and |8+ iy| > /1/4+72 > (1 + |7])/3. We thus deduce
that for x large,

y 1y y°
(3.4) Z logp — ) < e —d Z Z T

p<y Xmodd L(B+iv,x)=0
p=a mod d B>1/2, |v|<z3

Write Z? for a sum over all zeros 3 + iy of L(s,x) and over all characters x mod d,
where 0 < 3 < a and |y| < 3. (Each 3 + i~y is counted with multiplicity equal to the
number of these L-functions for which it is a zero.) Since there are no zeros [ + iy with
B > 1, the double sum on the right of (3.4) is

1-1/A P T yP 1 P
3.5 _J
39 2ap Tapl T 2 Tp b 2T

where we write 7 for 1 — R/ log(z?).
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Note that for any o > 1/2, T > 1, we have

Zi—ulwﬁN(”’O’d)* o (N(o, T, d) = N(o, 7], )

(3.6) + Z %(N(Uan,d) — N(o,n—1,d))

N(o,T,d) N(o,n,d)
STt T

n
n<T

From (3.3) and an easy calculation, we get d < min{z/4=% y'/4=9} Thus from (3.2)
and (3.6) we get

1 1 3 3 1 9, 3 1 1a
B 2R |—Cld(log< d) + log(z*d) ;E)s@cllog (z°d) < <y

if z is sufficiently large.

It is now easy to estimate the first sum in (3.5). We have, by (3.7),

1-1/4  yf Yl 1/A 1
(3:8) 2 s TN Z1/2 1+|| 1Y

For the second sum in (3.5) we use the identity y® = y'~1/4+logy f1I871/A y°do. Thus
from (3.6) and (3.7) we have, for large z,

T yﬂ T yl_l/A 1 T ]_ B d
f + g
2oca T ]~ 2eya T T O Tl SV
yl 1/A T - 1
3.9 < + logy/ y"( 7>da
(39 <X T a2 TR
1 T N(o,z3,d) N(o,n,d)
< _ 1 0'< ) ) ) ) >d .
< Y + Ogy/l_l/Ay — 3 +n;3 — 5 )do
From (3.1) we have for 0 >1—-1/A, T > 1,
N(o,T,d) N(o,n,d) (Td)A1=2) (nd)A1=2)
= ST (AN Ak
T + T;F n?2 < 72( )< T + n;T n? )
_ 72(A)dA(pa) <TA(1—0)—1 n Z nA(lfa)72>
n<T
< [(A)dA =) (2 +10gT) foro>1-1/A
= | 372(A)dA(—) for 0 > 1 —1/(24).
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Thus the final integral in (3.9) is at most

1-1/(24) T

o (A)dA ((2 + log(z%)) /11/A <d%)ada + 3/11/(2A)(d%)0d0)

: % (<2 loge) () +3(d%)T>

oty (e () s () )

But y/d* > 2" /A9 /qA~1 > 294 and since e 0AR/3 = 544 < 5222, we get from (3.9)
that

T B 1 A 9
(3.10) ) < eyt gl )y <(2 +log(a®))a ™% + 3e‘5AR/3> <=

AT+ ] S 1L 5A 11

for all sufficiently large x.
We now use Theorem 14 of [Bo] which states that for all "> 2, o > 1/2,

(3.11) Y ) NT,x) < o),

d<T xmodd
X Pprimitive
for certain absolute, effectively computable constants cs,c3. We shall let D, s(z) be the
set of integers d with 1 < d < x!/A=? for which there is a primitive character Y mod d and
a zero (3 + iy of L(s,x) satisfying

(3.12) B>1— R/log(z?), |y| < a®.

From (3.11), |De s(x)| < co(2%)os R/ log(z”) — coe® | so that we may take D, 5 = coe %,
This proves one of our assertions about the set D, s(z).

Suppose d < z'/A-9

and d is not divisible by any member of D, s(x). Then for any
character x mod d, L(s, x) has no zeros in the region (3.12), so that for such a number d,
the third sum in (3.5) is 0.

Assembling (3.4), (3.5), (3.8), and (3.10), we then have, for all sufficiently large z,

that 0
Z Yy Y
logp - ‘ S - € 9
‘ pgy p(d) 11" ¢(d)

p=a mod d

provided (a,d) = 1 and d is not divisible by any member of D, 5(x). By taking z larger
if necessary, using partial summation and the prime number theorem (see Chapter 18 in
[Da]), we have

m(y;d,a) — —{ < 590—



which is our principal assertion.

