
7. PRIMER ON ANALYSIS.

To study analytic number theory it helps to know some of the basics of “hard analysis”.
We made a start in section 2 with o(.), O(.),¿,À,³,∼, etc., but now it is time to discuss,
possibly review, the techniques and ideas that can be first encountered in courses in real
analysis, complex analysis, Fourier analysis, applied analysis etc.

7.1. Inequalities. The Cauchy-Schwarz inequality is remarkably useful. It states that
if a1, a2, . . . , ak, b1, b2, . . . , bk ∈ C then

(7.1.1)
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There are many proofs in the literature. The main use comes from the separating of
variables, the ai from the bj , which might have arisen for quite different reasons. The
Cauchy-Schwarz inequality is a special case of Holder’s inequality which states that if p
and q are positive with 1/p + 1/q = 1 then

(7.1.2)
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There is a continuous version of this, namely, if f(t), g(t) ∈ C(t) then

(7.1.3)
∣∣∣∣
∫ v

u
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∣∣∣∣ dt ≤
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.

Given h(t) define eI(m) :=
∫ v

u
|h(t)|m dt. If ` < m < n then we can take 1

p = n−m
n−` so that

1
q = m−`

n−` , and then f(t) = h(t)`/p and g(t) = h(t)n/q, in (7.1.3) to obtain

(7.1.4) (n− `)I(m) ≤ (n−m)I(`) + (m− `)I(n);

that is, I(m) can be bounded by the appropriate convex linear combination of I(`) and
I(n), a convexity bound.

Exercises
7.1a. You interview a set of one parent families, first asking each parent the number of children in their
family and determining the average of the responses, and then asking each child the number of children
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in their family and determining the average of the responses. Which average is larger, or are they always
the same?

7.1b. Use the method of Lagrange multipliers to prove Holder’s inequality. Show that one gets equality if
and only if there exists a non-zero constant c such that |ai|p = c|bi|q for all i. (Note that 1

p
+ 1

q
= 1 if and

only if (p− 1)(q − 1) = 1.)

7.2. Fourier series. You have probably wondered what “radio waves” and “sound
waves” have to do with waves. Sounds don’t usually seem to be very “wavy,” but rather
are fractured, broken up, stopping and starting and changing abruptly. So what’s the
connection? The idea is that all sounds can be converted into a sum of waves. For
example, let’s imagine that our “sound” is represented by the gradually ascending line
y = x − 1

2 , considered on the interval 0 ≤ x ≤ 1, which is shown in the first graph of
Figure 1.
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Figure 1. The line y = x− 1
2 and the wave y = − 1

π sin 2πx.

If we try to approximate this with a “wave,” we can come pretty close in the middle of
the line using the function y = − 1

π sin(2πx). However, as we see in the second graph of
Figure 1, the approximation is rather poor when x < 1/4 or x > 3/4.

How can we improve this approximation? The idea is to “add” a second wave to the
first, this second wave going through two complete cycles over the interval [0, 1] rather than
only one cycle. This corresponds to hearing the sound of the two waves at the same time,
superimposed; mathematically, we literally add the two functions together. As it turns
out, adding the function y = − 1

2π sin(4πx) makes the approximation better for a range of
x-values that is quite a bit larger than the range of good approximation we obtained with
one wave, as we see in Figure 2.
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Figure 2. Adding the wave y = − 1
2π sin 4πx to the wave y = − 1

π sin 2πx
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We can continue in this way, adding more and more waves that go through three, four,
or five complete cycles in the interval, and so on, to get increasingly better approximations
to the original straight line. The approximation we get by using one hundred superimposed
waves is really quite good, except near the endpoints 0 and 1.
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Figure 3. The sum of one hundred carefully chosen waves

If we were to watch these one hundred approximations being built up one additional wave
at a time, we would quickly be willing to wager that the more waves we allowed ourselves,
the better the resulting approximation would be, perhaps becoming as accurate as could
ever be hoped for. As long as we allow a tiny bit of error in the approximation (and shut
our eyes to what happens very near the endpoints1), we can in fact construct a sufficiently
close approximation if we use enough waves. However, to get a “perfect” copy of the
original straight-line, we would need to use infinitely many sine waves—more precisely, the
ones on the right-hand side of the formula

(7.2.1) x− 1
2

= −2
∞∑

n=1

sin(2πnx)
2πn

,

which can be shown to hold whenever 0 < x < 1. (We can read off, in the n = 1 and n = 2
terms of this sum, the two waves that we chose for Figures 1 and 2.) This formula is not

1The inability of these finite sums of waves to approximate an original function well near a very
“unwavelike” feature, like an endpoint or a discontinuity, is a persistent problem in Fourier analysis known
as the Gibbs phenomenon.
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of much practical use, since we can’t really transmit infinitely many waves at once—but
it’s a gorgeous formula nonetheless!

