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PREFACE

Riemann’s seminal 1860 memoir showed how questions on the distribution of
prime numbers are more-or-less equivalent to questions on the distribution of zeros
of the Riemann zeta function. This was the starting point for the beautiful theory
which is at the heart of analytic number theory. Until now there has been no other
coherent approach that was capable of addressing all of the central issues of analytic
number theory.

In this book we present the pretentious view of analytic number theory; allowing
us to recover the basic results of prime number theory without use of zeros of the
Riemann zeta-function and related L-functions, and to improve various results in
the literature. This approach is certainly more flexible than the classical approach
since it allows one to work on many questions for which L-function methods are
not suited. However there is no beautiful explicit formula that promises to obtain
the strongest believable results (which is the sort of thing one obtains from the
Riemann zeta-function). So why pretentious?

e It is an intellectual challenge to see how much of the classical theory one
can reprove without recourse to the more subtle L-function methodology (For a
long time, top experts had believed that it is impossible is prove the prime number
theorem without an analysis of zeros of analytic continuations. Selberg and Erdos
refuted this prejudice but until now, such methods had seemed ad hoc, rather than
part of a coherent theory).

e Selberg showed how sieve bounds can be obtained by optimizing values over
a wide class of combinatorial objects, making them a very flexible tool. Pretentious
methods allow us to introduce analogous flexibility into many problems where the
issue is not the properties of a very specific function, but rather of a broad class of
functions.

e This flexibility allows us to go further in many problems than classical meth-
ods alone, as we shall see in the latter chapters of this book.

The Riemann zeta-function ((s) is defined when Re(s) > 1; and then it is given
a value for each s € C by the theory of analytic continuation. Riemann pointed
to the study of the zeros of ((s) on the line where Re(s) = 1/2. However we have
few methods that truly allow us to say much so far away from the original domain
of definition. Indeed almost all of the unconditional results in the literature are
about understanding zeros with Re(s) very close to 1. Usually the methods used to
do so, can be viewed as an extrapolation of our strong understanding of {(s) when
Re(s) > 1. This suggests that, in proving these results, one can perhaps dispense
with an analysis of the values of ((s) with Re(s) < 1, which is, in effect, what we
do.

Our original goal in the first part of this book A ggcover all the main
results of Davenport”s Multiplicative Number Theory%etentious methods,
and then to p ggﬁ%smuch as possible of the result of classical literature, such as
the results in [77. urns out that pretentious methods yield a much easier proof
of Linnik’s Theorem, and quantitatively yield much the same quality of results
throughout the subject.

However Siegel’s Theorem, giving a lower bound on |L(1, x)|, is one result that
we have little hope of addressing without considering zeros of L-functions. The dif-
ficulty is that all proofs of his lower bound run as follows: Either the Generalized



Riemann Hypothesis (GRH) is true, in which case we have a good lower bound,
or the GRH is false, in which case we have a lower bound in terms of the first
counterexample to GRH. Classically this explains the inexplicit constants in ana-
lytic number theory (evidently Siegel’s lower bound cannot be made explicit unless
another proof is found, or GRH is resolved) and, without a fundamentally different
proof, we have little hope of avoiding zeros. Instead we give a proof, due to Pintz,
that is formulated in terms of multiplicative functions and a putative zero.

Although this is the first coherent account of this theory, our work rests on
ideas that have been around for some time, and the contributions of many au-
thors. The central role in our development belongs to Haldsz’s Theorem. Much
is based on the results and perspectives of Paul Erdds and Atle Selberg. Other
early authors include Wirsing, Haldsz, Daboussi and Delange. More recent influen-
tial authors include Elliott, Hall, Hildebrand, Iwaniec, M @gt&%%gry and Vaughan,
Pintz, and Tenenbaum. In addition, Tenenbaum’s book [7] gives beautiful insight
into multiplicative functions, often from a classical perspective.

Our own thinking has developed in part thanks to conversations with our col-
laborators John Friedlander, Régis de la Bréteche, and Antal Balog. We are par-
ticularly grateful to Dimitris Koukoulopoulos and Adam Harper who have been
working with us while we have worked on this book, and proved several results that
we needed, when we needed them! Various people have contributed to our devel-
opment of this book by asking the right questions or making useful mathematical
remarks — in this vein we would like to thank Jordan Ellenberg, Hugh Montgomery.

The exercises: In order to really learn the subject the keen student should try
to fully answer the exercises. We have marked several with { if they are difficult,
and occasionally tt if extremely difficult. The T questions are probably too difficult
except for well-prepared students. Some exercises are embedded in the text and
need to be completed to fully understand the text; there are many other exercises
at the end of each chapter. At a minimum the reader might attempt the exercises
embedded in the text as well as those at the end of each chapter with are marked
with *.
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Part 1

Introductory results



In the the first four chapters we introduce well-known results of analytic number
theory, from a perspective that will be useful in the remainder of the book.



PNT

PS2

CHAPTER 1.1

The prime number theorem

As a boy Gauss determined, from studying the primes up to three million,
that the density of primes around x is 1/logz, leading him to conjecture that the
number of primes up to z is well-approximated by the estimate

(1.1.1) n(z) =Y 1~

~ logz’

p<z

It is less intuitive, but simpler, to weight each prime with log p; and to include the
prime powers in the sum (which has little impact on the size). Thus we define the
von Mangoldt function

m

_ Jlogp if n=p™, where p is prime, andm > 1

1.1.2 An) =
( ) () 0 otherwise,

. Eﬂ% .
and then, in place of (II.T.1), we conjecture that

(1.1.3) P(x) = Z A(n) ~ z.

n<x
The equivalent estimates (EfN}.l) and (ETNTF.QB), known as the prime number theorem,
are difficult to prove. In this chapter we show how the prime number theorem
is equivalent to understanding the mean value of the Mobius function. This will
motivate our study of multiplicative functions in general, and provide new ways of
looking at many of the classical questions in analytic number theory.

1.1.1. Partial Summation

Given a sequence of complex numbers a,, and some function f : R — C, we
wish to determine the value of

B
> anf(n)
n=A+1
from estimates for the partial sums S(t) := >, ., ax. Usually f is continuously

differentiable on [A, B], so we can replace our sum by the appropriate Riemann-
Stieltjes integral, and then integrate by parts as follows:*

B B b /
T wf= [ sase) = sOr0R - [ sor 0
- B
(1.1.9 = S(B)(B) = SANA) - [ sOF B

PS2
(Note that (hél) continues to hold for all non-negative real numbers A < B).

LThe notation “t*” denotes a real number “marginally” larger than ¢.

3
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In Abel’s approach one does not need to make any assumption about f: Simply
write a, = S(n) — S(n — 1), so that

B B
Y anfn)= Y f(n)(S(n)=Sn-1)),
n=A+1 n=A+1

and with a little rearranging we obtain

B

B-1
L15) Y anf(n) = S(BF(B) — S(AF(A) = 3 S)(f(n+1) — f(n).
n=A

n=A-+1

If we now suppgsg, that f jg continuously differentiable on [A, B] (as above) then
we can rewrite (I.1.5) as (I.1.4).

PNT
EXERCISE 1.1.1. Use partial summation to show that (hl) is equivalent to

(1.1.6) 6(x) =Y logp =z + o(w);

NT2
and then show that both are equivalent to (Il3)

The Riemann zeta function is given by

C(s) = i ni =11 (1 - }%)_1 for Re(s) > 1.

This definition is restricted to the region Re(s) > 1, since it is only there that
this Dirichlet series and this Euler product both converge absolutely (see the next
subsection for definitions).

EXERCISE 1.1.2. (i) Prove that for Re(s) > 1

(s = {y}
¢(s) —5/1 ys+1dy— o1 ° 1 ys+1dy.
where throughout we write [t] for the integer part of ¢, and {¢} for its fractional
part (so that t = [t] + {¢}).
The right hand side is an analytic function of s in the region Re(s) > 0 except for

a simple pole at s = 1 with residue 1. Thus we have an analytic continuation of
¢(s) to this larger region, and near s = 1 we have the Laurent expansion

C(s):s_%Jr’ercl(s—l)Jr....

N X . . |ex:harmonic
(The value of the constant v is given in exercise [[.1.4.

.. 1y 1

(11) Deduce that ¢(1 + 1quﬁ) = log.m —i_e;?:g{igf?noo(.logm>‘ . - .

(iii) 1 Adapt the argument in Exercise [[.1.5 to obtain an analytic continuation
of ((s) to the region Re(s) > —1.

(iv) T Generalize.




1.1.2. CHEBYSHEV’S ELEMENTARY ESTIMATES 5

1.1.2. Chebyshev’s elementary estimates

Chebyshev made significant progress on the distribution of primes by showing
that there are constants 0 < ¢ < 1 < C' with
x x
1.1.7 1)— < <(C 1) —.
(1.17) (o4 o1) o < la) < (C+ of1) o

Moreover he showed that if
()

a—oo 1/ log x
exists, then it must equal 1.
The key to obtaining such information is to write the prime factorization of n

in the form
logn = Z A(d)
d|n

Summing both sides over n (and re-writing “d|n” as “n = dk”), we obtain that

(1.1.8) Y logn=>" 3" Ad)=>_v(z/k).
k=1

n<x n<x n=dk

ex:stirlin
Using Stirling’s formula, Exercise T.1.5, we deduce that

(1.1.9) Zi/}(m/k) =zlogz —x + O(log x).
k=1
Cheb3
EXERCISE 1.1.3. Use (l.el .9) to prove that
lim sup —= ¥(@) > 1> liminf —— w(m)
200 T T—00 T

so that if lim,_,o 9¥(x)/z exists it must be 1.

Chebl Cheb
To obtain Chebyshev’s estimates (| . ), take ( .6.2) at 2z and subtract twice
that relation taken at x. This yields
zlogd + O(logx) = ¥(2z) — ¥ (22/2) + ¢ (2z/3) — (2x/4) +

and upper and lower estimates for the right hand side above follow upon truncating
the series after an odd or even number of steps. In particular we obtain that

¥(2z) > xlog4 + O(log x),

Chebl
which gives the lower bound of (II.1.7) with ¢ = log2 a permissible value. And we
also obtain that

¥(2z) — P(z) < xlogd + O(log z),
which, when used at /2, #/4, ... and gnmmed, leads to ¢)(z) < xlog 4+0((logz)?).
Thus we obtain th er bound in ; [.7) with C = log4 a permissible value.
Returning to ( I 8% we may recast it as

Slogn=3"A@) ¥ 1= ZA(d)(% +0(1)).
n<z d<z k<z/d d<z

Using Stirling’s formula, and the recently established ¢ (z) = O(z), we conclude

that Ald
zlogx + O(z) = xz %,
d<z
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or in other words

(1.1.10) Zlogp = Z%")Jrou) = logz + O(1).

p

p<z n<z

1.1.3. Multiplicative functions and Dirichlet series

The main objects of study in this book are multiplicative functions. These are
functions f : N — C satisfying f(mn) = f(m)f(n) for all coprime integers m and
n. If the relation f(mn) = f(m)f(n) holds for all integers m and n we say that f is
completely multiplicative. If n = H p?j is the prime factorization of n, where the
primes p; are distinct, then f(n) = H f (pj ) for multiplicative functions f. Thus
a multiplicative function is specified by its values at prime powers and a completely
multiplicative function is specified by its values at primes.

One can study the multiplicative function f(n) using the Dirichlet series,

H(H@H@%...).

p? p*

The product over primes above is called an Fuler product, and viewed formally the
equality of the Dirichlet series and the Euler product above is a restatement of the
unique factorization of integers into primes. If we suppose that the multiplicative
function f does not grow rapidy — for example, that |f(n)| < n? for some constant
A — then the Dirichlet series and FEuler product will converge absolutely in some
half-plane with Re(s) suitably large.

Given any two functions f and g from N — C (not necessarily multiplicative),
their Dirichlet convolution f * g is defined by

(fxg)n)=>_ fla
ab=n
If F(s) = > o2, f(n)n™* and G(s) = > o2, g(n)n™* are the associated Dirichlet
series, then the convolution f * g corresponds to their product:

F(s)G(s) =Y (f*nﬂ.
n=1

The basic multiplicative functions and their associated Dirichlet series are:

e The function §(1) = 1 and 6(n) = 0 for all n > 2 has the associated Dirichlet
series 1.

e The function 1(n) = 1 for all n € N has the associated Dirichlet series (s)
which converges abso%gyf%y when Re(s) > 1, and whose analytic continuation we
discussed in Exercise

e For a natural number k, the k-divisor function dg(n) counts the number of
ways of writing n as ay - - - ai. That is, dj is the k-fold convolution of the function
1(n), and its associated Dirichlet series is ((s)*. The function dy(n) is called the
divisor function and denoted simply by d(n). More generally, for any complex
number z, the z-th divisor function d,(n) is defined as the coefficient of 1/n° in the
Dirichlet series, ((s)?.2

2To explicitly determine ((s)? it is easiest to expand each factor in the Euler product using
the generalized binomial theorem, so that ((s)* =], (1 + k>t (;Z)(fp_s)k)



1.1.4. THE AVERAGE VALUE OF THE DIVISOR FUNCTION AND DIRICHLET’S HYPERBOLA METHOI?

e The Mdbius function p(n) is defined to be 0 if n is divisible by the square
of some prime and, if n is square-free, p(n) is 1 or —1 depending on whether
n has an even or odd number of prime factors. The associated Dirichlet series
oo pu(n)n™% = ((s)~! so that u is the same as d_;. We deduce that px 1= 4.

e The von Mangoldt function A(n) is not multiplicative, but is of great interest
to us. We write its associated Dirichlet series as L(s). Since

logn = ZA(d) = (1xA)(n)

d|n
hence —(’(s) = L(s){(s), that is L(s) = (—¢’/¢)(s). Writing this as
1 /
o (=¢'(s))
we deduce that
Lammu| (1.1.11) A(n) = (pxlog)(n) = Z wu(a)loghb.

ab=n

As mentioned earlier, our goal in this chapter is to show that the prime number
theorem is equivalent to a statement about the mean value of the multiplicative
function p. We now formulate this equivalence precisely.

[PNT and the mean of the M6bius function] The prime number theorem,
namely ¥ (z) = = + o(x), is equivalent to

(1.1.12) M(z) = Z u(n) = o(x).

n<x

In other words, half the non-zero values of u(n) equal 1, the other half —1.
Before we can prove this, we need one more ingredient: namely, we need to
understand the average value of the divisor function.

1.1.4. The average value of the divisor function and Dirichlet’s
hyperbola method

We wish to evaluate asymptotically > . d(n). An immediate idea gives

S =Y =35
n<wz n<z dn d<w Z\Snw
S5~ 5 Grow)

=zlogx + O(x).

Dirichlet realized that one can substantially improve the error term above by pairing
each divisor a of an integer n with its complementary divisor b = n/a; one minor
exception is when n = m? and the divisor m cannot be so paired. Since a or n/a
must be < y/n we have

dn)=> 1=2Y 144,
d|n

d|n
d<v/mn
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where J,, = 1 if n is a square, and 0 otherwise. Therefore

Sdmy =23 Y 1+ 1

n<x n<lz dn n<w

d<y/n n=d2
> (1+2 3 1)
d</z d2<n<az
d|n
= Y Qa/d—2d+1),
d<yz
and so
(1.1.13) Zd( =2z Z f—x—i—O V) =zlogr — x + 2vz + O(Vx),
n<wx d<f

. lex:harmonic
by Exercise T.1.4.

