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Preface

AG to work on: sort out / finalize? part 1. Sort out what we discuss about
Halasz once the paper has been written. Ch3.3, 3.10 (Small gaps)and then all the
Linnik stuff to be cleaned up; i.e. all of chapter 4. Sort out 5.6, 5.7 and chapter 6 !

Riemann’s seminal 1860 memoir showed how questions on the distribution of
prime numbers are more-or-less equivalent to questions on the distribution of zeros
of the Riemann zeta function. This was the starting point for the beautiful theory
which is at the heart of analytic number theory. Until now there has been no other
coherent approach that was capable of addressing all of the central issues of analytic
number theory.

In this book we present the pretentious view of analytic number theory; allowing
us to recover the basic results of prime number theory without use of zeros of the
Riemann zeta-function and related L-functions, and to improve various results in
the literature. This approach is certainly more flexible than the classical approach
since it allows one to work on many questions for which L-function methods are
not suited. However there is no beautiful explicit formula that promises to obtain
the strongest believable results (which is the sort of thing one obtains from the
Riemann zeta-function). So why pretentious?

• It is an intellectual challenge to see how much of the classical theory one
can reprove without recourse to the more subtle L-function methodology (For a
long time, top experts had believed that it is impossible is prove the prime number
theorem without an analysis of zeros of analytic continuations. Selberg and Erdős
refuted this prejudice but until now, such methods had seemed ad hoc, rather than
part of a coherent theory).

• Selberg showed how sieve bounds can be obtained by optimizing values over
a wide class of combinatorial objects, making them a very flexible tool. Pretentious
methods allow us to introduce analogous flexibility into many problems where the
issue is not the properties of a very specific function, but rather of a broad class of
functions.

• This flexibility allows us to go further in many problems than classical meth-
ods alone, as we shall see in the latter chapters of this book.

The Riemann zeta-function ζ(s) is defined when Re(s) > 1; and then it is given
a value for each s ∈ C by the theory of analytic continuation. Riemann pointed
to the study of the zeros of ζ(s) on the line where Re(s) = 1/2. However we have
few methods that truly allow us to say much so far away from the original domain
of definition. Indeed almost all of the unconditional results in the literature are
about understanding zeros with Re(s) very close to 1. Usually the methods used to
do so, can be viewed as an extrapolation of our strong understanding of ζ(s) when
Re(s) > 1. This suggests that, in proving these results, one can perhaps dispense
with an analysis of the values of ζ(s) with Re(s) ≤ 1, which is, in effect, what we
do.

Our original goal in the first part of this book was to recover all the main
results of Davenport”s Multiplicative Number Theory

MR1790423
[?] by pretentious methods,

and then to prove as much as possible of the result of classical literature, such as
the results in

MR891718
[?]. It turns out that pretentious methods yield a much easier proof
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of Linnik’s Theorem, and quantitatively yield much the same quality of results
throughout the subject.

However Siegel’s Theorem, giving a lower bound on |L(1, χ)|, is one result that
we have little hope of addressing without considering zeros of L-functions. The dif-
ficulty is that all proofs of his lower bound run as follows: Either the Generalized
Riemann Hypothesis (GRH) is true, in which case we have a good lower bound,
or the GRH is false, in which case we have a lower bound in terms of the first
counterexample to GRH. Classically this explains the inexplicit constants in ana-
lytic number theory (evidently Siegel’s lower bound cannot be made explicit unless
another proof is found, or GRH is resolved) and, without a fundamentally different
proof, we have little hope of avoiding zeros. Instead we give a proof, due to Pintz,
that is formulated in terms of multiplicative functions and a putative zero.

Although this is the first coherent account of this theory, our work rests on
ideas that have been around for some time, and the contributions of many au-
thors. The central role in our development belongs to Halász’s Theorem. Much
is based on the results and perspectives of Paul Erdős and Atle Selberg. Other
early authors include Wirsing, Halász, Daboussi and Delange. More recent influen-
tial authors include Elliott, Hall, Hildebrand, Iwaniec, Montgomery and Vaughan,
Pintz, and Tenenbaum. In addition, Tenenbaum’s book

MR1366197
[?] gives beautiful insight

into multiplicative functions, often from a classical perspective.
Our own thinking has developed in part thanks to conversations with our col-

laborators John Friedlander, Régis de la Bréteche, and Antal Balog. We are par-
ticularly grateful to Dimitris Koukoulopoulos and Adam Harper who have been
working with us while we have worked on this book, and proved several results that
we needed, when we needed them! Various people have contributed to our devel-
opment of this book by asking the right questions or making useful mathematical
remarks – in this vein we would like to thank Jordan Ellenberg, Hugh Montgomery.

The exercises: In order to really learn the subject the keen student should try
to fully answer the exercises. We have marked several with † if they are difficult,
and occasionally †† if extremely difficult. The † questions are probably too difficult
except for well-prepared students. Some exercises are embedded in the text and
need to be completed to fully understand the text; there are many other exercises
at the end of each chapter. At a minimum the reader might attempt the exercises
embedded in the text as well as those at the end of each chapter with are marked
with ∗.
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Part 1

Introductory results



In the the first four chapters we introduce well-known results of analytic number
theory, from a perspective that will be useful in the remainder of the book.



CHAPTER 1.1

The prime number theorem

As a boy Gauss determined, from studying the primes up to three million,
that the density of primes around x is 1/ log x, leading him to conjecture that the
number of primes up to x is well-approximated by the estimate

PNTPNT (1.1.1) π(x) :=
∑
p≤x

1 ∼ x

log x
.

It is less intuitive, but simpler, to weight each prime with log p; and to include the
prime powers in the sum (which has little impact on the size). Thus we define the
von Mangoldt function

vMvM (1.1.2) Λ(n) :=

{
log p if n = pm, where p is prime, andm ≥ 1

0 otherwise,

and then, in place of (
PNT
1.1.1), we conjecture that

PNT2PNT2 (1.1.3) ψ(x) :=
∑
n≤x

Λ(n) ∼ x.

The equivalent estimates (
PNT
1.1.1) and (

PNT2
1.1.3), known as the prime number theorem,

are difficult to prove. In this chapter we show how the prime number theorem
is equivalent to understanding the mean value of the Möbius function. This will
motivate our study of multiplicative functions in general, and provide new ways of
looking at many of the classical questions in analytic number theory.