It remains to prove the claims about the size of the members of D, 5(z), and for this
we use the lemma of Landau—Page (see p.39 of [Bo] or pp. 95, 96 of [Da]). This result
asserts there is an absolute, effectively computable, positive constant ¢4 such that for all
T > 2, there is at most one primitive character y with a modulus not exceeding T for
which L(s, x) has a zero By + 7o satisfying By > 1 — ¢4/logT. Further, if such a zero
exists, it satisfies v = 0 and By < 1 — ¢5/(T"/?1ogT), where c5 is an absolute, positive
and effectively computable constant.

Let n = 3cy/R. Since 1 — ¢4/ log(z") = 1 — R/log(z?), there can be at most one
d € D, s(z) with d < 2. Further, if such a number d exists, we must have 1 — R/ log(z?®) <
1—cs5/ (dl/ 2logd), so that d > logx, once x is sufficiently large. This completes our proof
of Theorem 3.1.

Remarks. We have identified D, s explicitly as a function of € and J. Further, it should be
clear from the proof that if € and J are given “sufficiently small”, then z. s is also effective.
But what is considered sufficiently small depends on the value of y5(A) (see (3.10)). Since
a value for 7,(A) is, in principle, effectively computable in the work of [Hu|, Theorem 3.1
is effective for any A > 12/5.

As a final remark, note that the set D, 5(z) is defined so as to create the zero-free
region (3.12) for the remaining L-functions. It is possible to truncate the height of this
region to |y| < T 5, where 1, s depends only on the choice of ¢ and §. Indeed, if we take
T. s = 12¢7' D, 5, then the third sum in (3.5) might not be 0, but it is easily shown to be
negligible.

4. Prachar’s theorem revisited.

Since the probability that a random positive integer below z is prime is about 1/ log x,
one might expect that for all integers L > 1 and numbers z > 2,

#{d|L:d <=z, d+1is prime} > é#{dw 11 <d <z},
x

for some absolute constant ¢ > 0. This cannot be precisely true in general: for example,

suppose L is odd. Nevertheless, we can actually prove a statement similar to this.

Theorem 4.1. Suppose that B is in the set B defined in Section 1. There exists a number
x3(B) such that if x > x3(B) and L is a squarefree integer not divisible by any prime
exceeding 1 ~B)/2 and for which > prime ¢z 1/4 < (1 — B)/32, then there is a positive
integer k < x'=8 with (k, L) = 1, such that

2—DB—2
#{d|L : dk+ 1< x, dk+ 1 is prime} > W#{dw 11 <d< 2B,
x

13



Proof. We let z3(B) = max{zs(B),17:=5) "}, Suppose that B,z and L satisfy the
hypotheses. For each d € Dp(x) with (L,d) > 1, remove some prime factor of (L, d) from
L, so as to obtain a number L’ which is not divisible by any member of Dg(x). Therefore
w(L') > w(L) — Dp, where w(m) is the number of distinct prime factors of m, and so

(4.1) #{d|L 1 <d<y}>2"Pe#Ld|L:1<d<y}

for any y > 1. To see this note that for each divisor d of L with 1 < d < y, the integer
d =d/(d,L/L) is a divisor of L’ in the range 1 < d’ < y. Further, there are at most
ow(L/L") < 2PB (ifferent values of d which map to the same number d'.

From (1.3) we see that, for each divisor d of L’ with 1 < d < 2, we have

7(dat=B) do'=B S do'=B
20(d)  — 2¢(d)log(dzt=B) = 2p(d)logzx’

(4.2) n(dz'"P;d, 1) >

since 7(y) > y/logy for all y > 17 (see [RS]). Furthermore, since any prime factor ¢ of L is
at most (1~ 5)/2 (by hypothesis), we can use Montgomery and Vaughan’s explicit version
of the Brun-Titchmarsh theorem [MV], to get

2dzl—B < 4 dxl—B < 8 dxl—B
(dq)log(z*=E/q) — ¢(q)(1 — B) ¢(d)logz ~ q(1 — B) ¢(d)logz