The method described above is called the hyperbola method because we are
trying to count the number of lattice points (a,b) with a and b non-negative and
lying below the hyperbola ab = x. Dirichlet’s idea may be thought of as choosing
parameters A, B with AB = xz, and dividing the points under the hyperbola ac-
cording to whether ¢ < A or b < B or both. We remark that an outstanding open

blem, known as the Dirichlet divisor problem, is to show that the error term in
(T.1.13) may be improved to O(xi+€) (for any Jixed € > 0)
For our subsequent work, we use Exercise hT5_’c0—regcast 13) as

(1.1.14) > (logn — d(n) + 2v) = O(v/x).

n<x

1.1.5. The prime number theorem and Moébius function: proof of
Theorem 1.1.3

First we show that the estimate M (z) = > . u(n) = o(x) implies the prime
number theorem ¥ (z) = x + o(x).
Define the arithmetic function a(n) = logn — d(n) + 27, so that

a(n) = (1% (A —1))(n) + 271 (n).

When we form the Dirichlet convolution of a with the Mobius function we therefore
obtain

(mxa)(n) = (u*1x(A—1))(n)+2y(ux*1)(n) = (A —1)(n) + 2vyd(n),

where 6(1) = 1, and §(n) = 0 for n > 1. Hence, when we sum (u * a)(n) over all
n < x, we obtain

Y (pxa)(n) =Y (Aln) 1) +2y = ¢(z) -z + O(1).

On the other hand, we may write the left hand side above as
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1.1.5. THE PRIME NUMBER THEOREM AND THE MOBIUS FUNCTION: PROOF OF THEOREM [I.T.

and, as in the hyperbola method, split this into terms where k < K or k > K (in
which case d < z/K). Thus we find that

> nda(k) = > ak)M(z/k)+ Y w(d) > a(k).
dk<z k<K d<a/K K<k<z/d
Using (dl T fasZLt) we see that the second term above is
=0( X Vajd) = 0/VE).
d<z/K
Putting everything together, we deduce that
Y(@)—x= > alk)M(z/k) + O(z/VEK).
k<K

Now suppose that M (z) = o(x). Fix e > 0 and select K to be the smallest
integer > 1/€%, and then let ag = >, |a(k)|/k. Finally choose y. so that
|M(y)| < (¢/au)y whenever y > y,. Inserting all this into the last line for z > Ky,
yields ¢(z) — < (e/ar)r Y i |a(k)|/k + ex < ex. We may conclude that
Y(z) — x = o(z), the prime number theorem.

Now we turn to the converse. Consider the arithmetic function —u(n)logn
which is the coefficient of 1/n° in the Dirichlet series (1/{(s))’. Since

(1)’:_C’(s) g;’() 1

O IO IO
we obtain the identity —u(n)logn = (u* A)(n). As p*1 =4, we find that
(1.1.15) S (ux(A=1)(n) == pu(n)logn — 1.
n<x n<x

Pr51
The right hand side of (T-L.15) is

—longu —|—Zu )log(z/n) — 1 = —(logz) M (Zlog m/n)

n<x n<x n<z
—(logz)M(x) + O(x),
ex:stirlin
upon using Exercise e left hand side of h15 ) is
Z p(a)(A Z,u ( (x/a) —m/a)
ab<zx a<z

Now suppose that 1)(x) — 2 = o(z), the prime number theorem, so that, for given
€ > 0 we have |¢(t) — t| < et if t > T,. Suppose that T > T, and = > T'¢. Using
this |[¢(z/a) — z/a| < ex/a for a < z/T (so that z/a > T), and the Chebyshev
stippate [¢(z/a) — z/a| < x/a for /T < a < x, we find that the left hand side of
(T.T:15) is
< Z ex/a+ Z z/a < exlogz + xlogT.
a<z/T z/T<a<lz
Combining these observations, we find that

logT
|M(z)| < ex +x & < ex,
log x

if x is sufficiently large. Since € was arbitrary, we have demonstrated that M (z) =

o(x).
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1.1.6. Selberg’s formula

The elementary techniques discussed above were brilliantly used by Selberg to
get an asymptotic formula for a suitably weighted sum of primes and products of
two primes. Selberg’s formula then led Erd6s and Selberg to discover elementary
proofs of the prime number theorem. We will not discuss these elementary proofs
of the prime number theorem here, but let us see how Selberg’s formula follows
from the ideas developed so far.

[Selberg’s formula] We have

Z(logp)2 + Z (logp)(log q) = 2z log x + O(x).

p<z pPq<xz

ProOOF. We define Ay(n) := A(n)logn+>,,. _, A({)A(m). Thus As(n) is the
coefficient of 1/n® in the Dirichlet series

(F) + () =5

so that Ay = (u * (log)?).

In the previous section we exploited the fact that A = (u * log) and that the
function d(n) — 27y has the same average value as logn. Now we search for a divisor
type function which has the same average as (logn)?.

By partial summation we find that

Z(log n)? = z(logx)? — 2xlogx + 2x + O((log z)?).
ﬁéﬁiv
Using Exercise T.1.14 we may find constants ce and ¢; such that
Z(?dg(n) + cod(n) + ¢1) = x(log z)? — 2z log z + 2z + O(2?/3+°).
n<z
Set b(n) = (logn)? — 2d3(n) — cad(n) — c¢1 so that the last two displayed equations
give
(1.1.16) > b(n) = O(a*/3F).
n<x
Now consider (u*b)(n) = As(n) — 2d(n) — ¢z — ¢16(n), and summing this over
all n < x we get that

D (w#b)(n) =Y Ag(n) — 2zlogz + O(x).
n<x n<x
The left hand side is
S k) >0 b)) <Y (x/k)PT <
k<z I<z/k k<zx
61
by (PEHG), and we conclude that

D As(n) = 2zlogz + O(x).

n<z
The difference between the left hand side above and the left hand side of our
desired formula is the contribution of the prime powers, which is easily shown to
be < y/zlogz, and so our Theorem follows. O
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1.1.7. Exercises

EXERCISE 1.1.4. * (i) Using partial summation, prove that for any = > 1
1 Lt
Z — zlogm—I—m—/ gdt.
n T 1t
1<n<Lz
(ii) Deduce that for any > 1 we have the approximation
1 1
> ——(logz+9)| < =
n x

n<z

)

where v is the Euler-Mascheroni constant,
N
1 =~ {t}
= Jim (Y- —1ogN)=1- [ lan

ex:stirling EXERCISE 1.1.5. (i) For an integer N > 1 show that

N {1}
1ogN!:NlongN+1+/ Tdt'
1

(ii) Deduce that x —1 > %7 _ log(z/n) >z —2 —logx for all z > 1.

(iii) Using that [["({t} — 1/2)dt = ({z}* — {z})/2 and integrating by parts,
show that

/N{i}dtzélogN—l/lN{t}_Q{t}zdt.

(iv) Conclude that N! = CvN(N/e)N{1+ O(1/N)}, where

1 [ — {t}?
C:eXp(1_§/1 %dt).lnfactC:\/Zﬂ',

and the resulting asymptotic for N!, namely N! ~ 27N(N/e)V, is
known as Stirling’s formula.

EXERCISE 1.1.6. *

(i) Prove that for Re(s) > 0 we have

N N
1 dt 1 > {y}
B s - dy.
nz::lns /1 TS S—1+S/N g

(ii) Deduce that, in this same range but with s # 1, we can define

N
) 1 Aﬂfs
<<8>N1£‘3,o{ ns‘l_s}'

n=1
EXERCISE 1.1.7. * Using that ¢(2z) —¢(x)+¢(22/3) > zlog4+0O(log x), prove
Bertrand’s postulate that there is a prime between N and 2N, for N sufficiently
large.
Cheb
EXERCISE 1.1.8. (i) Using (I.el.8:), prove that if L(z) := > _ logn
then -

P(x) = (x/6) < L(z) — L(x/2) — L(x/3) — L(2/5) + L(x/30) < ¢(x).
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Cheb3
(ii) Deduce, using (F-1.9), that with
log2 log3 logb log30
KR = -
2 3 5 30

we have kz + O(logz) < ¥(z) < Ska + O(log? z).
(iii) T Improve on these bounds by similar methods.

= 0.9212920229.. .,

EXERCISE 1.1.9. (i) Use partial summation to prove that if
A(n) -1
lim L exists,
N—o00
n<N

then the prime number theorem, in the form ¢ (z) = x + o(x), follows.
(i) T Prove that t le prime number theorem implies that this limit holds.
(iii) Using exercise T.1.2, prove that —(¢’/{)(s) — ¢(s) has a Taylor expansion
—2v+cj(s—1)+...around s = 1.
(iv) Explain why we cannot then deduce that
. An) -1 . Aln)—1 . . ‘
lim Z - = lim Z mra which exists and equals — 2+.

N—o00 s—1t
n<N n>1

EXERCISE 1.1.10. *

. E_afgl . . .
(i) Use (T.1.10) and partial summation show that there is a constant ¢ such

that
1 1
E — =loglogz +c+ O () .
P log x

p<z

(ii) Deduce Mertens’ Theorem, that there exists a constant v such that

-
H (1 - 1) - : .
P log x

p<z

In the two preceding exercises the constant « is in fact the Euler-Mascheroni
constant, but this is not so straightforward to establish. The n xt e(?%%g%ise gives
one way of obtaining information about the constant in Exercise T.1.10

EXERCISE 1.1.11. { In this exercise, put 0 =1+ 1/logx.

(i) Show that

S(1-2) =X Lro(d) = [T ao().

p>x p>x

(ii) Show that

S (1og (1—%)_1—log (1—%)_1) - —/01 1_te_tdt+0(1o;z)'

p<z

. 3 zeta A . exmerten
(iii) Conclude, using exercise I.1.2, that the constant 7 in exercise [[.1.10{11

equals
1 —t o _—t
1—
/ C dt— / S
0 t 1t

)
That this equals the Euler-Mascheroni constant is established in F’]
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EXERCISE 1.1.12. * Uniformly for n in the range

lo n
RS

1-n
péyp "

e < 7 < 1, show that

and

S 5 <log(1/n) + (s ).

log (47

= og(y")

Hint: Split the sum into those primes with p”7 < 1, and those with p” > 1.
EXERCISE 1.1.13. * If f and g are functions from N to C, show that the relation

f = 1xg is equivalent to the relation g = u* f. (Given two proofs.) This is known
as Mobius inversion.

EXERCISE 1.1.14. (i) Given a natural number k, use the hyperbola method
together with induction and partial summation to show that

Z di(n) = xPy(log ) + O(x1~/k+e)
n<x
where Py (t) denotes a polynomial of degree k — 1 with leading term t*~1/(k — 1)!.
(ii) Deduce, using partial summation, that if Ry (t) + R} (t) = Px(t) then
Z di(n)log(z/n) = 2Ry (log z) + O(xt~/k+e),
n<x

(iii) Deduce, using partial summation, that if Qg(u) = Py(u) + [, Pk (t)dt then

> 20— Qytog) + o)

n<x
Analogies of these estimates hold for any real k¥ > 0, in which case (k — 1)! is
replaced by T'(k).
EXERCISE 1.1.15. Modify the above proof to show that
(i) If M(z) < z/(logz)? then ¥ (z) — 2 < z(loglogx)?/(logz)4.
(ii) Conversely, if ¥(z) — 2 < z/(logx)* then M (z) < z/(log z)™»14),

EXERCISE 1.1.16. (i) * Show that
M(z)logz = — Zlogp M(z/p) + O(x).
p<z

(ii) Deduce that

lim inf M + lim sup M =0.
x

T—00 xT T—00

(iii) Use Selberg’s formula to prove that

(¥(z) — 2)loga = — 3 logp <1/) <Z) = i) +0(x).

p<z
(iv) Deduce that

lim inf M + lim sup
T—00 T

Compare!






E2.2

CHAPTER 1.2

First results on multiplicative functions

We have just seen that understanding the mean value of the Mobius function
leads to the prime number theorem. Motivated by this, we now begin a more
general study of mean values of multiplicative functions.

1.2.1. A heuristic

PrsS4
In Section T.T.4 we saw that one can estimate the mean value of the k-divisor
function by writing dj as the convolution 1 *d;_1. Given a multiplicative function
f, let us write f as 1* g so that g is also multiplicative. Then

> i) =YY gl =Y g@|5].

n<x n<z d|n d<z

Since [z] = z + O(1) we have

(1.2.1) Zf(n):xZ%ZHO(Zm(d)\).

n<zx d<zx d<z

In several situations, for exa#;)ile in the case of the k-divisor function treated
earlier, the remainder term in (I.2.1) may be shown to be small. Omitting this

term, and approximating >, g(d)/d by [[,-,.(1 + g(p)/p + a(p?)/p* +...) we
arrive at the following heuristic:

(1.2.2) Z fn) =z P(f;x)

Wa??

where “~” is interpreted as “is roughly equal to”, and
(1.2.3)

P(f;x)=H(1+g§f)+gg'f)+...)=g(1—;)(1+@+fg)+...).

p<z

In the special case that 0 < f(p) < f(p?) < ... for all primes p (so that g(d) > 0
for all d), one easily gets an upper bound of the correct order of magnitude: If
f=1xgthen g(d) > 0 for all d > 1 by assumption, and so

PFOESSUIFIEDIC

n<x d<z d<z

P(f;x)

SL\ 8

(as in (F23)).

In the case of the k-divisor function, the heuristic (T.2:2) predicts that

St~ [ (1) ~ateronnt

n<x p<zx

15
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which is off from the correct asymptotic formula, ~ z(log x)k=1/(k —1)!, by only
a constant factor (see exercise 4( )). Moreover dy(p’) > di(p’~!) for all p? so
this yields an (unconditional) upper bound.

One of our aims will be to obtain results that are uniform over the class of
all mutiplicative functions. Thus for example we could consider x to be large and
consider the multiplicative function f with f(p*) = 0 for p < y/z and f(p¥) =1
for p > /z. In this case, we have f(n) =1 if n is a prime between /z and x and
f(n) =0 for other n < z. Thus, the heuristic suggests that

1 e 2e "z
n(z) —w(Vr)+ 1= fn) ~z [] (177) ~p T
= iy P logv/x  logx
Comparing this to the prime number theorem, the heuristic is off by a constant

factor again, this time 2e™" =~ 1.1....
This heuristic suggests that the sum of the Mdbius function,

() = Z wu(n) is comparable with x H ( ) LQWZ.

n<z p<z (IOg .13)

However M (z) is known to be much smaller. The best bound t}:léit weplﬁ,rrlow un-
conditionally is that M (z) < z exp(—c(logz) ) (see chapter 77}, and we expect
M (x) to be as small as 227¢ (as this is equivalent to the unproved Riemann Hy-
pothesis). In any event, the heuristic certainly suggests that M (z PNTMO( x), which

is equivalent to the prime number theorem, as we saw in Theorem

1.2.2. Multiplicative functions and Dirichlet series

Given a multiplicative function f(n) we define F(s) := > -, ffjj) as usual,
and now define the coefficients Af(n) by

P 5~ Al

— e

F(s)

n>1
Comparing the coefficient of 1/ns in —F'(s) = F(s) - (—F'(s)/F(s)) we have
(1.2.4) logn—ZAf f(n/d).
dln
EXERCISE 1.2.1. Let f be a multiplicative function. and fix K > 0
(i) Show that A¢(n) = 0 unless n is a prime power.
(ii) Show that if f is totally multiplicative then Af(n) = f(n)A(n).
(iii) Show that As(p) = f(p)logp, As(p®) = (2f(p®) — f(p)?)logp, and that
every A ;(p*) equals log p times some polynomial in f(p), f(p?),..., f(p").