1.1.1. Partial Summation

Given a sequence of complex numbers an, and some function f : R → C, we
wish to determine the value of

B∑
n=A+1

anf(n)

from estimates for the partial sums S(t) :=
∑
k≤t ak. Usually f is continuously

differentiable on [A,B], so we can replace our sum by the appropriate Riemann-
Stieltjes integral, and then integrate by parts as follows:1∑

A<n≤B

anf(n) =

∫ B+

A+

f(t)d(S(t)) = [S(t)f(t)]BA −
∫ B

A

S(t)f ′(t)dt

= S(B)f(B)− S(A)f(A)−
∫ B

A

S(t)f ′(t)dt.PS2PS2 (1.1.4)

(Note that (
PS2
1.1.4) continues to hold for all non-negative real numbers A < B).

1The notation “t+” denotes a real number “marginally” larger than t.

3



4 1.1. THE PRIME NUMBER THEOREM

In Abel’s approach one does not need to make any assumption about f : Simply
write an = S(n)− S(n− 1), so that

B∑
n=A+1

anf(n) =
B∑

n=A+1

f(n)(S(n)− S(n− 1)),

and with a little rearranging we obtain

PS1PS1 (1.1.5)

B∑
n=A+1

anf(n) = S(B)f(B)− S(A)f(A)−
B−1∑
n=A

S(n)(f(n+ 1)− f(n)).

If we now suppose that f is continuously differentiable on [A,B] (as above) then
we can rewrite (

PS1
1.1.5) as (

PS2
1.1.4).

Exercise 1.1.1. Use partial summation to show that (
PNT
1.1.1) is equivalent to

PNT3PNT3 (1.1.6) θ(x) =
∑
p≤x

log p = x+ o(x);

and then show that both are equivalent to (
PNT2
1.1.3).

The Riemann zeta function is given by

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

for Re(s) > 1.

This definition is restricted to the region Re(s) > 1, since it is only there that
this Dirichlet series and this Euler product both converge absolutely (see the next
subsection for definitions).

zeta Exercise 1.1.2. (i) Prove that for Re(s) > 1

ζ(s) = s

∫ ∞

1

[y]

ys+1
dy =

s

s− 1
− s

∫ ∞

1

{y}
ys+1

dy.

where throughout we write [t] for the integer part of t, and {t} for its fractional
part (so that t = [t] + {t}).
The right hand side is an analytic function of s in the region Re(s) > 0 except for
a simple pole at s = 1 with residue 1. Thus we have an analytic continuation of
ζ(s) to this larger region, and near s = 1 we have the Laurent expansion

ζ(s) =
1

s− 1
+ γ + c1(s− 1) + . . . .

(The value of the constant γ is given in exercise
ex:harmonic
1.1.4.)

(ii) Deduce that ζ(1 + 1
log x ) = log x+ γ +Ox→∞( 1

log x ).

(iii) † Adapt the argument in Exercise
ex:stirling
1.1.5 to obtain an analytic continuation

of ζ(s) to the region Re(s) > −1.
(iv) † Generalize.
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1.1.2. Chebyshev’s elementary estimates

Chebyshev made significant progress on the distribution of primes by showing
that there are constants 0 < c < 1 < C with

Cheb1Cheb1 (1.1.7) (c+ o(1))
x

log x
≤ π(x) ≤ (C + o(1))

x

log x
.

Moreover he showed that if

lim
x→∞

π(x)

x/ log x

exists, then it must equal 1.
The key to obtaining such information is to write the prime factorization of n

in the form

log n =
∑
d|n

Λ(d).

Summing both sides over n (and re-writing “d|n” as “n = dk”), we obtain that

Cheb2Cheb2 (1.1.8)
∑
n≤x

log n =
∑
n≤x

∑
n=dk

Λ(d) =
∞∑
k=1

ψ(x/k).

Using Stirling’s formula, Exercise
ex:stirling
1.1.5, we deduce that

Cheb3Cheb3 (1.1.9)
∞∑
k=1

ψ(x/k) = x log x− x+O(log x).

Exercise 1.1.3. Use (
Cheb3
1.1.9) to prove that

lim sup
x→∞

ψ(x)

x
≥ 1 ≥ lim inf

x→∞

ψ(x)

x
,

so that if limx→∞ ψ(x)/x exists it must be 1.

To obtain Chebyshev’s estimates (
Cheb1
1.1.7), take (

Cheb2
1.1.8) at 2x and subtract twice

that relation taken at x. This yields

x log 4 +O(log x) = ψ(2x)− ψ(2x/2) + ψ(2x/3)− ψ(2x/4) + . . . ,

and upper and lower estimates for the right hand side above follow upon truncating
the series after an odd or even number of steps. In particular we obtain that

ψ(2x) ≥ x log 4 +O(log x),

which gives the lower bound of (
Cheb1
1.1.7) with c = log 2 a permissible value. And we

also obtain that

ψ(2x)− ψ(x) ≤ x log 4 +O(log x),

which, when used at x/2, x/4, . . . and summed, leads to ψ(x) ≤ x log 4+O((log x)2).
Thus we obtain the upper bound in (

Cheb1
1.1.7) with C = log 4 a permissible value.

Returning to (
Cheb2
1.1.8), we may recast it as∑

n≤x

logn =
∑
d≤x

Λ(d)
∑
k≤x/d

1 =
∑
d≤x

Λ(d)
(x
d
+O(1)

)
.

Using Stirling’s formula, and the recently established ψ(x) = O(x), we conclude
that

x log x+O(x) = x
∑
d≤x

Λ(d)

d
,
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or in other words

PavgPavg (1.1.10)
∑
p≤x

log p

p
=
∑
n≤x

Λ(n)

n
+O(1) = log x+O(1).

In this proof we see interplay between algebra (summing the identity logn =∑
d|n Λ(d)) and analysis (evaluating log [x]! using Stirling’s formula), which fore-

shadows much of what is to come.

