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Smoothing “Smooth” Numbers

John B. Friedlander and Andrew Granville

Introduction.

In this paper we will investigate the distribution, in short intervals, of integers without
large prime factors . Good estimates, in such questions, have turned out to be surprisingly
difficult. For instance, one might suppose that proving the existence of an integer free of
prime factors > z'/®, in an interval (z,z + \/z], would be easy, but this doesn’t turn out

to be the case.

In the absence of strong results for this problem, researchers have looked at certain

variants. For example,

In what ranges can one prove that the expected asymptotic formula
z
(1) (e +zy) = vl,y) ~ — P(z,y)

holds ?

Unfortunately what has been proved has the (very severe) restriction that z/z is
extremely small compared to x: Hildebrand (1986) proved (1) for
(2) L<a/z <yt

with a wide range for vy,

(3) 72y = exp ((loglog2)*/*+).

Granville’s method (1993), extending “Hildebrand’s identity” (1986) from a sum over
primes to a sum over integers with exactly k prime factors, can be used to improve the

exponent 5/12 in (2) to 1 — ¢ for any fixed £ > 0, though not without considerable work.

Using the saddle point method, Hildebrand and Tenenbaum (1986) proved an asymp-
totic formula for ¢ (x + z,y) — ¥ (z, y) in an even wider range for y, but never valid outside

the range
1 <z/z<exp ((loga:)3/5> .
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Even assuming the Riemann Hypothesis, one can only obtain
1 <z/z<exp (logx/(logloga:)g) ,

from their method.

However this still leaves us unable to prove (1) with z = 23/ for any y < z'/4; which
is especially frustrating in view of the fact that there is a trivial argument (Friedlander
and Lagarias, 1987, p.264) showing the existence of such integers under essentially that

restriction, specifically
(4) 1<z/z<(l-¢)y.

In the absence of wider ranges for (1), Friedlander and Lagarias (1987) proved the lower
bound

(5) ot 2y) — blay) >~ bley),

for y = z2/%, 1< x/z < y1+c(1_1/“3) for some absolute constant ¢ > 0. Again not as wide
a range as one might hope but nonetheless sufficient to break the barrier of the (trivial)
range (4). This result remains the strongest of its type for intervals z < z2. For longer
intervals, Balog (1987) markedly improved the situation by showing that, for any ¢, § > 0,
U(x g2t y) —(z,y) > 0 for any y > z°. In section 4 we briefly sketch modifications to
his argument, leading to a proof of the following strengthened version (which also follows

from our main result):

Corollary. Fix 6 > 0, ¢ > 0. Then there exists ¢ = ¢(g,6) > 0 such that
z

provided that x > z > x%M, x >y > xf, and x is sufficiently large.

Friedlander and Lagarias (1987) also investigated in which ranges of y and z one could
prove that the lower bound (5) holds for “almost all” x, rather than for all . Recently
Hildebrand and Tenenbaum (1991, Theorem 5.7) added new ingredients to the argument
in (Friedlander and Lagarias, 1987) to show that, in essentially the same ranges, the lower

bound (5) could be replaced by the asymptotic formula (1). Specifically they proved:
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Theorem HT. Under the assumptions

(6) x>y > exp <(10g x)%“) :
(7) T >z > yexp ((logw)%),
we have

bln+29) = () = 2oy {14 0 (RELID

(x = y*), holds for all but O (m exp(—(log x)%_€)> positive integers n < w.

(The earlier result of (Friedlander and Lagarias, 1987) had given the lower bound (5)

subject to the same conditions (6), (7), with a slightly smaller exceptional set.)

Here we extend the range for which (1) is known to hold for all z.

Theorem. Fix € > 0. The estimate

2
®) vlot2) = (o) = = wla) {14 0 (FEREU)
holds uniformly for

(©) v >y > exp ((log ) )

with

9) x> 2> ziy?exp ((loga:)%>.

The proof involves rewriting ¢ (z + z,y) — ¥(z,y) as a sum of many terms of this
same form and then applying the Hildebrand-Tenenbaum “almost-all” result above. It
is this procedure of reducing a result about an individual sequence to a result about an
average over many sequences that is the “smoothing” referred to in the title. In fact this
principle works more generally. A rather simpler version can be used to show that the
Friedlander-Lagarias “almost all” version of Theorem HT implies the Corollary (Balog’s
result) and similar results for arithmetic progressions (and other sequences of integers)
could be proven, were it not for the lack of the appropriate “almost all” results on which

to build them.