(iv) Show that if [Ay(n)| < kA(n) for all n, then |f(n)| < dx(n).

EXERCISE 1.2.2. Suppose that f is a non-negative arithmetic function, and
that F(o) = > 2, f(n)n™7 is convergent for some o > 0.

(i) Prove that >° _ f(n) < z7F(0).
(ii) Moreover show that if 0 < ¢ < 1 then

PNIOEEDY @ < 2°F(0).

n<x n>x
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This technique is known as Rankin’s trick, and is surprisingly effective. The values
f(p*) for p* > = appear in the Euler product for F'(¢) and yet are irrelevant to the
mean value of f(n) for n up to x. However, for a given z, we can take f(p¥) =0
for every p* > z, to minimize the value of F (o) above.

1.2.3. Multiplicative functions close to 1

E2.2
The heuristic (h?) is accurate and easy to justify when the function g is small
in size, or in other words, when f is close to 1. We give a sample such result which
will lead to several applications.

PROPOSITION 1.2.1. Let f =1 x g be a multiplicative function. If
o0 d -
Z |g(0)| _ G(O')
d=1

is convergent for some o, 0 < o <1, then

|3 ) 2P (f)] < 2"Cl0),

n<zx

where P(f) :=P(f;0), and
Jim 37 f(n) = P().

n<x

If G(0) converges then G(1) does. If each |f(n)| < 1 then G(1) converges if
and only if 7 % < 0.

E2. 1
PROOF. The argument giving (h—Tl) yields that

Y s -2 3 1) < S,

n<lx d<zx d<z

Since P(f) = > 451 9(d)/d we have that
g(d g(d
O D
d<z d>x
Combining these two inequalities yields

(1.25) |3 s — o) < X lota)) + 2 3 OO

n<z A<z d>x

We now use Rankin’s trick: we multiply the terms in the first sum by ( %chch?unlcf
and in the second sum by (d/z)!=7 > 1, so that the right hand side of (T is

T\ @] ("7 _ L
<Slo@) (5) +e () =aoGlo),
d<z d>x
the first result in the lemma. This immediately implies the second result for 0 <

o<1
. . . SweetBound
One can rewrite the right hand side of (I.2:5) as

/z Z wf::”dt = 01—)00("1;)’

0 n>t
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because ), -, |g(n)|/n is bounded, and tends to zero as ¢t — oc. This implies the
second result for o = 1. (]

1.2.4. Non-negative multiplicative functions

Let us now consider our heuristic for the special case of non-negative multi-
plicative functions W%P ;uitable growth conditions. Here we shall see that right
side of our heuristic (T.2.2) is at least a good upper bound for > _  f(n).

PROPOSITION 1.2.2. Let f be a non-negative multiplicative function, and sup-
pose there are constants A and B for which

(1.2.6) > Ag(m) < Az + B,

m<z

for all z > 1. Then for x > e*B we have

f(n
Zf _log$+1 BZ

n<x

Proor. We begin with the decomposition

> f(n)logz =" f(n)logn+ > f(n)log(z/n)

n<x n<xz n<lx
SZf( 1ogn—|—2f (7—1)
n<zx n<lz

which holds since 0 < logt <t —1 for all ¢ > 1. For the first term we have

Do fmlogn=73" > f(r)As(m) <Y f(r) D As(m)

n<z n<x n=mr r<x m<zx/r
<> 5 (5F + ).
r<z
The result follows by combining these two inequalities. O

PrO}%2.1 E2.3
Proposition T.2.2 establishes the heuristic (M) for many common multiplica-
tive functions:

COROLLARY 1.2.3. Let f be a non-negative multiplicative function for which
either 0 < f(n) <1 foralln, or |As(n)| < kA(n) for alln, for some given constant
k> 1. Then

(1.2.7) é Z f(n) <A,B P(f;x) < exp ( — Z 1_7f(p))

n<x p<z p

Moreover if 0 < f(n) <1 for all n then

Jim 257 f(n) = PP

n<x
PROOF. The hypathesis jmplies that (T3] Tolds: If [f(n)] < 1 then this
follows by exercise [.Z.5(ii1). If each |Af(n)| < kA(n) then the Chebyshev estimates

give that

D M) <KD A(n) < Az + B,

n<z n<z
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any constant A > klog4 bein Dermissible.
So we apply Proposition ; 2 ’2, and bound the right-hand side using Mertens’

Theorem, and

ST I L,

n<zx p<z

SlzeP(f X)
to obtain the first inequality. The second inequality then follows from exercise

with € = l

E2.5
Iy, ( f(p))/p diverges, then (II.2.7) shows that

Jim — Z f(n P(f)-

Suppose now that > (1 — f(p))/p converges. If we write f = 1+ g then this
condition assures us that . lg(p*)|/p* converges, which in turn is equivalent

to the conv%rl%el}ce of 3. lg(n)|/n by exercise 1.2.7. The second statement in
Proposition T now finishes our proof. O

cora) IS} the coming chapters we will establish appropriate generalizations of Corollary
.2.3. For example, for real-valued multiplicative functions with —1 < f(n) < 1,

Wirsing proved that -, ., f(n) ~ P(f)z. Thigimplies that 3° _ p(n) = o(z) and
hence the prime number theorem, by Theorem I.1.3. We will go on to study Haldsz’s

seminal result on the mean values of complex-valued multiplicative functions which

take values in thgrgnﬂ"c disc

Proposition T.2.2 also enables us to prove a preliminary result indicating that
mean values of multiplicative functions vary slowly. The result given here is only
1Cl§gful when f is “close” to 1, but we shall see a more general such result in Chapter

7

PROPOSITION 1.2.4. Let f be a multiplicative function with |f(n)| < 1 for all
n. Then for all 1 <y < \/x we have

X - 3 s« E P en (S ES).

n<z n<lz/y

PrROOF. Write f = 1 % g, so that ¢ is a multiplicative function with each

(Dhhip) — 1, and each Ag(p) = Ay(p) — A(p) (so that (Wolds by exercise
%Z.}—hl%%g?ecall that

1 d 1

ED IR SEAI PR )

n<x d<z d<z
so that
— 1 y 1 y |9(d)|
128 |13 5m-L Y so| < LY @i+t Y o 3 L
n<z n<z/y d<z d<z/y z/y<d<wz

Prop2.1
Appealing to Proposition [.22 we find that for any z > 3

z 1-f
Z|g |<<logzz|g lgzeXp(Z| p(P)|)_

n<z p<lz
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FirstLipl
From this estimate and partial summation we find that the right hand side of ( VAR

is
et o (L),

proving our Proposition. O

1.2.5. Logarithmic means

In addition to the natural mean values < 3" <. f(n), we have already encoun-
tered logarithmic means @ don<at nrg/n several times in our work above. We

now prove the analogy to Proposition for logarithmic means:
PROPOSITION 1.2.5 (Naslund). Let f = 1 g be a multiplicative function and
Yoalg(@)]d=7 = G(o) < 0o for some o € [0,1). Then
f(n) Ay(n) — A(n) a2’ A
_ 1 — < G(o).
Y. =P [logz+v = - <1 G

n<xz n>1
PrRoOOF. We start with

DR DD ST/ PEACED PR

n<z n<z d|n d<z m<z/d

. . lex:harmonic
and then, using exercise T.1.4, we deduce that

> Zg H(10g% )| < Z“’ LS jg(a)

n<z d<z

Since g(n) log n is the coefficient of 1/n® in —G'(s) = G(s)(—G'/G)(s), thus g(n)logn =
(9% Ag)(n), and we note that Ay = A+ A,. Hence

3 gllonn _ s gOAl0) _ ) 5~ Arln) = A
ab m

n>1 a,b>1 m>1

Therefore 3, #(log% + fy) = P(f) <logx S D DN M)a and so
the error term in our main result is

1 (D]}, =
< - - .
< =Yg+ > L log 2 44
d<z d>x
Since 1/(1 — o) > 1 we can use the inequalities 1 < (2/d)? < (x/d)?/(1 — o) for

d < zx, and
1—0o
|log(/d) + ] < 1+ log(d/z) < YT

1—-0
for d > x, to get a bound on the error term of “‘1:71 é(a) as claimed. (]
PROPOSITION 1.2.6. If f is a multiplicative function with |f(n)| <1 for all n,

then

logm‘z ‘<< exp( épg;cl_R’jf(p)))
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PROOF. Let h =1 f, so that

D> hln) = ZZf<d>:Zf<d>(§+o<1)) :x2%+o .

n<x n<z d|n d<zx
Prop2.
We deduce, applying Pr‘%oo ion I[.2. T (since (I 1s satisfied as A, = A+ Ay,
and then by exercise that

(n)
loga:i; n i_xlogxz| |+O( gm)
|h(n 1
Z logx

n<lz

BILESICIEE) .

P log x

log x

< exp

p<z

using Mertens’ theorem. Now (1 — Re(z)) < 2 —[1 4 z| < 1 — Re(z) whenever
|z] <1, and so the result follows. (]

We expect that, for non—negative real multiplicative functions f, the quantity

R(f:2) / f( %) )

n<m

should typically be bounded, based on the 1 gu euristic discussion above. For example
R(dg;x) ~ (e=")"/|IT'(k + 1)| by exercise T.1.14(iii) and Mertens’ Theorem.

EXERCISE 1.2.3. Suppose that f and g are real multiplicative functions with
f(n),g(n) >0 for all n > 1.
(i) Prove that 0 < R(f;z) <1

(ii) Prove that R(f;x) > R(f;z) - R(g;x) > R(f * g; ).

(iii) Deduce that if f is totally multiplicative and 0 < f(n) <1 for alln > 1
then 1 > R(f;z) > R(1;z) ~ e 7.

(iv) Suppose that f is supported only on squarefree integers (that is, f(n) =0
if p?|n for some prime p). Let g be the totally multiplicative function with
g(p) = f(p) for each prime p. Prove that R(f;x) > R(g;x).

1.2.6. Exercises

EXERCISE 1.2.4. * Prove that if f(.) is multiplicative with —1 < f(p¥) < 1 for
each prime power p* then lim, ., P(f; ) exists and equals P(f)

EXERCISE 1.2.5. (i) Prove that if |f(p*)| < B¥ for all prime powers p*

then |A;(p*)| < (2¥ — 1)B*logp for all prime powers p*.
(ii) Show this is best possible (Hint: Try f(p*) = —(—B)¥).
(iii) Show that |f(n)| < 1 for all n then there exist constant A,C such that
Dom<s | Af(m)| < Az 4 C, for all z > 1.
(iv) Give an example of an f where B > 1, for which >, __|Af(n)| > x5,
This explains why, when we consider f with values outside the unit circle, we prefer
working with the hypothesis |A¢(n)| < kA(n) rather than |f(p*)| < B.
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EXERCISE 1.2.6. (i) Let f be a real-valued multiplicative function for which
there exist constants £ > 1 and € > 0, such that |f(p*)| < d,.(p*)(p*)2 ¢ for every
prime power p*. Prove that

P(f;x) Kp,e €Xp ( — Z %@)

p<z

This should be interpreted as telling us that, in the situations which we are inter-
ested in, the values of f(p*) with k > 1 have little effect on the value of P(f;x).
(ii) Show that if, in addition, there exists a constant § > 0 for which

EPCIT I
p p

for every prime p then

P(fi) e exp (- 0 L),
p<z

(iii)* Prove that if [Af(n)| < A(n) for all n then the above hypotheses hold with
k=1, ezéandézi.

EXERCISE 1.2.7. * Show that if g(.) is multiplicative then >, ., [g(n)|/n? < oo
if and only if >° lg(p™)|/p* < . -

F[) 2.1
EXERCISE 1.2.8. * Deduce, from Proposition 5T and the previous exercise,
that if 3« | F(*) — F(*1)|/p* < o0 then 3, f(n) ~ aP(f) as 7 — oc.

EXERCISE 1.2.9. * For any natural number ¢, prove that for any ¢ > 0 we have

Tt TI ()

n<lz
(n,q)=1

Taking o = 0, we obtain the sieve of Eratosthenes bound of 2¢(9).! Prove that the
bound is optimized by the solution to Zp‘q(log p)/(p® +1) = log z, if that solution
is > 0. Explain why the bound is of interest only if 0 < o < 1.

EXERCISE 1.2.10. Suppose that f is a multiplicative function “close to 1”7, that
is [f(p*) — fOPF)] < ﬁ(ktr) for all prime powers p*, for some integer r > 0.
Prove that

™ (n) = #P(f) + O((log )™+,

n<x
2.1
(Hint: Use Proposition T9.T with o = 0, the Taylor expansion for (1 —¢)~"~! and
Mertens’ Theorem.)

EXERCISE 1.2.11. * Let a(n) = > _gjn d- Prove that

Z p(n)“o(n) gJc—i-O(\floggc)

n<x

EXERCISE 1.2.12. 1 Let f be multiplicative and write f = dj *x g where k € N
1 flk deontes the k-divisor function. Assuming that |g| is small, as in Proposition
To: [, develop an asymptotic formula for > _ f(n).

IWhere w(q) denotes the number of distinct primes dividing q.
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ex:Pr2.1RightConstant‘ EXERCISE 1.2.13. Fix k£ > 0. Assume that f is a non-negative multiplicative
function and that each |[Af(n)| < kA(n ﬁ
(i) In the proof c]?roposmom modlfy the bound on f(n)log(xz/n)
using exercise [[.1.14 , to deduce that for any A > k,
f (logz)~~*
A o))
nz;lf *logx—i—O ( Z + (k)
(ii) Deduce that 13 _ f(n) < m(e” +o(1)) P(f;x) —|— O((log z)"2).
The bound in (i) is essentially “best possible” since exercise 14 implies that
di(n)
di(
> Fiogs 2
n<lx n<x
ex:WeightL(x/n) ‘ EXERCISE 1.2.14. Let f be a multiplicativc function with each |f(n)| < 1.

