
1. PROOFS THAT THERE ARE INFINITELY MANY PRIMES

Introduction

The fundamental theorem of arithmetic states that every positive integer may be fac-
tored into a product of primes in a unique way. Moreover any finite product of prime
numbers equals some positive integer. Therefore there is a 1-to-1 correspondence between
positive integers and finite products of primes. Thus we can understand positive integers by
decomposing them into their prime factors and studying these, just as we can understand
molecules by studying the atoms of which they are composed.

Once one begins to determine which integers are primes1 and which are not, one quickly
finds that there are many of them, though as we go further and further, they seem to be
a smaller and smaller proportion of the positive integers. It is also tempting to look for
patterns amongst the primes: Can we find a formula that describes all of the primes? Or
at least some of them? Are there actually infinitely many? And, if so, can we quickly
determine how many there are up to a given point? Or at least give a good estimate?
Once one has spent long enough determining primes, one cannot help but ask whether it
is possible to recognize prime numbers quickly and easily? These questions motivate the
early parts of this course.

1. Proofs that there are infinitely many primes, without analysis

1.1. Euclid and beyond. Ancient Greek mathematicians knew that there are infinitely
many primes. Their beautiful proof by contradiction goes as follows: Suppose that there
are only finitely many primes, say k of them, which we will denote by 2 = p1 < p2 =
3 < . . . < pk. What are the prime factors of p1p2 . . . pk + 1? Since this number is > 1 it
must have a prime factor, and this must be pj for some j, 1 ≤ j ≤ k (since all primes are
contained amongst p1, p2, . . . , pk). But then pj divides both p1p2 . . . pk and p1p2 . . . pk +1,
and hence pj divides their difference, 1, which is impossible.2

Many people dislike this proof, since it does not exhibit infinitely many primes, but only
shows that it is impossible that there are finitely many. It is possible to more-or-less correct

1A positive integer n is prime if it is divisible only by 1 and itself. Note that −1 is not considered to
be prime. An integer n is composite if it is divisible by two (not necessarily distinct) primes; note that
this includes negative integers as well as 0. Neither word applies to 1 or −1, or to −p for any prime p.

2Euclid gives this proof in Book 9 Proposition 20 of his Elements, assuming that there are just three
primes. The reader is evidently meant to infer that the same proof works no matter how large a finite
number of primes we assume there to be. The notation of those times was far less flexible than that of
today, so that the astute reader necessarily had to deduce the full content of the statement of a theorem,
or of a proof, from what was written, and could not necessarily learn all that was meant from what
was actually written. Even Renaissance thinkers like Fermat and Descartes recognized this difficulty and
deplored those who could not navigate it adroitly.
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this deficiency by defining the sequence a1 = 2, a2 = 3 and then an = a1a2 . . . an−1 + 1 for
each n ≥ 2. Let pn be some prime divisor of an. We claim that the pn are all distinct so we
have an infinite sequence of distinct primes. We know that these primes are distinct else
if pm = pn with m < n then pm divides (am, an) = (am, 1) = 1, since an ≡ 1 (mod am) by
our construction, which is impossible.

Fermat conjectured that the integers bn = 22n

+ 1 are primes for all n ≥ 0. His claim
starts off correct: 3, 5, 17, 257, 65537 are all prime, but is false for b5 = 641 × 6700417, as
Euler famously noted. Nonetheless we can prove that if pn is some prime divisor of bn for
each n ≥ 0 then p0, p1, . . . is an infinite sequence of distinct primes, in this case because
bn = b1b2 . . . bn−1 + 2 for each n ≥ 1, and so (bm, bn) = (bm, 2) = 1 for all m < n, since
bn ≡ 2 (mod bm).3

A related proof involves letting qn be the smallest prime factor of n! + 1. Thus there
cannot be a largest prime n since qn must be a larger prime.

Exercises
1.1a. (Other proofs inspired by Euclid’s proof) Suppose that we are given distinct primes p1, p2, . . . , pk,
and let m denote their product, p1p2 . . . pk. Show that each of the following integers N has a prime factor
which is not equal to any prime in this list, and so deduce that there are infinitely many primes.

a) For any r, 1 ≤ r ≤ k let n = p1p2 . . . pr and N := n + m/n.

b) (Reminiscent of proofs of the Chinese Remainder theorem): Let N :=
Pk

i=1 m/pi.

1.1b. In this question we give an algorithm that determines all of the primes.

a) Let p1, p2, . . . , pk be distinct primes, with m = p1p2 . . . pk. Prove that if N =
Pk

i=1 Ni, where the
prime factors of Ni are exactly {p1, p2, . . . , pk} \ {pi} for each i, then (N, m) = 1.

b) For any given integer N with (N, m) = 1, use the Chinese Remainder theorem to determine integers

Mi for which N ≡ Pk
i=1 Mi (mod m), where the prime factors of Mi are exactly {p1, p2, . . . , pk} \ {pi}

and 1 ≤ Mi ≤ m, for each i.

c) Prove that if 1 ≤ N ≤Pk
i=1 m/pi with (N, m) = 1 then there exist integers Ni as in part a, with each

|Ni| ≤ m. (Hint: One idea is to select Mi or Mi −m in part b).

d) Taking p1, p2, . . . , pk to be the primes up to
√

x we have a way to determine, with proof, each prime N
between

√
x and x by finding a representation of N as in part c. Find all the primes between 5 and 100

in this way, along with these proofs that they are indeed prime.