1.1.3. Multiplicative functions and Dirichlet series

The main objects of study in this book are multiplicative functions. These are
functions f : N → C satisfying f(mn) = f(m)f(n) for all coprime integers m and
n. If the relation f(mn) = f(m)f(n) holds for all integers m and n we say that f is
completely multiplicative. If n =

∏
j p

αj

j is the prime factorization of n, where the

primes pj are distinct, then f(n) =
∏
j f(p

αj

j ) for multiplicative functions f . Thus
a multiplicative function is specified by its values at prime powers and a completely
multiplicative function is specified by its values at primes.

One can study the multiplicative function f(n) using the Dirichlet series,

F (s) =

∞∑
n=1

f(n)

ns
=
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ . . .

)
.

The product over primes above is called an Euler product, and viewed formally the
equality of the Dirichlet series and the Euler product above is a restatement of the
unique factorization of integers into primes. If we suppose that the multiplicative
function f does not grow rapidy – for example, that |f(n)| ≪ nA for some constant
A – then the Dirichlet series and Euler product will converge absolutely in some
half-plane with Re(s) suitably large.

Given any two functions f and g from N → C (not necessarily multiplicative),
their Dirichlet convolution f ∗ g is defined by

(f ∗ g)(n) =
∑
ab=n

f(a)g(b).

If F (s) =
∑∞
n=1 f(n)n

−s and G(s) =
∑∞
n=1 g(n)n

−s are the associated Dirichlet
series, then the convolution f ∗ g corresponds to their product:

F (s)G(s) =
∞∑
n=1

(f ∗ g)(n)
ns

.

The basic multiplicative functions and their associated Dirichlet series are:
• The function δ(1) = 1 and δ(n) = 0 for all n ≥ 2 has the associated Dirichlet

series 1.
• The function 1(n) = 1 for all n ∈ N has the associated Dirichlet series ζ(s)

which converges absolutely when Re(s) > 1, and whose analytic continuation we
discussed in Exercise

zeta
1.1.2.

• For a natural number k, the k-divisor function dk(n) counts the number of
ways of writing n as a1 · · · ak. That is, dk is the k-fold convolution of the function
1(n), and its associated Dirichlet series is ζ(s)k. The function d2(n) is called the
divisor function and denoted simply by d(n). More generally, for any complex



1.1.4. THE AVERAGE VALUE OF THE DIVISOR FUNCTION AND DIRICHLET’S HYPERBOLA METHOD7

number z, the z-th divisor function dz(n) is defined as the coefficient of 1/ns in the
Dirichlet series, ζ(s)z.2

• The Möbius function µ(n) is defined to be 0 if n is divisible by the square
of some prime and, if n is square-free, µ(n) is 1 or −1 depending on whether
n has an even or odd number of prime factors. The associated Dirichlet series∑∞
n=1 µ(n)n

−s = ζ(s)−1 so that µ is the same as d−1. We deduce that µ ∗ 1 = δ.
• The von Mangoldt function Λ(n) is not multiplicative, but is of great interest

to us. We write its associated Dirichlet series as L(s). Since

log n =
∑
d|n

Λ(d) = (1 ∗ Λ)(n)

hence −ζ ′(s) = L(s)ζ(s), that is L(s) = (−ζ ′/ζ)(s). Writing this as

1

ζ(s)
· (−ζ ′(s))

we deduce that

LammuLammu (1.1.11) Λ(n) = (µ ∗ log)(n) =
∑
ab=n

µ(a) log b.

As mentioned earlier, our goal in this chapter is to show that the prime number
theorem is equivalent to a statement about the mean value of the multiplicative
function µ. We now formulate this equivalence precisely.

Theorem1.1.1PN
Tandthemeanoft

heMőbiusfunction

PNTM Theprimenumbertheo
rem,namelyψ(x)=x+

o(x),isequivalentto

MxMx(1.1.12)
M(x)=∑ n≤xµ(n)=o(x).

Inotherwords,halfthe
non-zerovaluesofµ(n)

equal1,theotherhalf
−1.

Beforewecanproveth
is,weneedonemorei

ngredient:namely,we
needto

understandtheaverage
valueofthedivisorfun

ction.

1.1.4.Theaveragev
alueofthedivisorfu

nctionandDirichlet
’s

hyperbolamethod
PrS4 Wewishtoevaluateasy

mptotically∑ n≤xd(n).Animmediateide
agives ∑ n≤xd(n)=∑ n≤x∑ d|n1=∑ d≤x∑ n≤x d|n1 =∑ d≤x[ x d] =∑ d≤x( x d+O(1))

=xlogx+O(x).

Dirichletrealizedthato
necansubstantiallyimp

rovetheerrortermabov
ebypairing

eachdivisoraofanint
egernwithitscomplem

entarydivisorb=n/a;
oneminor

2 Toexplicitlydetermin
eζ(s)z itiseasiesttoexpand

eachfactorintheEul
erproductusing

thegeneralizedbinom
ialtheorem,sothatζ

(s)z =∏ p( 1+∑ k≥1( −z k) (−p−s )k) .
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exception is when n = m2 and the divisor m cannot be so paired. Since a or n/a
must be ≤

√
n we have

d(n) =
∑
d|n

1 = 2
∑
d|n

d<
√

n

1 + δn,

where δn = 1 if n is a square, and 0 otherwise. Therefore∑
n≤x

d(n) = 2
∑
n≤x

∑
d|n

d<
√

n

1 +
∑
n≤x

n=d2

1

=
∑
d≤

√
x

(
1 + 2

∑
d2<n≤x

d|n

1
)

=
∑
d≤

√
x

(2[x/d]− 2d+ 1) ,

and so

DDDD (1.1.13)
∑
n≤x

d(n) = 2x
∑
d≤

√
x

1

d
− x+O(

√
x) = x log x− x+ 2γx+O(

√
x),

by Exercise
ex:harmonic
1.1.4.

The method described above is called the hyperbola method because we are
trying to count the number of lattice points (a, b) with a and b non-negative and
lying below the hyperbola ab = x. Dirichlet’s idea may be thought of as choosing
parameters A, B with AB = x, and dividing the points under the hyperbola ac-
cording to whether a ≤ A or b ≤ B or both. We remark that an outstanding open
problem, known as the Dirichlet divisor problem, is to show that the error term in
(
DD
1.1.13) may be improved to O(x

1
4+ϵ) (for any fixed ϵ > 0).

