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1. Introduction.

The First Case of Fermat’s Last Theorem is said to be true for prime
exponent p if there do not exist integers x, y, z such that

(1.1) 2P +yP 4+ 2P =0 where p does not divide zyz.

Instead we shall assume throughout this paper that (1.1) does have solu-
tions and then deduce a variety of implausible consequences.

For example, in 1857 Kummer showed that if (1.1) has a solution then,
for all n in the range 2 <n <p—1,

p—1
(1.2) either B,_, =0 (mod p) or Zj"’ltj =0 (mod p)
§=0
for each t € {—x/y, —y/z,—z/x}, where B,,, the nth Bernoulli number, is

given by
X X"
X7 - 2B
n>0

As a consequence one can show that p must divide Bp_3, By—s and many
other Bernoulli numbers too.

In 1909 Wieferich surprisingly deduced, from Kummer’s criteria, that
p? must divide 22 —2. Soon others deduced that p? must also divide 37 — 3,
5P —5 and so on; and Frobenius outlined a method to continue proving such
criteria. However it requires a great deal of work to verify each successive
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criteria, and so, even now, has only been computed up to p? divides ¢? — ¢,
for all ¢ < 89.
In 1914 Vandiver proved that p divides B,_1 (%) — B, 1 forl <a<4,

P .
as well as p? divides 5” — 5, where B,_1(t) = (pgl)Bjtp*I*J is the

(p—1)st Bernoulli polynomial. In 1938, Emma Lehmer generalized this to p
divides B,—1 (%) —By_1forl <a<gq, forqg=2,3,4and 6. Recently Skula

showed that one could successively prove that p divides Bp,_; (%) — Bp_1

for 1 < a < g, for each ¢, at the same time as proving p? divides ¢? — q.

In this paper we shall present (hopefully easier) proofs of these results,
and of some consequences, and give some new results and possible direc-
tions.

2. The structure of the pth cyclotomic field and
Kummer’s Theorem.

Let & = ¢, be a primitive pth root of unity, K = Q(&), and C be the
ideal class group of K. Let G be the Galois group of K | Q, and x be a
generator of the character group of G (in the multiplicative group of the
field of p elements, F}), so that

X(0a) =a where o4 :§+— &%
It is well-known (see [Wal, §6.3) that

p—1

c/cr =P (c/eh) ()

i=1
where
(C/CP)(x) ={T € C/C?: 17X € CP for all o€ G

moreover if i > 3 is odd and (C'/CP)(x?) is non-trivial (contains an element
other than CP) then p divides Bp—; (this result is known as Herbrand’s
Theorem). If we consider the natural homomorphism 7 : C' +— CP, defined
by 7(I) = I?, we see that ker 7 = {I : I'” is principal}. Moreover C/ker T =
CP? (by the first isomorphism theorem), and so C/CP = ker 7 (as C' is an
abelian group). Thus we may re-write Herbrand’s Theorem to read:

If i > 3 is odd and

(ker 7)(x") := {I € C': I? and 1°7X'(@) are principal for all & € G}

is non-trivial then p divides B),_;.
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One of Kummer’s more remarkable ideas was to understand A,/Ap
(where A is the ring of integers of K and A, = A/pA) by using loga-
rithmic derivatives (which was later generalized by Coates and Wiles -
see §13.7 in [Wa]): For v = v(¢) = ao + a1€ + ... + ap_1£P71, not di-
visible by (1 — &), define v(e¥) = ao + are® + ... + ap—1e?~YX and
0a(7) = ()" {logv(e¥))} |x—o, for 1 < n < p—2,in F, (note that
this value is independent of the way that we write v). Observe that
Ly(v(€9)) = 54, (v(€))  (mod p). Kummer noted that £, (a3) = £, () +
£,(8) (mod p) and so £,(7?) =0 (mod p). Also £,(£%) = a (for n = 1),
0 (otherwise), and if v € Z[¢ + 7] then £,(y) =0 (mod p) for odd n
in the range 3 < n <p—2: therefore, as every unit u of A is a power of
¢ times an element of Z[¢ + ¢71] thus £,(u) = 0 for odd n in the range
3<n<p-—2. If () = (2)P then v = uz? for some unit u, and so

(2.1) lp(y) =0 (mod p) for each odd n, 3<n<p—2.