1.1c. Use the sequence of Fermat numbers to prove that, for each integer k ≥ 1, there are infinitely many
primes ≡ 1 (mod 2k).

1.1d. Suppose that p1 = 2 < p2 = 3 < . . . is the sequence of prime numbers. Use the fact that every

Fermat number has a distinct prime divisor to prove that pn ≤ 22n
+ 1. What can one deduce about the

number of primes up to x?

1.1e. (Open questions). Are there infinitely many primes of the form an? If p1 = 2 < p2 = 3 < . . . is
the sequence of prime numbers then are there infinitely many n for which p1p2 . . . pn + 1 is prime? For
which p1p2 . . . pn − 1 is prime? Let us determine an infinite sequence of primes by starting with prime
q1, and then letting qn be some prime divisor of q1q2 . . . qn−1 + 1. Can this be arranged so that the
sequence q1, q2, ... is a re-arrangement of the set of all primes? What if qn is the smallest prime divisor of
q1q2 . . . qn−1 + 1?

1.2. Various other non-analytic proofs.

3This proof appeared in a letter from Goldbach to Euler in July 1730.
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The Mersenne numbers take the form Mn = 2n − 1. Suppose that p is prime and q is
a prime dividing 2p − 1. The order of 2 mod q, must be divisible by p, and must divide
q − 1, hence p ≤ q − 1. Thus there cannot be a largest prime p, since any prime factor q
of Mp is larger, and so there are infinitely many primes.

Furstenberg gave an extraordinary proof using point set topology: Define a topology on
the set of integers Z in which a set S is open if it is empty or if for every a ∈ S there is
an arithmetic progression Za,q := {a + nq : n ∈ Z} which is a subset of S. Evidently each
Za,q is open, and it is also closed since Za,q = Z \ ∪b: 0≤b≤q−1, b 6=aZb,q. If there are only
finitely many primes p then A = ∪pZ0,p is also closed, and so Z \ A = {−1, 1} is open,
but this is obviously false since A does not contain any arithmetic progression Z1,q. Hence
there are infinitely many primes.
Exercises
1.2a. a) Prove that if f(t) ∈ Z[t] and r, s ∈ Z then r − s divides f(r)− f(s).

b) Prove that if 2n − 1 is prime then n is prime.

c) Prove that if 2n + 1 then n is either 0 or a power of 2.

1.2b. Prove that if prime q divides 2p − 1, where p is prime, then 2 has order p mod q. Deduce that
(2p − 1, 2` − 1) = 1 for all primes p and `.

1.2c. (Open questions). Prove that there are infinitely many Mersenne primes, 2p − 1. (This is equivalent
to asking whether there are infinitely many even perfect numbers, since n is an even perfect number if
and only if it is of the form 2p−1(2p − 1) with 2p − 1 prime.) Prove that there are infinitely many Fermat

primes, 22n
+ 1. Prove that there are integers n for which 22n

+ 1 is composite.4

1.2d. (Open). Prove that there are infinitely primes p for which 2p − 1 is composite. (This is a conjecture
because one can prove, and you should prove, that if p ≡ 3 (mod 4) and q = 2p + 1 is also prime then q
divides 2p − 1, so that 2p − 1 is composite.)

1.2e. We know that

22 − 1, 222−1 − 1, 2222−1−1 − 1 and 2222
2−1−1−1 − 1

are all prime and it is an open question as to whether any terms in this sequence are composite?

1.3. Primes in certain arithmetic progressions. Any prime ≡ a (mod m) is divis-
ible by (a,m), and so if (a,m) > 1 there cannot be more than one prime ≡ a (mod m).
Thus all but finitely many primes are distributed among the φ(m) arithmetic progressions
a (mod m) with (a,m) = 1. We will eventually prove that all such arithmetic progres-
sions contain infinitely many primes, and that the primes are roughly equally distributed
amongst these φ(m) arithmetic progressions (mod m). For now we will prove results
along these lines using only very elementary methods. We begin by proving that there are
infinitely many primes in each of the two feasible residue classes mod 3.

There are infinitely many primes ≡ −1 (mod 3), for if there are only finitely many, say
p1, p2, . . . , pk, then N = 3p1p2 . . . pk − 1 must have a prime factor q ≡ −1 (mod 3), else
N ≡ 1 (mod 3), and so q divides both N and N + 1 and hence their difference 1, which
is impossible. A similar proof works for primes ≡ −1 (mod 4), and indeed for much more
general sets of primes – see exercise 1.3a below.