In general, for any function f(x) defined on the interval [0, 1] that is not “too irregular,”
we can find numbers an and bn such that f(x) can be written as a sum of trigonometric
functions, namely,

(7.2.2) f(x) = a0 +
∞∑

n=1

(
an cos(2πnx) + bn sin(2πnx)

)
.

This formula, together with a way to calculate the coefficients an and bn, is one of the key
identities from “Fourier analysis,” and it and its many generalizations are the subject of
the field of mathematics known as harmonic analysis. In terms of waves, the numbers 2πn
are the frequencies of the various component waves (controlling how fast they go through
their cycles), while the coefficients an and bn are their amplitudes (controlling how far up
and down they go).

In fact the right side of (7.2.2) defines a function on all the reals that is evidently periodic
of period 1 (being a sum of periodic functions of period 1), that is f(x + n) = f(x) for all
x ∈ R, n ∈ Z. We may write

(7.2.3) a0 +
∑

m≥1

(am cos(2πmx) + bm sin(2πmx)) =
∑

m∈Z
cme2iπmx,

where a0 = c0 and am = cm + c−m, bm = i(cm − c−m) with

(7.2.2) cm =
∫ 1

0

f(t)e−2iπmtdt,

for each m ∈ Z. Notice that if we integrate the series in (7.2.3) multiplied by e−2iπjt, over
[0, 1), we obtain cj provided that we can swap the order of summation and integration
without anything surprising happening. Dirichlet proved that this is true at any point of
continuity of f , and that the value of (7.2.3) is 1

2 (limt→x− f(t)+limt→x+ f(t)) at any point
of discontinuity of f . An amazingly useful result.

Note that we can rewrite (7.2.1) as

{x} − 1
2

= −
∑

k∈Z
k 6=0

e2iπkx

2iπk
.

7.3. Poisson summation. Suppose that we have a function g(x) that is real valued and
piecewise continuous. If f(t) = g(x + t) on t ∈ [0, 1) and is periodic, of period 1, then it
is also real valued and piecewise continuous, so we can use the Fourier series (7.2.1) and
(7.2.2) to prove that

1
2
(g(x) + g(x + 1)) =

∑

m∈Z

∫ 1

0

g(x + u)e−2iπmudu =
∑

m∈Z
e2iπmx

∫ x+1

x

g(t)e−2iπmtdt.
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Repeating this process by shifting x → x + 1, etc, we obtain, since e2iπmx = e2iπm(x+1),
the Poisson summation formula, for y − x ∈ Z,

(7.3.1)
1
2
g(x)+g(x+1)+g(x+2)+ · · ·+g(y−1)+

1
2
g(y) =

∑

m∈Z
e2iπmx

∫ y

x

g(t)e−2iπmtdt.

This implies that

(7.3.2)
∑

n∈Z
f(n) =

∑

m∈Z
f̂(m) where f̂(u) :=

∫ ∞

−∞
f(t)e−2iπutdt.

One can easily deduce that if h = f ∗ g, that is h is the convolution of f and g defined by

h(u) :=
∫ ∞

−∞
f(t)g(u− t)dt then ĥ(t) = f̂(t)ĝ(t).

One can “invert” the Fourier transform to obtain

f(x) =
∫ ∞

−∞
f̂(t)e2iπtxdt.

One can deduce Parseval’s identity
∫ ∞

−∞
f(x)g(x)dx =

∫ ∞

−∞
f̂(t)ĝ(t)dt,

which itself implies ∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|f̂(t)|2dt.

If f has period q then (7.3.1) implies

q−1∑
n=0

f(n) =
∑

m∈Z

∫ q

0

f(t)e−2iπmtdt.