Let 7, = Y x7%(0)o. Observe that if J = I", for any ideal I, then
ocG

Jox'(9) is a power of I? for every o € G; and so J € (ker 7)(x?) if I? is
principal. Moreover, since £,(27¢) = a"™{,(z) (mod p) we have

p—1

n(z™) ZX 04)a" ln(2)
(2.2) = _€n<z) (mod p) ifn=4 (modp—1);
. ~ 10 (mod p) otherwise.

Now suppose that we have a solution to (1.1). Factoring 2P 4+ y? we get
the ideal equation

(T+y)(z+&y) ... (x+ L y) = (2)P.

Evidently if i Z j (mod p) then (z + &'y, z + &Iy) divides (1 — &) (which
divides (p)) as (x,y) = 1, and so (x + 'y, x + &Jy) = 1 since p does not
divide z. Therefore each (z + &y) = I;D for some ideal I;, by the unique
factorization theorem for ideals. Thus the ideal

0; :=I" € (ker 7)(x*) for every 2 <i<p—2 (where I =1).

If 0; is non-principal then p divides B,_; by Herbrand’s Theorem. On the
other hand, if 6; is principal, say 0; = (z;), then (z;)! = 6% = IP" =
(z + &y)™, so that

(2.3) (x4 &y)" =w; in K*/(K"),

for some unit u;. Applying ¢;(.) to both sides of this equation, we deduce
from (2.1) and (2.2) that £;(x + &y) =0 (mod p).
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This is a ‘new’ proof of Kummer’s result (stated slightly differently),
though all the steps presented here are implicit in the literature. However
we feel that this proof is more enlightening than the two standard ones,
namely that of Kummer (see §7 of [Ri]) which is a mire of complicated
details, and that which may be deduced from explicit reciprocity laws (see
§9.5 of [Ri]) which is elegant but unilluminating,.

Although the statement above is what Kummer actually proved, Miri-
manoff simplified it to the statement given in the introduction by observing
that, for t = —y/z,

ot + &) = (2) onte+ el = (83) {12 o

and, ast # 1 (mod p) (else p would divide z),

1 1 p—! . 1 p—1 ) o™
= Jpdv — i L0
1—tev 1—tpepv Zte —lftpz Z] 5 - (mod p)
Jj=0 m>0 | j=0
and so
p—1
(24) En($ + fy) = — T Zjnfltj (mod p), for all n Z 2.
=0

Pollaczek provided an explicit formula for the polynomials ¢, (x + £y):

By noting that
0 1 _, 0 1
v \1—tev) Ot \1—te)’

we deduce that, for n > 2,

Nt o1
bz +&y) = — (@) m!vzg

_o (L ()T L
o ot 1 — tev!v=0 " ot 1—t¢

Then, by a straightforward induction hypothesis, we get for n > 2,
29 bale 4 9) = (1 Y0 2 L
. n > j::l j (t _ 1)j )

where s, ;, the Stirling numbers of the second kind, are defined by 51 ; =
1(for j = 1),0 (otherwise), and then sp41,; = j(Sn,j + Sn,j—1) (so that, for
instance, X™ =377 | sp,j ()j))
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It is possible to say a little more above in the case that 6; is principal:
Multiplying (2.3) by its complex conjugate we find that u;u; is a pth power
in K and so, writing u; = &%; for v; € Z[¢ + ¢71] we find that v? is a
pth power and thus so is v;. Therefore we can take u; = £* in (2.3) and
comparing ¢1(-) of both sides gives a = 0 (mod p), and we deduce that
(x+&y)" =1in K*/(K*)P. Therefore

p—1

(2.6) [T@+eyy " =2r

Jj=1

for some z; € K. Thaine made this observation some time ago and has
since worked to derive a similar criteria for even 7, 2 <¢ <p—3:

3. Thaine’s ideas.

Define Uy to be the group of units of Z[¢ + ¢71], which contains
the group of ‘circular’ units, V, generated by (£¢ — ¢79)/(¢ — &) for
a=23,..., p—gl. It is well known that U, the group of units of Z[¢],
is generated by U, together with £. It is of great interest to understand
the structure of W = U, /V, the non-circular units of Z[¢ + ¢71], and
particularly its p-part. Again we can decompose

p—3

W/WP = @ (W/WP)(x"),

and a remarkable result of Vandiver tells us that (W/W?)(x") is non-trivial

p—1 @ s—ana '
if and only if v; == [] (5 =L ) is a pth power in K (see Theorem

s
a=1
8.14 in [Wal), say oFf. (Indeed if we define § : W — WP as §(w) = wP
then, proceeding as in the previous section, W/WP = ker 0, and o €
(ker 0)(x") = {w e W :wP and w’ X'(?) ¢ V for all o in G}.)
Since

(3.1) <ﬂ)" =1 in V/VP

¢t ! ’
we can deduce that
(3.2) v is a power of v;, for any v € V.

