
11. THE PRIME NUMBER THEOREM

FOR ARITHMETIC PROGRESSIONS

11.1. Representations of L(s, χ). Let χ be a character mod q. We have

∑

n≥1

χ(n)xn =
1

1− xq

q−1∑
n=1

χ(n)xn.

Using (7.9.2) we obtain

Γ(s)L(s, χ) =
∑

n≥1

χ(n)Γ(s)n−s =
∑

n≥1

χ(n)
∫ 1

0

xn−1(log x−1)s−1dx

=
∫ 1

0

1
1− xq

q−1∑
n=1

χ(n)xn−1(log x−1)s−1dx.

This proves that L(s, χ) is analytic on the whole of C.
Exercises
11.1a. If χ is a primitive, real, non-principal character mod q then the qth Fekete polynomial is defined as

fq(t) :=
Pq−1

n=0 χ(n)tn. By noting that (log x−1)s−1/x(1 − xq) > 0 if 0 < x < 1 and s ∈ R, prove that if
fq(t) has no zeros with t ∈ [0, 1] then neither does L(s, χ).

11.2. A functional equation for Dirichlet L-functions with χ(−1) = 1. Define
ω(x, χ) :=

∑
n∈Z χ(n)e−πn2x/q. By (3.5.1) and (9.2.1), and then taking m = qn− a,

g(χ)ω(x, χ) =
q−1∑
a=0

χ(a)
∑

n∈Z
e−πn2x/q+2iπan/q =

1√
x/q

q−1∑
a=0

χ(a)
∑

n∈Z
e−π(qn−a)2/qx

=
1√
x/q

∑

m∈Z
χ(−m)e−πm2/qx =

√
q/x ω(1/x, χ),

as χ(−1) = 1. Therefore, by changing x to x/q in (7.9.3), and proceeding as in section 9.2,

(11.2.1) ξ(s, χ) :=
( q

π

) s
2

Γ
(s

2

)
L(s, χ) =

∫ ∞

1

{
x

s
2 ω(x, χ) +

√
q

g(χ)
x

1−s
2 ω(x, χ)

}
dx

x

Thus ξ(s, χ) is analytic, and hence this provides the analytic continuation of L(s, χ) to
the whole complex plane. Therefore if εχ :=

√
q/g(χ) (so that |εχ| = 1 by section 3.5) we

deduce that

(11.2.2) ξ(1− s, χ) = εχξ(s, χ).
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For Re(s) < 0 we know that L(1 − s, χ) 6= 0 and so ξ(1 − s, χ) 6= 0. Therefore, by
(11.2.2), L(s, χ) has zeros in this region only at the (simple) poles of Γ

(
s
2

)
, that is at

s = 0,−2,−4,−6, . . . .

11.3. A functional equation for Dirichlet L-functions with χ(−1) = −1.
Define ω(x, χ) :=

∑
n∈Z χ(n)ne−πn2x/q. By (3.5.1) and (9.2.2), taking m = qn − a as in

section 11.2, and using that χ(−1) = −1 we obtain

g(χ)ω(x, χ) = i
q1/2

x3/2
ω(1/x, χ).

Therefore, by changing x to x/q and s to s + 1 in (7.9.3), and proceeding as above,
(11.3.1)

ξ(s, χ) :=
( q

π

) s+1
2

Γ
(

s + 1
2

)
L(s, χ) =

∫ ∞

1

{
x

s
2 ω(x, χ) + εχx

1−s
2 ω(x, χ)

} dx

x1/2

where εχ := i
√

q/g(χ). Therefore (11.2.2) holds and the only zeros of L(s, χ) in the region
Re(s) < 0 are simple zeros at s = −1,−3,−5, . . . .