Therefore, by (4.2), the number of primes p < do'™# with p =1 mod d and
((p—1)/d,L) = 1 s at least

m(de' =B dg, 1) <
¥

m(de' =B d, 1) — Z 7(dz't=P:dg, 1)

prime q|L
1-B 1-B
2 1-B . q) p(d)]logz ~— 4logx
prime q|L
Thus we have at least
.’L’l_B

1<d< B
4log:c#{d|L 1_d_a:}

pairs (p, d) where p < dz' B is prime, p = 1 mod d, ((p—1)/d,L) = 1,d|L' and 1 < d < z5.
Each such pair (p, d) corresponds to an integer (p—1)/d < 2!~ that is coprime to L, and
so there is at least one integer k < 2! with (k, L) = 1 such that k has at least

1

1<d< B
4log:c#{d|L 1_d_a:}

representations as (p — 1)/d with (p, d) as above. Thus for this integer k we have

#{d|L : dk +1 <z, dk+ 1 is prime} > #{d|L':1<d<2B}

4log x

and the theorem now follows from (4.1).
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5. Carmichael numbers.

In this Section we shall prove the following theorem.

Theorem 5.1. For each E € £, B € B and ¢ > 0, there is a number z4(E, B,¢), such
that whenever x > z4(E, B, ¢), we have C(z) > 2FB~¢.

This result appears to be slightly weaker than Theorem 1.1. However, as we shall see
in the next Section, £ is an open set. Thus if £ € £, there is some E’ > E with E’ € &,
so that letting e = F/ — E, we may take z¢(E, B) in Theorem 1.1 to be z4(F’, B,¢). That
is, Theorem 5.1 and Proposition 6.1 imply Theorem 1.1.

Proof of Theorem 5.1. Let F € £, B € B, ¢ > 0. Clearly we may assume ¢ < EB. Let
6 = (1-E) ! andlet y > 2 be a parameter. Denote by Q the set of primes ¢ € (3°/logy, 1]
for which ¢ — 1 is free of prime factors exceeding y. By (1.1),

yO

log(y?)

(5.) 19> g ()

for all sufficiently large y. Let L be the product of the primes ¢ € Q; then
(5.2) log L < |Q|log(y?) < m(y%) log(y?) < 27,

for all large y. Now A(L) is the least common multiple of the numbers ¢ — 1, for those
primes ¢ that divide L. Since each such ¢ — 1 is free of prime factors exceeding y, we know
that if the prime power p® divides A\(L) then p < y and p® < y?. Thus if we let p® be the
largest power of p with p® < ¢, then

(5.3) ML) < [ <[]0 =" < e

p<y p<y

for all large y.
Let G be the group (Z/LZ)* and recall the number n(G) defined in Section 2. We
conclude from Theorem 1.2, (5.2) and (5.3) that

(5.4) n(G) < ML) (1 +log ‘igg) < AL)(1+logL) < e30¥

for all large y.
Let 6 = ¢0/(4B) and let x = v’ Since

1
Z = Z §§2910gy = 32

prime g|L y9/log y<q<y®

Q=



for sufficiently large y, we may apply Theorem 4.1 with B, x, L. Thus for all sufficiently
large values of y, there is an integer k£ coprime to L, for which the set P of primes p < x
with p = dk + 1 for some divisor d of L, satisfies

—Dp—2
(5.5) |P| >

#{d|L:1<d<zP}.

log

The product of any

~ [log(zP)] [Blogz
[ log(y?) flogy
distinct prime factors of L, is a divisor d of L with d < zB. We deduce from (5.1) that

#{d|L:1<d <} > (W(L)) > (@)u > (%(E)ya)u - (%(E)ye‘l“s)u.

U U 2B logx 2B
Thus, by (5.5) and the identity (§ — 1 — 6)B/0 = EB — ¢/4, we have
2P5=2 (i (B) 44 G\, /3
. > T > €
(56) Pz log x ( 2B 7 ) =7

for all sufficiently large values of 3. Now take P’ = P\ Q. Since |Q| < y’, we have by
(5.6) that

(57) ‘7)/| > xEB_E/2

for all sufficiently large values of y.

We may view P’ as a subset of the group G = (Z/LZ)* by considering the residue
class of each p € P’ modulo L. If S is a subset of P’ that contains more than one element
and if

I(S) := Hp = 1mod L,
peES
then II(S) is a Carmichael number. Indeed, every member of P’ is 1 mod k so that
II(S) = 1 mod k, and thus II(S) = 1 mod kL, since (k,L) = 1. However if p € P’ then
p € P so that p — 1 divides kL. Thus II(S) satisfies Korselt’s criterion.

