
9. THE FUNDAMENTAL PROPERTIES OF ζ(s)

9.1. Representations of ζ(s). Let us begin this section by noting that for Re(s) > 1
we have

(
1− 2

2s

)
ζ(s) =

(
1− 2

2s

) ∑

n≥1

1
ns

=
∑

n≥1

1
ns
− 2

∑

m≥1

1
(2m)s

=
∑

m≥1

(
1

(2m− 1)s
− 1

(2m)s

)
.

Just as in (3.3.5) we find that with the terms grouped like this the right side converges
for Re(s) > 0. This defines an analytic continuation for ζ(s) except perhaps where s − 1
is an integer multiple of 2π. In fact the analogy to (3.3.6) yields that the right side is
¿ |s|/Re(s).

Another approach is given by noting that if Re(s) > 1 then

(9.1.1) ζ(s) =
s

s− 1
− s

∫ ∞

1

{x}
xs+1

dx

which gives an analytic continuation of ζ(s) to Re(s) > 0, and implies that |ζ(s)| ¿ |s|
provided Re(s), |s− 1| > c > 0.
Exercises
9.1a.a) Combine (9.1.1) with exercise 2.2a.d to prove that

lim
s→1

„
ζ(s)− 1

s− 1

«
= γ

b) Deduce that

lim
s→1

„
ζ′(s)
ζ(s)

+
1

s− 1

«
= γ

9.1b.a) Use (9.1.1) to deduce that ζ(s) = ζ(s).

b) Deduce that if ζ(σ + it) = 0 then ζ(σ − it) = 0.

9.2. A functional equation.

Lemma 9.2. For any a ∈ R and x > 0 we have

(9.2.1)
∑

n∈Z
e−π(n+a)2/x =

√
x

∑

n∈Z
e−πn2x−2iπna.

Typeset by AMS-TEX

1



2 MAT6684

Proof. By (7.3.2) we have, taking t = xu− a,

∑

n∈Z
e−π(n+a)2/x =

∑

m∈Z

∫ ∞

−∞
e−π(t+a)2/x+2iπmtdt

= x
∑

m∈Z
e−π(xm2+2ima)

∫ ∞

−∞
e−πx(u−im)2du.

If we change variables v = u − im in the final integral we are integrating the function
e−πxv2

from −∞ to ∞ along a path shifted a little bit up or down. The value of the
integral does not change since there are no singularities of this function, so its value is∫∞
−∞ e−πxv2

dv = C/
√

x , letting w =
√

xv, where C :=
∫∞
−∞ e−πw2

dw. This gives (9.2.1)
with the right side multiplied through by C; taking a = 0, x = 1 we deduce that C = 1
and hence our result.

If we differentiate (9.2.1) with respect to a we obtain

(9.2.2)
∑

n∈Z
(n + a)e−π(n+a)2/x = ix3/2

∑

n∈Z
ne−πn2x−2iπna.

9.3. A functional equation for the Riemann zeta function. Suppose that
Re(s) > 1. Writing ω(x) :=

∑
n≥1 e−πn2x, we obtain from (9.2.1) with a = 0 that

2ω(1/x) + 1 =
√

x(2ω(x) + 1). Therefore

∫ 1

0

x
s
2−1ω(x)dx =

∫ ∞

1

x−
s
2−1ω(1/x)dx =

∫ ∞

1

x−
s
2−1

(√
x− 1
2

+
√

xω(x)
)

dx

=
1

s− 1
− 1

s
+

∫ ∞

1

x−
s+1
2 ω(x)dx =

1
s(s− 1)

+
∫ ∞

1

x
1−s
2 −1ω(x)dx.

Hence by (7.9.3) we obtain

π−
s
2 Γ(

s

2
)ζ(s) =

∑

n≥1

∫ ∞

0

x
s
2−1e−πn2xdx =

∫ ∞

0

x
s
2−1ω(x)dx

= − 1
s(1− s)

+
∫ ∞

1

(x
s
2 + x

1−s
2 )ω(x)

dx

x
(9.3.1)

This equation is important for two reasons. Firstly since ω(x) gets small very rapidly as x
gets larger, we see that the integral on the right of (9.3.1) converges for all s, not just those
with Re(s) > 1. Thus this formula provides an analytic continuation of Γ( s

2 )ζ(s) except
at the points s = 0, 1 where we get poles of order 1. Moreover, one can see that (9.3.1)
remains unchanged if we replace s by 1− s. A convenient way to write this information is
to define ξ(s) := 1

2s(s− 1)π−
s
2 Γ( s

2 )ζ(s) so that ξ(s) is analytic and satisfies the functional
equation

(9.3.2) ξ(s) = ξ(1− s).
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Now s
2Γ( s

2 ) has no zeros (see section 7.9), and so the poles of (s− 1)ζ(s) are the same as
those of ξ(s) (of which there are none). Therefore the only pole of ζ(s) lies at s = 1; and
if Re(s) < 0 then ζ(s) has trivial zeros at s = −2,−4,−6, . . .