In the proof of the Theorem we will use various crude upper bounds, which may

doubtlessly be improved, and might lead to a better error term in (8).
The Corollary follows easily from our Theorem for, by taking § = min(e,d/3),
blat2,9) — d(@y) 2 U@+ z,2”) —vle,a) ~ = be,a”) > P(ey),
since ¥(x,2%) > x. More generally, if y* = min(y, {z/(a:% exp(log 2)5)}) then

blat2,y) —v(ay) = v(e +2y7) = blay) > = v@y)
which provides a non-trivial lower bound in the range
z/w%, Yy > exp <(logm)%+€) .
It is somewhat annoying that the Theorem does not give (1) for
P (a: + x%+5, 336) — P(x, x%),
unless 0 > 2¢. We hope some modification or extension of our work will relax this re-

striction although a weaker condition of this type is already required in (Friedlander and
Lagarias, 1987) and (Hildebrand and Tenenbaum, 1991).

A non-trivial lower bound in the range z > :c%""s, but including values of y as small as
exp ((log z)3te ), has recently been given by Harman [Ha|, by a sharpened and modified
version of Balog’s argument; this lower bound is made explicit, and improved by Lenstra,
Pila, and Pomerance (1993). It is not out of the question that one might be able to modify
the ideas in our proof to take more immediate advantage of the zeta-function techniques
which underpin all of the above results and thereby avoid appealing to the “almost all”
results. This would not only make the proof more direct but also increase the chances of
lowering 5/6 to 2/3 in (6).

Our results do not give any indication of how to break the “\/x barrier”: that is,
proving that ¢(z + /x,y) — ¥ (x,y) > 0 when y is an arbitrarily small power of z. This
is evidently the most challenging open problem in this area. Another, perhaps easier,
annoyingly open problem is to give upper bounds for ¢(x + z,y) — ¥ (x, y) of the right size,

in a wide range.

Notation: Throughout we let P(m) and Q(m) denote the largest and smallest prime
factors of m, respectively. The letters p and ¢ always denote primes. As usual ¢ and
(except in the next section) ¢ refer to positive absolute constants though they may change

value as we proceed.



1. Very large z values.

As x gets very large compared to y, the integers free from prime factors > y get
increasingly scarce, so we might not expect (1) to hold. Indeed it makes more sense to
compare them to the number of such integers between x and 2x, rather than the number

up to z, for instance by the equation

ay (e +2y) — (@) ~ ~ {$(2r,y) — v(.9)}

By (Hildebrand and Tenenbaum, 1986, Corollary 3) this is equivalent to (1) when
logy/loglog z — oo. If we were to suppose that each of these ¢(2x,y) — ¢ (x,y) integers
between x and 2z fall in the interval (x,z 4 z| with ‘probability’ z/z then, by the Central

Limit Theorem, we would expect (1)’ to hold uniformly in the range

xz

/ (22, y) — ¥ (x, 1))

Actually, since such integers become increasingly scarce as x gets very large compared

log z — oo.

to y, we might guess that

Y(x + 2,y) —Y(z,y) =0or 1, only,

for even quite large values of z. This is equivalent to showing that if ¢ > a > x are integers,

composed only of prime factors < y, then ¢ —a > z. We will deduce such a result from

Oesterlé and Masser’s “abc-conjecture”: Fix e > 0. If a,b, ¢ are positive integers with

a-+b=c then
1+e

e<e | [I»

plabe

Suppose ¢ > a are composed only of prime factors < y. Then, applying the abc-
conjecture (taking b = ¢ — a), we obtain
1+e€
c<Le | (c—a) H D
p<y

so that .

c—a>. ¢ Hp
p<y



Using the Prime Number Theorem we then deduce that, for any fixed £ > 0,

U (a+at e vy) — ¥ley) = Oor 1

for all y < (1 —¢) log z, if x is sufficiently large.
The best unconditional result of this type, due to Stewart and Yu (1991), is that
3

c <. exp H D
plabe

By a similar argument we deduce that for any fixed ¢ > 0,

¢ (z+ (log )¢, y) = U(z,y) =0 or 1,

provided y < (% —¢)loglog z, if x is sufficiently large.

Tijdeman (1973) showed that ¥ (z + z,y) — ¥(z,y) = 0 or 1 for any z < z/(logz)°
where ¢ = exp (k(y/logy)*). This gives a stronger result than that above for smaller y,
for instance y < (loglog a:)%.

2. Preparations.

We begin this section by recalling a few basic facts about ¢(x, y). Define po(u) =1 for
0<u<1and

uo(u) = / o(t)dt for u > 1.
u—1
The key result in the area is that
(2.1) (z,y) ~wo(u)  for z=y",

for any fixed u > 0 (Dickman), and, in fact, for a wide range of u values: the widest now
known is (3), due to Hildebrand (1986).

The function p is positive and decreasing for u > 1 and satisfies
(2.2) o(u) = u~wto)
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(much sharper estimates are known). From its monotonicity and the integral delay equa-

tion we deduce that up(u) < o(u — 1), and so
[K]

(2.3) ow)/o(u+K) > [] (w+k) >u1,
k=1

if u, K > 1.