For the example f(t) = e2iπt2/q we obtain, swapping m and −m,

q−1∑
n=0

e2iπn2/q =
∑

m∈Z

∫ q

0

e2iπ(t2/q+mt)dt = q
∑

m∈Z

∫ 1

0

e2iπq(u2+mu)du

= q
∑

m∈Z
e−iπqm2/2

∫ 1

0

e2iπq(u+m/2)2du

= q
∑

m∈Z
m even

∫ m/2+1

m/2

e2iπqv2
dv + q(−i)q

∑

m∈Z
m odd

∫ m/2+1

m/2

e2iπqv2
dv

= q(1 + (−i)q)
∫ ∞

−∞
e2iπqv2

dv =
√

q(1 + (−i)q)
∫ ∞

−∞
e2iπw2

dw,
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taking t = uq and completing the square, then putting v = u + m/2 and combining the
integrals, and finally letting w =

√
qv. Taking q = 1 we see that the integral here equals

1/(1− i), and therefore if q is prime and χ is the character of order 2 mod q then

g(χ) :=
∑

a (mod q)

(1 + χ(a)) exp
(

2iπ
a

q

)
=

∑

n (mod q)

exp
(

2iπ
n2

q

)

=
√

q
(1 + (−i)q)

1− i
=
√

q ·
{

1 if q ≡ 1 (mod 4)
i if q ≡ 3 (mod 4)

(7.3.3)

Thus we have evaluated the sign of Gauss sum we discussed in section 3.5. Therefore if
q ≡ 3 (mod 4) then by (3.6.3) and (4.5.2) we obtain

(7.3.4)
∑

1≤a<q/2

(
a

q

)
=

4− 2χ(2)
w

h(−q) > 0;

which shows that there are more quadratic residues than non-residues (mod q) between
0 and q

2 , when q is a prime ≡ 3 (mod 4). Moreover if q ≡ 1 (mod 4) then by section 3.6
and (4.6.5) we obtain

(7.3.5) εh(q)
q =

∏

a (mod q)

(1− αa)−( q
a ) where α := exp

(
2iπ

q

)

We define a finite Fourier transform by

f̂(k) =
1
q

q∑
n=1

f(n)e−kn/q,

so that

f(n) =
q∑

k=1

f̂(k)ekn/q.

The analogy to Parseval’s identity is

q∑
n=1

|f(n)|2 = q

q∑

k=1

|f̂(k)|2.

7.4. The order of a function. An analytic function f(z) has finite order d if
log |f(z)| ¿ |z|d+o(1), and d is the smallest such number. If f has no zeros we can write it
in the form eg(z); where g(z) =

∑
n≥0 cnzn. Hence

|cn|Rn =
∣∣∣∣
∫ 1

0

g(Re2iπt)e−2iπntdt

∣∣∣∣ ¿ Rd+o(1),
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so that cn = 0 if n > k, and therefore g must be a polynomial of degree d, which must be
an integer. Note that this argument works if we simply have an infinite sequence of values
of R, getting arbitrarily large.

Mahler’s measure gives a useful meaure of a polynomial: If f(x) = a0

∏
1≤i≤k(x − αi)

then M(f) := |a0|
∏

1≤i≤k max{1, |αi|}. Jensen’s formula links this definition that depends
on the algebraic part of f (that is, its roots), with the analytic part of f (its size):

(7.4.1) log M(f) =
∫ 1

0

log |f(e2iπt)| dt.

This is easily proved by factoring f and proving this for each linear polynomial f . Rather
more generally, if g is an analytic function of finite order with g(0) 6= 0 then

exp
(∫ 1

0

log |g(Re2iπt)| dt

)
= |g(0)|

∏

z: |z|≤R
g(z)=0

R

|z|

where we count multiple zeros with their multiplicity. This can be proved by writing
g(z) = f(z)h(z) where f is a polynomial the same zeros as g, and h is analytic without
zeros so we can write it as eP (z) where P is a polynomial, as above.