4There are no primes known of the form 22n
+1 other than for n ≤ 4, and we know 22n

+1 is composite
for 5 ≤ n ≤ 30 and many other n besides. It is always a significant moment when a Fermat number is
factored for the first time.
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How about the primes ≡ 1 (mod 3)? We can look for sequences of integers n, all of
whose prime factors q are ≡ 1 (mod 3), by the idea of exercise 1.2b: that is, for each such
n there should be some integer a, such that the order of a mod q must be divisible by
3, for each q which divides n. Now if a has order 3 then a3 ≡ 1 (mod q), and to avoid
order 1 we want a 6≡ 1 (mod q). We come close to this by considering the prime factors
of (a3 − 1)/(a − 1) = a2 + a + 1: the only way a prime factor of this can have order 1 is
if it divides (a2 + a + 1, a − 1) = (3, a − 1), that is the prime factor must be 3 and a ≡ 1
(mod 3). We are ready to prove that there are infinitely many primes ≡ 1 (mod 3): If
there are only finitely many, say p1, p2, . . . , pk, then a = 3p1p2 . . . pk has order 3 modulo
any prime divisor q of N = a2 + a + 1 so that q ≡ 1 (mod 3), but then q divides N , and a
which divides N − 1, and hence their difference, 1, which is impossible.

In order to generalize this argument to primes ≡ 1 (mod m), we need to replace the
polynomial a2 + a + 1 be one that recognizes when a has order m. Evidently this must
be a divisor of the polynomial am − 1, indeed am − 1 divided through by all of the factors
corresponding to orders which are proper divisors of m. So let define the cyclotomic
polynomials φn(t) ∈ Z[t], inductively, by the requirement tm − 1 =

∏
d|m φd(t) for all

m ≥ 1, with each φd(t) monic. The roots of tm − 1 are the distinct mth roots of unity, so
our definition implies that the roots of φm(t) are exactly the primitive mth roots of unity,
that is those α ∈ C for which αm = 1 but αr 6= 1 for all r, 1 ≤ r ≤ m − 1. These can be
written more explicitly as exp(2iπj/m) with (j, m) = 1 so that φm(t) has degree φ(m).

Exercises
1.3a. Let G be a proper subgroup of the multiplicative group of elements mod m (that is, the residue
classes coprime to m).

a) Show that if N is an integer with (N, m) = 1 where N is not an element of G, then N has a prime
factor which is not an element of G.

b) Given any finite set of primes p1, p2, . . . , pk which do not divide m, and a residue class b (mod m),
show that there exists an integer N such that N ≡ b (mod m) and (N, p1p2 . . . pk) = 1.

c) We will now prove that there are infinitely many primes whose residues mod m do not belong to the
subgroup G. For if there are only finitely many, say p1, p2, . . . , pk, select b appropriately and then N as
in part b, and finally use part a to deduce the desired conclusion.

d) Deduce that there are infinitely many primes in at least two of the arithmetic progressions 3 mod 8, 5
mod 8, and 7 mod 8.

1.3b. a) Prove that the set of primitive mth roots of unity can be written in the form exp(2iπj/m) with
(j, m) = 1.

b) p is a primitive prime factor of am − 1 if p divides am − 1 but p does not divide an − 1 for any
n, 1 ≤ n ≤ m− 1. Show that every primitive prime factor of am − 1 divides φm(a).

c) Prove that gcd(am−1, an−1) = a(m,n)−1. Deduce that if prime p divides φm(a) but is not a primitive
prime factor of am − 1 then p divides φd(a) for some proper divisor, d, of m.

d) Prove that if d is a proper divisor of m and prime p divides gcd(φm(a), φd(a)) then m/d is a power of

p. (Hint: If prime q 6= p divides m/d consider (am − 1)/(am/q − 1) (mod am/q − 1), and establish that

φd(a) divides am/q − 1.)

e) Prove that φm(0) = 1 for all m > 1. Deduce that if p is a prime factor of φm(ma) for any integer a
then p ≡ 1 (mod m).

f) Use part e to deduce that there are infinitely primes ≡ 1 (mod m).

1.3c. We use the theory developed in exercise 1.3b in another question.
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a) Writing ad = 1 + kpr where p - k, prove that if pr 6= 2 then apd − 1 is divisible by pr+1 but not by
pr+2. Deduce that if p divides φm(a) but is not a primitive prime factor of am−1 then p2 does not divide
φm(a), except when m = 2 and a ≡ 3 (mod 4).

b) Use 1.3b.d and 1.3c.a to show that if m > 2 and am − 1 does not have a primitive prime factor then
φm(a) divides m.

c) By proving upper and lower bounds on |φm(a)|, show that |φm(a)| > m for all integers a and m with
|a| ≥ 2 and m ≥ 3, except φ3(−2) = φ6(2) = 3. (Hints: If |a| ≥ 3 then |φm(a)| =

Q
(j,m)=1 |a −

exp(2iπj/m)| ≥ (|a| − 1)φ(m) for m ≥ 3 except when |a| = 3 and m = 4 or 6. When |a| = 2 use only those
roots of unity in the other half of the unit circle from a.)

d) Finally deduce that for each integer a with |a| ≥ 2, the integers (am − 1)/(a− 1) have a primitive (and
thus distinct) prime factor for all integers m 6= 1, 2 or 6.