For our subsequent work, we use Exercise
ex:stirling
1.1.5 to recast (

DD
1.1.13) as

divestdivest (1.1.14)
∑
n≤x

(log n− d(n) + 2γ) = O(
√
x).

1.1.5. The prime number theorem and the Möbius function: proof of
Theorem

PNTM
1.1.1

Primes5

First we show that the estimate M(x) =
∑
n≤x µ(n) = o(x) implies the prime

number theorem ψ(x) = x+ o(x).
Define the arithmetic function a(n) = log n− d(n) + 2γ, so that

a(n) = (1 ∗ (Λ− 1))(n) + 2γ1(n).

When we form the Dirichlet convolution of a with the Möbius function we therefore
obtain

(µ ∗ a)(n) = (µ ∗ 1 ∗ (Λ− 1))(n) + 2γ(µ ∗ 1)(n) = (Λ− 1)(n) + 2γδ(n),

where δ(1) = 1, and δ(n) = 0 for n > 1. Hence, when we sum (µ ∗ a)(n) over all
n ≤ x, we obtain∑

n≤x

(µ ∗ a)(n) =
∑
n≤x

(Λ(n)− 1) + 2γ = ψ(x)− x+O(1).



1.1.5. THE PRIME NUMBER THEOREM AND THE MÖBIUS FUNCTION: PROOF OF THEOREM
PNTM
1.1.19

On the other hand, we may write the left hand side above as∑
dk≤x

µ(d)a(k),

and, as in the hyperbola method, split this into terms where k ≤ K or k > K (in
which case d ≤ x/K). Thus we find that∑

dk≤x

µ(d)a(k) =
∑
k≤K

a(k)M(x/k) +
∑

d≤x/K

µ(d)
∑

K<k≤x/d

a(k).

Using (
divest
1.1.14) we see that the second term above is

= O
( ∑
d≤x/K

√
x/d

)
= O(x/

√
K).

Putting everything together, we deduce that

ψ(x)− x =
∑
k≤K

a(k)M(x/k) +O(x/
√
K).

Now suppose that M(x) = o(x). Fix ϵ > 0 and select K to be the smallest
integer > 1/ϵ2, and then let αK :=

∑
k≤K |a(k)|/k. Finally choose yϵ so that

|M(y)| ≤ (ϵ/αk)y whenever y ≥ yϵ. Inserting all this into the last line for x ≥ Kyϵ
yields ψ(x) − x ≪ (ϵ/αk)x

∑
k≤K |a(k)|/k + ϵx ≪ ϵx. We may conclude that

ψ(x)− x = o(x), the prime number theorem.
Now we turn to the converse. Consider the arithmetic function −µ(n) log n

which is the coefficient of 1/ns in the Dirichlet series (1/ζ(s))′. Since( 1

ζ(s)

)′
= − ζ ′(s)

ζ(s)2
= −ζ

′

ζ
(s) · 1

ζ(s)
,

we obtain the identity −µ(n) log n = (µ ∗ Λ)(n). As µ ∗ 1 = δ, we find that

Pr51Pr51 (1.1.15)
∑
n≤x

(µ ∗ (Λ− 1))(n) = −
∑
n≤x

µ(n) log n− 1.

The right hand side of (
Pr51
1.1.15) is

− log x
∑
n≤x

µ(n) +
∑
n≤x

µ(n) log(x/n)− 1 = −(log x)M(x) +O
(∑
n≤x

log(x/n)
)

= −(log x)M(x) +O(x),

upon using Exercise
ex:stirling
1.1.5. The left hand side of (

Pr51
1.1.15) is∑

ab≤x

µ(a)(Λ(b)− 1) =
∑
a≤x

µ(a)
(
ψ(x/a)− x/a

)
.

Now suppose that ψ(x) − x = o(x), the prime number theorem, so that, for given
ϵ > 0 we have |ψ(t)− t| ≤ ϵt if t ≥ Tϵ. Suppose that T ≥ Tϵ and x > T 1/ϵ. Using
this |ψ(x/a) − x/a| ≤ ϵx/a for a ≤ x/T (so that x/a > T ), and the Chebyshev
estimate |ψ(x/a)− x/a| ≪ x/a for x/T ≤ a ≤ x, we find that the left hand side of
(
Pr51
1.1.15) is

≪
∑
a≤x/T

ϵx/a+
∑

x/T≤a≤x

x/a≪ ϵx log x+ x log T.
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Combining these observations, we find that

|M(x)| ≪ ϵx+ x
log T

log x
≪ ϵx,

if x is sufficiently large. Since ϵ was arbitrary, we have demonstrated that M(x) =
o(x).

1.1.6. Selberg’s formula

The elementary techniques discussed above were brilliantly used by Selberg to
get an asymptotic formula for a suitably weighted sum of primes and products of
two primes. Selberg’s formula then led Erdős and Selberg to discover elementary
proofs of the prime number theorem. We will not discuss these elementary proofs
of the prime number theorem here, but let us see how Selberg’s formula follows
from the ideas developed so far.

Theorem1.1.2
Selberg’sformula

Selberg Wehave ∑ p≤x(logp)2 +∑ pq≤x(logp)(logq)=2xlogx+
O(x).

Proof.WedefineΛ 2(n):=Λ(n)logn+∑ ℓm=nΛ(ℓ)Λ(m).ThusΛ 2(n)isthe
coefficientof1/ns intheDirichletseries ( ζ′ ζ(s)) ′ +( ζ′ ζ(s)) 2 =ζ′′ (s) ζ(s),

sothatΛ 2=(µ∗(log)2 ). Intheprevioussectionw
eexploitedthefactthat

Λ=(µ∗log)andthatthe
functiond(n)−2γhasthesamea

veragevalueaslogn.No
wwesearchforadivisor

typefunctionwhichhas
thesameaverageas(log

n)2 .
Bypartialsummationw

efindthat ∑ n≤x(logn)2 =x(logx)2 −2xlogx+2x+O((logx)2 ).

UsingExercisek-div 1.1.14wemayfindconst
antsc 2andc 1suchthat ∑ n≤x(2d 3(n)+c 2d(n)+c 1)=x(logx)2 −2xlogx+2x+O(x2/3+ϵ ).

