13. THE LARGE SIEVE.

13.1. Introduction. We have seen that the Generalized Riemann Hypothesis implies
that

(g, a) ~ )

#(q)

whenever (a,q) = 1 for x a little bigger than ¢2. In fact this can be proved to hold except
for a few rare moduli. A precise statement of the Bombieri-Vinogradov theorem is

m(x) x

m(ziq,a) — | <

(13.1) max 50 A Tog)A’

=<0 (a,9)=1

Here, for any A > 0 we can take Q = /z/(logz)B4) where B(A) is a constant that
depends only on A. If we simply have a bound like 7(z;q,a) < m(x)/¢(q) then the left
side here is < zlogx; thus the Bombieri-Vinogradov theorem improves on this “trivial”
estimate by an arbitrary power of log x. The formulation of the result seems complicated,
but this is useful for many applications: Its range, with ¢ nearly up to y/z means that it can
substitute for the Generalized Riemann Hypothesis in many important arguments. Early
proofs of the Bombieri-Vinogradov theorem relied on the fact that few L-functions have
zeros close to 1, by getting bounds for the number of zeros ¢ + it with o > a and |t| < T,
over all characters x (mod ¢) with ¢ < Q. Later proofs found that results such as (13.1)
hold for many sequences which also satisfy a “Siegel-Walfisz theorem”. In all of these proofs
Q@ is restricted to be a little less than y/z and this barrier is one of the most important (and
difficult) in the subject. For a fixed a one can get non-trivial results a little beyond /z
but these are not yet satisfactory for most applications. The Elliott-Halberstam conjecture
claims that (13.1) holds for Q = x'~¢, for any fixed €, A > 0. (The Bombieri-Vinogradov
theorem is also valid replacing |7 (z;¢q,a) — 7(z)/¢(q)| by maxy<, |7 (y;q,a) — 7(y)/¢(q)|
as we will prove below).

The Barban-Davenport-Halberstam theorem accounts for primes (mod ¢) which are
just a little bigger than ¢ in a more conventional average sense:

> 2

q<Q 1<a<q
(a,q)=1

m(z;q,a) — @) ~ Qu

for z/(logz)? < Q < z. This result is somewhat less applicable but is easier to prove.
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13.2. Discussion. For a typical arithmetic function (3, € C, we might expect that

anx, n=a (mod q) B, is about @ anx’ (m.q)=1 Bn whenever (a,q) = 1; and so we study
the difference. For most applications, it suffices to obtain results of type

1

3 5w 2 Bl < g 1B o

n<x n<x (10g .CL’)
n=a (mod q) (” 9)=1

for any A > 0, with the implied constant in < depending only on A, where

18117 := "> 18al*.

n<x

We want this result to be valid uniformly in ¢ in a large range. A good example to keep
in mind is where 3, = logn if n is prime, and = 0 otherwise. In this case we have
proved the above estimate in the range ¢ < (logx)®, and so such an estimate is called of
“Siegel-Walfisz type”. As we saw with the primes it is difficult to prove such results in a
wider range for all ¢, but it may be possible for “almost all” ¢q. Thus, summing the above
estimate, we might ask for a result of the form

[N

max Z Bn — ¢( ) Z Brn| < ||8] ( )

=1
(@) n<x n<x
n=a (mod q) (n,q)=1

q<Q

for appropriately large  which is said to be of “Bombieri-Vinogradov” type. Another
idea is to ask only for almost all ¢ and almost all a, that is a result of the kind

2

>y > B ¢()Zﬁn <<||ﬂ||( Es

<@ 1<a<q n<x n<zx
(a,q)=1[n=a (mod q) (n,q)=1

for appropriately large () which is said to be of “Barban-Davenport-Halberstam” type. In
certain special circumstances one can even obtain an asymptotic for this sum.