{xn}n≥0 is a Lucas sequence if x0 = 0, x1 = 1 and

(1) xn+2 = bxn+1 + cxn for all n ≥ 0,

for given non-zero, coprime integers b, c; the integers xn = (an − 1)/(a − 1) form a Lucas sequence with
b = a+1 and c = −a for each n ≥ 0. In 1913 Carmichael showed that if the discriminant ∆ := b2 +4c > 0
then xn has a primitive prime factor for each n 6= 1, 2 or 6 except for F12 = 144 where Fn is the Fibonacci
sequence (b = c = 1), and for F ′12 where F ′n = (−1)n−1Fn (b = −1, c = 1). It is much more difficult to
prove that Lucas sequences with negative discriminant have primitive prime factors. Nonetheless, in 1974
Schinzel succeeded in showing that xn has a primitive prime factor once n > n0, for some sufficiently large
n0, if ∆ 6= 0, other than in the periodic case b = ±1, c = −1. Determining the smallest possible value
of n0 has required great efforts culminating in the beautiful work of Bilu, Hanrot and Voutier [BHV] who
proved that n0 = 30 is best possible (indeed if b = 1, c = −2 then x5, x8, x12, x13, x18, x30 have no
primitive prime factors).

1.3d. In exercise 1.3b.f we saw that there are infinitely many primes ≡ 1 (mod 8), and in exercise 1.3a.d
that there are infinitely many primes i at least two of the other arithmetic progressions (mod 8).

a) For b = 3, 5 or −1 suppose that there are only finitely many primes ≡ b (mod 8), and let nb be their
product. Establish a contradiction by considering the prime factors of n2

b + b − 1, n2
b + 4 or n2

b − 2,
respectively. (Hint: Use the law of quadratic reciprocity.)

b) Generalize this argument to prime divisors of values of other quadratic polynomials.

1.4. Prime divisors of polynomials. We know that any linear polynomial mt+a ∈ Z[t]
with (m, a) = 1 takes on infinitely many prime values (which is equivalent to the fact that
there are infinitely many primes ≡ a (mod m) if (a,m) = 1). We wish to generalize this to
any irreducible f(t) ∈ Z[t], with suitable restrictions. To formulate the restrictions there
is one subtlety: the reason we need (m, a) = 1 in the linear case is that (m, a) divides
mn+ a for every integer n, and in fact (m, a) = gcd{mn+ a : n ∈ Z}. Hence let us define
Content(f) to be the gcd of the integers f(n) as we vary over n ∈ Z. It is conjectured that
for any irreducible f(t) ∈ Z[t] with Content(f) = 1 there are infinitely many integers n for
which f(n) is prime. (In fact that for any irreducible f(t) ∈ Z[t] there are infinitely many
integers n for which f(n)/Content(f) is prime.)

The polynomial n2 + n + 41 is prime for n = 0, 1, . . . , 39, though composite for n = 40.
One can ask whether there are any polynomials f(t) ∈ Z[t] such that f(n) is prime for all
integers n? The answer is no: We now show that if f(t) ∈ Z[t] has degree ≥ 1 then f(n)
is composite for infinitely many integers n. Since a non-zero polynomial has only finitely
many roots, for example (f(t)− 1)f(t)(f(t) + 1), thus |f(n)| ≥ 2 for all but finitely many
integers n. Select any such n and let m = f(n). Now f(n + km) ≡ f(n) ≡ 0 (mod m)
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for any integer k, by exercise 1.2a.a, so that f(n + km) is composite all k except for the
finitely many n + km which are roots of (f(t) −m)f(t)(f(t) + m). We shall look further
at the prime values of the polynomial n2 + n + 41, and of related polynomials, in section
4.3.

One can use a minor variation to show that if f(t) ∈ Z[t] has degree d and there are more
than 2d distinct integers n for which |f(n)| is prime then f(t) is irreducible. To prove this
suppose f(t) = g(t)h(t); for each n where |f(n)| is prime we have that either g(n) = ±1
or h(n) = ±1. Now there are no more than 2 deg(g) roots of (g(t) − 1)(g(t) + 1), and no
more than 2 deg(h) roots of (h(t)− 1)(h(t) + 1), and therefore ≤ 2 deg(g) + 2 deg(h) = 2d
distinct integers n for which |f(n)| prime. (The “2d” in this result can be improved to
“d + 2”, and this is probably best possible for all d ≥ 6. If we ask for f(n) to be prime
then the correct bound is d.)

We finish this section by proving that for any f(t) ∈ Z[t] of degree ≥ 1 there are infinitely
many distinct primes p for which p divides f(n) for some integer n. We may assume that
f(n) 6= 0 for all n ∈ Z else we are done. Now suppose that p1, . . . , pk are the only primes
which divide values of f and let m = p1 . . . pk. Then f(nmf(0)) ≡ f(0) (mod mf(0))
for every integer n, by exercise 1.2a.a, so that f(nmf(0))/f(0) ≡ 1 (mod m). Therefore
f(nmf(0)) has prime divisors other than those dividing m for all n but the finitely many
n which are roots of (f(tmf(0))− f(0))(f(tmf(0)) + f(0)), a contradiction.
Exercises
1.4a. a) Prove that the gcd of the coefficients of f divides Content(f).

b) Give an example to show that Content(f) can be larger than the gcd of the coefficients of f .

c) If a polynomial f(t) ∈ Z[t] has degree d then show that there exist integers b0, b1, . . . , bd for which

f(t) =
Pd

j=0 bj

`t
j

´
.

d) Prove that Content(f) = gcd0≤j≤d bj = gcd0≤n≤d f(n).