Moreover, applying (2.2) to (3.1) when a is a primitive root  (mod p)
(so that a* =1 £ 0 (mod p)), we find that £,(v;) =0 (mod p) except
perhaps when n = ¢, in which case
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F—1 g
_ 1 9 Z (log(e** — 1) —log(e*" —1) — (a — 1)v) |
at—1 \ov v=0
~1 (oN\""1/ 2w 2v 20
: — B - - %8,
(3-3) at—1 (81}) v <62‘W—1 62”—1> ’”:0 i

(Note that if v; is a pth power then (3.3) implies that p divides B;.)

Now, assume that (W/W?)(x") is trivial. In [Th1], Thaine proved that
if (W/WP)(x") is trivial then (C/CP)(x") is trivial (this may be deduced
directly from the ‘Main Conjecture’, first proved by Mazur and Wiles, but
Thaine’s proof is much easier, and its generalizations have led to the many
recent important advances of Kolyvagin, Rubin and others). This implies
that #;, from the previous section, must be principal.

Since (z + &y)" € Z[¢ + €] we may assume that u; € Uy in (2.3).
Therefore u)" € (W/W?)(x") (which we have assumed to be trivial), and
sou]” € V in U/UP. But then u;”g = (u]*)™ is a power of v; (say, vi*) in
U/U? by (3.2). On the other hand, n? = —7; in F}, so that n? = n;, and
thus raising (2.3) to the power n? gives us

(3.4) (x+&y)" = vt in K7/(K7)”

(which is Theorem 2 of [Th2]). Applying ¢;(-) to both sides gives, by (3.3)
and (2.2),

%

(3.5) Li(x +&y) = /@1'2731' (mod p)

Vandiver conjectured that W/W? is always trivial and this has recently
been verified for all p < 106 in [B]. If this is true but p nonetheless divides
B; then {;(x + &y) =0 (mod p) by (3.3).

Similar arguments also apply in the ‘second case’ of Fermat’s Last The-
orem (see [Th2]).

4. p-Divisibility of Bernoulli numbers.

p—1 )
If t £ —1,0 or 1 (mod p) then Zoj3*1tﬂ = fgljt;g (1—1t7) £ 0
=

(mod p). Since either ¢t = —x/y or —y/z is # —1,0 or 1 (mod p), we
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deduce that p divides Bp,_3 by Kummer’s Theorem (1.2). This argu-
p—1 .

ment generalizes for if p does not divide B,_,, (n odd) then Y j7 1/ =
j=0

p=1 )
ST H1—t)7 =0 (mod p) and so p must divide the resultant of these
j=0

two polynomials (after dividing them both by appropriate powers of ¢ and
(1 —t)). Krasner showed that this resultant is < (n — 1)!?(»=2) (which
is < 71,2"2) and thus < p for n < (logp/loglogp)*/2. Thus if (1.1) has
a solution then p divides B, ,, for all n < (logp/loglogp)*/2. Explicit
computations of this resultant have shown that p must divide B,_,, for all
n < 45.

Let @ ={i odd: 3<i<p—2and ¥, is non-principal}. Then

p—1 p—1

Ilc/l—k:: |I 92 2k = H Hi 2k in C
i=1 i=1
i odd i odd €9

(as 01 € (ker 7)(x) = (C/CP)(x) which is well-known to be trivial-see
[Wa], §6.3). Let r = |Q] + 1. Evidently {I;/I_ : 1 < k < r} must
be multiplicatively dependent in C, so there exist integers a1, ..., a, such

T
that ] (Ix/I_k)* is principal, and raising this to the pth power we get
k=1

r 3 @j
H (M) = uw? for some w € K and unit u.

o \E Ty

Multiplying this equation by its conjugate we find that uw is a pth power,
and so, as in section 2, u = £° for some integer b. So we may write

T l _ £]t aj b
4.1 —_— = p
-y (=) -~
Jj=1
where t = —xz/y. Using (2.4), it is easily verified that

T
QZjaj
j=1

p—2 r 17€Jt a; p—1 . T
>\ I (7=¢%) (}Z_ﬁk fk):ﬁ

n=1 j=1

" 1 1
+Zjaj(1§jt_1§jt) (mod p),
Jj=1

p—1
and from (4.1) this is = Y. ¢¥b = —b (mod p). Therefore
k=1
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r