Setb(n)=(logn)2 −2d 3(n)−c 2d(n)−c 1sothatthelasttwodisp
layedequations

give Pr61Pr61(1.1.16)
∑ n≤xb(n)=O(x2/3+ϵ ).

Nowconsider(µ ∗b )(n )=Λ 2( n) −2 d( n) −c 2− c 1δ (n ),andsummingthis
over

alln≤xwegetthat ∑ n≤x(µ∗b)(n)=∑ n≤xΛ 2(n)−2xlogx+O(x).
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The left hand side is∑
k≤x

µ(k)
∑
l≤x/k

b(l) ≪
∑
k≤x

(x/k)2/3+ϵ ≪ x

by (
Pr61
1.1.16), and we conclude that∑

n≤x

Λ2(n) = 2x log x+O(x).

The difference between the left hand side above and the left hand side of our
desired formula is the contribution of the prime powers, which is easily shown to
be ≪

√
x log x, and so our Theorem follows. □

1.1.7. Exercises

Exercise 1.1.4. ∗ (i) Using partial summation, prove that for any x ≥ 1ex:harmonic ∑
1≤n≤x

1

n
= log x+

[x]

x
−
∫ x

1

{t}
t2
dt.

(ii) Deduce that for any x ≥ 1 we have the approximation∣∣∣∣∣∣
∑
n≤x

1

n
− (log x+ γ)

∣∣∣∣∣∣ ≤ 1

x
,

where γ is the Euler-Mascheroni constant,

γ := lim
N→∞

( N∑
n=1

1

n
− logN

)
= 1−

∫ ∞

1

{t}
t2
dt.

ex:stirling Exercise 1.1.5. (i) For an integer N ≥ 1 show that

logN ! = N logN −N + 1 +

∫ N

1

{t}
t
dt.

(ii) Deduce that x− 1 ≥
∑
n≤x log(x/n) ≥ x− 2− log x for all x ≥ 1.

(iii) Using that
∫ x
1
({t} − 1/2)dt = ({x}2 − {x})/2 and integrating by parts,

show that∫ N

1

{t}
t
dt =

1

2
logN − 1

2

∫ N

1

{t} − {t}2

t2
dt.

(iv) Conclude that N ! = C
√
N(N/e)N{1 +O(1/N)}, where

C = exp
(
1− 1

2

∫ ∞

1

{t} − {t}2

t2
dt
)
. In fact C =

√
2π,

and the resulting asymptotic for N !, namely N ! ∼
√
2πN(N/e)N , is

known as Stirling’s formula.

Exercise 1.1.6. ∗zeta2

(i) Prove that for Re(s) > 0 we have

N∑
n=1

1

ns
−
∫ N

1

dt

ts
= ζ(s)− 1

s− 1
+ s

∫ ∞

N

{y}
ys+1

dy.
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(ii) Deduce that, in this same range but with s ̸= 1, we can define

ζ(s) = lim
N→∞

{
N∑
n=1

1

ns
− N1−s

1− s

}
.

Exercise 1.1.7. ∗ Using that ψ(2x)−ψ(x)+ψ(2x/3) ≥ x log 4+O(log x), proveex:Bertrand
Bertrand’s postulate that there is a prime between N and 2N , for N sufficiently
large.

ex:Cheb Exercise 1.1.8. (i) Using (
Cheb2
1.1.8), prove that if L(x) :=

∑
n≤x log n

then

ψ(x)− ψ(x/6) ≤ L(x)− L(x/2)− L(x/3)− L(x/5) + L(x/30) ≤ ψ(x).

(ii) Deduce, using (
Cheb3
1.1.9), that with

κ =
log 2

2
+

log 3

3
+

log 5

5
− log 30

30
= 0.9212920229 . . . ,

we have κx+O(log x) ≤ ψ(x) ≤ 6
5κx+O(log2 x).

(iii) † Improve on these bounds by similar methods.

Pavg+ Exercise 1.1.9. (i) Use partial summation to prove that if

lim
N→∞

∑
n≤N

Λ(n)− 1

n
exists,

then the prime number theorem, in the form ψ(x) = x+ o(x), follows.
(ii) † Prove that the prime number theorem implies that this limit holds.
(iii) Using exercise

zeta
1.1.2, prove that −(ζ ′/ζ)(s)− ζ(s) has a Taylor expansion

−2γ + c′1(s− 1) + . . . around s = 1.
(iv) Explain why we cannot then deduce that

lim
N→∞

∑
n≤N

Λ(n)− 1

n
= lim
s→1+

∑
n≥1

Λ(n)− 1

ns
, which exists and equals − 2γ.

Exercise 1.1.10. ∗exmertens

(i) Use (
Pavg
1.1.10) and partial summation show that there is a constant c such

that ∑
p≤x

1

p
= log log x+ c+O

(
1

log x

)
.

(ii) Deduce Mertens’ Theorem, that there exists a constant γ such that∏
p≤x

(
1− 1

p

)
∼ e−γ

log x
.

In the two preceding exercises the constant γ is in fact the Euler-Mascheroni
constant, but this is not so straightforward to establish. The next exercise gives
one way of obtaining information about the constant in Exercise

exmertens
1.1.10.

Exercise 1.1.11. † In this exercise, put σ = 1 + 1/ log x.exmertens2

(i) Show that∑
p>x

log
(
1− 1

pσ

)−1

=
∑
p>x

1

pσ
+O

( 1
x

)
=

∫ ∞

1

e−t

t
dt+O

( 1

log x

)
.
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(ii) Show that∑
p≤x

(
log
(
1− 1

pσ

)−1

− log
(
1− 1

p

)−1)
= −

∫ 1

0

1− e−t

t
dt+O

( 1

log x

)
.

(iii) Conclude, using exercise
zeta
1.1.2, that the constant γ in exercise

exmertens
1.1.10(ii)

equals ∫ 1

0

1− e−t

t
dt−

∫ ∞

1

e−t

t
dt.

That this equals the Euler-Mascheroni constant is established in
HW
[?].