Let t = ev' /" Then, by Proposition 2.1, we see that the number of Carmichael

numbers of the form II(S), where S C P’ and |S| < ¢, is at least

() » (B fros ey e

for all sufficiently large values of y, using (5.4) and (5.7). But each such Carmichael number
I1(S) so formed is such that II(S) < 2. Thus for X = z* we have C(X) > XEB=¢ for
all sufficiently large y. But X = exp(y'*® exp(y'*9/2)), so that C(X) > XFB~¢ for all
sufficiently large values of X. Since y can be uniquely determined from X, this completes
the proof of Theorem 5.1.
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6. The sets £ and B.

In this Section we prove Theorem 1.3 and show that £ is an open interval. The second
result is particularly easy, being an almost immediate consequence of the Brun-Titchmarsh
inequality.

Proposition 6.1. There is some number Ey with 0 < Ey < 1 such that £ = (0, Ey).
Proof. Since Erdés has shown that £ contains numbers £ > 0 and since we evidently have
(0, E] C € for any E € &, it suffices to show that for any F € £ there is some FE’' > E with

E' €&. Let F € £ and let E' be any number with £ < E’ < 1. By the Brun-Titchmarsh
inequality (see [MV]), we get for x > z1(F) that

(2, 2 F) > n(z, 2 F) — Z m(x;p, 1)

r1—E’ §p<x1—E

> (B — Y r

Now using 7(z) > x/logx for all x > 17 (see [RS]), we have for z > x1(FE),x > 17 that

1By n(E)z Z 2z

(@, log x E(p—1)logx

21— E' <p<gl-E

P E 2 )

wle/ §p<m1*E

By Mertens’ theorem, we have

Z b =lo 1_E+O _
p—1 S1_F (1—FE")logx

21=B' <p<gl—B

for x > 1. Thus if E’ is taken so close to E that

2 1-F 1
N (E) - E 1085@ > 5%(E)a

say, then

’ 1 X
1-F
—v1(E
7r(:1:,x ) > 371( )logm’

for all large . We conclude from the prime number theorem that E’ € £, completing the
proof of Proposition 6.1.

We now give the proof of Theorem 1.3.
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Proof of Theorem 1.3. Assume that B € B and that x > x9(B). Choose a number § in
the range 0 < 6 < B and let ¢ = §2/(20B). For each member d of Dg(z), let ps be some
prime factor of d and let P be the set of primes in the interval [m‘;/ 2 20/ 2+¢] that are not
equal to any pg. Thus P is missing at most Dpg primes from the above interval, so that by
Mertens’ theorem

3 % — log(1 + 6/(10B)) + O(1/(8log z)).

peEP

‘We deduce that

1 0
6.1 >
(6.1) Z p ~ 20B’
pEP
for all sufficiently large x.
We shall give a lower bound for 7(z, ! ~#%%) by counting pairs (¢, d), where ¢ < z is

a prime in the congruence class 1 mod d, and d is an integer in the range 227% < d < 2B,

whose every prime factor lies in P. Evidently any such prime ¢ must be counted in

1—B+5)

m(z, x , but will not be involved in more than 22/% such pairs (g,d) (since ¢ — 1

cannot have more than 2/ prime factors from P). Thus from (1.3) we have

(g pt— B0 —2/6 (e —1-2/8 @
(6.2) (, ) > 2 > w(xd 1) >2 > o

~—

CEB_‘;SdSmB :EB_(SSdSCEB
pld=peP pld=peEP

for all x > xo(B). Let u denote the least integer with u > (B — 4)/(6/2) so that

B—-§<wud/2 and u(5/2+€)<(2B/6—1)(6/2—|—5):B+1%—g—6<B.

Therefore any product, d, of u not necessarily distinct primes from P satisfies

J/,chs S xué/? S d S mu(5/2+:—:) S xB,

and so, by (6.1),

Since 1/¢(d) > 1/d we can insert this estimate into (6.2) to deduce that (1.1) holds for
FE = B — § with some number v, (E) satisfying v, (E) > 2-12/9y5(B, §). This completes
the proof of Theorem 1.3.
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