If one orders the zeros z1, z2, . . . of g to have absolute value 0 < |z1| = r1 ≤ |z2| = r2 ≤
. . . and there are k zeros with |z| ≤ R then

log




∏

z: |z|≤R
g(z)=0

R

|z|


 =

k∑

i=1

log
(

R

ri

)
=

k−1∑

i=1

i log
(

ri+1

ri

)
+ k log

(
R

rk

)
=

∫ R

0

n(r)
dr

r

where n(r) := #{i : ri ≤ r}. Therefore

n(R) ≤ n(R)
∫ eR

R

dr

r
≤

∫ eR

R

n(r)
dr

r
≤

∫ 1

0

log |g(Re2iπt)/g(0)| dt ¿ Rd+o(1),

and hence

(7.4.2)
∑

z: |z|≤R
g(z)=0

1
|z|α = α

∫ ∞

0

n(r)
r1+α

dr ¿ 1

if α > d. Let us now focus on the case d = 1, and consider the function

G(z) :=
∏

n≥1

(1− z/zn)ez/zn .

Taking logarithms we see that this is an analytic function that converges everywhere by
(7.4.2). Since n(R) ¿ R1+o(1) we can certainly find arbitrarily large values of R such that



8 MAT6684

if |z| = R then |zn − z| ≥ 1/Ro(1) for all n. Hence |1 − z/zn| ≥ 1/R1+o(1) if |zn| ≤ 2R,
implying that

− log |G(z)| ¿
∑

n: |zn|≤2R

(log R + R/|zn|) +
∑

n: |zn|>2R

|R/zn|2

¿ n(2R) log R + R

∫ 2R

0

n(t)
t2

dt + R2

∫ ∞

2R

n(t)
t3

dt ¿ R1+o(1).

Therefore g(z)/G(z) is an analytic function of order 1 with no zeros and so must be of the
form eAz+B for some constant A,B. Hence we may rewrite g(z) as

(7.4.3) g(z) = eAz+B
∏

n≥1

(1− z/zn)ez/zn

which is everywhere convergent. If
∑

n 1/|zn| converges then one can modify the above to
show that log |g(z)| ¿ |z|.

7.5. Complex analysis. If one wants to make sense of calculus when one is working with
functions of a complex variable then one needs to determine how to evaluate

∫ b

a
f(z)dz. If

a and b are real numbers and z a real variable, then the Riemann-Stieltje’s interpretation
of the integral involves allowing the z variable to travel along a path from a to b, there
being only one choice along the x-axis, though one can, if needs be, re-interpret the path
as going from a to c, and then from c to b, whether or not c lies in-between a and b. In
all cases this should give the same answer. When we work with functions of a complex
variable, and a, b ∈ C, we want this to again be true; that is that the value of

∫ b

a
f(z)dz

does not depend on the path taken to get from a to b; and, in the complex plane, there
are an infinite number of possible choices of path. In fact if we wish to compare the value
of the integral along two paths from a to b, we could append the paths into a circuit C by
going from a to b along one path, and then going backwards on the other from b to a. We
would then want that

∫
C

f(z)dz = 0. This is true for any closed circuit C when f(z) can
be written at each point in terms of a Taylor series (that is, f is analytic); and in fact it is
true for C when f is analytic inside and on C. If f is analytic except for a finite number of
points, say z1, . . . , zk, called poles, for each of which there exists an integer q1, . . . , qk > 0
such that (z − zj)qj f(z) can be written as a Taylor series at z = zk, then we say that
f is meromorphic. From what we have just written, to be able to interpret all integrals
involving f we simply need to determine the value of the integral in a closed circuit around
each zj , that circuit not enclosing zi for any i 6= j.

Suppose that f(z) can be written as
∑

J≥r aj(z − z0)j with aJ 6= 0, for some J (which
equals = −q` when z0 = z`) in a circle C of radius r around c0. Then, taking z = z0+re2iπt,

(7.5.1)
1

2iπ

∮

C

f(z) dz =
∑

j≥J

aj · 1
2iπ

∮

C

(z − z0)jdz = a−1

by (3.1.1). Hence only the coefficient of (z − z0)−1 contributes to the integral around a
closed circuit like this. If a−1 6= 0 then we say that the pole at z = z0 of f(z) contributes a
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residue of a−1 to the integral. We assumed in (3.1.1) that t grows in the positive direction
in the integral, that is we went anti-clockwise around C; had we gone clockwise the answer
here would be −a−1.

If we wish to determine 1
2iπ

∮
C

f(z) dz for a function f which is meromorphic inside C
then we can break the region C up into a finite number of pieces, each containing at most
one pole of f . If C1, C2, . . . , Cr denote the boundaries of these pieces then 1

2iπ

∮
C

f(z) dz =∑r
i=1

1
2iπ

∮
Ci

f(z) dz, where all of the Ci are traversed in an anti-clockwise direction, so
that the contribution of any internal boundary cancels, having been traversed once in each
direction.