Exercise 1.1.12. ∗ Uniformly for η in the range 1
log y ≪ η < 1, show that

ex2.7 ∑
p≤y

log p

p1−η
≪ yη

η
;

and ∑
p≤y

1

p1−η
≤ log(1/η) +O

( yη

log(yη)

)
.

Hint: Split the sum into those primes with pη ≪ 1, and those with pη ≫ 1.

Exercise 1.1.13. ∗ If f and g are functions from N to C, show that the relation
f = 1 ∗ g is equivalent to the relation g = µ ∗ f . (Given two proofs.) This is known
as Möbius inversion.

k-div Exercise 1.1.14. (i) Given a natural number k, use the hyperbola method
together with induction and partial summation to show that∑

n≤x

dk(n) = xPk(log x) +O(x1−1/k+ϵ)

where Pk(t) denotes a polynomial of degree k − 1 with leading term tk−1/(k − 1)!.
(ii) Deduce, using partial summation, that if Rk(t) +R′

k(t) = Pk(t) then∑
n≤x

dk(n) log(x/n) = xRk(log x) +O(x1−1/k+ϵ).

(iii) Deduce, using partial summation, that if Qk(u) = Pk(u) +
∫ u
t=0

Pk(t)dt then∑
n≤x

dk(n)

n
= Qk(log x) +O(1).

Analogies of these estimates hold for any real k > 0, in which case (k − 1)! is
replaced by Γ(k).

ex:MobiusEquiv Exercise 1.1.15. Modify the above proof to show that

(i) If M(x) ≪ x/(log x)A then ψ(x)− x≪ x(log log x)2/(log x)A.
(ii) Conversely, if ψ(x)− x≪ x/(log x)A then M(x) ≪ x/(log x)min(1,A).

MobPNT Exercise 1.1.16. (i) ∗ Show that

M(x) log x = −
∑
p≤x

log p M(x/p) +O(x).
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(ii) Deduce that

lim inf
x→∞

M(x)

x
+ lim sup

x→∞

M(x)

x
= 0.

(iii) Use Selberg’s formula to prove that

(ψ(x)− x) log x = −
∑
p≤x

log p

(
ψ

(
x

p

)
− x

p

)
+O(x).

(iv) Deduce that

lim inf
x→∞

ψ(x)− x

x
+ lim sup

x→∞

ψ(x)− x

x
= 0.

Compare!



CHAPTER 1.2

First results on multiplicative functions

C2
We have just seen that understanding the mean value of the Möbius function

leads to the prime number theorem. Motivated by this, we now begin a more
general study of mean values of multiplicative functions.

1.2.1. A heuristic
S2.1

In Section
PrS4
1.1.4 we saw that one can estimate the mean value of the k-divisor

function by writing dk as the convolution 1 ∗ dk−1. Given a multiplicative function
f , let us write f as 1 ∗ g so that g is also multiplicative. Then∑

n≤x

f(n) =
∑
n≤x

∑
d|n

g(d) =
∑
d≤x

g(d)
[x
d

]
.

Since [z] = z +O(1) we have

E2.1E2.1 (1.2.1)
∑
n≤x

f(n) = x
∑
d≤x

g(d)

d
+O

(∑
d≤x

|g(d)|
)
.

In several situations, for example in the case of the k-divisor function treated
earlier, the remainder term in (

E2.1
1.2.1) may be shown to be small. Omitting this

term, and approximating
∑
d≤x g(d)/d by

∏
p≤x(1 + g(p)/p + g(p2)/p2 + . . .) we

arrive at the following heuristic:

E2.2E2.2 (1.2.2)
∑
n≤x

f(n) ≈ x P(f ;x)

where “≈” is interpreted as “is roughly equal to”, and
E2.3E2.3 (1.2.3)

P(f ;x) =
∏
p≤x

(
1 +

g(p)

p
+
g(p2)

p2
+ . . .

)
=
∏
p≤x

(
1− 1

p

)(
1 +

f(p)

p
+
f(p2)

p2
+ . . .

)
.

In the special case that 0 ≤ f(p) ≤ f(p2) ≤ . . . for all primes p (so that g(d) ≥ 0
for all d), one easily gets an upper bound of the correct order of magnitude: If
f = 1 ∗ g then g(d) ≥ 0 for all d ≥ 1 by assumption, and so∑

n≤x

f(n) =
∑
d≤x

g(d)
[x
d

]
≤
∑
d≤x

g(d)
x

d
≤ x P(f ;x)

(as in (
E2.3
1.2.3)).

In the case of the k-divisor function, the heuristic (
E2.2
1.2.2) predicts that∑

n≤x

dk(n) ≈ x
∏
p≤x

(
1− 1

p

)−(k−1)

∼ x(eγ log x)k−1,

15
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which is off from the correct asymptotic formula, ∼ x(log x)k−1/(k − 1)!, by only
a constant factor (see exercise

k-div
1.1.14(i)). Moreover dk(p

j) ≥ dk(p
j−1) for all pj so

this yields an (unconditional) upper bound.
One of our aims will be to obtain results that are uniform over the class of

all mutiplicative functions. Thus for example we could consider x to be large and
consider the multiplicative function f with f(pk) = 0 for p ≤

√
x and f(pk) = 1

for p >
√
x. In this case, we have f(n) = 1 if n is a prime between

√
x and x and

f(n) = 0 for other n ≤ x. Thus, the heuristic suggests that

π(x)− π(
√
x) + 1 =

∑
n≤x

f(n) ≈ x
∏
p≤

√
x

(
1− 1

p

)
∼ x

e−γ

log
√
x
∼ 2e−γx

log x
.

Comparing this to the prime number theorem, the heuristic is off by a constant
factor again, this time 2e−γ ≈ 1.1....

This heuristic suggests that the sum of the Möbius function,

M(x) =
∑
n≤x

µ(n) is comparable with x
∏
p≤x

(
1− 1

p

)2
∼ xe−2γ

(log x)2
.

However M(x) is known to be much smaller. The best bound that we know un-

conditionally is that M(x) ≪ x exp(−c(log x) 3
5−ϵ) (see chapter

ch:StrongPNT
??), and we expect

M(x) to be as small as x
1
2+ϵ (as this is equivalent to the unproved Riemann Hy-

pothesis). In any event, the heuristic certainly suggests that M(x) = o(x), which
is equivalent to the prime number theorem, as we saw in Theorem

PNTM
1.1.1.