1.4b. Use the proof above to show that if f has degree d then there exists an integer n, with |n| ≤
d(1 + max|m|≤d |f(m)|), for which f(n) is composite. Can you significantly improve this?

1.4c. Suppose that m1, m2, . . . , mk are a set of pairwise coprime integers such that mj divides f(aj) for
some integer aj , for each j. Prove that there are infinitely many integers n for which m1m2 . . . mk divides
f(n).

1.4d.a) Suppose that g(t) ∈ Z[t], where m1, . . . , mk are integers that satisfy g(mi) = 1, and n1, . . . , n` are

integers that satisfy g(nj) = −1. Prove that
Qk

i=1(mi − nj) divides 2 for each j, and
Q`

j=1(mi − nj)

divides 2 for each i.

b) Deduce that if k, ` ≥ 1 with k + ` > deg(g) then we must have g(x) = ±G(±x + a) for some choice of
sign ± and some integer a where G(x) is either x(x− 1)(x− 3) + 1 with k = 3, ` = 1, or x(x− 1)− 1 with
k = ` = 2, or 2x2 − 1 with k = 2, ` = 1, or 2x− 1 with k = ` = 1, or x− 1 with k = ` = 1.

c) Suppose that f(t) ∈ Z[t] is reducible of degree d, for which there are more than d integers n with|f(n)|
is prime. Deduce that f(t) has a proper factor g(t), as in part b.

d) Suppose that f(t) ∈ Z[t] is reducible of degree d, for which there are ≥ d + 4 integers n for which |f(n)|
is prime. Deduce that there exist integers a and b such that f(t) = g(t + b) where g(t) = ((t − a)(t −
a − 1) − 1)(t2 − t − 1) so that the prime values are g(2) = g(a − 1) = a2 − 3a + 1,−g(1) = −g(a) =
a2 − a− 1,−g(0) = −g(a + 1) = a2 + a− 1 and g(−1) = g(a + 2) = a2 + 3a + 1.

Hence there are examples of reducible polynomials of degree four, taking on prime values eight times,
for instance for a = 4, 5, 10, 55 and 550. In fact there is such a polynomial for each integer a for which
h(t) := (t − a)(t − a − 1) − 1 is prime for t = −1, 0, 1 and 2 (and we conjectured above that there are
infinitely many such a).
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e) Our conjecture implies that there is an infinite sequence of integers r1, r2, . . . such that r2
i + ri − 1

is prime for each i. For a given integer d ≥ 2, let f(t) be the polynomial (t2 − t − 1)(1 + a
Qd−2

i=1 (t +
ri)). The prime k-tuplets conjecture states that if a1t + b1, . . . , akt + bk ∈ Z[t] have the property that

Content(
Qk

j=1(ajt+bj)) = 1 then there are infinitely many integers n for which a1n+b1, . . . , akn+bk are

all prime. Use the prime k-tuplets conjecture to deduce that there exist integers a such that |f(t)| takes
on prime values at d+2 different integer values for t (and, in fact, f(t) takes on prime values at d different
integer values for t). Show that these examples give the most possible prime values, for large enough d.

If one asks for prime values of f(n)/Content(f) then the answer is surprisingly different: The number of
prime values that can be taken by f(n)/Content(f) where f(t) ∈ Z[t] is a reducible polynomial of degree

d is something like 2cd/ log d, for some constant c > 0.5 See [ChRu] for details.

1.4e.a) For a given polynomial f(t) =
Pd

i=0 ait
i ∈ Z[t] define H := max0≤i≤d−1 |ai/ad|. Show that if

f(α) = 0 then |α| < H + 1.

b) Show that if f is reducible and n is an integer for which |f(n)| is prime then there exists a root α of
f(α) = 0 for which |n− α| ≤ 1.

c) Deduce that if n is an integer, with |n| ≥ H +2, for which |f(n)| is prime then f(t) is irreducible. Show
that this cannot be improved by considering f(t) = t(t + 1− p) for p prime.

d) Modify this argument to show that if n is an integer, with |n| ≥ H + 1 + Content(f), for which
|f(n)/Content(f)| is prime then f(t) is irreducible.

e) Modify this argument to show that if prime p = a0 + a110+ . . . + ad10d in base 10 then the polynomial
a0 + a1t + . . . + adtd is irreducible. (Hint: Prove first that, for α as in part b, we have |f(α)/αd| ≥
Re(ad + ad−1/α)− 9

P
j≥2 1/|α|j , and then that Re(1/α) > 0.)