We now give two lemmata that will be required for the proof of the Theorem.

Lemma 1. If x > 2z > y and A < u, with y_% <u< %, then

Proof: In the right hand side of the two equations above, we are counting integers < x
and between x and x + z, respectively, which have their largest prime factor, ¢, between
y—Ay and y. There can be no more than z/q+1 = O(z/q), respectively z/q+1 = O(z/q),
such integers divisible by the prime g; so if ¢ is between y and y — Ay (> y — py > y/2),
then these quantities must be < O(z/y) and O(z/y) respectively. By the Brun-Titchmarsh

Theorem the number of primes ¢ in this interval is O(uy/logy), and the result follows.
Lemma 2. Fixe > 0. Suppose that z'/? < M < z3/*, with
5. 1
ellogo) 87 y <z/2M and IMyellos®)® < » < .

Then, for any subset Mg of the integers in [M,2M]|, we have

> (o(0) e Gon) =1 B e {eo ()

meMoy meMpo

(2.4) +0 (zec(log m)g%) .

Proof: We shall show that

(2.5) w(jz,@—w(%,y):gw(%,y) {1+0<%>}+0(1)




1_¢g
holds for all but O (Me_c(log z)® 2) integers m, M < m < 2M. Adding together (2.5) for
each m € M, satisfying this equation, and adding to the error term in (2.4) an amount

bounded by

4 x T+ z x A 4 A
x m m m r m m M
for each m € My not satisfying (2.5), we obtain (2.4).

Now, let 0 = o(u)/logy and M; = M(1+6)? for j =0,1,...,J, where (1+6)7 > 2 >
12

(14 6)7='. Since J < 0~' = (logy)o(u)~! < el°82)® 3 by (2.2), we need only prove

that (2.5) holds for all but O (Me*c(log‘”)g_ﬁ) integers m in each interval (M;, M, 4],

and then adjust the constant c.

For m € (M, M;441], let T'= z/M;.q so that

00 (%2 0) e (Ea) =e (] 7)o (2] ) v0 (- 2 +).

If [x/m] = [z/m’] then |(z/m) — (z/m)] < 1 and so |m’ —m| < mm'/z < M3, /.

Therefore, each exceptional integer n in Theorem HT corresponds to O(M?/x) exceptional

integers m here; and so, by Theorem HT (but with ¢ replaced by ¢/2, with = by x/M;,
and with z by T'), we have

(2.7) 1/)([%]+T,y>—¢<[%],y>=$/im (%,y){1+0<%)}

1l_e
for all but O (Me_c(log””)ﬁ 2) integers m € (M, M;41] (we remark that the ‘M’ in the

bound for the size of the exceptional set here comes from x/M x M?/z).

Now, for m € (M;, M;41], we have

Ay (Zy)=lr-2 MS‘T_£7
x/m m m x/m m
and . (W)
z z z z z Zo(u z T 1
poilet o E_ fr oz s oy 1
‘ ml— M; M Mj+1<<a: logy <<xw m’Y logy

by (2.1) in the range given by Hildebrand. Thus (2.5) follows for those m satisfying (2.7),
by inserting (2.7) into (2.6), and using the last two estimates.



3. Smoothing; the Proof of the Main Theorem.

Assume that z is sufficiently large, and let § = u/4(u + 2loglogy) throughout. Note
that, since 4 < u < (logz)'/% ¢ < (logy)'/®, by hypothesis, we have

4< 6! <44 2loglogy, log(u/8) < §logy, and y5 S ollogx)?/ote

Using (2.2) and the monotonicity of p, we have
y % < o(u) < 0(2) =1—1log2 < 1/2.

Together the above bounds imply the validity of ranges in estimates used below.

We approximate ¥ (z + z,y) — ¥(z,y) by X, the number of integers n, P(n) < y, in
(z,z + 2] which have a divisor m > /z with Q(m) > y°. Evidently any n counted by
(x4 2,9) — ¥(x,y) but not by ¥ has a divisor m > v/z, P(m) < ¢°, so that m < y°\/z.

For each such m there can only be O(z/m) values of n, so that

1 U zo(u
0<vY(z+zy) —(lr,y) - LKz E —<<z5g(—>logy<<—g( ),
m 20 logy
Va<m<y’ /x
P(m)<y’

using partial summation with (2.1) in the range (3), and the fact that p is non-increasing

for the third inequality, then (2.3) (since u/2d = 2u + 4loglogy) for the last inequality.