The most difficult question is to obtain a good upper bound for almost all ¢, for a fixed
a. Here we seek to estimate

2| X @ 2 Pl

q<Q n<zx n<x
(g,0)=1[n=a (mod q) (n,Q) 1

which we will discuss later.
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13.3. The large sieve. We begin with a result from linear algebra:

The Duality Principle. Let x,,, € C for 1 <m < M, 1 <n < N. For any constant c

we have )
Z Zamxm,n < c||a|)?
for all a,, € C, 1 <m < M if and only if
2
ST bamn| < cllpl?

m

for allb, € C, 1 <n < N. (Here ||a|]* =", |an|?.)

Proof. Assume that the first inequality is true. Given b, € C, 1 < n < N define a,, =
Y bnTm pn, so that

2.

m

2
E bnxm,n = E A g bnxm,n = E bn E amxm,n»
n m n n m

so by the Cauchy-Schwarz inequality, the above squared is

||a||4 < ||b||2 Z Zamxm,n
n m

and the result follows. The reverse implication is completely analogous.

2
< [[lJ* - cllall®,

Proposition 13.1. Let a,,M +1 < n < M + N be a set of complex numbers, and
zr,1 <r < R be a set of real numbers. Let 6 := min,», ||z, — z4|| € [0,1/2], where ||t]|
denotes the distance from t to the nearest integer. Then

>

r

M+N 2

Z ane(n,)

n=M+1

< (N +1/6 = 1)]|a]*

where e(t) = €2,

Proof. For any b, € C, 1 <r < R, we have

2 M+N
ST bre(nan)| =D bibs Y eln(z, — ) = N|[b|* + E,
n r r,8 n=M+1

since the inner sum is N if r = s, where, for L := M + (N +1),

sin(mN(z, — xs))

E <) bubse(L(z, — ) i, —21))

r#s
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Taking absolute values we obtain

b5, 0,5, 2
E < b, -
| '—Z\sm (@ — )] Zznxr ] S 2 ’22”% o]

by the Cauchy-Schwarz inequality. Now for each z, the nearest two xs are at distance at
least 0 away, the next two at distance at least 26 away, etc. Therefore,

[1/9]

2 log(e/d)

Bl < (b Z 576 = L
T j=1

so that

zn: Zr:bTe(nxT) < (N+ M) 11B]|2.

The result, with 1/§ — 1 replaced by log(e/d)/d, follows by the duality principle.
We now show how to get a constant < N + 1/§: Let ¢, = b.e(Mx,) so that

MAN 2 N 2
D [ 2 brelnay)| < Z Zcre(nxr) em(1=(n/N)?)
<e Zcrcs Z e 7r(”/N)2 (n(z, — )

n=M+1
nez

—e Zcrcs N3 e N )?

nez
— 7 Zc’rés . N{e—TrN er—xSH + O(e—Ter/4)}

T8

by Lemma 9.2. Now applying the Cauchy-Schwarz inequality as before, and the same
analysis of the sequence of values of ||z, — || for each fixed r, this is

< Ne™ Z |Cr|2 Z{e—ﬂNQHmfost + O(ewa2/4)}

< Nem ) [bf? (Z e TN 0<<1/5>e—”N2/4>>

keZ
< e bl]* (N + 1/5 4+ O((N/5)e ™ /%))

The result, up to the constant, follows from the duality principle. (One can get the result
claimed here by following the proof of Theorem 7.7 in [IK].)

Exercises
13.1a. Suppose that a, are given. Given z; define y;(t) = x; +t (where t € R).
a) Show that if § := min, 4, ||z, — xs|| then min, ||y (t) — ys(t)|| = 6.

2
b) Prove that fol ‘ZTAL/":AZ_I ane(nyr(t))‘ dt = ||a]|?.

2
MAN ane(nz,.)| > (1/6 —1) |lal|?.

¢) Deduce that for any ¢ > 0 there exist x, =M1

13.1b. Suppose that z; are given. For any given M, N select complex numbers an, M <n < M + N, each

M+N > N2 = N||a|?.