1 1
Zjaj (l—fjt - 1—§—jt) =c¢ (mod p)

Jj=1

for some integer ¢. Multiplying through by ] (1—£&7t)(1—£77t) we see that
j=1

the coefficient of & 2 is0 (mod p), and that the coefficient of ¢, for some
smaller ¢, is # 0 (mod p) (provided r(r 4+ 1) < p— 1) which is impossible.
Thus ii(p) = #{2n.2 < 2n <p—-3and p | By, } > | > \/p—2. (It seems
that the proofs in the literature ([Wa], Thm 6.23), usually avoid explicitly
using the Kummer homomorphism, but nonetheless take some equivalent
logarithmic derivative).

5. p-Divisibility of Fermat quotients.

There does not seem to be any particularly illuminating method of
deducing the p-divisibility of Fermat quotients. This is perhaps because
they seem to always be expressed as linear combinations of our polynomials

p—1 )
3" "1, and such combinations only seem to arise naturally in reference
=0
to explicit reciprocity laws.

Here we will develop a much shorter version of [GM]: Define F(z) =

n p71 . .
lflte”” = Z; fa(t)5r so that fu(t) = —loypa(1 — 1) = (1,1‘tp) >t
n>0 7=0

(mod p) by (2.2). From this we see that, fort Z0or 1 (mod p), fp—1(t) =
0 (mod p). By noting that

(—1)i-1. %(?) =lp.22p  U=D=p.1=1 (py0d p) we see that

1 I = R
fo—2(t) = 25 {(t_l)i#} = #{x”—i—y?’— (x+y)’} (mod p) for t =
—x/y. Easy elementary arguments (see §4.3 of [Ri]) give 2P~ = yP~1 =1
(mod p?) and = + y is a pth power, so (x +y)?~! = 1 (mod p?); thus
fp—2(t) =0 (mod p). From this and Kummer’s congruences (as proved
in section 2), we have

(5.1) By_1_nfu(t) =0 (mod p)

forn=1,2,...,p— 1.

In this section we will develop a theory of such congruences by consid-
ering the power series of which these functions are coefficients. Thus we
rewrite (5.1) as:

For any integers ¢, r, s,

The coefficient of X7~ ! in B(¢X){Fi(rX) — F;(sX)}
is =0 (modp) if p fq

(5.1)
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where B(X) = X/(eX — 1). Incidentally, from the identity
B((r — $)X)(Fi(rX) — Fy(sX)) = (r — s) XF,(rX)(Fy(sX) — 1)
we know that

The coefficient of X? 2 in Fy(rX)F;(sX)

(5:2) is =0 (modp) if pfr—s

(as fp—2(t) =0 (mod p)) and so
(5.2) fo(®) fp—2—n(t) =0 (mod p) for n=0,1,2,...,p—2.

There are two other functions, related to f,_2(t) and B,,, which will
be of special interest: First, W,(t), the coefficient of X?~2/(p — 2)! in
Fiu(X) = "X /(1 — teX); proceeding as in the proof of (2.4), we have
p—1 .

Wu(t) = 25 %(j +u)P2t7  (mod p). Second, the (p — 1)st Bernoulli
j=

polynomial B,,_1(u), the coefficient of X?~!/(p—1)!'in XeuX /(eX —1). We

m—1 . .
also define Gy, (t) = 2 30 {B,_1 (L) — Bp_1} 90 where a(a, b, c),
3=0
B(a, b, c) are the least positive, non-negative residues of a/b (mod ¢), re-
n—1 .
spectively. Finally let Ap, »(t) := 1 Y te@nmw, (¢).
j=1

Our starting point is the identity, for (m,n) =1,

n—1 m—1 .
. X(edX -1 .
XY OmIE,un3) + 3 T § XU ()
j=1 7=0
tm

+— lB(mX){Ft(nX) — F,(0)} =0.

Considering the coefficient of XP~1/(p—1)! here, and using (5.1)’, we have
(5.3) Crpn(t) = Ann(t) (mod p).

If ¢ =n (modm) then each 5(j,¢,m) = [B(j,n,m) so that Cp, ¢(t) =
Crn(t). Moreover if £ = —n  (mod m) then §(j, ¢, m) = B(m — j,n,m)
for1 <j<m-—1and By,_q (%) = Bp_1 (%) (as Bp—1(1—u) = Bp_1(u)
for all u), so that Cp, ¢(t) = Cr.n(t). We therefore deduce, from (5.3), that

(5.3) If m divides ££n then A,,,(t) =A,e(t) (mod p).