1.2.2. Multiplicative functions and Dirichlet series
S2.2

Given a multiplicative function f(n) we define F (s) :=
∑
n≥1

f(n)
ns as usual,

and now define the coefficients Λf (n) by

−F
′(s)

F (s)
=
∑
n≥1

Λf (n)

ns
.

Comparing the coefficient of 1/ns in −F ′(s) = F (s) · (−F ′(s)/F (s)) we have

ConvolEqNewConvolEqNew (1.2.4) f(n) log n =
∑
d|n

Λf (d)f(n/d).

LambdaF Exercise 1.2.1. Let f be a multiplicative function. and fix κ > 0

(i) Show that Λf (n) = 0 unless n is a prime power.
(ii) Show that if f is totally multiplicative then Λf (n) = f(n)Λ(n).
(iii) Show that Λf (p) = f(p) log p, Λf (p

2) = (2f(p2)− f(p)2) log p, and that
every Λf (p

k) equals log p times some polynomial in f(p), f(p2), . . . , f(pk).
(iv) Show that if |Λf (n)| ≤ κΛ(n) for all n, then |f(n)| ≤ dκ(n).

We will work mostly under the hypothesis |Λf (n)| ≤ κΛ(n) for all n, which
has several advantages. The most important is that we avoid examples in which
mean values are very small for reasons concerning just one prime. For example,
the multiplicative function (−1)n−1, for which f(pk) = 1 for all odd primes p and
f(2k) = −1, has sum up to x equal to either 1 or 0, and

∑
n≤N f(n)f(n+1) = −N ,

yet, other than at the prime 2, it is the same as the multiplicative function 1, which
has large mean value. Many of our results can be extended to a much wider selection
of multiplicative functions, via convolutions.
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ex2.1 Exercise 1.2.2. Suppose that f is a non-negative arithmetic function, and
that F (σ) =

∑∞
n=1 f(n)n

−σ is convergent for some σ > 0.

(i) Prove that
∑
n≤x f(n) ≤ xσF (σ).

(ii) Moreover show that if 0 < σ < 1 then∑
n≤x

f(n) + x
∑
n>x

f(n)

n
≤ xσF (σ).

This technique is known as Rankin’s trick, and is surprisingly effective. The values
f(pk) for pk > x appear in the Euler product for F (σ) and yet are irrelevant to the
mean value of f(n) for n up to x. However, for a given x, we can take f(pk) = 0
for every pk > x, to minimize the value of F (σ) above.

1.2.3. Multiplicative functions close to 1
S2.2

The heuristic (
E2.2
1.2.2) is accurate and easy to justify when the function g is small

in size, or in other words, when f is close to 1. We give a sample such result which
will lead to several applications.

pr2.1 Proposition 1.2.1. Let f = 1 ∗ g be a multiplicative function. If
∞∑
d=1

|g(d)|
dσ

= G̃(σ)

is convergent for some σ, 0 ≤ σ ≤ 1, then∣∣∣∑
n≤x

f(n)− xP(f)
∣∣∣ ≤ xσG̃(σ),

where P(f) := P(f ;∞), and

lim
x→∞

1

x

∑
n≤x

f(n) = P(f).

If G̃(σ) converges then G̃(1) does. If each |f(n)| ≤ 1 then G̃(1) converges if

and only if
∑
p

|1−f(p)|
p <∞.

Proof. The argument giving (
E2.1
1.2.1) yields that∣∣∣∑

n≤x

f(n)− x
∑
d≤x

g(d)

d

∣∣∣ ≤∑
d≤x

|g(d)|.

Since P(f) =
∑
d≥1 g(d)/d we have that∣∣∣∑

d≤x

g(d)

d
− P(f)

∣∣∣ ≤∑
d>x

|g(d)|
d

.

Combining these two inequalities yields

SweetBoundSweetBound (1.2.5)
∣∣∣∑
n≤x

f(n)− xP(f)
∣∣∣ ≤∑

d≤x

|g(d)|+ x
∑
d>x

|g(d)|
d

.

We now use Rankin’s trick: we multiply the terms in the first sum by (x/d)σ ≥ 1,
and in the second sum by (d/x)1−σ > 1, so that the right hand side of (

SweetBound
1.2.5) is

≤
∑
d≤x

|g(d)|
(x
d

)σ
+ x

∑
d>x

|g(d)|
d

(
d

x

)1−σ

= xσG̃(σ),
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the first result in the lemma. This immediately implies the second result for 0 ≤
σ < 1.

One can rewrite the right hand side of (
SweetBound
1.2.5) as∫ x

0

∑
n>t

|g(n)|
n

dt = ox→∞(x),

because
∑
n>t |g(n)|/n is bounded, and tends to zero as t → ∞. This implies the

second result for σ = 1. □

1.2.4. Non-negative multiplicative functions
sec:Non-neg

Let us now consider our heuristic for the special case of non-negative multi-
plicative functions with suitable growth conditions. Here we shall see that right
side of our heuristic (

E2.2
1.2.2) is at least a good upper bound for

∑
n≤x f(n).

Prop2.1 Proposition 1.2.2. Let f be a non-negative multiplicative function, and sup-
pose there are constants A and B for which

eq:sumpseq:sumps (1.2.6)
∑
m≤z

Λf (m) ≤ Az +B,

for all z ≥ 1. Then for x ≥ e2B we have∑
n≤x

f(n) ≤ (A+ 1)x

log x+ 1−B

∑
n≤x

f(n)

n

Proof. We begin with the decomposition∑
n≤x

f(n) log x =
∑
n≤x

f(n) log n+
∑
n≤x

f(n) log(x/n)

≤
∑
n≤x

f(n) log n+
∑
n≤x

f(n)
(x
n
− 1
)
,

which holds since 0 ≤ log t ≤ t− 1 for all t ≥ 1. For the first term we have∑
n≤x

f(n) log n =
∑
n≤x

∑
n=mr

f(r)Λf (m) ≤
∑
r≤x

f(r)
∑

m≤x/r

Λf (m)

≤
∑
r≤x

f(r)
(Ax
r

+B
)
.