=M1 ane(nmr)
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Proposition 13.2. Let 3,,M +1<n < M + N be a set of complex numbers. Then

M+N 2
(13.2) Yoo Y Bax)] < (N+@))8I1%
¢<Q x (mod q) In=M+1
X primitive
Proof. By (3.5.1) we have
M+N 1 M+N an
S oant= g 3w 3 ae().
n=M+1 g\x a (mod q) n=M+1 q
By (3.5.2) we therefore deduce that
M+N 2 1 M+N an 2
SN I AGI D SR DI S T C
x (mod q) In=M+1 x (mod q) |a (mod q) n=M+1
X primitive X primitive
M+N 2
9(q) an
= ﬁne -
0o |5y
a (mod q) In=M+1
(a,9)=1
so that exercise 13.2a.a implies
‘ M+N 2
S L Y saw)| < (@I
7<Q x (mod q) In=M+1

X primitive

Exercises
13.2a. Let an, M +1 <n < M + N be a set of complex numbers. Deduce from Proposition 13.1 that

sy an ’
> 2 | X ane(f) < (N +Q)all*.
a<Q (a,q)=1 |[n=M+1 q

13.3a.a) Recall that ¢(q) > ¢/ loglog Q for all ¢ < Q. By cutting the sum over ¢ up into dyadic intervals,
deduce from (13.2) that

2

1 M+N N
Y osm X | X s < (F+Q) 1P eziez.
R<q<Q q x (mod q) [n=M+1
X primitive

b) Suppose that oy is supported on an interval of length L, where LN = z. Use the Cauchy-Schwarz
inequality to deduce from (13.2) that

o> [Daex®

9<Q x (mod q) | £
X primitive

< (@24 (L+N)V2Q + Q) |lall 18]l

Z ﬁnX(n)

¢) By combining these methods deduce that

Y oo X [Seo| e
R<q<Q q x (mod q) | ¢ n
X primitive

z1/2
< ?+(L+N)1/210gQ+Q lleel| [|3]| log log Q.
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Proposition 13.3. Let 6,,M +1 < n < M + N be a set of complex numbers such that
Bn =0 if n has a prime factor < Q. Then

2

M+N
T Y | Y )| < (V@8
a<Q x (mod q) In=M+1

X Pprimitive

Let B, = 1 if n is prime and > @, for n € [M + 1, M + N], and let 3, = 0 otherwise.
Taking Q = (N/log N)'/? in Proposition 13.3, and bounding the left side by the ¢ = 1
term, we obtain:

The Brun-Titchmarsh Theorem. For any M, N > 1 we have

2N N loglog N
T(M+ N)—n(M) < log N ( (log N)? )

Remark. Note that the upper bound given here depends only on the number of terms
being considered, and is uniform in M. It is of great interest to determine the smallest
constant that can replace the 2 in the Brun-Titchmarsh theorem. From the prime number
theorem that the 2 cannot be replaced by any number smaller than 1. In fact the proof
we gave counted the number of integers in this interval with no prime factor < ). An old
conjecture of Hardy and Littlewood stated that

mﬁx#{n €M+1,M+N]: pln = p>N} <7(N).
This was proved to be wrong by Hensley and Richards (though not necessarily by a lot).

Proof of Proposition 13.3. By exercise 13.3b the left side above is, writing ¢ = qr,

2

S LU S RPN
= T #a) o(t/a) (ot @) |ndi1
(g,4/q)=1 X primitive

Now let ¢ (mod ¢) be the character induced by x (mod ¢). From the discussion in section
3.5 we have g(v) = u(€/q)x(¢/q)g(x), so that if (¢,¢/q) > 1 then g(¢) = 0, and otherwise
lg(¥)|* = qu(t/q)? and ¢(q)p(£/q) = ¢(¢). Therefore the last line equals

2

1 M+N
Doom 2 Wl X s
£<Q 1 (mod £) n=M+1

using the fact that 5,1 (n) = B,x(n) by the hypothesis on 3,. Then, by (3.5.1) we see

that this equals
M+N an 2
> e ()
q

n=M+1

Y

'Y

£<Q a (mod ¥£)
(a,0)=1
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which gives the result by exercise 13.2a.

Exercises
13.3b. Prove that for any m, N > 1 we have

7> ¢ N.
r<N ¢
(r m) 1
(Hint: Expand each term as a sum of reciprocals of integers.)