11.4. Properties of ξ(s, χ). One can develop a theory for ξ(s, χ) that is very similar to
that developed for ξ(s) in section 9.5. Indeed we obtain a product exactly as in (9.5.1) for
ξ(s, χ), and a representation in (9.5.2). The analogy to (9.5.3) is

(11.4.1)
L′(s, χ)
L(s, χ)

= A′χ +
∑

ρ: L(ρ,χ)=0

(
1

s− ρ
+

1
ρ

)
,

where if χ(−1) = 1 we have L(0, χ) = 0 so we denote this term in the sum as 1/s, and
A′χ = Aχ + γ

2 − 1
2 log( q

π ), plus log 2 if χ(−1) = −1. When trying to imitate the proof
of (9.5.4) we find that we have, from (11.2.2), if ξ(ρ, χ) = 0 then ξ(1 − ρ, χ) = 0 and so
ξ(1− ρ, χ) = 0. One can then deduce that

Re(Aχ) = −
∑

ξ(ρ,χ)=0

Re
(

1
ρ

)
,

and again note that this gives that Re(Aχ) < 0. We will see in exercise 11.4a that the
value of Aχ depends heavily on the value of L′(1, χ)/L(1, χ) which may be large if there is
a zero of L(s, χ) with s close to 1. Inserting this last equation into (11.4.1), and proceeding
as we did in (9.6.3), yields

(11.4.2) −Re
(

L′(s, χ)
L(s, χ)

)
= log |s|+ 1

2
log q + O(1)−

∑

ρ: L(ρ,χ)=0
0≤Re(ρ)≤1

Re
(

1
s− ρ

)
.

As in section 9.6, if we take s = σ + it with σ > 1 then each Re
(

1
s−ρ

)
> 0 and so

(11.4.3) −Re
(

L′(s, χ)
L(s, χ)

)
< log(|t|+ 2) +

1
2

log q + O(1).
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This is true for primitive χ and can be extended to imprimitive but non-principal χ at a
cost of an extra O(log log q) on the right side of (11.4.3)– see exercise 11.4b.
Exercises
11.4a.a) Show that eBχ = εχq1/2L(1, χ) if χ(−1) = 1, and = εχ(q/π)L(1, χ) if χ(−1) = −1.

b) So Aχ = ξ′(0, χ)/ξ(0, χ) = −ξ′(1, χ)/ξ(1, χ) = − 1
2

log(q/π)+ γ
2
−L′(1, χ)/L(1, χ), plus log 2 if χ(−1) =

−1.

11.4b. Show that if χ (mod q) is induced by ψ 6= 1 and Re(s) ≥ 1 then
˛̨
˛L
′(s,χ)

L(s,χ)
− L′(s,ψ)

L(s,ψ)

˛̨
˛ ≤Pp|q

log p
p−1

¿
log log q.

11.5. Zero-free regions for L(s, χ). The arguments of sections 9.6 to 9.8 are easily
generalized to L(s, χ) for a fixed character χ. However in many applications one wants
results in which the zero-free regions depend on the modulus q of χ:

Theorem 11.5. There exists a constant c > 0 such that if χ is a non-principal character
mod q then there is at most one zero β + iγ of L(s, χ) inside the region

σ ≥ 1− c

log(q(|γ|+ 2))
.

If such a zero exists that it is simple and real (that is, γ = 0), and χ is a real character of
order 2.

Proof. As χ is non-principal character so q ≥ 3. The analogy to (9.6.4) is

0 ≤ −3 Re
(

L′(σ, χ0)
L(σ, χ0)

)
− 4 Re

(
L′(σ + it, χ)
L(σ + it, χ)

)
− Re

(
L′(σ + 2it, χ2)
L(σ + 2it, χ2)

)
.

Assume that L(β + iγ, χ) = 0 and take t = γ. Let L := 5 log(|t| + 2) + 3 log q and
σ = 1 + 1/2L. If χ2 6= χ0 then by using (9.6.3) and proceeding as in section 9.6, though
now using (11.4.2) and (11.4.3), we obtain

4
σ − β

≤ 3
σ − 1

+ L+ O(1).