Exercises
9.3a. Use (7.9.5) to rewrite (9.3.2) as ζ(1− s) = 21−sπ−s(cos π

2
s)Γ(s)ζ(s).

9.4. A functional equation for modular functions. For f(z) =
∑

n≥1 cne2iπnz,
define the Mellin transform as

Λ(s, f) : =
∫ ∞

0

f(iz)zs−1dz =
∑

n≥1

cn

∫ ∞

0

e−2πnzzs−1dz

=
∑

n≥1

cn

(2πn)s
Γ(s) := (2π)−sΓ(s)L(s, f),

changing variable t = 2πnz, where L(s, f) :=
∑

n≥1 cn/ns. Now suppose that f satisfies
f(−1/t) = ±tkf(t) for some even integer k. Taking t = iz we obtain f(i/z) = ±(iz)kf(iz),
so that

Λ(s, f) = ±i−k

∫ 1

0

f(i/z)zs−1−kdz +
∫ ∞

1

f(iz)zs−1dz

= ±i−k

∫ ∞

1

f(iy)yk−1−sdy +
∫ ∞

1

f(iz)zs−1dz =
∫ ∞

1

(±i−kzk−s + zs
)
f(iz)

dz

z
.

Therefore Λ(k−s, f) = ±(−1)k/2Λ(s, f). We would like this integral to converge absolutely
for all s, which can be proved in certain interesting circumstances.

More generally one has a functional equation like g(−1/(Nt)) = ±Nk/2tkg(t). Writing
u =

√
Nt and f(z) = g(z/

√
N) one has f(−1/u) = ±ukf(u), which takes us back to the

situation above.

9.5. Properties of ξ(s). Using section 9.1 and Stirling’s formula we see that for ξ(s)(=
1
2s(s−1)π−

s
2 Γ( s

2 )ζ(s)) we have log |ξ(s)| ∼ |s| log |s| for Re(s) ≥ 1/2, as |s| → ∞. We also
get this inequality in Re(s) ≤ 1/2 using the functional equation (9.3.2). Therefore ξ(s) is
an analytic function of order 1 and so we can write

(9.5.1) ξ(s) = eAs+B
∏

ρ: ξ(ρ)=0

(1− s/ρ)es/ρ

by (7.4.3). The zeros of ξ(s) are precisely the non-trivial zeros of ζ(s); that is, the zeros
in the critical strip 0 ≤ Re(s) ≤ 1, the others having been cancelled by the zeros of Γ( s

2 ).
From section 7.4 we know that

∑
ρ: ξ(ρ)=0 1/|ρ|1+ε converges for every ε > 0. However∑

ρ: ξ(ρ)=0 1/|ρ| must diverge, else, as noted at the end of section 7.4, we would have the
bound log |ζ(s)| ¿ |s|. (Note that this implies that ζ(s) has infinitely many zeros in the
critical strip.) Taking the logarithmic derivative of (9.5.1) gives

(9.5.2)
ξ′(s)
ξ(s)

= A +
∑

ρ: ξ(ρ)=0

(
1

s− ρ
+

1
ρ

)
,
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so that, by (7.9.4) we obtain, noting that the zeros of ζ(s) are precisely those of ξ(s)
together with the trivial zeros −2,−4,−6, . . . ,

(9.5.3)
ζ ′(s)
ζ(s)

=
1

1− s
+ A′ +

∑

ρ: ζ(ρ)=0

(
1

s− ρ
+

1
ρ

)
,

where A′ = A + γ
2 + 1

2 log π. By (9.3.2), we have ξ′(s)
ξ(s) + ξ′(1−s)

ξ(1−s) = 0, and that if ξ(ρ) = 0
then ξ(1− ρ) = 0; hence, by (9.5.2),

0 = 2A +
∑

ρ: ξ(ρ)=0

(
1

s− ρ
+

1
ρ

)
+

∑

ρ′: ξ(ρ′)=0

(
1

1− s− ρ′
+

1
ρ′

)
= 2A + 2

∑

ρ: ξ(ρ)=0

1
ρ
,

adding the terms 1/(s− ρ) and 1/(1− s− ρ′) where ρ′ = 1− ρ. Therefore

(9.5.4) A = −
∑

ρ: ξ(ρ)=0

1
ρ
.