(i) Show that 3°, ., f(n)log T = rsLtLﬁ don< f(n) dt
(ii) Deduce, using Proposmon [.2.4, f%

> fnylosZ 3 fm) (Z'l_ 1,

n<z n<zx
ex:f(n)f(n+1) EXERCISE 1.2.15. Suppose that f and g are multiplicative functions with each
2
Fm)],lg(m)| < 1. Define Py(f) == (1= 1)(1+ L2 L2 1) and then
Pp(f:9) = Po(f) + Pplg) — 1. Finally let P(f,g) = [, Py(f,g). Prove that if

>, D=t 5 100 < o then

P
£1;H3052f g(n+1) =P(f,9).

n<x






CHAPTER 1.3

Integers without large prime factors

1.3.1. “Smooth” or “friable” numbers

Let p(n) and P(n) be the smallest and largest prime factors of n, respectively.
Given a real number y > 2, the integers, n, all of whose prime factors are at most
y (that is, for which P(n) < y) are called “y-smooth” or “y-friable”.! Smooth
numbers appear all over analytic number theory. For example most factoring al-
gorithms search for smooth numbers (in an intermediate step) which appear in a
certain way, since they are relatively easy to factor. Moreover all smooth num-
bers n may be factored as ab, where a € (A/y, A] for any given A, 1 < A < n.
This “well-factorability” is useful in attacking Wari C%’,%[ gg]pcl_%rol and in finding
small gaps between consecutive primes (see chapter %._&Flmr, counting the
y-smooth numbers up to x can be surprisingly tricky. Define

U(z,y) = Z 1.

n<lz
P(n)<y
We can formulate this as a question about multiplicative functions by considering
the multiplicative function given by f(p¥) = 1if p <y, and f(p*) = 0 otherwise.
If 2 < y then clearly ¥(x,y) = [z] = x + O(1). Next suppose that y < z < 3.
If n < x is not y—g}%g&ch Sthen it must be divisible by a unique prime p € (y, z].

Thus, by exercise hw%ﬁ
Uy =— 3 Si=z+00)- 3 (% +0(1))

y<p<zn<z y<p<wz
pln

(a2 < o(52)

This formula tempts one to write z = y*, and then, for 1 < u < 2, we obtain
yu
Tyt y) = y*(1 -1 o( )
(y",y) =y"(1 —logu) + g

We can continue the process begun above, using the principle of inclusion and

exclusion to evaluate ¥(y“, y) by subtracting from [y*] the number of integers which

are divisible by a prime larger than y, adding back the contribution from integers

divisible by two primes larger than y, and so on.? The estimate for ¥(y*, %) involves
the Dickman-de Bruijn function p(u) defined as follows:

L«Fyiable” is French (and also appears in the O.E.D.) for “crumbly”. Its usage, in this context,
is spreading, because the word “smooth” is already overused in mathematics.

2A result of this type for small values of u may be found in Ramanujan’s unpublished
manuscripts (collected in The last notebook), but the first published uniform results on this
problem are due to Dickman and de Bruijn.

25
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For 0 <u <1let p(u) =1, and let p(u) =1 —logu for 1 <u < 2. For u > 1
we define p by means of the differential-difference equation
up'(u) = —p(u —1);

indeed there is a unique continuous solution given by the (equivalent) integral
(delay) equation

wiw = [ sl

The integral equation implies (by induction) that p(u) > 0 for all v > 0, and
then the differential equation implies that p'(u) < 0 for all u > 1, so that p(u) is
decreasing in this range. The integral equation implies that up(u) < p(u — 1), and
iterating this we find that p(u) < 1/[u]!.

THEOREM 1.3.1. Uniformly for all w > 1 we have

U(y",y) = p(w)y" + O<1§/gy + 1)-

In other words, if we fix u > 1 then the proportion of the integers < z that have
all of their prime factors < /%, tends to p(u), as z — oo.

Proor. Let z =y, and we start with

U(x,y)logz = Z logn—l—O(Zlog(m/n)): Z logn + O(x).

n<lx n<z n<xz
P(n)<y P(n)<y

Using logn = 3_;,, A(d) we have
D logn= > Ad)¥(z/dy) = (logp)¥(z/p,y) + O(x),

n<z d<zx p<y
P(n)<y P(d)<y

since the contribution of prime powers p* (with k& > 2) is easily seen to be O(z).
Thus

(1.3.1) U(z,y)loge = Zlogp \I'( ) + O(x).

. ObPNT
(Compare this to the formulae in Exercise L. 16.)
Now we show that a similar equation is satisfied by what we think approximates
ng y), namely xp(u). Put E(t) = > loﬁp — logt so that E(t) = O(1) b
(I.1°10). Now

5 bﬁp(w) _ /1yp(u _ %)d(logt+E(t)),

= b logy

and making a change of variables ¢t = y” we find that

/1y p(u - E?g;)d(log t) = (logy) /01 p(u—v)dv = (logx)p(u).

Moreover, since E(t) < 1 and p is monotone decreasing, integration by parts gives

/1yp<u - Eg;)d(E(t)) < p(u—1) / ’dt ( IOgt)‘dt < p(u—1).
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Thus we find that
(1.3.2) (xp(u))logz = Z logp<x <log(x/p)>) + O(p(u — 1)x).

= logy

E2.11 E2.10
Subtracting (T.3.2) from (T.3.1) we arrive at

(1.3.3) | (z,y) — xp(u)|logx < Zlogp’\ll( ) - ;p(kﬁgx;p)’ + Cux,
p<y

for a suitable constant C.

Suppose that the Theorem has been proved for ¥(z,y) for all z < x/2, and we
now wish to establish it for . We may suppose that z > y?, and our induction
hypothesis is that for all ¢ < z/2 we have

1),

logt ‘
W(t,y)—t
‘ (t,y) pg;gy) < (
for a suitable constant Cy. From (II. 3'.3) we obtain that

|U(z,y) —zp(u )|logx<Clzlogp< og +1)+Cw<Clx+O(—+y>+0x
P<y

Assuming, as we may, that Cy > 2C and that y is sufficiently large, the right hand
side above is < 2Cz, and we conclude that |U(z,y) —zp(u)| < Ciz/logy as u > 2.
This completes our proof. [

cnoothOW ) < 1/[u]! decreases very rapidly. Therefore the main term in Theorem
[.3.1 domlnates the remainder term only in the narrow range when u" < logy.

However the asymptotic W(y*, y) ~ p(u)y" been established in a much wider
range than in Theorem [1.3.T by Hildebrand [[7],” who showed that
log(u + 1)
1.3.4 W(y", y) = vlliypro =7
(1.3.) ') = play {10 (2

for y > exp((loglog )?) where x = y“. This is an extraordinarily wide range, given
that Hildebrand also showed that this asymptotic holds in the only slightly larger
range 3 > (log x)2+0(1) if an s%(ra%¥hif the Riemann Hypothesis is true.

One can prove Theor .Tin a number of ways. The key to the proof that
we gave is the identity (%_F), but there are other identities that one can use.
Indeed few are more elegant than de Bruijn’s identity:

(1.3.5) U(z, -y \If(f,p) +O(a).

y<p<zx

E2.10
However, this works out less S%eﬁ;fully than (I.3.T), perhaps becaus ls)rhly the X-
variable in ¥(X,Y) varies in (T.3.1), gvheg as both variables vary in (l 35).

How does the result in Theorem compare to the heuristic of chapter h"

If f(p*) = 1 if prime p < y and f(p ) = 0 otherwise then ¥(z,y) = >, o, f(n).
The heuristic of chapterFTZ then proposes the asymptotic x Hy<p§I(1 - %) ~x/u
by Merte S%OO’]gIlgeorem. This is far larger than the actual asymptotic ~ zp(u) of

Theorem [[.3.1, since p(u) < 1/[u]! (and a more precise estimate is given in exercise

3Hildebrand’s proof uses a strong form of the prime number theorem, which we wish to avoid,
since one of our goals is provide a different, independent proof of a strong prime number theorem.
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ex2.9
}.{3.6). Hence, removing the multiples of the small primes leaves far fewer integers
than the heuristic suggests.

1.3.2. Rankin’s trick and beyond, with applications
Good upper bounds may be obtained for ¥(z, y), ngigogmly in a wide range, by

a simple application of Rankin’s trick (recall Exercise I.2.2). Below we shall write
1\ !
=TI (1-5) = ¥
p<y P n>1
P(n)<y

where the product and the series are both absolutely convergent in the half-plane
Re(s) > 0.
EXERCISE 1.3.1. * (i) Show that, for any real numbers x > 1 and y > 2,

the function 27¢(o,y) for o € (0,00) attains its minimum when o = a = a(z,y)

satisfying
log p
1 = .

Py
ex2.1
(ii) Use Rankin’s trick (see Exercise [[.2.2) to show that

U(z,y) < ; min {1, %} < z%(a,y) = gniglx"((o, ).
P(n)<y
(iii) Establish a wide range in which

Z min{l,%}wxlogy-/ p(t)dt.

n>1 u
P(n)<y
By a more so 'gtlicated argument, using the saddle point method, Hildebrand
and Tenenbaum [7] established an asymptotic formula for ¥(z,y) uniformly in
r>y>2:

(1.3.6) U(z,y) = M(l + O(%) +O<1o§y)>’

an/ 2o (a, y)

with a as in Exercise Ei.(%f(i), d(s,y) = log((s,y) and ¢a(s,y) = %gf)(s,y). This
work implies that ify > (log z)'*° then the (easy) upper bound obtained in Exercise
3.1(1) is larger than W(z,y) by a factor_of about /ulogy, that is ¥(z,y) <
x*((a,y)/(v/ulogy). However, in Exercise [[.3.1(ii), we saw that Rankin’s method
really gives %{n%?per bound on min{1, £}, summed over all y-smooth n. The result
of Exercise [I.3.1(ii) then implies that the upper bound is too large by a factor of
only = y/ulogu.
We now improve Rankin’s upper bound, yielding an upper bound for ¥(z,y)
which is also too large by a factor of only =< /ulogu.

PROPOSITION 1.3.2. Let © > y > 3 be real numbers. There is an absolute
constant C' such that for any 0 < 0 <1 we have
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PROOF. We consider

ddogn= > D Ad)= D D Ad)

n<z n<zr n=dm m<z d<z/m
P(n)<y P(n)<y P(m)<y P(d)<y

The inner sum over d is

> logp[w}ﬁ Y. log(z/m)

p<min(y,z/m) p<min(y,z/m)
— min(r(y), (z/m)) log(z/m),
and so we find that

U(z,y)logz = Z <logn + log(:r/n))

n<lz
P(n)<y

< Z (min(w(y)m(m/n)) + 1) log(z/n).
P?ﬂﬁ)gy

Chebl
We now use the Chebyshev bound 7 (z) < z/logz (see (l.e.i)), together with the
observation that for any 0 < 0 < 1 and n < = we have

yr=7(x/n)’ < x/n ifrx/y<n<cz
o ~ | ylog(z/n)/logy ifn<uz/y.
Thus we obtain that
l1—0o 1—0o
Y T\ _ Y
U(z,y)l (7) < °C(o,y),
(x,y)loga < 7; - \n) =57 ¢(o,y)
P(n)<y
as desired. 0

1.3.3. Large gaps between primes

We now apply our estimates for smooth numbers to construct large gaps be-
tween primes. The gaps between primes get arbitrarily large since each of m! +
2,m!' 4+ 3,...,m! +m are composite, so if p is the largest prime < m! + 1, and q
the next prime, then. g = p > m. Note that m ~]og p/(loglogp) by Stirling’s for-
mula (Exercise [[.1.5], whereas we expect, from (I.1.1), gaps as large as logp. Can
such techniques establish that there are gaps between primes that are substantially
larger than logp (and substantially smaller)? That is, if p; =2 <ps =3 < ... s
the sequence of prime numbers then

(1.3.7) lim sup Pnil ZPn _
n—oo  l0gpn

. ch:MaynardTao .
In section [77 we will return to such questions and prove that

(1.3.8) liminf 225" Pn
n—oo  logpy
THEOREM 1.3.3. There are arbitrarily large p,, for which
(log log p,,) log log log log p,,
(logloglog p,)? '

1
Pn+1 — Pn Z . logpn

. LargePrimeGaps
In particular (1.3.7) holds.
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PROOF. The idea is to construct a long sequence of integers, each of which is
known to be composite since it divisible by a small prime. Let m = Hp< ,p. Our
goal is to show that there exists an interval (T, T 4+ z] for which (T + j,m) > 1 for
each 7,1 < j <z, with T > z (so that every element of the interval is composite).
Erdoés formulated an easy way to think about this problem

The Erdds shift: There exists an integer T for which (T" + j,m) > 1 for each
j,1 < j < z if and only if for every prime p|m there exists a residue class a,
(mod p) such that for each j,1 < j < x there exists a prime p|m for which j = a,
(mod p).

PROOF OF THE ERDOS SHIFT. Given T, let each a, = —T, since if (T'+j,m) >
1 then there exists a prime p|m with p|T + j and so j = —T = a,, (mod p). In the

other direction select T' = —a, (mod p) for each p|m, using the Chinese Remainder
Theorem, and so if j = a, (mod p) then T+ j = (—ap) + ap, =0 (mod p) and so
pI(T + 5, m). O

The y-smooth integers up to x, can be viewed as the set of integers up to z,
with the integers in the residue classes 0 (mod p) sieved out, by each prime p in the
range y < p < x. The proportion of the integers that are left unsieved is p(u) (as
we proved above), which is roughly 1/u*. This is far smaller than the proportion
suggested by the usual heuristic:*

I (1) losw _ 1
D logz u’

y<p<z

by Mertens’ Theorem.

To construct as long an interval as possible in which every integer has a small
prime factor, we need to sieve as efficiently as possible, and so we adapt the smooth
numbers to our purpose. This is the key to the Erdés-Rankin construction (and
indeed, it is for this purpose, that Rankin introduced his moment method). We
will partition the primes up to z into three parts, those < y, those in (y,ez], and
those in (ez, z] where € is a very small constant. We select y and z to be optimal
in the proof below; good choices turn out to be

2
x=y" with u = (1 +E)M; and 2= — . (oglog z) .
logloglog x logx logloglogx

2.8
Notice that y - €2 > z, and that ¥(z,y) = o(z/logx) by Exercise 1335,

(I) We select the congruence classes a, = 0 (mod p) for each prime p € (y, ez]. Let
No:={n<z: ng0 (modp) forall p € (y,ez]}.

The integers n counted in Ny either have a prime factor p > €z or not. If they
do then we can write n = mp so that m = n/p < x/ez < y and therefore m is
composed only of prime factors < y. Otherwise if n does not hav%ﬁlﬂ)?rge prime
factor then all of its prime factors are < y. By this decomposition, (I.1.7) and then

4For a randomly chosen interval, the proportion of integers removed when we sieve by the
prime p is %; and the different primes act “independently”.
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Exercise T .QIr(t),eI;xS/e have
:c
= (z bl

#No= S fefrl+ <§; L0 ()

ez<p<x

1
= zlog 08T
log ez log T

II) Now for each consecutive prime p; < y let
p pisy

log log x

log

Nj:={neNy: né¢a, (modp)foralp=npi,....p;}
={neN;_1: n¢a, (modp)forp=np;}.
We select a,, for p = p; so as to maximize #{n € Nj_1 : n =a, (mod p)}, which
must be at least the average % #N,_1. Hence #N; < (1— pij)#J\/'j,l, and so if py,
is the largest prime < y then, by induction, we obtain that
~7 logl
vl <1># G ST logloBT |y g 2
oty logy logx log =z

Cheb
using Mertens’ Theorem. This implies that r < #{p € (ez, 2]} using ( 1. 71) (which
we proved there with constant ¢ = log2), since e~7 < log 2.

(III) Let Ny = {b1,...,b,}, and let ppy1 < peg2 < ... < peyr be the r smallest
primes in (ez, z]. Now let a, = b; for p = pe; for j =,2,...,r. Hence every integer
n < x belongs to an arithmetic progression a, (mod p) for some p < z.