Therefore β ≤ 1−1/(14L)+O(1/L2). If χ2 = χ0 we can make use the estimates of section
9.6 for the third term, introducing an additional Re( 1

σ−1+2iγ ) = σ−1
(σ−1)2+4γ2 . If |γ| ≥ σ− 1

then this additional term is ≤ 1/5(σ − 1), so the above becomes

4
σ − β

≤ 16
5(σ − 1)

+ L+ O(1),

and we obtain β ≤ 1− 3/(74L) + O(1/L2)).
Now suppose that χ is real and 0 < |γ| < 1/2L, so that we also have the zero β − iγ.

Let σ = 1 + 1/4L so that |γ| < |σ − β|/2. Then (11.4.2) yields for s = σ

8
5(σ − β)

<
2(σ − β)

(σ − β)2 + γ2
= Re

(
1

σ − β − iγ
+

1
σ − β + iγ

)

<

∣∣∣∣
L′(σ, χ)
L(σ, χ)

∣∣∣∣ +
1
2

log q + O(1) ≤ ζ ′(σ, χ)
ζ(σ, χ)

+
L
6

+ O(1) ≤ 1
σ − 1

+
L
6

+ O(1),
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and therefore β ≤ 1− 67/(500L) + O(1/L2).
Finally suppose that χ is real and γ = 0, and we have two zeros β < β′. We can

immediately replace 8/5(σ − β) by 2/(σ − β) in the inequality obtained in the previous
case, and so at least as good a result follows.

Exercises
11.5a. Show that the proof of Theorem 11.5 yields constant c = 1/124 provided q + |γ| is sufficiently large.

11.6. Approximations to L′(s, χ)/L(s, χ). Following the method of section 9.7 we
deduce from (11.4.2) that

(11.6.1)
∑

ρ: L(β+iγ,χ)=0
0≤β≤1

1
4 + (t− γ)2

≤ log(|t|+ 2) +
1
2

log q + O(1).

We deduce that there are ≤ 8(|t| + 2) + 4 log q + O(1) zeros β + iγ for which |t − γ| ≤ 2.
Therefore for s = σ + it with σ bounded, we have

(11.6.2)

∣∣∣∣∣∣∣∣

L′(s, χ)
L(s, χ)

−
∑

ρ: L(ρ,χ)=0
|t−γ|≤2

1
s− ρ

∣∣∣∣∣∣∣∣
≤ (6− σ)(2 log(|t|+ 2) + log q) + O(1)

11.7. On the number of zeros of L(s, χ). Suppose that χ is a primitive character mod
q, and let N(T, χ) denote that number of zeros of L(s, χ) inside C := {s : 0 ≤ Re(s) ≤
1, −T ≤ Im(s) ≤ T}.1 Our approach will be more-or-less that of section 9.8, with a few
minor differences: We use the contour with corners at 5

2 − iT, 5
2 + iT,− 3

2 + iT,− 3
2 − iT

so as to avoid possible zeros at −1 or −2; we now have one trivial zero inside the contour
(at 0 or −1). The contribution of the left half of the contour is the same as the right half
since arg(ξ(1 − s, χ)) = − arg(εχ) − arg(ξ(s, χ)) by (11.2.2), and thus the change in each
half, as one goes round the contour, is the same. Next, applying Stirling’s formula, etc.,
as in section 9.8, we obtain for any T > 0

(11.7.1)
1
2

N(T, χ) =
T

2π
log

(
qT

2πe

)
− χ(−1)

8
+ S(T, χ) + O

(
1

T + 1

)
,

where S(T, χ) := 1
2π (arg L( 1

2 + iT, χ)− arg L( 1
2 − iT, χ)). Now, using (11.6.2) we see that

S(T, χ) ¿ log qT (as in the proof of (9.8.3)), and therefore

(11.7.2)
1
2

N(T, χ) =
T

2π
log

(
qT

2πe

)
+ O(log qT ).