We have seen that this sum does not converge absolutely, but if we pair up the ρ and
1 − ρ terms, or the ρ and ρ terms, then it does. Note that if ρ = β + iγ then Re(1/ρ) =
β/(β2 + γ2), so every term in the sum in (9.5.4) is negative, and therefore A < 0.
Exercises
9.5a. In this exercise we evaluate A and B in (9.5.1).

a) Use (7.9.5) to show that Γ(1/2) = π1/2, and deduce, using the definition of ξ, that eB = ξ(0) = ξ(1) =
1/2.

b) Use (9.5.2), the functional equation, and exercises 7.9a and 9.1a and to show that A = ξ′(0)/ξ(0) =

−ξ′(1)/ξ(1) = 1
2

log 4π − 1− γ
2

= −.0230957084 . . . .

c) Deduce, using (9.5.4), that if ξ(ρ) = 0 with Re(ρ) ≥ 1/2 then |ρ| ≥ 6.580128218 . . . .

9.6. A zero-free region for ζ(s). We begin by proving that ζ(1 + it) 6= 0 for all real
t. This was the final step in the proof of the prime number theorem in 1896, and the proof
is quite beautiful. Starting from the Euler product we have

log ζ(σ + it) = −
∑

p prime

log
(

1− 1
pσ+it

)
=

∑

p prime

∑

m≥1

1
mpm(σ+it)

for σ > 1, so that

(9.6.1) log |ζ(σ + it)| = Re (log ζ(σ + it)) =
∑

p prime

∑

m≥1

cos(mt log p)
mpmσ

.

Now if ζ(1 + it) = 0 then (9.6.1) yields that the cos(mt log p) have a bias as we vary over
prime powers pm, pointing significantly more often in the negative than positive direction.
But this implies that cos(2mt log p) should point significantly more often in the positive



PRIMES 5

than negative direction, so that ζ(1+2it) is unbounded, which we know is impossible. The
proof (of Mertens) that we now give formalizes this heuristic. The first thing to notice is
that for any θ,

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0,

so that 3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)| ≥ 0 by (9.6.1), and hence

(9.6.2) ζ(σ)3 · |ζ(σ + it)|4 · |ζ(σ + 2it)| ≥ 1.

Now assume that ζ(1 + it) = 0 so that ζ(σ + it) ∼ C(σ − 1)r for some integer r ≥ 1
and constant C 6= 0, as σ → 1+. We also know that ζ(σ) ∼ 1/(σ − 1) as σ → 1+. But
then (9.6.2) implies that there exists ε > 0 such that if |σ − 1| < ε then |ζ(σ + 2it)| ≥
1/(2C4(σ − 1)4r−3) ≥ 1/(2C4(σ − 1)). This implies that 1 + 2it is a pole of ζ(s), giving a
contradiction.

We can extend this proof to obtain a zero-free region for ζ(s), that is a region of the
complex plane without zeros of ζ(s). Now, by (9.5.3) and exercise 7.9c, we have

(9.6.3)
ζ ′(s)
ζ(s)

=
1

1− s
− log |s|+ O(1) +

∑

ρ: ζ(ρ)=0
0≤Re(ρ)≤1

(
1

s− ρ
+

1
ρ

)
.

Now Re(1/ρ) ≥ 0 as 0 ≤ Re(ρ) ≤ 1, and if Re(s) ≥ 1 > Re(ρ) then Re(1/(s − ρ)) ≥ 0.
Suppose that s = σ+it where σ > 1 so that Re(ζ ′(s)/ζ(s)) ≥ Re(1/(1−s))− log |s|+O(1);
and if ζ(β + it) = 0 for some β < 1 then we can add a 1/(σ − β) to the lower bound.

Next we again use the cosine inequality, this time with the series

−Re
(

ζ ′(s)
ζ(s)

)
=

∑

p prime

log p
∑

m≥1

cos(mt log p)
pmσ

,

so that

(9.6.4) 0 ≤ −3 Re
(

ζ ′(σ)
ζ(σ)

)
− 4 Re

(
ζ ′(σ + it)
ζ(σ + it)

)
− Re

(
ζ ′(σ + 2it)
ζ(σ + 2it)

)
.