We have now shown how to choose a, (mod p) for each p < z so that every
n < x belongs to at least one of these arithmetic progressions. By the Erd&s shift
we know that there exists 7' (mod m), where m = [[ . p for which (T'+j,m) > 1
for 1 < j < z. We select T € (m,2m] to guarantee that every element of the
interval (T, T + z] is greater than any of the prime factors of m. Hence if p,, is the
largest prime < 7T, then p,11 — pn > 2.

We need to determine how big this gap is compared to the size ng btﬁle primes
involved. Now p,, < 2m and logm < ¢(z) < zlog4 + O(log z) by (h?), so that
z > glog Pr. This implies the theorem. ([l

EXERCISE 1.3.2. * Assuming the prime number theorem, improve the constant
1 in this lower bound to 7 + o(1). ®

The Erdds shift for arithmetic progressions: It is not difficult to modify the above
argument to obtain large gaps between primes in any given arithmetic progression.
However there is a direct connection between strings of consecutive composite num-
bers, and strings of consecutive composite numbers in an arithmetic progression:
Let m be the product of a finite set of primes that do not divide g. Select integer
r for which gr =1 (mod m). Hence

(a+jg.m) = (ar + jqr,m) = (ar + j,m),
and so, for T' = ar,
(139) #{1<j<N: (a+jgm)=1)=#{1<j<N: (T+jm)=1}.

5 FGKT Mayn2 _
Usmg additional ideas, this has recently [7 een improved to allow any constant ¢ > 0 in
place of gfgggaﬁ EIA% Lrgat Paul Erdés’s favourlte challenge problem. We shall return to this

in chapter
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In other words, the sieving problem in an arithmetic progression is equivalent to
sieving an interval.

1.3.4. Additional exercises

EXERCISE 1.3.3. Suppose that f is a non-negative multiplicative function, for
which f(p*) =01if p >y, and 3 ;. p Ay(d) < min{D,y logD} for all D > 1. Prove
that -

1—0o

Z fn UlogxxUF(a)

n<z

. . . . . eX2 : 1
for any 0 < 0 < 1. When is this an improvement on the bound in Exercise [[.2.27

EXERCISE 1.3.4. Prove that if f is a non-negative arithmetic function, and
F(o) is convergent for some 0 < o < 1 then

g

S s+ 3 1 < (p0) - aF'(0)),

n<x n>x

(Hints: Either study the coefficient of each f(n); or bound >°, ., f(n)log(z/n)
by integrating by parts, using the first part of Exercise ; 2.2, and then apply the
second part of Exercise hz for (—F").)

EXERCISE 1.3.5. T For x = y* with y > (logx)?, let 0 = 1 — % If
y= (log {,13)2, let 0 = % te Rankin2 ex2.1
(i), Deduce from Proposition [.3.2 and exercise [.2.2(ii), together with exercise
hrz, that there exists a constant C' > 0 such that

T C v
1- = z 1/240(1).
U(z,y) +H( ) > n<<x<ulogu) +z

p<ly n>x
P(n)<y

(Hint: For small y, show that (o, y) < z°(1).)
ii) Suppose that f is a multiplicative function with 0 < f(n) < 1 for all integers
n, supported only on the y-smooth integers. Prove that

2 @ < ((ulfgu>u+ zl/ifo(l)) I f;p) f;p;) )

n>wx <y
P(n)<y

where x = y* gvumté}) =1 (Hint: Prove the result for totally multiplicative f, by
using exercise Wound R(f;00) — R(f;x) in terms of the analogous sum for
the characteristic function for the y-smooth integers. Then extend this result to all
such f.)

(iii) Suppose now that f is a multiplicative function with 0 < f(n) < d,(n) for
all integers n, supported only on the y-smooth integers. State and prove a result
analogous to (ii). (Hint: One replaces C' by C*. One should treat the primes p < 2k
by a separate argument,)

EXERCISE 1.3.6. Prove that
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(Hint: Select ¢ maximal such that p(u) > (c/ulogu)®. By using the functional
equation for p deduce that ¢ > e. Take a similar approach for the implicit upper
bound.)

EXERCISE 1.3.7. * A permutation 7w € S,, is m-smooth if its cycle decomposition
contains only cycles with length at most m. Let N(n,m) denote the number of m-
smooth permutations in S,. (i) Prove that

N(n,m " N(n—j,m
) 8N g

(ii) Deduce that N(n,m) > p(n/m)n! holds for all m, n > 1.
(iii)t Prove that there is a constant C' such that for all m, n > 1, we have

N(n,m) n C
Ny, ©
n! m
(One can take C' =1 in this result.)
Therefore, a random permutation in S, is n/u-smooth with probability — p(u) as
n — 0o.

Jj=1

m






CHAPTER 14

Selberg’s sieve applied to an arithmetic
progression

In order to develop the theory of mean-values of multiplicative functions, we
shall need an estimate for the number of primes in short intervals. We need only
an upper estimate for the number of such primes, and this can be achieved by a
simple sieve method, and does not need results of the strength of the prime number
theorem. We describe a beautiful method of Selberg which works well in this and
many other applications. In fact, several different sieve techniques would also work;
see, e.g., Friedlander and Iwaniec’s Opera de Cribro for a thorough treatment of
sieves and their many applications.

1.4.1. Selberg’s sieve

Let Z be the set of integers in the interval (z, z +y], that are = a (mod q). For
a given integer P which is coprime to ¢, we wish to estimate the number of integers
in Z that are coprime to P; that is, the integers that remain when 7 is sieved (or
sifted) by the primes dividing P. Selberg’s sieve yields a good upper bound for
this quantity. Note that this quantity, plus the number of primes dividing P, is
an upper bound for the number of primes in Z; selecting P well will give us the
Brun-Titchmarsh theorem. When P is the product of the primes < z/*, other
than those that divide ¢, we will obtain (for suitably large u) strong upper and

er bounds for the size of the sifted set; this result, which we develop in Section

4.2, is a simplified version of the fundamental lemma of sieve theory.

Let Ay = 1 and let Ay be any sequence of real numbers for which Ay # 0 only
when d € S(R, P), which is the set of integers d < R such that d is composed
entirely of primes dividing P (where R is a parameter to be chosen later). We say
that A is supported on S(R,P). Selberg’s sieve is based on the simple idea that
squares of real numbers are > 0, and so

2 =1 if P)=1
() s b )
>0 always.
d|n
Therefore we obtain that
2
> ey ()
neZ n€l dln
(n,P)=1

Expanding out the inner sum over d, the first term on the right hand side above is

Z )‘d1 )\d2 Z 1,

dy,ds z<n<z+y
n=a (mod q)
[d1,d2]|n

35
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where [dy,ds] denotes the l.c.m. of dy and dy. Since P is coprime to ¢, we have
Ad = 0 whenever (d,q) # 1. Therefore the inner sum over n above is over one
congruence class (mod ¢[ds,dz]), and so within 1 of y/(q[d1,d2]). We conclude

that
Yy Ady Ady
1< = Ads A
> 1< qud dn d) +d§d |Ad; Ads |
1,42 1,02

nel
(n,P)=1

Yy Ady Ady 2
(1.4.1) = adlzgz ard (%:IAdI)

The second term here is obtained from the accumulated errors obtained when
we estimated the number of elements of Z in given congruence classes. In order that
each error is small compared to the main term, we need that 1 is small compared
to y/(¢[d1,ds]), that is [d1, ds] should be small compared to y/q. Now if dq, ds are
coprime and close to . fhen this forces the restriction that R < \/m

The first term in (hﬂ‘l) is a quadratic form in the variables A4, which we wish
to minimize subject to the linear constraint Ay = 1. Selberg made the remarkable
observation that this quadratic form can be elegantly diagonalized, which allowed
him to determine the optimal choices for the Ag: Since [dy,ds] = dida/(d1,d2),
and (di, dz) = 3244, 4,) 9(£) we have

Ady Ad, Ady Ady o(¢) A ot
(1.4.2) Z aZ’dd2 Z¢ Z ddl dd2 :Z 02 (Z dL’) Z 02 547
di,d2 0]dy £ d
0lds

Ade
(=Y
So we have diagonalized the quadratic form. Note that if £ # 0 then ¢ € S(R, P),
just like the Ag’s. 5
We claim that (hTZ) provides the desired diagonalization of the quadratic
form. To prove this, we must show that this change of variables is invertible, which
is not difficult using the fact that g+ 1 =¢§. Thus

Ad—zmz =S u S = ZLm

r|e r|e

where each

In particular, the constraint A\; = 1 becomes

(1.4.3) Z 7@

g3 Ve have transformed our probleh% minimizing the diagonal quadratic form in
(h?) subject to the constraint in (I.4.3). Calculus reveals that the optimal choice
is when &, is proportional to u(r)r/¢(r) for each r € S(Rﬁfg (and 0 otherwise).
The constant of proportionality can be determined from (I.4.3) and we conclude
that the optimal choice is to take (for r € S(R, P))

1 ru(r T
(1.4.4) &= TP qf((r)) where  L(R;P) := 2 ‘;((T)).
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E3.2
For this choice, the quadratic form in (m) attains its minimum value, which is
1/L(R; P). Note also that for this choice of £, we have (for d € S(R, P))

Ay = 1 Z dp(r)p(dr)

= L(R, P) =y QS(d’f‘) )
plr = plP
and so
1 w(dr)?d 1 u(n)?o(n)
1.4.5 M| € ——— = T an)
(1.4:5) d%;' | S TR P) dz ¢(dr)  L(R; P) ,;z ¢(n)
dr<R pln = p|P

pldr = p|P

where o(n) =3, d.
Putting these observations together, we arrive at the following Theorem.

THEOREM 1.4.1. Suppose that (P,q) = 1. The number of integers from the
interval [x, x+y] that are in the arithmetic progression a (mod q), and are coprime
to P, is bounded above by

y ! ()0 (n) 2
P Py 2w )
pln => p|P

E3.4
for any given R > 1, where L(R; P) is as in (I.4.4).

1.4.2. The Fundamental Lemma of Sieve Theory

We will need estimates for the number of integers in an interval of an arith-
metic progression that are left unsieved by a subset of the primes up to some
bound. Sieve theory provides a strong estimate for this quantity, and indeed the
fundamental Lemma of sieve theory provides an extraordinarily precise answer for
a big generalization of this question. Given our limited needs we will provide a
self-contained proof, though note that it is somewhat weaker than what follows
from the strongest known versions of the fundamental lemma.

THEOREM 1.4.2 (The Fundamental Lemma of Sieve Theory). Let P be an in-
teger with (P,q) = 1, such that every prime factor of P is < (y/q)"/* for some
gwen u > 1. Then, uniformly, we have

Y. 1= ‘Zé(P)(l + O(u‘”/2)> + O((g)g/“o(l)),

P
r<n<z+y
(n,P)=1
n=a (mod q)

As mentioned already, one can obtain stronger results by other methods. In
particular, the error terms above may be improved to O(u~*) in place of O(u~%/?),
and O((y/q)"/*t°W) in place of O((y/q)*/*+°W).

We will obt ,H%mgh{f upper bound of the Fundamental Lemma by directly ap-
plying Theorem [[.4.1 and using our understanding of multiplicative functions to
evaluate the various terms there.

We will deduce the lower bound from the upper bound, via a sieve identity,
.WhiC}.l 15 a technique'that often works i Sigye theo Nop Ve have already seen sieve
identities in the previous chapter (e.g. (I.3.T) and (5.3.5)), and they are often used
to turn upper bounds into lower bounds. In this case we wish to count the number
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of integers in a given set Z that are coprime to a given integer P. We begin by
writing P = py ---pg with py < p2 < ... < pg, and P; = Z;llpz for each j > 1,
with P; being interpreted as 1. Since every element in [ is either coprime to P, or
its common factor with P has a smallest prime factor p; for some j, we have

k

(146)  #{neZ:(nP)=1}=#I - #{neI:p;nand (n,P;)=1}.
j=1

Good upper bounds on each #{n € Z : pj|n and (n, P;) = 1} will therefore yield a
good lower bound on #{n € Z: (n, P) = 1}.

PROOF. We again let 7 := {n < gx,a: +y]: n =a (modgq)}. We prove
thm?.
the upper bound using Theorem [.4.T with R = y/y/q. Therefore if p|P then
p <y:=R*" and so

Py _ p(r) p(r)
LR = 3. 50 +o( 2 o)
p\rép\P p|r = p|P

u/
=+ o((Gogs)” + )}

2.8
by exercise e}.{3.5(iii) with k = 2 for ﬁhe, error termy. . Moreover, by the Cauchy-
ex:nearl ex .8(.
a 3.5

Schwarz inequality, and then exercises I.2. nd i), we have
p(n)?o(n)\2 o(n)? 2/ o/ C w2
— ) = U(R,R¥") <« R?(——) .
( 2w ) (,; S V) < B ()
pln = p|P

Inserting these estimates into the bound of Theorem [T.4.T; yields the upper bound

= <2 ol o))

(n,P)=1

which implies the upper bound claimed, W'g?e‘i,g}Hoved error terms.
We now prove the lower bound using (I.4.6), and that #Z = y/q + O(1). The

upper bound that we just proved implies that

Y 1= > 1

nel z/pj<n<(z+y)/p;
pjln (n,Pj)=1
(n1P1):1 =ap?

n=ap; (mod q)

< qiffj)(l * 0((@)/2» + O((%>3/4+0(1))’

J
Sieveldl
where u; = log(y/qp;)/logp;. Inserting this into (l.lZIfIGi, for the main term we

have
1 g(P) _ o(P)
1—) 22— )
];Pj Py P

Since the second error term is larger than the first only when v — oo, hence
when we sum over all p;, the second error term remains < (y/q)%/4T°(1). For the
first error term we begin by noting that u; = log(y/q)/logp; —1 > v — 1 and so
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(uj/u)?(C/ujlogu;)¥/? < (C'/ulogu)™/? for some constant C’ > 0. We deal with
the sum over j by then noting that ¢(P;)/P; < (u;/u)¢(P)/P and so
k

1oP)u? _¢(P) w logp _ ¢(P)
.azz:lpj Py <P logly/a) 2 <P

p<(y/a)*/*
av,
by (FPFIglO) This completes our proof. O

EXERCISE 1.4.1. * Suppose that y, z, ¢ are integers for which loggq < z < y/q,
and let m = Hp< . p. Use the Fundamental Lemma of Sieve Theory to prove that
if (a,q) =1 then

Y
1l —.
2 ¢(q)log z

r<n<lz+y
n=a (mod q)
(n,m)=1
Taking the special case here with z = (y/q)'/? , and trivially bounding the num-
ber of primeﬁé z that are = a (mod ¢), we deduce the most interesting corollary
to Theorem [T.4.2:

COROLLARY 1.4.3 (The Brun-Titchmarsh Theorem). Let 7(x;q,a) denote the
number of primes p < x with p = a (mod q). There exists a constant k > 0 such

that
RY

¢(q)log(y/q)
1.4.3. A stronger Brun-Titchmarsh Theorem

m(r +y;q,a) — m(w;q,a) <

We have just seen that sieve methods can give an upper bound for the number

of primes in an interval (z,x 4 y] that belong to the arithmgﬂgoﬁg ression a
(mod ¢). The smallest explicit constant x known for Corollary [.4.371s k = 2, due

to Montgomery and Vaughan, which we prove in this section using the Selberg
sieve:

THEOREM 1.4.4. There is a constant C > 1 such that if y/q > C then
2y
¢(q)log(y/q)’
for any arithmetic progression a (mod q) with (a,q) = 1.
OurBT
Since 7(x + y;q,a) — 7(x;9,a) < y/q + 1, we deduce (I.4.7) for ¢ < y <
qexp(q/p(q))-

One can considerably simplify proofs in this area using Selberg’s monotonicity
principle: For given integers w(p) < p, for each prime p, and any integer N, define

STV, {w(p)}y) = e e #{neZI: ndQp) for all primes p}

Z an interval Q Z.]pZ N w(p)
#(INZ)=N %(Cmg)(mp #1 11, (1 B Tp)

where the first “max” is over all intervals containing exactly N integers, and the
second “max” is over all sets Q(p) of w(p) residue classes mod p, for each prime p.
We can analogously define S~ (N, {w(p)},) as the minimum.