1We cannot just restrict to 0 ≤ Im(s) ≤ T since there is no reason now for zeros to be symmetric in
the real axis.
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11.8. The explicit formula. We will obtain an explicit formula for

(11.8.1) Ψ(x, χ) :=
∑

p prime, m≥1
pm≤x

χ(pm) log p,

for each Dirichlet character χ (mod q), since then we have

(11.8.2) Ψ(x; q, a) :=
∑

p prime, m≥1
pm≤x

pm≡a (mod q)

log p =
1

φ(q)

∑

χ (mod q)

χ(a)Ψ(x, χ).

We proceed as in section 10.1 but now with L′/L in place of ζ ′/ζ. In analogy to (10.1.2)
we have the explicit formula when χ is primitive and q ≥ 2, if x is not a prime power and
x ≥ 2 then

(11.8.3) Ψ(x, χ) = −
∑

ρ: L(ρ,χ)=0
0<Re(ρ)<1

xρ

ρ
− cχ − 1

2
log(x− 1)− χ(−1)

2
log(x + 1),

for an appropriate constant cχ. The key differences in the calculations are that the x term
disappears because there is no pole at s = 0; if χ(−1) = −1 then the trivial zeros appear
at the negative odd integers; and if χ(−1) = 1 there is now a double zero at s = 0, leaving
a residue of log x.

We again seek to replace this by a sum over zeros up to a given height T , using Propo-
sition 7.6. The analogous proof works since |L′(σ + iT, χ)/L(σ + iT, χ)| ¿ (log qT )2 if
−1 ≤ σ ≤ 2 by (11.6.1) and (11.6.2), and is ¿ 1/|s+ n|+ log q|s| if σ ≤ −1, and −n is the
nearest trivial zero of L(ρ, χ) to s, using the functional equation (11.2.2). We deduce that

(11.8.3) Ψ(x, χ) = −
∑

ρ: L(ρ,χ)=0
0<Re(ρ)<1
−T<Im(ρ)<T

xρ

ρ
− cχ + O

(
x(log qT )(log x)

T
+ log x

)
.

This formula is surprisingly useless, as it stands, since we need to determine a bound on
cχ before we can know how large x must be before this gives a good estimate. Working
through the earliest steps of the argument we find that

cχ = O(1)−
∑

ρ

(
1
ρ

+
1

2− ρ

)
.

If ρ = σ + it then this term in the sum is ¿ 1/t2, so that the sum over ρ with |t| ≥ 1
is ¿ log q by (11.7.2). Since each |2 − ρ| ≥ 1 the sum of these terms with |t| ≤ 1 is
¿ log q by the sentence after (11.6.1); similarly we get a bound ¿ (log q)2 for the terms
with 1 ≥ |ρ| À 1/ log q. By Theorem 11.5 and the symmetry of zeros because of the
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functional equation, we know that there is at most one zero that has not been included
in such considerations, and if such a zero exists then χ is real, and the zero is real and
simple. We will denote it by 1− β so that β is also a zero with β ≥ 1− c/ log q. Therefore
our formula becomes for x ≥ q and x ≥ T ,

(11.8.4) Ψ(x, χ) = −
∑

ρ∈B′(T )

xρ

ρ
− xβ

β
− x1−β − 1

1− β
+ O

(
x(log qT )(log x)

T

)
.

where the terms involving β are there only if there exists some β ∈ B(T ) \ B′(T ), where

B′(T ) :=
{

ρ = σ + iγ : ζ(ρ) = 0,
c

log qT
≤ σ ≤ 1− c

log qT
, −T ≤ γ ≤ T

}
,

and c is as in Theorem 11.5. We show in exercise 11.8a that the x1−β−1
1−β term may be

omitted in (11.8.4) when x ≥ q, e2cT to obtain

(11.8.5) Ψ(x, χ) = −
∑

ρ∈B′(T )

xρ

ρ
− xβ

β
+ O

(
x(log qT )(log x)

T

)
.

Exercises
11.8a. Show that if x ≥ e2cT then Txc/ log T ≤ x and deduce that the x1−β−1

1−β
term in (11.8.4) may be

subsumed into the error term.