Assuming that ζ(β + it) = 0 and σ is close to 1, this is

(9.6.5) ≤ 3
σ − 1

− 4
σ − β

+ 5 log(|t|+ 2) + O(1)

since Re(1/(σ + it− 1)) ≤ 1/|t− 1| ¿ 1. Selecting σ = 1 + 1/(10 log(|t|+ 2)), we deduce
that

(9.6.6) β ≤ 1− 1
70 log(|t|+ 2)

+ O

(
1

(log(|t|+ 2))2

)
.

Since there are no zeros near to σ = 1 (by exercise 9.5a.c), one can prove by these methods,
the more convenient

β ≤ 1− 1
71 log(|t|+ 2)

.
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In 1922, Littlewood enlarged the width of the zero-free region to À log log |t|/ log |t|,
and in 1958 by Korobov and Vinogradov to À 1/(log |t|)2/3+ε, a central result that has
not been improved in fifty years.

9.7. Approximations to ζ ′(s)/ζ(s). Following (9.5.4) and (9.6.3) we have

(9.7.1)
∑

ρ: ζ(ρ)=0
0≤Re(ρ)≤1

1
s− ρ

=
ζ ′(s)
ζ(s)

+ log |s|+ 1
s− 1

+ O(1).

The right side equals log T + O(1) when s = 2 + iT for large T . For 0 ≤ β ≤ 1, the real
part of 1/(2 + iT − (β + iγ)) is (2− β)/((2− β)2 + (T − γ)2) ≥ 1/(4 + (T − γ)2), and so

(9.7.2)
∑

ρ: ζ(β+iγ)=0
0≤β≤1

1
4 + (T − γ)2

≤ log T + O(1).

We deduce that there are ≤ 8 log T + O(1) zeros β + iγ for which |T − γ| ≤ 2.
Now take (9.7.1) with s = σ + iT (which is not a zero of ζ(s)) and σ bounded, and

subtract (9.7.1) with s = 2 + iT . The terms corresponding to a zero ρ give
∣∣∣∣

1
s− ρ

− 1
2 + iT − ρ

∣∣∣∣ =
2− σ

|s− ρ| · |2 + iT − ρ| ≤
2− σ

|T − γ|2 .

We will use this bound when |T − γ| ≥ 2; and note that 1/|2 + iT − ρ| ≤ 1 for all such ρ
by considering the real part. Therefore for s = σ + iT we deduce from (9.7.2) that

∣∣∣∣∣∣∣∣

ζ ′(s)
ζ(s)

−
∑

ρ: ζ(ρ)=0
|T−γ|≤2

1
s− ρ

∣∣∣∣∣∣∣∣
≤

∑

ρ: ξ(ρ)=0
|T−γ|≤2

1
|2 + iT − ρ| +

∑

ρ: ξ(ρ)=0
|T−γ|≥2

2(2− σ)
4 + |T − γ|2 + O(1)

≤ (12− 2σ) log T + O(1)(9.7.3)

Suppose that we select s which is not too close to any zero of ζ(s), that is |s − ρ| À
1/ log T for every ρ such that ζ(ρ) = 0. Then the contribution of the sum on the left side
of (9.7.3) is ¿ (log T )2, as the sum contains ¿ log T terms, and so we can deduce that for
|σ| ≤ 2

(9.7.4)
∣∣∣∣
ζ ′(σ + it)
ζ(σ + it)

∣∣∣∣ ¿ (log(|t|+ 2))2.

If σ ≤ −1 we can do better by using the functional equation as presented in exercise 9.3a.
Thus if s = 1− (σ + it) then

ζ ′(1− s)
ζ(1− s)

= − log(2π)− π

2
tan

(π

2
s
)

+
Γ′(s)
Γ(s)

+
ζ ′(s)
ζ(s)

=
1

s− 2m− 1
+ log |s|+ O(1)(9.7.5)



PRIMES 7

using exercise 7.9c, where 2m is the even integer nearest to −σ.