(m—1)/2 m—1
Also, if m is an odd prime, then 2 Y~ Gy, (t) = > Cypn(t), which
n=1 n=1

is the coefficient of X?~1/(p —1)! in
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m—1m—1 m)X m
1 X(ﬁ).tﬂu,mm)_t t( X/m X )
m

— X/m __ X _
== t—1 \eX/ 1 e 1

which equals £=tB, 1(m~ (=D —1) = £=t. m’%” (mod p) by the

Von Staudt-Clausen Theorem. Thus

(m—1)/2 1 )
(5.4) Z Cr(t) = T 1)-(tm* 71)-7 (mod p).

~

So we can now state our induction hypothesis:
(Wit : Wie(t)=0 (modp) for 1<j<l<n—1

Suppose that this holds:

By definition, A, (t) = 0 (mod p) whenever 1 < ¢ < n — 1 and
(m,¢) = 1. For any m,1 < m < 2n — 1 with (m,n) =1, let £ = |[n — m| so
that (m,?) = 1. Then, by (5.3)", Amn(t) = Anye(t) =0 (mod p), and so

n—1
(5.5) > eGmmw () =0 (mod p).

=1
(4:m)=1

If m is an odd prime then Cp, ¢(t) =0 (mod p) for 1 < ¢ <n—1by (5.3),
and so

(5.6) (tm ' —1). ———— =0 (mod p)

by (5.4). Thus if there exists ¢ satisfying [W, ] of order > 2n — 1 modulo
p, then mP~' =1 (mod p?) for all primes m < 2n — 1.

We would like to be able to deduce [W,,41,4] from [W,,;]. This follows
from showing that the matrix

Ap(t) = {t°0mmY o
I<j<n
(mj.m)=1

has full rank (i.e. ¢(n)) in Fj, for then the only solutions to (5.5) come
from each W;/,(t) = 0 (mod p). Currently the only known method for
doing this is to explicitly compute a few ¢(n) x ¢(n) subdeterminants and
show that they cannot all be simultaneously 0 (mod p) (the record is for
all n < 46, [GM], where this is all studied in minute detail).

We observe here that if A, () doesn’t have full rank over the complex
numbers then either ¢ = 0 or ¢ is an algebraic integer and unit: in particular



11 The First Case of Fermat’s Last Theorem

t cannot be any rational integer other than —1,0 or 1. To see this look
at the square matrix formed by the top ¢(n) rows of A,(t). The term
of lowest (respectively, highest) degree in the mth row is ¢ (¢™), and the
furthest such term to the right (left) occurs on the reverse (main) diagonal,
that is in column j = n —m (j = m). Thus the term of lowest (highest)
degree in the determinant of this matrix is t#(™ (¢"¢(")/2). So, if A, (t)
does not have full rank then this determinant is 0; by expanding minors
we observe that the determinant belongs to Z[t], and dividing through by
t?M) if t # 0, we see that ¢ is an algebraic integer and a unit (since the
polynomial is monic and has last term 1).

6. p-divisibility of Bernoulli polynomials.

(5.3) implies that Cp, ¢(t) = 0 (mod p) for 1 < £ < n —1 and any
(m,¢) =1, if [W,, ] holds. We wish to deduce that

(6.1) By (%) — B, 1=0 (modp) forall 1<j<m<2n—1,

which we shall do by induction on m: So suppose (6.1) holds for all m’ < m.

Then, as Bp 1 (mTfj) = B,_1 (), we have
S (B (L) = B ) =0 (mod

1<j<m/2
(3:m)=1

for each £,1 < ¢ < m/2 with (¢,m) = 1. Thus (6.1) follows for m provided
the matrix

S (t) = {t7OH™ 4 m=BGEMN sy
(j€7m):1

has full rank in F; in other words, non-zero determinant. (Remark: If
[W,,1—¢] also holds then we can combine S, (¢) and S,,(1—1t) to get double
as many rows). However, it is easy to show that

(6.2) det Sy, (t) = 11 Z x(j)?