13.4. Barban-Davenport-Halberstam, I.

Definition. The sequence (3,,n < N is said to satisfy a Siegel-Walfisz condition if for
any d >1,q > 1 and a with (k,a) =1 we have

1

S B Y G| <@ B

n: (n,dg)=1 (log N)

n=a (mod q)
(n,d)=1

Here 7(d) is the number of divisors of d.

Exercises
13.4a.a) Suppose that x is a character (mod ¢). Prove that for any integer d 7# 0 we have

S Bxm= 3 x@| X s — Y B
GO

(n,d)=1 (a,q)=1 n=a (mod q) : (n,dq)=1
(n,d)=1
b) Deduce that if 3, satisfies the Siegel-Walfisz condition then

1

< ¢(Q)r(d) P8

Z Brnx(n)

(n,d)=1 ( N)C

Theorem 13.1. Suppose that the sequence of complexr numbers B,,n < x satisfies a
Siegel-Walfisz condition. For any A > 0 there exists B = B(A) > 0 such that

2

3 Y3 3 ﬁ—%Zﬁn <8I g

<@ a: (a,q9)=1 |n=a (mod q) (n,q)=1

where Q = x/(log z)P
Proof. We begin with the identity

1 1
Z Z 671_@ ﬁn :mz

a: (a,9)=1 |n=a (mod q) (n,q)

I
—
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Now if x (mod g) is induced by ¢ (mod m) then >, Bux(n) = 3_,,. (4 4/m)=1 Bnt¥(n), and
d(q) > d(m)p(q/m) so that the left side of (13.3) is

“YosY Y| X sew

q<Q mlq ¢ (mod m) |n: (n,g/m)=1
m>1 1) primitive

1
Y m Y s Y| X A

r<Q 1<m<Q/r ¥ (mod m) |n: (n,r)=1
1 primitive

From exercise 13.3a.a we deduce that this sum restricted to m > M := (logz)B+! is
<« (4 2 loglog@ 8] < Qloglog Q |52

For the sum restricted to m < M we use the above identity to get the upper bound

2

Z ¢ Z ¢ > > Bav(n)
1< <M w (mod m) |n: (n,r)=1

“Ym T X | X begm X6

T‘<Q 1<m<Ma (a;m)=1 |n=a (mod m) (n,mr)=1
(n,r)=1

and this is

< Z 2IIBIIQﬁ < IIﬁIIQ(Ingx)A

by the Siegel-Walfisz condition, provided 2C > A + 2B + 2 + 2281 The result follows by
taking B > A

Theorem 13.2. Suppose that we have two sequences of complex numbers oy, L < £ < 2L,
and By, N < n < 2N which satisfies the Siegel-Walfisz condition. For any A > 0 there
exists B = B(A) > 0 such that if f(r) =) _,,_, aefn and x = LN then

1/2

(13.4) Y max 3 S 2 J <<|!04||||ﬁ||(1;—x),4

q<Q a: (a,9)=1 n=a (mod q) (n,q) 1

where Q = z/2/(log z)B, provided N > exp((logz)€) and L > (log x)?5+4,



PRIMES 9

Proof. We begin by observing that

S 055 T 105t 3 w0 (o) (Saa).

r=a (mod q) (r,q) 1 m

In absolute value this is, proceeding as in the proof of Theorem 13.1,

1
<y (LL) S LY awo | S B
rm=q (b 7“) <m ¥ (mod m) [£: (£,r)=1 n: (n,r)=1

Y primitive

The sum of this over ¢ < Q, restricted to m > M := (logz)B*! is, by exercise 13.3a.c,
1 [zl/? Q
—— [ S+ (L+ N)Y21 = log1
<;¢<r>(M L+ ) 10gQ + 2] Jall [9]10gloQ

1/2
< (xwlogw (L+N)"/*(log Q) + ) lall (18] loglog @

< Qlle] 8] log log Q-

For the rest, using exercise 13.4a.b, and then the Cauchy-Schwarz inequality with (13.2),
we obtain

1

N2
Y. a8l me
r<Q@Q m<M 1 (mod m) |€: (£,r)=1 (lOgN)
1 primitive
 (log Q)"

< M(LY? + M)|al - BN <L Qe[ 121l

(log N)¢

as M < LY? and log N > (log x)¢ for eC = 2B + 1 + 251,
13.5. The Bombieri-Vinogradov theorem. We will prove (13.1) in the following form:
Theorem 13.3. For any A > 0 there exists B = B(A) > 0 such that

V@[
YEGD =50y | <4 Toga)?