9.8. On the number of zeros of ζ(s). We know that ζ(s) has the same zeros in the
critical strip as ξ(s); and ξ(s) has the advantage that it is analytic. Therefore the number
of zeros, N(T ), of ζ(s) inside C := {s : 0 ≤ Re(s) ≤ 1, 0 ≤ Im(s) ≤ T} is given by

(9.8.1) N(T ) =
1

2iπ

∮

C

ξ′(s)
ξ(s)

ds =
1
2π

4C(arg(ξ(s)))

by the argument principle as discussed in section 7.5, so long as there are no zeros on C:
We showed in section 9.6 that ξ(s) has no zeros with Re(s) = 1, which implies via the
functional equation (9.3.2) that ζ(s) has no zeros with Re(s) = 0. By exercise 9.5a.c there
are no zeros in this region with Re(s) = 0 (or even small). We need only to make sure that
there is no zero with Im(s) = T . Now, from (9.3.2) we know that ξ(s) = ξ(1−s) = ξ(1− s);
in particular ξ(σ + it) = ξ(1− σ + it); and so the change of argument as we proceed along
the path P which goes from 1/2 to 1, then 1 to 1 + iT , and then 1 + iT to 1/2 + iT ,
is the same as when we proceed around the rest of C. Moreover ξ(s) is real-valued (by
definition) and positive for −1 ≤ s ≤ 2 since it has no zeros close to 0, hence there is no
change in arg(ξ(s)) as we go along this line. We have therefore proved that N(T ) equals
1
π times the change in argument of ξ(s) along the path L which goes from 1 to 1+ iT , and
then from 1 + iT to 1/2 + iT .

For the next part of the calculation it is easiest if we widen C, to allow −1 ≤ Re(s) ≤ 2:
this does not change the value of (9.8.1) since there are no further zeros of ξ(s) in this
region, nor any of the arguments above. By definition arg(ξ(s)) = arg(s) + arg(s − 1) −
log π

2 Im(s)+ arg(Γ( s
2 ))+ arg(ζ(s)). Now the arguments of both s and s− 1 change from 0

to π
2 +O(1/T ). Stirling’s formula (see exercise 7.9a below) tells us that arg(Γ( s

2 )) changes
from 0 to T

2 log
(

T
2e

)− π
8 + O

(
1
T

)
. Therefore

(9.8.2) N(T ) =
T

2π
log

(
T

2e

)
+

7
8

+ S(T ) + O

(
1
T

)
,

where S(T ) := 1
π arg ζ( 1

2 + iT ) (since arg ζ(2) = 0).
By exercise 9.8b we see that arg ζ(2 + iT ) is bounded, and so, using (9.7.3),

πS(T ) =
(

arg ζ(
1
2

+ iT )− arg ζ(2 + iT )
)

+ O(1) = −
∫ 2+iT

1
2+iT

Im
(

ζ ′(s)
ζ(s)

)
ds + O(1)

= −
∑

ρ: ζ(ρ)=0
|T−γ|≤2

∫ 2+iT

1
2+iT

Im
(

1
s− ρ

)
ds + O(log T )

= −
∑

ρ: ζ(ρ)=0
|T−γ|≤2

(
arg(

1
2

+ iT − ρ)− arg(2 + iT − ρ)
)

+ O(log T ).

Evidently each such change in argument contributes at most π, and we have seen that the
sum has ¿ log T terms, and so we deduce that

(9.8.3) S(T ) ¿ log T,
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which implies that

(9.8.4) N(T ) =
T

2π
log

(
T

2e

)
+ O (log T ) .

We deduce that

(9.8.5)
∑

ρ: ζ(ρ)=0
0<Re(ρ)<1
|Im(ρ)|<T

1
|ρ| =

(log T )2

2π
+ O(1).

Exercises
9.8a. Use (7.9.6) and the Taylor series for log(1 + z) to show that

−4 log

„
Γ

„
1

4
+ i

T

2

««
= πT + log

„
T

2e

«
+ 1− 2 log(2π) + i

„
π

2
− 2T log

„
T

2e

««
+ O

„
1

T

«
.

9.8b. Use (9.7.2) to show that N(T + 1) − N(T ) ¿ log T . Use this together with (9.8.2) to show that
N(T + 1) − N(T ) À log T for at least a positive proportion of integers T . Deduce also that that there
exists t ∈ [T, T + 1] which is at a distance À 1/ log T from the nearest zero.

9.8c. Show that there exists a constant ∆0 such that if ∆ ≥ ∆0 then N(T + ∆)−N(T ) ³ ∆log T for all
sufficiently large T .

9.8d. Prove that the argument of ζ(2 + it) is bounded.