1.5. A diversion: Dynamical systems proofs. In general we know that the prime
divisors of a sequence of integers > 1 form an infinite sequence of primes if the integers in
the sequence are pairwise coprime. We will generalize the constructions from section 1.1.
We begin by simplifying the description of the sequences an and bn.

an+1 − 1 = a1a2 . . . an = (a1a2 . . . an−1)an = (an − 1)an,

so that an+1 = f(an) where f(t) := t2 − t + 1. (Similarly bn+1 = g(bn) where g(t) :=
t2 − 2t + 2.) How do we explain the fact that an ≡ 1 (mod am) for all m < n? Well
am+1 = f(am) ≡ f(0) = 1 (mod am) and, thereafter, an+1 = f(an) ≡ f(1) = 1 (mod am)
by induction on n ≥ m + 1. (Similarly bm+1 = g(bm) ≡ g(0) = 2 (mod bm) and bn+1 =
g(bn) ≡ g(2) = 2 (mod bm) by induction.) So the only requirements on f1 seem to be
that f(0) = f(1) = 1, and f is the simplest such polynomial is 1 + t(t − 1). In fact any
polynomial 1+h(t)t(t− 1), where h(t) ∈ Z[t] has positive leading coefficient, will work. In
section 1A1 we will determine all polynomials f(t) ∈ Z[t] that be used into this framework.

We introduce a little terminology from dynamical systems: A number a is said to be
preperiodic for f , if the sequence a, f(a), f(f(a)), . . . is eventually periodic.

Proposition 1.5.1. Let f(t) ∈ Z[t] have degree > 1, positive leading coefficient, and
f(0) 6= 0. Suppose that 0 is a preperiodic point for f but that 0 is not part of the period, and
let ` be the least common multiple of the integers in the sequence f(0), f(f(0)), f(f(f(0))), . . . .
If a0 ∈ Z with an+1 = f(an) for all n ≥ 0, and (an, `) = 1 for all n ≥ 0, then we obtain
an infinite sequence of distinct primes by selecting one prime factor from each an.

5It is standard practice in this subject to let log be in base e, whereas the logarithm in base b is denoted
logb.
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Proof. Let w0 = 0 and wn+1 = f(wn) for all n ≥ 0, so that am+1 = f(am) ≡ f(0) = w1

(mod am) and, thereafter, am+j+1 = f1(am+j) ≡ f(wj) = wj+1 (mod am) by induction
on j ≥ 1. Therefore if m < n then (am, an) = (am, wn−m) which divides (am, `), which
equals 1 by the hypothesis. The rest of the proof follows as above.

To be able to use Proposition 1.5.1 we need a good idea of when 0 is a preperiodic point,
which turns out to be simpler than one might guess:

Proposition 1.5.2. Suppose that f(t) ∈ Z[t] and that the sequence {un : n ≥ 0}, with
u0 ∈ Z and un+1 = f(un) for all n ≥ 0, is periodic. If p is the smallest period then p = 1
or 2.

Proof. We have un+p = un for all n ≥ 0. One knows that x−y divides f(x)−f(y) for any
integers x, y; in particular that un+1−un divides f(un+1)−f(un) = un+2−un+1. Therefore
u1−u0 divides u2−u1, which divides u3−u2, . . . , which divides up−up−1, which divides
up+1−up = u1−u0. That is, we have a sequence of integers that all divide one another and
so must all be equal in absolute value. If they are all 0 then p = 1. If not then they cannot
all be equal, say to d 6= 0, else 0 = (u1−u0)+(u2−u1)+(u3−u2)+ · · ·+(up−up−1) = pd.
Therefore two consecutive terms must have opposite signs, yet have the same absolute
value, so that un+2 − un+1 = −(un+1 − un) and therefore un+2 = un. But then applying
f , p− n times to both sides, we deduce that u2 = u0 and therefore p = 2.

This allows us to classify all such polynomials f :

Theorem 1.5.3. Suppose that f(t) ∈ Z[t] and that 0 is a preperiodic point for f but is
not in the period. The basic possibilities are:
a) The period has length 1, and either f(t) = u with 0 → u → u → . . . , or

f(t) = (2/u)t2 − u where u = 1 or 2, with 0 → −u → u → u → . . . ; or
b) The period has length 2, and either f(t) = 1 + ut− t2 with 0 → 1 → u → 1 → . . . , or

f(t) = 1 + t + t2 − t3 with 0 → 1 → 2 → −1 → 2 → . . . .

Other examples arise by replacing f(t) by −f(−t), or adding a polynomial multiple of∏k
i=1(t− ai) where the ai are the distinct integers in the orbit of 0.

Proof by Exercises
1.5a. Let f(t) ∈ Z[t], and assume that f has a period of length 1, say f(u) = u. Then

a) f must be of the form f(t) = u + (t− u)g(t) for some g(t) ∈ Z[t].

b) If f(v) = u with v 6= u then f(t) = u + (t− u)(t− v)g(t) for some g(t) ∈ Z[t].

c) If f(w) = v then v − w = w − u = ±1 or ±2, equals δ say and g(t) = 2/δ + (t − w)h(t) for some
h(t) ∈ Z[t].

d) If f(x) = w then (x− u)(x− v) divides (w − u), which is impossible.