13.5 max
( ) ZCQ (a7Q):1

where Q = z2 /(log )8

The idea in the proof is to repeatedly use Theorem 13.2 after we have written A(n) as a
sum of such convolutions: Let M(s) =3_, . = p(m)/m?. As ((s)71 = Y om>1 () /n® we
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see that the coefficient of 1/n® in {(s)M(s)—11is 0 for n < /x; and similarly the coefficients
of —(’(s)/((s) — R(s) where R(s) = >, . 5 A(r). Multiplying the two together gives a
Dirichlet series in which the coefficient of I/ n® is 0 for n < z. In particular we deduce that
if \/z < n <z then A(n), the coefficient of 1/n® in —(’(s)/((s)— R(s), equals the coefficient
of 1/n® in (—('(s)/((s) — R(s))¢(s)M(s) = —('(s)M (s) — ((s)M(s)R(s). Therefore

—A(n) = fi(n) + fa(n),

where
filn) = > w(m)log(n/m) and fo(n)= Y p(m)A(r).
m<\x m,r<\/z
m|n mr|n
Now
Y. A= > wm) D logn/m)= Y u(m) >, logk
Vrz<n<z m<\/z Vrz<n<z m<+/x Vr/m<k<z/m
n=a (mod q) (m,q)=1 n=a (r‘nod q) (m,q)=1 k=a/m (mod q)

1
= Z u(im) | — Z log k + O(log x)
m<y/x 1 Vr/m<k<z/m

(m,q)=1

Summing this up over all a with (a,q) = 1 and dividing by ¢(q) we deduce that

(13.6) max Z fi(n) — @ Z fi(n)| < Qvzlogz.

<0 (a,q)=1

q< Vrz<n<z Vrz<n<z
n=a (mod q) (n,q)=1
Now
S b= Y amA).
Vz<n<z m,r<\/z,(>1
n=a (mod q) Vrz<mri<z

mrf{=a (mod q)

In this latter sum we will cut the ranges for m,r, ¢ up into dyadic ranges, say M < m <
2M, R<r <2Rand L < ¢ < 2L. To start with we have, for /Jx < MRL < x

S oamAe) X 1= Y amae) {2 row).

M<m<2M L<t<2L M<m<2M
R<r<2R £=a/(mr) (mod q) R<r<2R
(mr,q)=1 (mr,q)=1

Summing over all a with (a,q) = 1 we get an error term

< > A(r)< MR

M<m<2M
R<r<2R
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This is acceptably small provided MR < z/(logz)4*? (since there are < (logz)? such
pairs M, R). Therefore we may assume that MR > x/(logz)?*2: since M, R < /z this
implies that M, R > /z/(logz)?4*2. In this range we may employ Theorem 13.2, taking
Br = A(r) which satisfies the Siegel-Walfisz criterion and

Ay = Z :u(m)7

M<m<2M, L<{<2L
mel=n

so that |8 = 3 po,can A(r)? < Y- Rlogx and [|af|* < 3, 7(n)? < LM (log x)?.

This is not quite a complete proof because if the dyadic intervals are given by
(L,2L), (M,2M], (R,2R] with LMR < x < 8LMR, we have counted sum terms corre-
sponding to n that are larger than x. To correct for this we need cut the ranges up into finer
intervals, say of the form (L, (1+0)L], (M, (1 + §)M], (R, (1 + )R], where § = 1/(logz),
so that the total possible contribution of these intervals, whose contribution includes terms
n that are greater than x, is sufficiently small.