The birth of analytic number theory came in recognizing that one could use (7.5.1) to
sum numbers a−1, by summing up functions f , and then using the tools of calculus to
determine the answer.

One example of such a tool is the argument principle. Suppose that f(z) is a meromor-
phic function and we wish to count the number of zeros of f inside a closed circuit C. To
simplify matters we carefully select our circuit to never run though a zero or pole of f . If
f =

∑
j≥J aj(z − z0)j with aJ 6= 0, for some J then f ′(z)/f(z)− J/(z − z0) is analytic at

z0, the extra term J/(z − z0) only contributing if J 6= 0, that is if z0 is either a pole of
zero of f . Hence, by (7.5.1)

(7.5.2)
1

2iπ

∮

C

f ′(z)
f(z)

dz = #{zeros of f inside C} −#{poles of f inside C},

where we count a zero of order J > 0, J times, and a pole of order J < 0, |J | times. Now
if f(z) = er(z)+2iπa(z) on the boundary then f ′(z)/f(z) = r′(z)+2iπa′(z). Comparing the
imaginary parts of both sides of (7.5.2), we see that

∮
C

r′(z)dz = 0, and so the left side
of (7.5.2) equals

∮
C

a′(z) dz, which is the change in a(z) as we go round the circuit C.
Therefore the number of zeros of f minus the number of poles inside C equals the change
in argument of f(z), divided by 2π, as we go around the circuit C.

7.6. Perron’s formula and its variants. We begin with a way of identifying whether
a real number t is positive or negative, using the discontinuous integral

(7.6.1)
1

2iπ

∫ c+i∞

c−i∞
esu ds

s
=





0 if u < 0
1/2 if u = 0
1 if u > 0

which holds for any c > 0. (This can be viewed as the continuous version of (7.2.3).) It is
proved using the ideas of complex analysis: The key idea is that the value of the integral
in a closed contour C, is given by the contribution of the poles of esu/s (as discussed in
the previous section). Since the only pole lies at s = 0, the value of the integral equals 0
if s = 0 does not lie within C, and equals 1 if it does. Here we take the line from c− i∞
to c + i∞ to be part of the boundary, and the rest of the boundary going from N + i∞ to
N − i∞ for some N 6= c.2 For u < 0 we take N to be a very large positive real number

2If one is uncomfortable with the idea that all vertical lines end in the same place, then one can truncate
the lines at c± iT, N ± iT , as we will explain.
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and we will bound the size of the integral: We employ the same ides that has served
us well when studying L-functions, which is that the size of the integrand changes little
while the argument goes through a full revolution. Thus writing s = N + it we find that
esu/s = eNueitu/(N + it). Allowing t to vary from t0 > 0 to t0 + 2π/|u| we obtain:

1
2iπ

∫ N+i(t0+2π/|u|)

N+it0

esu ds

s
=

1
2π

∫ t0+2π/|u|

t0

eNueitu

N + it
dt

=
eNu

2π

∫ t0+2π/|u|

t0

(
eitu

N + it
− eitu

N + it0

)
dt,

which is ≤ πeNu/(u2(N2 + t20)) in absolute value. Thus taking t0 = 2πm/|u| for m =
0, 1, 2, . . . (and the conjugate argument for negative t), we obtain

∣∣∣∣∣
1

2iπ

∫ N+i∞

N−i∞
esu ds

s

∣∣∣∣∣ ≤ 2
∑

m≤N |u|/2π

eNu

(uN)2
+ 2

∑

m≥N |u|/2π

eNu

(2πm)2
≤ 2eNu

πN |u| ;

and this → 0 as we allow N to get larger and larger. Thus we have proved the case with
u < 0. The result with u > 0 is similar though now we move our contour to the left, that
is letting N → −∞, and therefore the pole at s = 0 now contributes to the value of the
integral. The case with u = 0 is easiest approached by adding the contributions of c − it
and c + it, and changing variable t = cv to obtain 1

π

∫∞
0

1
1+v2 dv = 1

2 via the substitution
v = tan θ.