1.5b. Assume f(t) ∈ Z[t], and f has a period of length 2, say f(u) = v and f(v) = u. Then

a) f must be of the form f(t) = v + u− t + (t− u)(t− v)g(t) for some g(t) ∈ Z[t].

b) If f(w) = v then w − v = ±1, so that g(t) = w − v + (t− w)h(t) for some h(t) ∈ Z[t].

c) If f(x) = w then x− u = ±1. If x− u = w− v = δ then 2 = (x− v)(w− v + (x−w)h(x)); this implies
that x−v = δ, 2δ,−δ or −2δ each of which can be ruled. If x−u = −(w−v) then u, x, w, v are consecutive
integers (in this order), and h(t) = −1 + (t− x)j(t) for some j(t) ∈ Z[t].

d) Show that if f(y) = x then y− u divides |x− v| = 2, and y− v divides |x− u| = 1, which is impossible.
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1.5c. a) Deduce the cases of the theorem by setting x = 0, then w = 0 and then v = 0.

b) This section was motivated by examples of the first case in the theorem, that is, f(u) = u+ t(t−u). An
example in the second cases is given by f(t) = t2 − 2, so that 0 → −2 → 2 → 2 → . . . : Start with x0 = 4
and then let xn+1 = f(xn) for all n ≥ 0. Note that 2 divides each xn but never 4, so a minor modification
of our argument above works to prove that there are infinitely many primes. This sequence has appeared
in the literature for another reason: Lucas showed that the Mersenne number 2n − 1 is prime if and only
if it divides xn−2.

1.5d. Going back to the proof of Proposition 1.5.2, now suppose that f(x) ∈ A[x] where A is the ring of
integers of some number field, and that u0 → u1 → . . . → up−1 → u0 where p is prime, and u0 ∈ A.

a) Prove that each uj ∈ A.

b) Show that (ui+m − ui)/(um − u0) is a unit of the field for all i and all m, 1 ≤ m ≤ p− 1.

We have considered iterations of the map n → f(n) where f(t) ∈ Z[t]. If one allows
f(t) ∈ Q[t] then it is an open question as to the possible period lengths in the integers.
Even the simplest imaginable case, f(x) = x2 + c, with c ∈ Q, is not only open but leads
to the magnificent world of dynamical systems (see []). It would certainly be interesting
to know what primes divide the numerators when iterating, starting from a given integer.

1.6. Formulas for primes.
i) Let p1 = 2 < p2 = 3 < . . . be the sequence of primes and define α =

∑
m≥1 pm/10m2

=
.2003000050000007000000011 . . . . Then pm = [10m2

α]− 102m−1[10(m−1)2α].

Is such a magical number α truly interesting? If one could easily describe α (other than
by the definition that we gave) then it might provide an easy way to determine the primes.
But with its artificial definition it does not seem like it can be used in any practical way.
At first one might suppose that, useful or not, α is quite unique; however the following
exercise shows that this is not so.

Exercise 1.6a. Show that there are uncountably many numbers α of this type!

An even less practical formula for primes is derived as follows:
ii) Wilson’s theorem tells us that n is a prime if and only if n divides (n − 1)! + 1. We
deduce that

[
cos

(
2π

(
(n−1)!+1

n

))]
is equal to either 1 or 0 depending on whether n is

prime or not. Summing this over all integers up to x we have an exact formula for the
number of primes up to x.

There are surely other ways to identify primes of even less value! Our focus in chapter
6 will be to discuss ways of rapidly determining whether a number is prime.

iii) By 1970, researchers on Hilbert’s tenth problem, knew that there exist polynomials f in
many variables, such that the positive values taken by f when each variable is set to be an
integer, is precisely the set of primes. In 1971 Matijasevič indicated how to construct such
a polynomial, and one can construct such polynomials for the set of Fibonacci numbers,
for the set of Fermat primes, for the set of Mersenne primes and the set of even perfect
numbers, and indeed any diophantine set. One can find many different polynomials for the
primes, we will give one below with 104 variables of degree 25, and it is known that one
can cut the degree to as low as 5 though for an astronomical cost in terms of the number of



10 MAT6684

variables. No one knows the minimum possible degree, or the minimum possible number
of variables.

We will reduce the 104 variables to 26, by only allowing our variables to take non-
negative integer values (and so are the sum of four squares of integers): Our polynomial
is k + 2 times

1− (n + l + v − y)2 − (2n + p + q + z − e)2 − (wz + h + j − q)2 − (ai + k + 1− l − i)2

− ((gk + 2g + k + 1)(h + j) + h− z)2 − (z + pl(a− p) + t(2ap− p2 − 1)− pm)2

− (p + l(a− n− 1) + b(2an + 2a− n2 − 2n− 2)−m)2 − ((a2 − 1)l2 + 1−m2)2

− (q + y(a− p− 1) + s(2ap + 2a− p2 − 2p− 2)− x)2 − ((a2 − 1)y2 + 1− x2)2

− (16(k + 1)3(k + 2)(n + 1)2 + 1− f2)2 − (e3(e + 2)(a + 1)2 + 1− o2)2

− (16r2y4(a2 − 1) + 1− u2)2 − (((a + u2(u2 − a))2 − 1)(n + 4dy)2 + 1− (x + cu)2)2.