13.6. Barban-Davenport-Halberstam, II. The Montgomery-Hooley refinement:

Theorem 13.4. There exists a constant ¢ such that if 1 < Q < x then

> 2

9<Q a: (a,q)=1

2 2

=2Q(logQ +c¢) + O (Qg(log )" + (log—x)“‘>

0(x: q, a) — @

for any fixed A > 0.

Proof. The result follows from Theorem 13.1 for Q < x/(logz)?, so we can assume that
z/(logx)P < Q < z. Tt is convenient to 3, = logn if n is prime and 0 otherwise, so that
the sequence (3,,n < N satisfies the Siegel-Walfisz condition. We start by noting that

> = X g {10 ()}

a: (a,q)=1 m,n<x
m=n (mod q)

0(x; . a) — @

by the Siegel-Walfisz theorem. Summing this up over all @ < ¢ < x we obtain

>, D 2=Z S Buba

Q<q<sz a: (a,q)=1 Q<g<z  mn<w
m=n (mod q)

- 2w (o)

Q<g<z

0(x: q, a) — @

Now if m < n then we write n — m = qr so that r = (n — m)/q < x/Q. Therefore, using
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the Siegel-Walfisz theorem,

E E BmBn = E E
Q<g<z m<n<z r<z/Q m+rQ<n<zx
m=n (mod q) m=n (mod r)

Z Z B (0(z;7,m) — 0(m 4+ rQ;r,m))

:rgx/ngx rQ
I C e (D)

r<z/Q m<z—rQ

> O 0 ()

r<z/Q

BrmBn

For the last quantity we use a variant on Perron’s formula: If ¢ > 1 then
y—1)2 ify>1

(y—1)? ify=1
ifo<y<1

—~

1 / 2q5+1
- ds
2im Jiey (s —1)s(s +1)

S =

Therefore, if R is not an integer then

Z%:m/@ =0 ( )Hl(s—lff(sH)

r<R
st ds
= 5 | (AR

2Z7T (c)

S+ e Pulling the contour back to the left we uncover poles at
(p 1/

where A(s) :=
s=1,0,—1. At s =1 the integrand has a double pole, and so the residue is

1 A'(1) 1

— A()R* (1 --).

5 ()R (ogR+ A(l)—l—’y 2)

Writing A(s) = ((s + 1)B(s), we determine that the integrand also has a double pole at

—¢(0)B(0)R (1 R+ — ((0)) + Cgl((o; + ’y) .

log(27). One can show that the error term

s = 0 with residue

= —1/2 and {’(0)/¢(0) =

Now B(0) = 1,{(0) =
when incorporating these two residues in O(R€). Substituting this in above gives

S O A (log(w/@Q) + 1) + 2@ (log(/Q) + 2) + O(Q*(x/Q)°)
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where ¢; := A'(1)/A(1)+~v—1/2, c2 :== B’(0)/B(0)+log(2m)+~. With a similar argument
for n < m, and using the prime number theorem when m = n we deduce that

S Y Bubu=(a - Qulogz 1) + A1) (log(2/Q) + 1)

Q<gq<z  mn<z
m=n (mod q)

+ 2Q (log(z/Q) + c2) + O(Q*(2/Q)°) + O ((log—x)A>

We also note that there exists a constant c3 such that

(13.7) S @ — A(1)logz + c3 + O(log /).

g<z

Adding all of the above together and noting the symmetry in m and n, we obtain

2. 2

QR<q<z a: (a,q)=1

2
= 2%(logz + c4) — 2Q (log Q — c3 — 1))

0(x; g, a) — @

+0(Q*(log z)°),

where ¢4 = A(1)c; — 1. Adding in (13.3) with A sufficiently large implies that

2. 2

q<z a: (a,q)=

2

22
= 2%(logz +c4) + O <—A> .

?(q)

Subtracting the last two equations achieves our objective (and seems to imply that A(1)c; =
¢4 + 1 = —co which is dubious, so there may be an error.).

Exercises
13.6a. Prove the variant of Perron’s formula given here. (Hint: You may wish to simply use the first
version of Perron’s formula directly rather than any calculus.)

13.6b.a) Use elementary methods to prove that 3>° . q/#(q) = A(1)z + O(logz).
b) Use partial summation to deduce (13.7).