(1.4.7) m(x +y;q,a) —w(x;q,a) <

LEMMA 1.4.5 (Selberg’s monotonicity principle). Ifwi(p) < wa(p) for all primes
p then, for all integers N > 1,

STN Awa(p)}p) = ST(N Awi(p)}p) = ST (N A{wi(p)}p) = ST (N, {w2(p)}p)-
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PROOF. We shall establish the result when w’(p) = w(p) for all primes p # q,
and w'(¢) = w(g) + 1, and then the full result follows by induction. So given the
sets {Q(p)}, and an interval Z, let N :={n € Z: n ¢ Q(p) for all primes p}. Let
m be the product of all primes p # ¢ with w(p) # 0, and then define Z; :=Z + jm
for j = 0,1,...,¢g — 1. Define J := {j € [0,¢g —1] : —jm & Q(q)} so that
#J =q—w(q). Let Q;(p) = Qp) for all p # ¢ and Q;(q) = (Q(q) + jm) U {0};
notice that #Q,(q) = #Q(¢)+1 whenever j € J. Moreover, letting N := {n+jm €
Z; : n+jm & Q;(p) for all primes p} we have

#N; =#N\#{neN: n=—jm (mod q)}.

We sum this equality over every j € J. Notice that each n € A satisfies n = —jm
(mod ¢) for a unique j € J, and hence }°; ; #N; = (#J — 1)#N, which implies
that

A-wl@/a) unr
NS g TP

and therefore ST (N, {w(p)},) < ST(N,{w'(p )}p). The last step can be reworked,
analogously, to also yield S™ (N, {w(p)}p) > S (N {w'(p)}p)- O

BTstron,
RCBOF OF THEOREM 1.4.4. i,et P be the set of primes < R so that Proposi-
tion with o = 3 say) yields

L(R; P) >1log R+ +o(1)

where 7' i=y+ 3" p};gpl), and Exercise m gives that

w(n)?a(n) 15
o = R +o(R).

n<R

thm?. 1
Inserting these estimates into Theorem T.4.T with R := 7{—;\/% we deduce that

2y
1.4.8 nelr,z+y): n,P)=1}< ———
(148 #lneloo ) (nP) =1} < s
DurBT
where ¢ := 2/ — 1 — log 2 + 2log(w2/15) = 0.1346 . .. This implies (17 for ¢ = 1
when y > C, for some constant C' (given by when ¢+ o(1) > 0).

Given y and g, let Y = y/q and let m be the product of the primes < R that
do not divide q. Suppose that Y > C.

Let {a +jqg : 1 < j < N} be the mtegers £ d&sf, - y) in the arithmetic
progression ¢ (mod ¢) (so that N =Y +0(1)). B ( 5.9] wo know that the number
of these integers that are coprime to m, equals exactly the number of integers in
some interval of length N that are coprime to m, and this is < ST(N,{wi(p)},),
by definition, where Q;(p) = {0} for each p|m and Q;(p) = @ otherwise. Now
suppose that Qa(p) = {0} for each p|P and Qa(p) = () otherwise, so that Selberg’s
monotonicity principle implies that ST(N, {w1(p)},) < ST(N, {wa2(p)},). In other
words
P/m
max#{n € (x,z+N|: (n,m)=1} < ——
(o € (e,04V] : nm) = 1) < s

FirstSi
and the result follows from (I.lZ[r.SS)lseiEece P/m divides q.

~mj@x#{n € (T, T+N]: (n,P) =1},
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1.4.4. Sieving complex-valued functions

In our subsequent work we shall need estimates for

>
n<z
(n,P)=1

where t is some real number, and P is composed of primes smaller than some
parameter y. It is perhaps unusual to sieve the values of a complex valued function
(since the core of every sieve methods involves sharp inequalities). In this section
we show that the estimates developed so far allow such a variant of the fundamental
lemma.

PROPOSITION 1.4.6. Lett and y be real numbers with y > 1+|t| and let x = y*
with uw > 1. Let P be an integer composed of primes smaller than y. Then

1+t
it L ¢(P) ¢(P) —u/2 %Jre
> n T 144t P +O<x p vt )

n<x
(n,P)=1
PROOF. Let A\q be weights as in Selberg’s sieve, supported on the set S(R, P).
Since (Zd‘n Aq)? is at least 1 if (n, P) = 1 and non-negative otherwise, it follows
that

, , 2 2
149 Y w =Y (YA) o (M) - X 1),
n<x n<z d|n n<z dln n<x
(n,P)=1 (n,P)=1
The error term here is precisely that considered in the proof of Theorem T.4.2 and
so we can use the bound from there.
A straightforward argument using partial summation shows that
1+it

) N
> nt="—— +0((1 +[t]) log N),
bt 14+t

and therefore for any d

it it it 1 N1+it
E n''=d g m za-l+it+0((1+|t|)1ogN).
nSlN m<N/d
d|n

FLit1
Therefore the main term in (th) equals

i it A 1)‘ 2 2
S dada Y wit= fﬂ_t ) [ddhd‘i] +O((1+|t|)logx<2|)\d|) )

dy,dz n<z di,d2 d
[d1,d2]|n

E3.2
We have seen the sum in the main tgrm in (hTQ), and that it equals 1/L(R; P).
The error term is bounded by using (II.4.5). These can both @Valuated using the
estimates proved (for this purpose) in the proof of Theorem [4.2. O

1.4.5. Multiplicative functions that only vary at small prime factors

The characteristic function of the integers that are coprime to P, is given by the
totally multiplicafiye function f with f(p) = 0 when p|P, and f(p) = 1 otherwise.
Hence Theorem T.4.2 (with x = a = 0, ¢ = 1) can be viewed as a mean value
theorem for a certain class of multiplicative functions (those which only take values
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0 and 1, and equal 1 on all primes p > y). We now deduce a result of this type for
a wider class of multiplicative functions:

PROPOSITION 1.4.7. Suppose that |f(n)| < 1 for all n, and f(p*) = 1 for all
p>vy. If v =y" then

1
el Z f(n) = 'P(f; x) + O(u—u/3+o(u) + $—1/6+o(1)).
v n<z
This result is weaker than desirable since if u is bounded then the first error

term is bigger than the main term unless Zp<w 1—{)‘(;;) is very small. We would

prefer an estimate like P(f; 2){14+O(u" ")} 4+ O(x~°) for some ¢y, ¢y > 0. When
gagh f(p) = 0 or 1 this is essentially the Fundamental lemma of the sieys (Theorem
h7[2) However it is false, in general, as one may see in Proposition [77 and even
for real-valued f, as may be seen, by taking f(p) = —1 for all p < y (though we
only prove this later in chapter b?) We guess that one does have an estimate
P(f;2){1+ 0w )} + O(@), for real f with each f(p) € [-1,1], a challenging
open problem.

GenFundLem
PROOF OF PROPOSITION 1.4.7. We may write each integer n as ab where
P(a) <y, and p|b = p >y, so that f(n) = f(a)f(b) = f(a), and thus

Sfmy= > fla) > 1L

n<z a<lx b<z/a

P(a)<y plb = p>y
If a > z/y then theFi]pSner sum equals 1, as it only counts the integer 1. Otherwise
we apply Theorem h7[.2 with P = Hpgyp (and taking there z,y,a,q as 0,2,0,1,
respectively). If A = /% < a < x/y then we deduce the crude upper bound
< z/(alogy) for the inner sum, by Merten’s Theorem. Finally if a < z'/? then
log(x/a)/logy > 2u/3, giving @f(l + O(uw/3to)) 4 O((£)3/4+M) for the
inner sum. Combining these estimates, we now have a main term of

2y Mo

and an error term which is

<<u7u/3+o(1)z@ Z 24} Z <§>3/4+0(1)+ x Z 1+ Z 1

logy a
a>1 a<zl/3 a>xl/3 z/y<a<lz
P(a)<y P(a)<y P(a)<y

< ufu/3+o(1)l, + l,5/6+o(1)
ex2.8
as desired, using exercise [[.3.5(i) to bound the last two sums. (]

1.4.6. Additional exercises

c71
EXERCISE 1.4.2. * Prove that our choice of A\g (as in section hl) is only
supported on squarefree integers d and that 0 < pu(d)Ag < 1.
EXERCISE 1.4.3. * (i) Prove the following reciprocity law: If L(d) and Y (r) are
supported only on the squarefree integers then
Y(r) := p(r) Z L(m) for allr > 1 if and only if L(d) = u(d) Z Y (n) for alld > 1.

m: r|m n: dln
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(ii) Deduce the relationship, given in Selberg’s sieve, between the sequences \;/d

and p(r)&,/r.
(iii) Suppose that g is a multiplicative function and f =1 % g. Prove that

> L(d)L(da) f((d1,d2)) = ) g(n)Y (n)*.
di,da>1 n>1

(iv) Suppose that L is supported only on squarefree integers in S(R, P). Show that
to maximize the expression in (iii), where each f(p) > 1, subject to the constraint
L(1) = 1, we have that Y is supported only on S(R, P), and then Y (n) = ¢/g(n)
where ¢ =) 1/g(n). Use this to determine the value of each L(m) in terms of g.
(v) Prove that 0 < f(m)u(m)L(m) < 1 for all m; and if R = oo then L(m) =
w(m)/ f(m) for all m € S(P).

EXERCISE 1.4.4. * Show that if (am,q) = 1 and all of the prime factors of m
are < (x/q)"/* then
3/4+0(1)
Z logn:Mf(logz‘—1){1+O(u’“/2)}+0(<£) logx).
n<x moq q
(n,m)=1

n=a (mod q)

BTst b ERCISE 1.4.5. t Fill in the final computational details of the proof of Theorem
4.4 %0 determine a value for C.

2.2
EXERCISE 1.4.6. Use Selberg’s monotonicit }pzri_pciple, and exercise [ }.(2.9 with
e: .
q = [[,<.p where z = (y/q)** (and exercise [[.1.12) to prove the Fundamental
Lemma of Sieve Theory in the form

_yop) y (e+o(l)\u
I<§+y . ¢ P +O<E ( ulogu ) ~logy).
nEEln’F(?n:o}i q)

EXERCISE 1.4.7. Prove that if P is the set of all primes < y, and 0 < |t| < y
then for any x we have

1 1
, 1 .
Z nltit <l+ \t|logy

n<x
(n,P)=1
EXERCISE 1.4.8. Suppose that f(n) is a multiplicative function with each
|f(n)| < 1. Prove that

> s - 225 i)

n<x n<x
(n,P)=1

P 3 1
< x¥u7u/2 4 opate Z u2(d)3w(d) Z f(n) — E Z f(n) R
d<R2? Tzﬂﬁf nsw

where w(d) der%e% the number of prime factors of d. (Hint: Modify the technique
of Proposition [[.4.6.)
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CHAPTER 1.5

The structure of mean values

We have encountered two basic types of mean values of multiplicative functions:

e In Chapter %2 we gave a heuristic which suggested that the mean value of f
up to x, should be ~ P(f;x). We were able to show this when > _ |1 — f(p)|/p
is small, and in particular in the &LseFth(?ﬁc nf =1 for all “large” primes, that is.
for the primes p > gl (Pro omtlonChT%i

e In Chapter mns,ldered an example in which the mean value is far

smaller than the heuristic, in this case f(p) = 1 for all “large” primes, that is. for
the primes p < y.
These behaviours are very different, though arise from quite different types of mul-
tiplicative functions (the first varies from 1 on the “small primes”, the second on
the “large primes”). In the next two sections we study the latter case in more
generality, and then consider multiplicative functions which vary on both the small
and large primes. The error terms in most of the results proved in this chapter
will be improved later once we have established some fundamental estimates of the
subject.

1.5.1. Some familiar Averages

Let f be a multiplicative function with each |f(n)| < 1, and then let
F'(s
=3 s and 5 = 3 At
n<lz n>1
Looking at the coefficients of —F'(s) = F(s) - (—F/(,S)) we obtain that

f(n)logn =Y f(a)As(b).

ab=n

. . A . lex:WeightL(x/n
Summing this over all n < z, and using exercise [[.2.14(1), we deduce that

z)logx = ZAf S(xz/n) + / @dt.
1

n<zx

Now, as |S(t)] < ¢ the last term is O(x). The terms in the sum for which n is a
prime power also contribute O(z), and hence

(1.5.1) z)logz =Y _ f(p)logp S(x/p) + O(x).

p<lx
MobPNT E2. 10
This is a generalization of the identities in exercise [[.1.16 (i, iii), and (I.3.1).

45
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1.5.2. Multiplicative functions that vary only the large prime factors

. . . . HildIdentit ) ]
Our goal is to u%% the identity in (I:5.1) to gain an understanding of S(z) in

the spirit of chapter 0 proceed we define functions
s(u) ==y~ "S(y Zf and  x(u) = — Z Ag(m
nlyv m<y

Using the definitions, we now evaluate, for x = y*, the integral

L[ st onod = [T Y @ Y At

a<yv—t b<yt
1 1 u—}ﬁiz
== > f(a)Af(b)E[Ogb 1dt
ab<zx Togy
1 1
== Zf(n)logn (1 — 0gn> .
T log x

n<x

The difference between this and + 5D n<y f(n)log T is

log x logn 2 log z logn 2 1
< 1— < 1-— .
Tz Z |F()] ( logx> T Z log x < log

n<z n<z

ex:WeightL (x/n
Combining this with exercise T.2Z. 121511 we Eieduce that

(1.5.2) s(u) = 1/0u s(u —t)x(t)dt + O loéxexp(zu_;(p)')

u

The integral [, g(u — t)h(t)dt is known as the (integral) convolution of g and h,
and is denoted by (g * h)(u).
In the particular case that f(p*) =1 for all p < Yye have S(z) = [z] for z <y,

and so s(t) =1+ o(y™") for 0 < ¢ <1. Moreover(iSZ)Becomes
1 [ u

1.5.3 s(u :f/ stu—t tdt+0().

(153) =1 [ stu—oxmar+o (o

u
This suggests that if we define a continuous function o with o(t) =1 for 0 <¢ <1
and then

(1.5.4) o(u) = 1 /u o(u—t)x(t)dt for all u > 1,
UJo

then we must have, for x = y*

(1.5.5) % S f(m) = o(u)+ 0 <1°g“> .