Stare at this for a while and try to figure out how it works: The key is to determine when
does it take positive values, noting that the displayed quantity is equal to 1 minus a sum of
squares. Understanding much beyond this seems difficult, and it seems that the only way
to appreciate this polynomial is to understand its derivation – see [JSW]. In the current
state of knowledge it seems that this absolutely extraordinary and beautiful polynomial is
entirely useless in helping us better understand the distribution of primes!

1.7. Special types of primes.
In section 1.2 we asked whether there are infinitely many primes of the form 2n + 1, or

of the form 2n − 1, both of which are open questions. One can generalize this by asking
whether there are infinitely many primes of the form k · 2n ± 1 or of the form k ± 2n for
given integer k. At first sight this seems like a much more difficult question but Erdős
showed, ingeniously, how these questions can be resolved for certain integers k:

Let bn = 22n

+ 1 be the Fermat numbers (remember that b0, b1, b2, b3, b4 are prime and
b5 = 641×6700417), and let k be any positive integer such that k ≡ 1 (mod 641b0b1b2b3b4)
and k ≡ −1 (mod 6700417). Now
• if n ≡ 1 (mod 2) then k · 2n + 1 ≡ 1 · 21 + 1 = b0 ≡ 0 (mod b0);
• if n ≡ 2 (mod 4) then k · 2n + 1 ≡ 1 · 22 + 1 = b1 ≡ 0 (mod b1);
• if n ≡ 4 (mod 8) then k · 2n + 1 ≡ 1 · 222

+ 1 = b2 ≡ 0 (mod b2);
• if n ≡ 8 (mod 16) then k · 2n + 1 ≡ 1 · 223

+ 1 = b3 ≡ 0 (mod b3);
• if n ≡ 16 (mod 32) then k · 2n + 1 ≡ 1 · 224

+ 1 = b4 ≡ 0 (mod b4);
• if n ≡ 32 (mod 64) then k · 2n + 1 ≡ 1 · 225

+ 1 = b5 ≡ 0 (mod 641); and
• if n ≡ 0 (mod 64) then k · 2n + 1 ≡ −1 · 20 + 1 = 0 (mod 6700417).
Every integer n belongs to one of these arithmetic progressions (these are called a

covering system of congruences), and so we have exhibited a prime factor of k · 2n + 1
for every integer n. Therefore we have shown that for a positive proportion of integers k,
there is no prime p such that (p− 1)/k is a power of 2.
Exercise 1.7a.a) Deduce that k · 2n + 1 is composite for every integer n ≥ 0 (with k as defined above).

b) Prove that 2n + k is composite for every integer n ≥ 0. (Hence, you have shown that there is no prime
p for which p equals k plus a power of 2.)
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c) Let ` be any positive integer for which ` ≡ −k (mod b6 − 2). Prove that ` · 2n − 1 and |2n − `| is
composite for every integer n ≥ 0. Deduce that a positive proportion of odd integers m cannot be written
in the form p + 2n with p prime.

1.7b. (Open question) John Selfridge found the smallest k known for which k · 2n + 1 is always composite:
At least one of the primes 3, 5, 7, 13, 19, 37, and 73 divides 78557 · 2n + 1. Is this the smallest such k?

1.7c. Let ` be any integer for which ` ≡ 1 (mod 641b0b2b3b4) and ≡ 223
(mod 6700417), so that k = `4 ≡ 1

(mod 641b0b2b3b4) and is ≡ 225 ≡ −1 (mod 6700417). If n ≡ 2 (mod 4) then, writing n = 4m + 2 we
have k ·2n +1 = 4(`2m)4 +1 and the polynomial 4t4 +1 = (2t2 +2t+1)(2t2−2t+1). Prove that k ·2n +1
is composite for every integer n ≥ 0.

This last exercise shows that we can have k · 2n + 1 composite for all n for reasons other than having a
covering system.

1.7d. Prove that bn − 2 = b0b1 . . . bn−1 cannot be written in the form p + 2k + 2` where p is prime and
k > ` ≥ 0. (Hint: Consider divisibility by br where 2r is the highest power of 2 dividing k − `.)

1.7e. Combine the ideas above to show that there are infinitely many integers m which cannot be written
in the form p + 2k + 2` where p is prime and k ≥ ` ≥ 0.

Are there infinitely many primes p for which p2 divides 2p − 2? Calculations have been
done up to 1010 yet the only such primes that have been found are 1093 and 3511. One
can ask similar questions about 3p − 3, etc.

For a given real number c > 1, are there infinitely many primes of the form [nc], where
n is an integer? Piateckii-Shapiro showed that this is true for any c < 12/11, and this has
been subsequently improved.

We must add in Ulam’s spiral into section 1.4.
Gaussian stepping stones, etc
Conway’s prime producing machine