Typically we use Perron’s formula to recognize integers n ≤ x so we apply it with
u = log(x/n) to obtain

(7.6.2)
1

2iπ

∫ c+i∞

c−i∞

(x

n

)s ds

s
=





0 if n > x

1/2 if n = x

1 if n < x

Therefore, to estimate
∑

n≤x φ(n)/n2 from section 2.14, we have, assuming x is not an
integer so we can avoid the n = x case of (7.6.2),

∑

n≤x

φ(n)
n2

=
∑

n≥1

φ(n)
n2

1
2iπ

∫ c+i∞

c−i∞

(x

n

)s ds

s
=

1
2iπ

∫ c+i∞

c−i∞

∑

n≥1

φ(n)
n2+s

xs ds

s

where we did not justify swapping the order of the summation and the integration though,
as usual, it can easily be justified if everything is convergent enough, which in practice
involves taking c large enough. Now the Dirichlet series

∑
n≥1 φ(n)/n2+s involves the sum

of a multiplicative function, so is the product of the same sum taken over the powers of
each prime p, which is 1 + (1− 1

p )( 1
p1+s + 1

(p2)1+s + . . . ) = (1− 1
p2+s )/(1− 1

p1+s ). Therefore
our integral becomes

1
2iπ

∫ c+i∞

c−i∞

ζ(1 + s)
ζ(2 + s)

xs ds

s
.
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To evaluate this we again shift the contour in the same way. The key thing to note is
that |xs| = xc so we shrink the size of the integrand by moving the contour to the left.
When we do this the first pole that we meet lies at s = 0 and is in fact a pole of order
two, since a pole is contributed by the ζ(1 + s) term. Let’s compute the residue at this
point by working out the series for the integrand: sζ(1 + s) = 1 + γs + O(s2), ζ(2 + s) =
ζ(2)+sζ ′(2)+O(s2), xs = 1+s log x+O(s2), so altogether we obtain that the coefficient of
1/s in our integrand, and thus our residue, is (log x+γ−ζ ′(2)/ζ(2))/ζ(2) = 6

π2 log x+O(1).
At this point we expect that this is a good estimate for our original sum. The next pole of
our integrand has Res < −1,3 so if we move the contour to the vertical line at Re(s) = −1
then we simply need to show that this integrand is small to achieve our original objective,
and this can be done.

Typically it is more useful to describe Perron’s formula in terms of an integral that goes
to a large height T , rather than to ∞.

Proposition 7.6. For c, y > 0 we have We have
∣∣∣∣∣∣∣

1
2iπ

∫ c+iT

c−iT

esu ds

s
−





0 if u < 0
1/2 if u = 0
1 if u > 0

∣∣∣∣∣∣∣
¿ ecu

1 + T |u| .

Proof. In the bounds we gave above for the integrand on the line Re(s) = N , one can
simply take N = c and m0 = [|u|T/2π], so that our missing integral is no more twice than
the sum of ecu/4πm2 over all m ≥ m0, which is ≤ ecu/(T |u|). The missing integral when
u = 0 equals 1

π

∫∞
T/c

1
1+v2 dv =≤ 1

π

∫∞
T/c

1
v2 dv = c

πT .
Suppose that u < 0. We will create a closed circuit C by going up the path from c− iT

to c+ iT , and returning on most of a semi-circle, to the right of this line. Thus our integral
is minus the integral on this arc. Since the arc is to the right of the line we have |esu| ≤ ecu

throughout, and evidently |s| = r where r = c2+T 2. Therefore as the arc has length ≤ 2πr
the integral is ≤ 1

2π · 2πr · ecu/r = ecu. An analogous proof works when u > 0 by going to
the right.

Exercises
7.6a. Use Perron’s formula to give an integral involving L-functions that gives a precise formula for the
number of distinct integers that are the sum of two squares. Why is this difficult to estimate by the
methods described above?

7.6b. Prove that
P

n≤x
φ(n)

n2 = 6
π2 log x + O(1), by writing

φ(n)
n

=
P

d|n
µ(d)

d
.