11.8b. Deduce that (11.8.5) holds for imprimitive characters as well as primitive characters.

11.9. The prime number theorem for arithmetic progressions. As in the proof
of the prime number theorem, we simply bound the sum over zeros in (11.8.4). Each
|xρ| ≤ x1−c/ log qT , and for the sum

∑
ρ∈B′(T ) 1/|ρ|, we have ¿ (log q)2 for the ρ with

|ρ| ≤ 1, as in the previous section, and ¿ (log qT )(log T ) for the ρ with |ρ| > 1 since there
are ¿ t log qt zeros up to height t ≥ 1. Inserting this all into (11.8.5) we obtain

∣∣∣∣Ψ(x, χ) +
xβ

β

∣∣∣∣ ¿ x1−c/ log qT (log qT )2 +
x(log qT )(log x)

T
.

Selecting q ≤ T := e
√

(c/2) log x and inserting this last estimate into (11.8.2), we obtain
that whenever (a, q) = 1 we have

(11.9.1) Ψ(x; q, a) =
x

φ(q)
− χ(a)

φ(q)
xβ

β
+ O(xe−

√
(c/3) log x),

where L(β, χ) = 0 as in Theorem 11.5. The main difficulty in the theory of the distribution
of primes comes from the possible existence of the zero β. Of course we believe that β
never exists but we are unable to rule out that possibility. We shall explore such putative
β in detail in the next chapter.
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Let us suppose that we do have such a zero β with β > 1 − c/ log q. By (slightly
modifying) exercise 4.7b we deduce that

L(1, χ) = L(1, χ)− L(β, χ) =
∫ 1

β

L′(σ, χ)dσ ≤ C(1− β)(log q)2

for some constant C > 0, so that

(11.9.2) β ≤ 1− L(1, χ)
C(log q)2

≤ 1− c√
q(log q)2

by (4.7.1). Inserting this bound into (11.9.1) we deduce that if q ≤ (log x)2/(log log x)7

then

(11.9.2) Ψ(x; q, a) =
x

φ(q)

(
1 + O

(
1

(log x)A

))
,

for any fixed A > 0. From the proof one can give values for all of the implicit constants.
The Generalized Riemann Hypothesis states that all zeros ρ of L(ρ, χ) = 0 in the critical

strip satisfy Re(ρ) = 1
2 . This implies that, in (11.8.5), we have

|Ψ(x, χ)| ¿ x1/2(log qT )2 +
x(log qT )(log x)

T
¿ x1/2(log qx)2

selecting T = x1/2, so that

(11.9.3) Ψ(x; q, a) =
x

φ(q)
+ O(x1/2(log qx)2),

Therefore the Generalized Riemann Hypothesis implies that

(11.9.4) π(x; q, a) ∼ π(x)/φ(q),

holds only once x is a little bigger than q2 log5 q, and with a more precise argument we can
improve this but not to better than “q2”. However calculations reveal that (11.9.4) seems
to hold when x is just a little bigger than q (rather than q2) and so even the Riemann
Hypothesis, and its generalizations are inadequate for giving us a precise behaviour of the
distribution of primes. This difference, between q and q2 is enormous, and one finds that
this same question, with a constant “2”, appears all over the subject.

11.10. A final remark. If the exceptional zero β, of the previous section, exists, suppose
that it is a zero of L(s, χ) for a primitive character χ (mod m). If m does not divide q
then the xβ/β term does not appear in (11.9.1). Therefore we can deduce

Theorem 11.10. Select c as in Theorem 11.5. There exist constants c1, c2 > 0 such that
for any given x we have

Ψ(x; q, a) =
x

φ(q)
+ O(xe−c1

√
log x),

for all (a, q) = 1 and all q ≤ ec2
√

log x, except perhaps those q that are multiples of an
exceptional modulus m. This modulus m exists only if there is a primitive character χ
(mod m) and a real, simple zero β of L(s, χ) = 0, for which β > 1− c/

√
log x.