= logy

We will deduce this, later, once we have proved the prime number theorem (which
is relevant since it implies that x(¢) =1+ o(1) for 0 < &< 1. and [x(¢)| <1+ o(1)
for all t > 0) but, for now, we observe that a result like (I.5.5) shows that the mean
value of every multiplicative function which only varie on én&e&arge primes, can be
determined in terms of an integral delay equation like (ﬁrr.mﬁhis is quite different
from the mean value of multiplicative functions that only vary on the small primes,
which can be determined by the Euler product P(f;x).
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1.5.3. A first Structure Theorem

We have seen that the mean value of a multiplicative function which only varies
on its small primes is determined by an Euler product, whereas the the mean value
of a multiplicative function which only varies on its large primes is determined by
an integral delay equation. What about multiplicative functions which vary on
both? In the next result we show how the mean value of a multiplicative function
can be determined as the product of the mean values of the multiplicative functions
given by its value on the small primes, and by its value on the large primes.

THEOREM 1.5.1. Let f be a multiplicative function with |f(n)| < 1 for all n.
For any given y, we can write 1 x f = g x h where g only varies (from 1) on the
primes >y, and h only varies on the primes < y:

By )1 ifp<y o oe_ JI05) ip<y
o) {f@*) ip>y " {1 if p>y.
Then, for x = y* we have

(156) T3 = 1Y g+ 3w +0(2 e (X IR,

n<x n<lz n<z p<z

If u is sufficiently large (as determined by the size of > 1= f e )l) then the

error term here is o(1), and hence

(1.5.7) iZf(n)z iZg(n)-%Zh(n)—Fo 1

n<z n<z n<x

StructThm _ StructAsym .
In Theorem [77 we will prove that (I.5. olds whenever ©w — oo. This is “best

possible” as will be discussed in Chapter 77"
PROOF. Let H = p* h so that h =1+ H and f = g x H. Therefore

IS = 1S mgm) = 3 x/ 2 ol

n<z ab<z a<lz b<z/a

FirstLi
By Proposition T.2.4 this is

ZH((LCL) Z +O< |H logm P (};H_ ))

alx b<r a<lx

p<z

We may extend both sums over a, to be over all integers a > 1 since the error term
is trivially bigger than the main term when a > . Now

Z |H0(La)| loga = Z ‘Hc(za” Z klogp

a>1 a>1 pF|la
k1 H(A H
<2Z ogpz| <<logy,exp(z| (P)|>7
p<y A>1 p< p
E>1

writing @ = p*A with (4,p) = 1 and then extending the sum to all A, since

|H(p*)| < 2. Now
1—g@|+HP)I| 11— f)l
2 p =2 p

p<z p<z
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and so the error term above is acceptable. Finally we note that

a) _ % Z h(n) + O(u—u/3+o(u) n x—1/6+o(1))

a<lzx n<zx

GenFundLem
by applying Proposition T.4.7, and the result follows. ([l

1.5.4. An upper bound on averages

For any multiplicative function f with |f(n)| <L for all n we have [x(¢)| < 1
for all ¢ > 0. We can then take absolute values in (II:5.2) to obtain the upper bound

|s(u)|<<i/0u|()|dt+ eXP<Z|1_ )

In this section we will improve this upper bound using the Brun-Titchmarsh The-
orem to

(15.8) Is(w)] < i/0u|s(t)dt+

If we could assume the prime number theorem then we could obtain this result with
“&” replaced by “<”.

ropHall . .
Proor oF ([5.8). Now, for z =y + y/? + y?/x, using the Brun-Titchmarsh

u

5 o [5(2)] < 5 e e
y<p<z -
5(3) -s()

y<p<z
z
</ z
y

and if y <t,u < z then
() -3 s-2]-= 252
t u y oz Y2
Summing over such intervals between y and 2y we obtain
x 2y
Z logp‘S(f)‘<</ ( )’dt—&- 1/2+y.
y<p<2y p v
HildIdentit
We sum this over each dyadic interval between 1 and x. By (l.15. 1) this implies that
|S(2)|logz < 3 logp ’S(g)’ +0(x)
p<z p

< /1QE S(E)‘dt—kx:x/l |S;2)‘d +x

11
Taking w = 2! and dividing through by zlogx, yields (IT. ) O

logz’

S(%)‘ < (2 —y) max

y<u<z

)

S(%) ‘dt +(z —y) max

y<t,u<lz

By partial summation, we have

Zle /Zf dw:M+/x5(t§)dw

n<lx n<lx n<w

s(u )+logy/0 s(t)dt.
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11
Using (ir5o ga and that s(t) > 1/2 for 0 <t < 1/2logy, we deduce the sa{ge gﬁp

bound for the logarlthmlc mean of f that we had for the mean of f (in (|
v 1
Halll 1.5.9 ‘ ’ < - / Hldt({1+0(—— ).
propHalilog| (1.5.9) Togz E ; |s(t)] + 0\ jogz

1.5.5. Iterating identities

’ IterateAverages ‘

In this section we develop further identities, involving multi-convolutions of
multiplicative functions, which turn out to be useful. We have already seen that
f(n)logn=7>%"_._. A¢(a)f(r), so iterating this twice yields

f(n)logn — Af(n) = Z Asla) Z logr Z Ag(

ar=n logr ar*n
r>1

The logr in the denominator is difficult to deal with but can be replaced using the

. . 1 00 4

identity o = Jo r~“da, and so

f(n)logn — As(n / 3 Ag fs:;)da

abm=n

(the condition r > 1 disappears because A¢(1) = 0). If we now sum the left hand
side over all n < x then we change the condition on the sum on the right-hand side
to abm < z.
= HildIdentit
There are several variations possible on this basic identity. If we iterate (1.15.I o
then we have log(z/p) in the denominator. We remove this, as above, to obtain

z)logx —/ > (f(p)p™logp)(f(g)log g)a™*S (pxq) da + O(zloglog z),

pg<lx

though some effort is needed to deal with the error terms. One useful variant is to
restrict the primes p and ¢ to the ranges Q < p < z/Q, ¢ > @Q at the cost an extra
O(zlog @) in the error term.

1.5.6. Exercises

ex:ConvolutionId‘ EXERCISE 1.5.1. Prove that

u u

I _logy [ et
,/O s(u — Ox(t)dt = /Os(t)(Qt Jytdt

EXERCISE 1.5.2. Define x*(u) := mzmgy“ Ag(m), so that if [Ag(m)| <
kA(m) for all m then |X (u)] < k. Prove that if k = 1 and ¥ (z) = 2+O(z/(log z)?)
then [ s(u—t)x = [, s(u—t)x(t)dt + O(1/logy).

EXERCISE 1.5.3. Convince yourself that the functional EQB{%QP{{ for estimating
smooth numbers, that we gave earlier, is a special case of (I[.5.2).

EXERCISE 1.5.4. Improve ( l 5.§§ o |s(u)| < L ["|s(t)|dt + o(1) assuming the

log log x

og ) assuming

prime number theorem. Moreover improve the error term to O(

that 0(x )—x+0((10gm ).






Part 2

Mean values of multiplicative
functions



We introduce the main results in the theory of mean values of multiplicative
functions. We begin with results as we look at the mean up to x, as * — oco. Then
we introduce and prove Haldsz’s Theorem, which allows us to obtain results that
are uniform in x. The subtle proof of Haldsz’s Theorem requires a chapter of its
own.



CHAPTER 2.1

Distances. The Theorems of Delange, Wirsing and
Halasz

In Chapter % we considered the heuristic that the mean value of a mult'E%i(ia—
tive fpncgion f might be approximated by the Euler product P(f;x) (see (%TQ)
and (h?,)) We proved some elementary resulfs fowards this heuristic and were
most successful when f was “close to 17 (see §I.2:3) or when f was non-negative
(see §fl—.2.7f).—Eif%n for nice non-negative functions the heuristic is not entirely ag-
curate, as revealed by the example of smooth numbers discussed in Chapter %
We now continue our study of this heuristic, and focus on whether the mean value
can be bounded above by something like |P( s;zm.%" We begin by making precise
the geometric language, already employed in §I.2.3, of one multiplicative function
being “close” to another.

2.1.1. The distance between two multiplicative functions

The notion of a distance between multiplicative functions makes most sense in
the context of functions whose values are restricted to the unit disc U = {|z| < 1}.
In thinking of the distance between two such multiplicative functions f and g,
naturally we may focus on the difference between f(p*) and g(p*) on prime powers.
An obvious candidate for quantifying this distance is

|f(0*) — g(p¥)]

k
pkgw p

o . . r2.1 FirstLipsPro IGOUB .
as it is used in Propositions W I, T.2.4, i.2.5 and [1.2.6. However, it turns out that
a better notion of distance involves 1 — Re(f(p*)g(p*)) in place of |f(p*) — g(p*)|.

)

LEMMA 2.1.1. Suppose we have a sequence of functionsn; : U — Rxq satisfying
the triangle inequality

nj(21,23) < nj(21, 22) +nj(22, 23),

for all z1, 25, z3 € U. Then we may define a metric UN = {z = (21,2,...) :
each z; € U} by setting

d(z, w) = (i’lj(zjij)zf,

assuming that the sum converges. This metric satisfies the triangle inequality
d(z, w) < d(z,y) +d(y, w).

53
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ProoOF. Expanding out we have

o0
2 :an(zj,wj )? < Z (255 y5) + i (yj, w;5))?

Jj=1

by the assumed triangle inequality for ;. Now, using Cauchy-Schwarz, we have

> iz ) + 03 (g wy)? = d(z,y)? + dly, W) + 2> n(z5, 5505 4z, w;)
j=1 j=1
[e ] 1 1
< d(z,y)* +d(y,w)* + Q(an(2j7yg, )2 (Zm Yj» wy) )2
j=1
= (d(z,y) +d(y, w))%,
which proves the triangle inequality. O

A nice class of examples is provided by taking 7;(z) = a;(1 — Re (z;)) for non-
gg&a_t}ve a;, with U = U. We now check that this satisfies the hypothesis of Lemma

LEMMA 2.1.2. Define n: Ux U — Rxq by n(z,w)?> = 1 — Re(zw). Then for
any w, y, z in U we have

n(w,y) < n(w,z) +1(z,y).

PRrROOF. (Terry Tao) Any point « on the unit disk is the midpoint of the line
between two points ui,us on the unit circle, and thus their average (that is u =
(ur + uz)).l Therefore

2

,Z“ il =7 Y (1= Re(ta)

3,7=1 i,5=1
12
=1—Re 5.;“' E @ | = Re(1 — tw) = n(t,u)*.

Define the four dimensional vectors v(w, z) := (wl — 21, W1 — 22, Wq — 2o, Ws — 21)
and U(Z7y) = (Zl —Y1,22 —Y2,22 —Y1,21 — y2)7 with U(wvy) = U(wv Z) + 'U(Z,y),
so that n(t,u) = %|v(t,u)| where ¢, u is any pair from w,y,z. Using the usual
triangle incquality, we deduce that

n(w,y) = \flv(w Y| < \[(Iv(w 2)|+ v(z,9)]) = n(w, 2) +n(z,y).
0

We can use the above remarks to define distances between multiplicative func-
tions taking values in the unit disc. If we let a; = 1/p for each prime p < z then
we may define the distance (up to x) between the multiplicative functions f and g
by

D(f g2 =3 1 —Re ]J:(P)Q(P).

1To see this, draw the line L from the origin to v and then the line perpendicular to L, going
through u. This meets the unit circle at u; and wua. If u was on the unit circle to begin with then
U] = ug = U.
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TruncRight
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lem4.1
By Lemma béml. this satisfies the triangle inequality
(2.1.1) D(f,g;2) +D(g,h;z) > D(f, h; x).

EXERCISE 2.1.1. (i) Determine when D(f, g;x) = 0.
(ii) Determine when D(f, g;x) 4+ D(g, h;x) = D(f, h; x).

EXERCISE 2.1.2. It is natural to multiply multiplicative functions together, and
to ask if f; and g; are close to each other, and f; and g are close to each other, is
f1f2 is close to g1927 Indeed prove this variant of the triangle inequality:

(2.1.2) D(f1,91;2) + D(fa, 92;2) > D(f1f2, g192; ).

There are several different distances that one may take. There are advantages
and disagl}yar%‘ggggg to including the prime powers in the definition of D (see, e.g

exercise [77),

D*(f,g,x)Q _ Z 1—-Re fgpk)m7

pk<z p

but either way the difference between two such notions of distance is bounded by
a constant. Another alternative is to define a distance D, defined by taking the

coefficients a; = 1/p* and z; = tgp afe? IS, ov: 5111 primes for any fixed o > 1,
which satisfies the analogies to (2. d (21 5;

EXERCISE 2.1.3. Combine the last two variants of distance to form D},. Use
the triangle inequality (and exponentiate) to deduce Mertens inequality: For all
oc>1andallteR,

C(o)* ¢ (o +it)] ¢ (o + 2it)] > 1;
as well as ((0)3¢(o + 2it)| > |¢(o +it)|*.

EXERCISE 2.1.4. Prove that if each |a,| <2 and o =1+ 1/logx then

Zf: > p—§+0(1).

p<lx p prime

(Hint: Consider the primes p < x, and those > x, separately.) Deduce that for any
multiplicative functions f and g taking values in the unit disc we have

D(f,g;$)2 — Z 1- Rep];(p)g(p) + O(l)

p prime

EXERCISE 2.1.5. Suppose that f is a multiplicative function taking values in
the unit disc and Re(s) > 1. Recall that F'(s) := >, -, f(n)/n®. Prove that

log F(s) = Z 7( /logn_ Z f o).

p prime p prime

Deduce from this and the previous exercise that

(2.1.3) ‘F (1 + @ + it) ‘ = logz exp ( — D(f(n),n“;x)2)_
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2.1.2. Delange’s Theorem
We are interested in when the mean value 0{ f up to x is close to lti elgclgegt?d”

value of P(f;z), or even P(f). Proposition [[.2Z.T implies (as in exercise

f is a multiplicative function taking values in the unit disc Uand >, [1— f ()| / p <
oo then 7 . f(n) ~ zP(f) as T o pq. Delange’s theorem, which follows, is
therefore a refinement of Proposition Tt

THEOREM 2.1.3. (Delange’s theorem) Let f be a multiplicative function tak-
ing values in the unit disc U. Suppose that

D(1, f; 00)? :ZM < oo0.

» p
Then
Zf )~ aP(f;x) asx — oo.

n<z

We shall prove Delange’s Theorem in the next chapter. Delange’s Theorem
is not exactly what we asked for in the discussion above, so the question now is
whether lim, o, P(f;z) exists and equals P(f). It is straightforward to deduce
the following:

COROLLARY 2.1.4. Let f be a multiplicative function taking values in the unit
disc U. Suppose that

: 1-f(p) :
$hﬁrréo Z: ————= converges (to a finite value).
PSS

Then
Zf )~ aP(f) asx — oo.

n<x

We postpone the proof of Delange’s theorem to the next chapter.

2.1.3. A key example: the multiplicative function f(n) = n'®

Delange’s theorem gives a satisfactory answer in the case of multiplicative func-
tions at a bounded distance from 1, and we are left to ponder what happens when
D(1, f;x) — oo as * — oco. One would be tempted to think that in this case
Iy < f(n) = 0 as @ — oo were it not for the following important counter exam-
ple. Let o # 0 be a fixed real number and consider the completely multiplicative
function f(n) = n'®. By partial summation we find that

+ .
I1+w¢

(2.1.4) > o /z ydly] ~ e

n<lz

The mean-value at x then is ~ 2 /(1 + i) which has magnitude 1/|1 + ia| but
whose argument varies with . In this example it seems plausible enough that
D(1, p'“;x) — oo as & — oo and we now supply a proof of this important fact. We
begin with a useful Lemma on the Riemann zeta function.