X an even
character (mod m)

Recently, Dilcher and Skula used this to establish (6.1) for all m < 46, and
Cikanek for m < 94 with p sufficiently large.
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Define the generalized Bernoulli number By, , = m"~* 3 x(j)B, (L)
j=1
for characters x  (mod m). Thus, (6.1) implies that

(6.3) Bp_1, =0 (mod p)

for all non-principal characters x (mod m). Let L,(s, x) be Leopoldt’s p-
adic L-function. By Theorem 5.11 of [Wa], (6.3) implies that L,(2—p, x) =
0 (mod p), and so, by Corollary 5.13 of [Wa,

(6.4) L,(n,x) =0 (mod p) for any integer n and even,
' non — principal character x (mod m).

Let u be the least positive residue of j/m (mod p). Then

X(evX — 1) ) X
6){7_1:2 nZZ F, so that

n>1 \ =0
J 1
By ol B,1=(p—1) Z 7 (mod p).
1<i<u—1
u—1runs through [£], [%p] ey [(m;l)p] as j runs through 1,2,...,m—1,
so that
1 .
(6.5) -=0 (modp) for 1<j<m.
isi<[#]

For each 1, jmp <i< %, we consider k = mi — jp in (6.5); thus, for
h=—jp (mod m),

1
(6.6) Z EEO (mod p) for 0<h<m-—1.
1<k<p-—-1

k=h (mod m)
Therefore if g is any p-integral valued function, of period m, then
p—1 .
(6.7) M =0 (mod p).
i

i=1

A particular instance of this is for g(i) = & for some mth root of unity &;
giving fp—2(¢) =0 (mod p), and so

(6.8) (1-&P=1-¢" (modp?) foreach &™ =1.
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Suppose now that m is a prime =1 (mod 4) and let ¢ = u+vy/m and h =
h(m) be the fundamental unit and class number of Q(/m), respectively.
Define u,, 4+ v,4/m = €™ and note that

P = (u+ vvm)? = uP +1PmP Y2 /m = u + (m> vv/m mod p,
D

where (5) is the Legendre symbol, so that ep*(%) =+1 (mod p). Thus,
as is well known, p divides Up(m): analogous to Fermat’s Little Theorem.

Now suppose that (%) = 41 + pw for some w € Z][1, Hﬁ], so that

20 (%) = 1 4+ 2hpw (mod p?). On the other hand it is well known

m—1
that 2h = ] (1 — 5“)_(W) where £ is a primitive mth root of unity, and
a=1
so, by (6.8),
m—1 m—1
= T —en7®) = [Ta-en)=()
a=1 a=1

Emfl(pgb)_( " >E(e2h)(%> (mod p).

b=1

Therefore £2® () =1 (mod p?), and by comparing congruences, we
find that p divides 2hw. However h < m so that if m < p then p must
divide w and thus

2 e .
(6.9) p° divides Vp(m)-

One expects that this happens very rarely, and for m = 5, in which case
the v,, are the Fibonacci numbers (see [SS]), it is known that (6.9) fails
for all p < 232, In one final observation we note that, by the elementary
theory of binary quadratic forms, (6.9) is equivalent to the assertion that

(6.10) h(mp*) = ph(mp®)

where, here, h(d) is the number of equivalence classes of quadratic forms
of discriminant d (usually h(mp*) = h(mp?) rather than (6.10)).

7. The special case where » =y (mod p).

If the elements of {—x/y, —y/z,—z/x,—y/x,—z/y,—x/z} are not dis-
tinct  (mod p), then evidently they are either all sixth roots of unity
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(mod p), or they are the set {—1,2,1/2}. The first case here was disposed
of by Pollaczek [P] (though his argument needed correcting by Gunderson),
while the second remains open. In this section we apply the criteria to this

second case. So let t = 2.
By (2.5) we find that

n+1 s n
L
()" =) T =2 s
- 7 j=1
By definition each s, ; is a non-negative integer and s,1 = 1 so that

(—1)"*1£,(2) is a positive integer. However since
Snyj = J(Sn—1,j + 8n—1,j-1) < N(Sn—1,j + Sn—1,j-1),

we deduce that
n n—1 n—2
|fn(2)] = an,j < QnZ Spo1; <2n-2(n—1) Z Sp2; < ... < on—1p)
j=1 j=1 j=1

Thus p does not divide f,,(2) for any n < logp/loglogp, and so, by Kum-
mer’s theorem,

(7.1) By,—»n =0 (mod p), for all n <logp/loglogp.

