7. Appendix: The number of fugitive primes.
by Andrew Granville

Theorem. Let F(X1,Xs,...,X,) € Z[X;1, Xo, ..., X,] be a homogenous, non-zero poly-
nomial of degree D say. For any given prime q, pick a primitive root ¢ (mod q), and
define loga to be that power of g that gives a (mod q). We call q a ‘fugitive’ prime
if F(log2,log3,...,logp,) = 0(mod g — 1). There are O(xlogloglogx/logxloglog x)
fugitive primes q < .

Proof: We first deal with those primes ¢ < z, for which ¢ — 1 does not have a prime
factor in the interval I = (log log z, (log a:)l/ ("+2)). The number of such primes ¢ is given
by (where m is the product of the primes in I)
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using the Bombieri-Vinogradov Theorem (see section 28 of [Dal), Mertens’ Theorem and
the Prime Number Theorem. Thus these primes may be included amongst the candidates
for fugitive primes.

We shall show that for any prime p in the interval I, the number of fugitive primes
q < x, which are =1 (mod p) is < z/p?logz. But then the number of fugitive primes
q < x for which ¢ — 1 has a prime factor in the interval I, is
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and the Theorem follows.

So fix prime p in the interval I, and let a be a primitive pth root of unity. Once x
is sufficiently large (so that p is), one has, as a trivial consequence of Legendre’s theorem,
that there are < Dp"~! solutions a = (a1, as,...,a,) € (Z/pZ)" to F(ai,as,...,a,) =0
(mod p) (call the set of such solutions Sp,). Now, for each fugitive prime ¢ < 2 which is
=1 (mod p), we must have F(log2,log3,...,logp,) =0 (mod p), since p divides ¢—1,
and so logp; = a; (mod p) for 1 < j < n, for some a € S,. Therefore the number of
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such fugitive primes is < the sum, over each a € S, of the number of primes ¢ <z, ¢ =1
(mod p), for which

(*) p§-q_”/p = a% (mod q) for 1 < j <mn,

where q is a fixed prime ideal divisor of ¢ in Q(«).

If p were fixed and = were sufficiently large then the number of such primes ¢ (for each
given a € S),) would be ~ z/p" ™! logx (by the Cebotarev density theorem). However, we
have x as a function of p (in fact, x > epn+2), and since the discriminant of the field
Q(a, ol/p 31/p . ,p,l/p) divides (2 X3 X ...X Py X p"“)an, we deduce immediately
from Theorem 1.4 of [LMO] that the number of such primes ¢, is O(x/p"*!logx). Then,
from the above, the number of fugitive primes, for given prime p, is < |S,|z/p" ! logz <
Dp"~ta/p"tllogx < x/p?logz. This completes the proof of the Theorem.

In order to improve this bound we need a wider range of uniformity than that pro-
vided in Theorem 1.4 of [LMO]. For example, suppose that for some small fixed § > 0,
we know that there are O(z/p"*!logx) primes ¢ < z, ¢ = 1 (mod p) satisfying (*),

uniformly for primes p < z°

. The proof above is easily modified to show that there are
O(zloglogz/log® z) fugitive primes by taking I to be the interval [logz, z9):

The primes ¢ < z for which ¢ — 1 has a prime factor in I, are dealt with as before.
Replacing the combinatorial sieve in the argument above by Selberg’s upper bound sieve
method (see Theorem 7.1 of [HR]), one proves that there are O(z loglog z/ log® x) primes
q < z, for which ¢ — 1 does not have a prime factor in I.

Our supposition is implied by a suitable generalization of the Riemann Hypothesis to
the appropriate zeta-functions. However a much weaker ‘averaged’ version would evidently
suffice, and since the number fields involved have several amenable properties, this might
well be provable using currently known ‘zero-density’ techniques. It is thus plausible that
the upper bound O(z loglog z/log® x) can be proved unconditionally (though not without
a considerable amount of tricky technical work).

On the other hand, we cannot see how to rule out more than a positive proportion
of those primes ¢ for which (¢ — 1)/2 is also prime. This leaves us with little hope of
improving our upper bound even to o(z/ log? x) fugitive primes < z, let alone to what is
presumably the correct order of magnitude, O(loglog ).
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