We shall estimate ¥ by summing according to the size of the divisor m of n obtained
by multiplying together the largest prime factors of n, in non-increasing order, stopping
as soon as m > +/x. By the definition of ¥ we are guaranteed that such an m exists, is
unique, and is composed only of prime factors between 3’ and y. From our construction
we know that m/Q(m) < y/z. Let M denote the set of such integers, so that

(3.1 z= 3 (¢ <x;'z,@(m>) —w(%,cz(m))-

meM

We split up this sum, according to the value of Q(m), as follows: For each integer
Jj >0, welet y; = y?(1 + o(u))? and y; >y > ys_1. Let M denote the subset of M for
which Q(m) € (y;_1,y;]. For these m, the mth term in (3.1) equals

(32) (8 (%Hvyj—l) - (%Jlj—l) +0 (i olu) ) :

m dlogy
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by Lemma 1 with u = o(u), since

Q(m) —yj—1 <y —yj—1 = o(w)y;—1.

Next we partition the sets M; up into sets M;;, which consist of those m in M;

for which 2i-1/z < m < 2/z. Now, since y° < Q(m) < y, we have u < o/
logx/log Q(m) < u/d. We use this to apply Lemma 2 with My = M,;, given the ranges
(6) and (9). Thus the contribution to (3.1) from the main term of (3.2) is

i : ZJ {w (%Hvyj—l) - (%7@/]’—1)} =

Tog 2 1
{f Z (G (%;%—1) {1 + O (%)} +0 (Zec(logx)
i=1

meMy;

ol

9

and, by Lemma 1, together with (2.1) in Hildebrand’s range (3), this is

g mgd i 2 x log(u/d)
=) =y ¢<—,Q(m)) {1+O<T)}
J=1 =1 z mEMij m gy
+0 i Z Q(u)ﬂ? +0 (zec(logm)G%)
x e mlogy;_1

Collecting the above estimates we find that

33) vlatn)-van = 3 v (L.qm) {1+o (E ) o (22,

meM

since we have > 1/m < 67!, and since, by (2.2),

J .
Zlog y; L Jlogy < Q(u)*l 10g2 y < o cllogz)s 2
Jj=1

Evidently ¥(z,y) is equal to )\ ¥(x/m,Q(m)), plus the number of integers n <
x, P(n) < y without a divisor m € M. Provided that n > x3/4, we are guaranteed that
such n must have a divisor r > z/4, with P(r) < °; and thus r can be assumed to be in

the interval [2/4, 21/4y%]. Therefore the number of such n is

o(u)/logy.

<zt ) % < 200(u/46)logy < zo(u)/logy,

2l /A cpcgl/4ys
P(r)<y’®
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by partial summation and (2.1), and then using (2.3) (since u/46 = u + 2loglogy).

We deduce from this and (3.3) that

(@, y) {1 L0 <log(u/5) +5‘1) } |

dlogy

¢(37 + 2, y) - ¢($a y) =

SHE

and the result follows.

Remarks: Evidently this last estimate easily implies a smaller but more complicated error
term in (8). One can do even better by giving a sharper upper bound for > . 1/m.
However these improvements do not lead to an error term O(log(u+1)/logy) in (8), which

would be the smallest possible.

This proof may be shortened by taking ¥ (2x, y)—(x, y) instead of ¢ (z, y) throughout.
For then the (corresponding) final result follows easily using (3.3) with z = z; and this

also renders unnecessary the first statement of Lemma 1.

4. Modifications to Balog’s proof.

In the introduction we showed how the Corollary follows easily from our Theorem.

Now we sketch an alternate proof, modifying Balog’s argument (1987):

Like Balog we consider a weighted sum ) d,, with d, = ) A, Gm, and, here,

mima|n

{1 if M= <m < M, Q(m)>yz, P(m)<y
A =

0 otherwise,

where > 0 and M = z2~ 3% for some positive integer k. Let M(s) = 3 a,,m~* and
m

L(s) = >, ¢ % where L = 27, Ly = 2236 +21. We apply Perron’s formula to the
L1<£§L2
function L(s)M?(s). Following Balog’s argument (which uses van der Corput’s theorem,

the large values theorem, etc.) but replacing the error term (log a:)_A by 2% in several
places (in all cases this stronger error follows from the results quoted there) we deduce
that

(4.1) Z dp =z (Z am/m> +0 (zl—n'> ,

r<n<lz+=z
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holds for z = :v%*'ﬁ“so, do > 0, for all n < ny with some 1y = no(k,dp) > 0 and some
'I’]’(k, 607 77) > 0.

Now, for given € > 0, § > 0 we can fix k > max{1/49,1/e},60 < §/2, and n < /4.
We then have d,, < 1, Y a,,/m > 1 with the implied constants depending on ¢ and ¢,
and also d,, # 0 = P(n) < y. Therefore (4.1) yields the Corollary.
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