LEMMA 2.1.5. If s = 0 + it with o > 1 then

]as) -

|s]

s
s—1 o
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If in addition we have |s — 1| > 1 then

C(s)] < Tog(2 + |s]).

. . . zeta
PROOF. The first assertion follows eas %gtggom Exercise h? To prove the

second assertion, we deduce from Exercise T.1.6 that, for any integer N > 1, we
have
N
LN )
s) = — 4+ -5 dy.
O [ty

Choose N = [|s|] + 1, and bound the sum over n trivially to deduce the stated
bound for |¢(s)]. O

EXERCISE 2.1.6. Use similar ideas to prove that if s = o + it with o > 1 and
|s — 1] > 1 then |¢'(s)| < log?(2 + |s|).

LEMMA 2.1.6. Let o be any real number. Then for all x > 3 we have
D(1,p"*;x)? =log(1 + |a|log z) + O(1),
in the case |a| < 100. When |a| > 1/100 we have
(2.1.5) D(1,p'; x)* > loglog x — loglog(2 + |a|) + O(1),
and D(1,p"; x)* <loglogx + 8loglog(2 + |a|) + O(1)

TruncRight
Proor. We take f(n) z 1,in ébful 3): *The first two estimates follow directly
from the bounds of Lemma b [.5, and are equivalent to

i R [=loal/lo) +O0), i1 logs < fa] < 100
o D <loglog(2 + |a|) + O(1), if || > 1/100.

p<z

The first estimate yields the third estimate for £99U<eL%L 54400 so henceforth
we assume || > 100. The second estimate of (2.1.6) implies that for u > y :=

exp((log |a|)®) we have

2(y1 1 1 2l 9
3 ws(alogp) ,ngﬁloglogu+0(l)-

p<u b 2 p<u p
This implies that
_ 1\ 1/2 2(al 1/2 3
Z cos(alogp) < (Z 7) (Z cos?(a ogp)> < Zloglogu—i— o),
p<u b p<u? p<u p

TruncRight
and therefore, by (2.1.3),

‘1/C(1 + @ +ioz)‘ xexp{—z cos(ap&p)} < (logu)®/4.
p<u
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Combining this with the bound [¢"(1+ logu +ia)| < log? || obtained from exercise

etaprimeb
b é we aeauce that for z > y,
1 1 . 1 .
|55 = losfe(s+ g i)} -t ¢ )] ot
o ogx ogy

:‘/ C(1+ +ia)—=, ‘+0(1)
y € logu ulog” u
3/4

* Jog? |a|(log u
<<1+/ log”Jol(og W)™ ;) 1,
Y ulog”u

The result then follows, since

ZRG( ) < Z +0(1) < 8loglog |a| + O(1).

p<z p<y

O

. lem4.3.1 . A . .
One important consequence of Lemma b .6 and the triangle inequality is that
a multiplicative function cannot pretend to be like two different problem examples,
n'® and n'f.

COROLLARY 2.1.7. Let a and 8 be two real numbers and let f be a multiplicative

function taking values in the unit disc. If § = |a — 8| then

. ) 2 s o .
it n o) s [T, sz
loglog 2 — loglog(2 + 6) + O(1), if § > 1/10.

PROOF Indeed the triangle inequality gives that D(f, p’ f P
aE 1.6.

) >
D(p*, pP; ) = D(1,p**=A); ) and we may now invoke Lemm O

em4.3.1 . . L.
An useful Sopseguence of Lemma b [.6 when working with Dirichlet characters
(see Chapter [77 for the definition) is the following:

cor:ftothekbound‘ COROLLARY 2.1.8. Suppose that there exists an integer k > 1 such that f(p)* =

1 for all primes p. For any fized non-zero real o we have

) 1
D(f(p), p**; 33)2 > = loglog x + O o(1).

Examples of this include f = u the Mobius function, or indeed any f(n) which only
takes values —1 and 1, as well as f = y a Dirichlet character (though one needs to
modify the result to deal with the finitely many primes p for which x(p) = 0), and

even f = uy.

cor:ftothekbound
PrOOF OF COROLLARY 2.1.8. By the triangle inequality, we hiwe kpgf P ) >
D

D(1, p**; z) and the result then follows immediately from Lemma -

The problem example n*®* discussed above takes on complex values, and one
might wonder if there is a real valued multiplicative function f taking values in
[—1, 1] for which D(1, f;x) — oo as  — oo but for which the mean value does not
tend to zero. A lovely theorem of Wirsing shows that this does not happen.
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THEOREM 2.1.9 (Wirsing’s Theorem). Let f be a real valued multiplicative func-
tion with |f(n)] <1 and D(1, f;x) — o0 as x — oo. Then as x — 00

iZf(n)—)O.

n<z

Wirsing’s theorem gpplied to w(n) immediately yields the prime number the-
orem (using Theorem hB) We shall not directly prove Wirsing’s theorem, but
instead deduce it as a consequence of the}liﬁll%g{tant theorem of Haldsz, which we
gg%lilgs in the next section (see Corollary [77 for a quantitative version of Theorem

2.1.4. Halasz’s theorem; the qualitative version

We saw in the previous section that the function f(n) = n‘® has a large mean
value even though D(1, f;x) — oo as © — oco. We may tweak such a function at
a small number of primes and expect a similar result to hold. More precisely, one
can ask if an analogy to Delange’s result holds: that is if f is multiplicative with
D(f(p),p"™;00) < oo for some a, can we understand the behavior of > f(n)?
This is the content of the qualitative version of Haldsz’s theorem. B

THEOREM 2.1.10. (Qualitative Haldsz theorem) Let f be a multiplicative
function with |f(n)] < 1 for all integers n.
(i) Suppose that there exists a € R for which D(f,p'*;00) < oo. Write f(n) =
g(n)n'®. Then, as x — oo,
l,H»ia
7 = T Plosa) + of)

n<z

(i) Suppose that D(f,p'*;00) = oo for all a € R. Then, as x — oo,

iZf(n)—)O.

n<lxz
EXERCISE 2.1.7. Deduce that if f is a multiplicative function with |f(n)| < 1
for all integers n then 13~ f(n) — 0 if and only if
Either (i) D(f,p'®;00) = oo for all a € R,
Or (ii) D(f, p'®; 00) < oo for some o € R and f(2%) = —(2%)% for all k > 1.
Establish that (ii) cannot happen if f is completely multiplicative.

EXERCISE 2.1.8. If f is a multiplicative function with |f(n)| < 1 show that
P(f;y) is slowly varying, that is P(f;y) = P(f;z) + O(log(ex/y)/logz) if y < x.

Hall
1ot ROOF OF TIF;{O&%%QI [.10(1). We will deduce (i) from Delange’s Theorem

D

b. [.3 and exercise £.1.8.” By partial summation we have
Z fln)= / t“%l(Zg(n)) =z Z g(n) — ia/ o=t Zg(n)dt.
n<zx 1 n<t n<z 1 n<t

Now D(1, g; 00) = D(f, p*®; 00) < oo and so by Delange’s theorem, if ¢ is sufficiently
large then

> g(n) = tP(g:t) +olt).

n<t
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ex:SlowVar
Substituting this into the equation above, and then applying exercise b.l.& we

obtain
) T m1+ia
S 1) =2 Plgia) e [ £P(g )it + ofa) = {o Plgio) + ofo).
~ 1 1+ia
O
Hall
We will deduce Part (ii) of Theorem bno from the quantitative version of
Halasz’s Theorem, whicl yye will state only in section 7.
Applying Theorem 2.1.10(i) with f replaced by f(n)/n'® we obtain the follow-
ing:

COROLLARY 2.1.11. Let f be multiplicative function with |f(n)] < 1 and sup-

pose there exists a € R such that ]D)(f,p“"; o0) < 00. Then as x — 00

7Zf 1+za xz n’a

n<x

mpT2
This will be improvIg)a(lil 1consideraubly in Theorem ? 7 laking absolute values in
both parts of Theorem 2.1.10 we deduce:

COROLLARY 2.1.12. If f is multiplicative with |f(n)| <1 then

o1 .
ml;rgo; Zf(n) exists.
n<lz
2.1.5. A better comparison theorem

The following quantitative result, relating the mean value of f gnl) to ! the mean-
value of f(n)n' for any t, improves the error term in Corollary b [.11 §ali F)etter
than) O(z/(logz)'T°™M), and provides an alternative proof of Theorem E.1.10, as-
suming Delange’s Theorem.

LEMMA 2.1.13. Suppose f(n) is a multiplicative function with |f(n)] < 1 for
allm. Then for any real number t with |t| < z'/3

> s = tZ 00 (o stz exp (D) wm))

n<x

EXERCISE 2.1.1. Prove that if [t| < m and |§] < 1/2 then 2mi = (m — §)%

(m + 8)® + O(|t|/m?). Deduce that

S1tit
0O(2).

we have

m<z

AsympT1
Proor oF LEMMA 2. i 3. Let g and h denote the multiplicative functions
defined by g(n) = f(n)/n, and g = 1 * h, so that h = i * g. Then

Y fn)=> gt =>" Zch =S " n(@d* Y mi.

n<x n<x n<zx d<z m<z/d
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: hei
We use the first estimate in exercise Ej.clfﬂto\‘;cvﬁeéﬁ d < z/(1+ t*), and the second
estimate when x/(1 + t2) < d < x. This gives
it h(d h(d
Zf(n)zlﬂtz(duo((uﬂ) oo @+ Y] 'SJ')

n<z d<z d<z/(1+t2) z/(1+t2)<d<z

. . Prop2.1 A .
Applying Proposition .27 and partial summation, we deduce that

xl it T
> fn) = - ZMCZ)+0< log(2+|t|)zmgj)|>

= 1+t = d log =
o h(d) x 11— g(p)|
= —_— log(2 —_— .
1+itz d +O(10gm og( +|t|)exp<z D >>

d<z p<xz

We use this estimate twice, once as it is, and then with f(n) replaced by f(n)/n‘,
and t replaced by 0, so that g and h are the same in both cases.
By the Cauchy-Schwarz inequality,

SRl <o 3 25 I RED) <o), 1o log s+ O(1),

p<z p<z p<z

and the result follows, since D(f(n),n";z)? = D(g(n), 1;2)? < loglog x. O

2.1.6. Distribution of values of a multiplicative function, I

Given a multiplicative function f with |f(n)| < 1 for all n, one can ask how the
values f(n) are distributed in the unit disc. For example, classical work of Erdés
determined the distribution of the values of ¢(n)/n in the unit interval [0,1]. In
this section we will look at the distribution of angles — these do not change when
we replace each f(n) by f(n)/|f(n)| so we may assume that each f(n) lies on the
unit circle, i.e. |f(n)| = 1. To this end, let

Ry (¥, 8) = - #{n < N o a7 € (a8l} - (- o)

We say that the f(n) are uniformly distributed on the unit circle if Ry (N, «, f) — 0
for all 0 < @ < 8 < 1. Jordan Ellenberg asked us whether the values f(n) are
necessarily equi-distributed on the unit circle according to some measure, and if not
whether their distribution is entirely predictable. We prove the following (though
see Proposition 27 for more on this).

THEOREM 2.1.14. Let f be a completely multiplicative function such that each
f(p) is on the unit circle. Either
(i) The f(n) are uniformly distributed on the unit circle; or
(ii) There exists a positive integer m, and o € R for which D(f(p)™, pi™*; 00) < 0.

This leads to the rather surprising (immediate) consequence:

COROLLARY 2.1.15. Let f be a completely multiplicative function such that
each f(p) is on the unit circle. Then the f(n) are uniformly distributed on the
unit circle if and only if the f(n)/n' are uniformly distributed on the unit circle
for every t € R.
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To prove our distribution theorem we use
Weyl’s equidistribution theorem Let {&, : n > 1} be any sequence of points
on the unit circle. The set {§, : n > 1} is uniformly distributed on the unit circle
if and only if limy o % Y onen & exists and equals 0, for each non-zero integer
m.

equidist
ProoOFof Theorem EWBy Weyl’s equidistribution theorem the f(n) are
uniformly distributed on the unit circle if and only if imy oo & ., cn f(R)™
exists and equals 0, for each non-zero integer m. Now each f™(n) is a completely
multiplicative function such that each fm‘(p) is on the unit circle, so by exercise
g.l.?, this holds if and only if D(f™(p),p"™;00) = oo for all ¢ € R. The result
follows. O

2.1.7. Additional exercises

EXERCISE 2.1.9. Prove that n(z,w) := |1 — zw| also satisfies the triangle in-
equality inside U; i.e. |1—zw| < |1—27|+|1 —yw| for w,y, z € U. Prove that we get
equality if and only if z =y, or w = y, or |w| = |z| = 1 and y is on the line segment

connecting z and w. (Hint: |1 — 2w@0| < |1 — 27| + |27 — 20| < |1 — 27| + |y —w| <
1 —2y|+ 1 —ywl.)

This last notion comes up in many arguments and so it is useful to compare
the two quantities:

EXERCISE 2.1.10. By showing that 3|1 — 2> <1 — Re(z) < |1 — z| whenever
|z| <1, deduce that

%Zh—ﬂp)ﬁp SD(ﬁg;x)QSZH_ﬂp)m‘ _

p p

p<z p<w

We define D(f, g; 00) := lim,_,oo D(f, ;). In the next exercise we relate dis-
tance to the product P(f;x), which is the heuristic mean value of f up to z:

EXERCISE 2.1.11. Suppose that f is a multiplicative function for which |Af(n)]|
A(n) for all n. Prove that lim, ,., D(f,g;x) exists. Show that log|P(f;z)| =
—D(1, f;2)% + O(1); and then deduce that lim, o [P(f; )| exists if and only if
D(1, f;00) < oo. Show that |P(f;z)| = 1+ O(D*(1, f;x)?).

EXERCISE 2.1.12. Come up with an example of f, with | f(n)| < 1 for all n, for
which D(1, f; 00) converges but 3 (1 — f(p))/p diverges.

EXERCISE 2.1.13. If f is a multiplicative function with |f(n)| < 1 show that
there is at most one real number o with D(f, p'®; 00) < oc.

IN

HaMEXERCISE 2.1.14. Deduce Wirsing’s Theorem (Theorem 197 from Theorem
.1.10(ii). (Hint: You might use the Brun-Titchmarsh Theorem.)

EXERCISE 2.1.15. Suppose that f is a multiplicative function with —1 < f(n) <
1 for each integer n.

(i) Prove that if %anm f(n) # 0 then

Jim 37 ) fn+1) = P )

n<lx

i . efo(n)f(n+1;_ .
(Hint: Use exercise I.2.15 an irsing’s Theorem.)
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ii) Prove that this is non-zero unless P = 1 for some prime p.

(i) p 2

(iii) Prove that if f(n) only takes on values 1 and —1, and 2 don<e [ (1) 70,
+

then lim, 00 23~ f(n) > 0, and lim, 0o £ 3 f(n)f(n+1) >0
unless Pa(f, f) < 0 or Ps(f, f) <O0. -