By the final remarks of section 5 we know that the matrix formed by
the top ¢(n) rows of A,(2) has non-zero determinant. Since any entry in
the mth row is smaller than 2™, Hadamard’s inequality tells us that this
determinant is < (¢(n)2")?(™/2 and since the determinant is an integer,
it cannot be divisible by p if n < v/Iogp. Thus [W,, 2] holds in this range,
and since 2 must have order > logp modulo p, we deduce from (5.6) that

(7.2) p? divides m? —m for all m < 24/logp.

Working in the field of the rationals extended by the primitive ¢(m)th
roots of unity, we see that (det S,,,(2))/2%(™/2 =1 (mod 2) (by (6.2)),
and so is non-zero. Moreover by the definition of S,,,(2) it is clear that
its determinant is an integer, and by Hadamard’s inequality has absolute
value

m/2 B(m)/4
< Z (211 + 2mfa)2 < 2m¢>(m)/2.

a=1, (a,m)=1

Thus this cannot be divisible by p if m < 2+/log p and so, by the results of
section 6, we know that

(7.3) Bp—1 <%> — B, 1=0 (modp) forall 1<j<m<2y/logp.

Of course all of the equivalent formulations given in section 6, also follow
for this range of values of m. (Remark: With a little care, the constant ‘2’
in the ‘24/logp’ above can be improved.)
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Collecting these criteria like this, it seems extremely unlikely that such

implausible statements can all be simultaneously true, yet we are unable
to show that this is the case (even for an infinite sequence of primes).

8. Bernoulli polynomials revisited.

Define
1 m—1 ]
C* _ = J) B(G,m.m)
= X B (L) =B,
7=0
(4,m)=1
Then
m—1

m—1 . m—
1 J
—— B._ E tﬂ(Jnm)
m ( p-l <m> ]/n

n:l
(j;m)=1 (n,m)

b1x | D x(Mt" | (mod p)

If
S5

if x is non-principal. (Note that Cy, ,,(t) = > #Cm/dm(td)).
dlm
Now suppose that m is prime so that Cy, ,,(t) = Cm n(t). From [Wp, 4]
we obtain that, for even character x (mod m),

(8.1) Bp—1,x - <Z Y(r)tT) =0 (mod p),

r=0

mP~

where Bp_1,y, = % by our (new) definition.

Evidently there exists a prime ideal p dividing p in Q(§,—1), and a
character y (mod m), such that

(8.2) p divides B,_1y

m—1
for, if not, each > X(r)t" =0 (mod p) and so

m—1
0= Z x(s) ZO xX(r)t" = mTil St +t™°)  (mod p)
X even r=

which is impossible for s = mT_l, t#£0or —1 (mod p).
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By Iwasawa’s Main Conjecture, proved by Coates and Wiles, we can
deduce from (8.2) that

83 (ron T E (T amama o)

is non-trivial, where C' is now the ideal class group of Q(&,p). It seems
to me to be extremely likely that one should be able to explicitly identify
some element of this component (like in section 2), though I have thus far
been unable to do so. If one did, it would surely lead to a new approach
to proving results like those in the last four sections, and perhaps a much
better understanding as to why they hold.

9. A curve with many F>-points.

Let g be a primitive root modulo p, and define log, j to be that integer
(modulo p — 1) for which ¢'°%»7 = j (mod p). Define
p—1

Gp(X,Y) =) X'=Iyd,

j=1
so that
p—1
Gplg™ 1) = D5 = (1~ 1")fu(t) (mod p),
j=1

and thus if (1.1) has solutions then, by (5.2)’,
(9.1)  Gp(g",)Gp(g? ") =0 (mod p) forn=0,1,2,...,p 2.

This will usually lead to at least 3(p — 1) non-trivial zeros of the curve
Gp(z,y) = 0 in FIQ,. Generally we expect a curve to have around p such
zeroes, and very rarely as many as 3(p—1). This is true of G,(x,y) = 0 for
the primes p < 1000. Unfortunately we are unable to use Weil’s Theorem
to prove something of this sort since there one needs a curve of low genus
(< /p), while Gp(z,y) = 0 seems to have high genus (order p?).

10. Owur matrices revisited.

It seems to be difficult to prove that A, (t) has full rank directly. (If
we could do so then one could deduce that p? divides mP — m for all
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m < (logp)/* — see [GM].) However the following generalization seems
worth pursuing;:

Let A(X) be an m-by-n matrix (with m > n), in which each entry is a
power of X, and suppose that every n-by-n submatrix of A(X) has non-
zero determinant. We conjecture that there is some function m(n) such
that if n > m(n) and A(t) does not have full rank then either ¢ is 0 or a
root of unity. Perhaps we can even take m(n) = 2n.