7.7. Analytic continuation. There is a beautiful phenomenon in the theory of func-
tions of a complex variable called “analytic continuation.” It tells us that functions that
are originally defined only for certain complex numbers often have unique “sensible” defi-
nitions for other complex numbers. For example the definition of ζ(s), that

ζ(s) :=
∑

n≥1

1
ns

3This follows from work in section 9.6 where we show that ζ is non zero on the 1-line.
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only works when σ = Re(s) > 1, since it is only is this domain that the sum is absolutely
convergent. However “analytic continuation” will allow us to define ζ(s) for every complex
number s other than s = 1. This description of analytic continuation looks disconcertingly
magical. Fortunately, there is a quite explicit way to show how ζ(σ + it) can be “sensibly”
defined at least for the larger region where σ > 0. We start with an expression for teh
product (1− 21−s)ζ(s) and then perform some sleight-of-hand manipulations:

(
1− 21−s

)
ζ(s) =

(
1− 2

2s

)
ζ(s) = ζ(s)− 2

2s
ζ(s)

=
∑

n≥1

1
ns
− 2

∑

m≥1

1
(2m)s

=
∑

n≥1

1
ns
− 2

∑

n≥1
n even

1
ns

=
∑

m≥1
m odd

1
ms

−
∑

n≥1
n even

1
ns

=
(

1
1s
− 1

2s

)
+

(
1
3s
− 1

4s

)
+

(
1
5s
− 1

6s

)
+ · · · .

Solving for ζ(s), we find that

ζ(s) =
1

(1− 21−s)

{(
1
1s
− 1

2s

)
+

(
1
3s
− 1

4s

)
+

(
1
5s
− 1

6s

)
+ · · ·

}
.

All of these manipulations were valid for complex numbers s = σ + it with σ > 1. How-
ever, it turns out that the infinite series in curly brackets actually converges whenever
σ > 0. Therefore, we can take this last equation as the new “sensible” definition of the
Riemann zeta-function on this larger domain. Note that the special number s = 1 causes
the otherwise innocuous factor of 1/(1−21−s) to be undefined; the Riemann zeta-function
intrinsically has a problem there, one that cannot be swept away with clever rearrange-
ments of the infinite series.

7.9. The Gamma function. Euler defined

(7.9.1) Γ(s) :=
∫ ∞

0

e−tts−1dt,

which converges whenever Re(s) > 0. Writing t = −n log x we obtain

(7.9.2) Γ(s) = ns

∫ 1

0

xn−1(log x−1)s−1,

for any n > 0; and taking t = nπ2x we get

(7.9.3) Γ(
s

2
) = π

s
2 ns

∫ ∞

0

x
s
2−1e−n2πxdx.
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The Gamma function is best known as a continuous extrapolation of the factorial func-
tion: First integrate (7.9.1) by parts to obtain Γ(s + 1) = sΓ(s) whenever Re(s) > 0.
Noting that Γ(1) = 1 we deduce, by induction, that Γ(n + 1) = n! for all integers n ≥ 0.
By showing that Γ(s) is an analytic function of order 1, Weierstrass used (7.4.3) to give
the formula

(7.9.4)
1

sΓ(s)
= eγs

∏

n≥1

(1 + s/n)e−s/n

which is valid for all s ∈ C, and shows that Γ(s) has no zeroes, and simple poles at
s = 0,−1,−2, . . . and nowhere else. Show that A = γ, B = 0 in (7.4.3). Deduce that
Γ(s + 1) = sΓ(s) for all s ∈ C by this formula.

Taking the logarithmic derivative we deduce from (7.9.4) that

(7.9.5) −Γ′(s)
Γ(s)

= γ +
1
s

+
∑

n≥1

(
1

s + n
− 1

n

)

One can deduce from (7.9.4) that

(7.9.6) Γ(s)Γ(1− s) =
π

sin πs
and Γ(s)Γ

(
s +

1
2

)
= 21−2sπ1/2Γ(2s).

Stirling’s formula gives, provided | arg s| < π − δ for fixed δ > 0,

(7.9.7) Γ(s) =
(s

e

)s √
2π/s

(
1 + Oδ

(
1
|s|

))
.

Exercises
7.9a. Show that −Γ′(1)/Γ(1) = γ and so deduce, from the definition of Γ(s) that we have

R∞
0 e−t log tdt =

Γ′(1) = −γ.

7.9b. Using the Taylor series for − log(1 − t) at t = −1, and (7.9.5), deduce that −Γ′(1/2)/Γ(1/2) =
γ + log 4.

7.9c. Prove that if | arg s| < π− δ for fixed δ > 0 then
Γ′(s)
Γ(s)

= log |s|+ Oδ(1). Why is the restricted range

necessary?