Van der Poorten and I observed that if m > n(n? —2n +3)/2 and A(t)
has rank r < n then either ¢ is 0 or an algebraic unit. We will prove this
assuming also that ¢ is an algebraic integer — the necessary modifications
for arbitrary algebraic ¢ are minor: If ¢ is not a unit then select an r-by-
(r + 1) submatrix B(X) of A(X), such that B(t) has rank r (which exists
since A(t) has rank r). Let p;(X) be the determinant of the r-by-r minor
formed by deleting the jth column of B(X) — at least one p;(X) must be
non-zero else B(t) would have rank < r. Now if (X%, ..., X%+1) are the
entries (in the same columns as in B(X)) of any other row of A(X) then
the determinant of the matrix formed by adjoining this new row to B(X)
is

(10.1) Xp1(X) = X%pa(X) ... £ X' pryr (X).

Let (t)™ be the largest power of the ideal (¢) that divides p;(¢), and define
@ to be the smallest a; 4+ m;. Since the sum in (10.1) with X =t equals
0, we examine this sum modulo (¢)%*! and observe that there must be
integers ¢ # j such that a; +7; = Q = a; 4+ 7;. Since there are (g) possible
pairs (i, 7), some such pair must occur here at least n times since we have
m—(n—1) > (5)(n—1) possibilities for the row that we adjoined to B(X).
But in the matrix M formed by n such rows we see that X™ times the ith
column equals X™ times the jth column, and thus M does not have full

rank, contradicting the hypothesis.

Acknowledgements: Much of my interest and understanding in this topic
evolved during the enjoyable period in which I was a doctoral student under
Paulo Ribenboim  thank you. This paper also benefitted from discussions
and/or correspondance with Enrico Bombieri, Karl Dilcher, Ladja Skula,
Zhi-Wei Sun and Alf Van der Poorten, as well as the excellent referee
thanks to you all.



B]

[Er]

[Le]
[P]
[Ri]
[Sk]
[SS]
[Thi]
[Th2]
[Wa

(Wil

Andrew Granville 18

References

Buhler, J.P., Crandall, R.E. and Sompolski, R.W., Irregular primes to
one million, (preprint).

Frobenius, G., Uber den Fermatschen Satz III, Sitzungsber. Adad.
Wiss. Berlin (1914), 653-681.

Granville, A. and Monagan, M. B., The First Case of Fermat’s Last
Theorem is True for all Prime Exponents up to 714,591,416,091,389,
Trans. A.M.S., 306 (1988), 329-359.

Kummer, E. E., Einige Sétze iiber die aus den Wurzeln der Gleichung
o =1 gebildeten complexen Zahlen, fiir den Fall dass die Klassenzahl
durch X theilbar ist, nebst Anwendungen derselben auf einen weiteren
Beweis des letztes Fermat’schen Lehrsatzes, Math. Abh. Akad. Wiss.,
Berlin, 1857, 41-74.

Lehmer, E., On congruences involving Bernoulli numbers and the quo-
tients of Fermat and Wilson, Annals of Math., 39 (1938), 350-359.
Pollaczek, F., Uber den grossen Fermat’schen Satz, Sitzungsber. Akad.
d. Wiss. Wien IIa, 126 (1917), 45-59.

Ribenboim, P., 13 Lectures on Fermat’s last theorem, (Springer-Verlag,
New York, 1979).

Skula, L., Fermat’s Last Theorem and the Fermat quotients, Comm.
Math. Univ. Sancti Pauli, 41 (1992), 35-54.

Sun, Z.-H. and Sun, Z.-W., Fibonacci numbers and Fermat’s Last The-
orem, Acta Arithm., 60 (1992), 371-388.

Thaine, F., On the ideal class groups of real abelian number fields,
Annals of Math., 128 (1988), 1-18.

Thaine, F., On Fermat’s Last Theorem and the Arithmetic of Z[¢, +
&, '], J. of Number Theory, 29 (1988), 297-299.

Washington, L.C., Introduction to Cyclotomic Fields, Grad. Text in
Math. 83, (Springer-Verlag, New York, 1982).

Wieferich, A., Zum letzten Fermat’schen Satz, J. Reine Angew. Math.
136 (1909), 293-302.

Andrew Granville

Department of Mathematics
University of Georgia

Athens, GA 30602

USA

e-mail andrew@sophie.math.uga.edu