The result follows by combining these two inequalities. □
Proposition

Prop2.1
1.2.2 establishes the heuristic (

E2.3
1.2.3) for many common multiplica-

tive functions:

cor2.3 Corollary 1.2.3. Let f be a non-negative multiplicative function for which
either 0 ≤ f(n) ≤ 1 for all n, or |Λf (n)| ≤ κΛ(n) for all n, for some given constant
κ > 1. Then

E2.5E2.5 (1.2.7)
1

x

∑
n≤x

f(n) ≪A,B P(f ;x) ≪ exp
(
−
∑
p≤x

1− f(p)

p

)
.

Moreover if 0 ≤ f(n) ≤ 1 for all n then

lim
x→∞

1

x

∑
n≤x

f(n) = P(f).
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Proof. The hypothesis implies that (
eq:sumps
1.2.6) holds: If |f(n)| ≤ 1 then this

follows by exercise
ex:WhichHypo
1.2.5(iii). If each |Λf (n)| ≤ κΛ(n) then the Chebyshev estimates

give that ∑
n≤z

|Λf (n)| ≤ κ
∑
n≤z

Λ(n) ≤ Az +B,

any constant A > κ log 4 being permissible.
So we apply Proposition

Prop2.1
1.2.2, and bound the right-hand side using Mertens’

Theorem, and ∑
n≤x

f(n)

n
≤
∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ . . .

)
,

to obtain the first inequality. The second inequality then follows from exercise
SizeP(f,x)
1.2.7

with ϵ = 1
2 .

If
∑
p(1− f(p))/p diverges, then (

E2.5
1.2.7) shows that

lim
x→∞

1

x

∑
n≤x

f(n) = 0 = P(f).

Suppose now that
∑
p(1 − f(p))/p converges. If we write f = 1 ∗ g then this

condition assures us that
∑
pk |g(pk)|/pk converges, which in turn is equivalent

to the convergence of
∑
n |g(n)|/n by exercise

ex2.0
1.2.8. The second statement in

Proposition
pr2.1
1.2.1 now finishes our proof. □

In the coming chapters we will establish appropriate generalizations of Corollary
cor2.3
1.2.3. For example, for real-valued multiplicative functions with −1 ≤ f(n) ≤ 1,
Wirsing proved that

∑
n≤x f(n) ∼ P(f)x. This implies that

∑
n≤x µ(n) = o(x) and

hence the prime number theorem, by Theorem
PNTM
1.1.1. We will go on to study Halász’s

seminal result on the mean values of complex-valued multiplicative functions which
take values in the unit disc.

Proposition
Prop2.1
1.2.2 also enables us to prove a preliminary result indicating that

mean values of multiplicative functions vary slowly. The result given here is only
useful when f is “close” to 1, but we shall see a more general such result in Chapter
C20
??.

FirstLip Proposition 1.2.4. Let f be a multiplicative function with |f(n)| ≤ 1 for all
n. Then for all 1 ≤ y ≤

√
x we have∣∣∣ 1

x

∑
n≤x

f(n)− y

x

∑
n≤x/y

f(n)
∣∣∣≪ log(ey)

log x
exp

(∑
p≤x

|1− f(p)|
p

)
.

Proof. Write f = 1 ∗ g, so that g is a multiplicative function with each
g(p) = f(p) − 1, and each Λg(p) = Λf (p) − Λ(p) (so that (

eq:sumps
1.2.6) holds by exercise

ex:WhichHypo
1.2.5(iii)). Recall that∣∣∣ 1

x

∑
n≤x

f(n)−
∑
d≤x

g(d)

d

∣∣∣ ≤ 1

x

∑
d≤x

|g(d)|,

so that

FirstLip1FirstLip1 (1.2.8)
∣∣∣ 1
x

∑
n≤x

f(n)− y
x

∑
n≤x/y

f(n)
∣∣∣≪ 1

x

∑
d≤x

|g(d)|+ y
x

∑
d≤x/y

|g(d)|+
∑

x/y<d≤x

|g(d)|
d

.
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Appealing to Proposition
Prop2.1
1.2.2 we find that for any z ≥ 3∑

n≤z

|g(n)| ≪ z

log z

∑
n≤z

|g(n)|
n

≪ z

log z
exp

(∑
p≤z

|1− f(p)|
p

)
.

From this estimate and partial summation we find that the right hand side of (
FirstLip1
1.2.8)

is

≪ log(ey)

log x
exp

(∑
p≤x

|1− f(p)|
p

)
,

proving our Proposition. □

1.2.5. Logarithmic means

In addition to the natural mean values 1
x

∑
n≤x f(n), we have already encoun-

tered logarithmic means 1
log x

∑
n≤x f(n)/n several times in our work above. We

now prove the analogy to Proposition
pr2.1
1.2.1 for logarithmic means:

NasProp Proposition 1.2.5 (Naslund). Let f = 1 ∗ g be a multiplicative function and∑
d |g(d)|d−σ = G̃(σ) <∞ for some σ ∈ [0, 1). Then∣∣∣∣∣∣

∑
n≤x

f(n)

n
− P(f)

log x+ γ −
∑
n≥1

Λf (n)− Λ(n)

n

∣∣∣∣∣∣ ≤ xσ−1

1− σ
G̃(σ).

Proof. We start with∑
n≤x

f(n)

n
=
∑
n≤x

1

n

∑
d|n

g(d) =
∑
d≤x

g(d)

d

∑
m≤x/d

1

m

and then, using exercise
ex:harmonic
1.1.4, we deduce that∣∣∣∣∣∣

∑
n≤x

f(n)

n
−
∑
d≤x

g(d)

d

(
log

x

d
+ γ
)∣∣∣∣∣∣ ≤

∑
d≤x

|g(d)|
d

· d
x
=

1

x

∑
d≤x

|g(d)|.

Since g(n) log n is the coefficient of 1/ns in−G′(s) = G(s)(−G′/G)(s), thus g(n) log n =
(g ∗ Λg)(n), and we note that Λf = Λ+ Λg. Hence∑

n≥1

g(n) log n

n
=
∑
a,b≥1

g(a)Λg(b)

ab
= P(f)

∑
m≥1

Λf (m)− Λ(m)

m
.

Therefore
∑
d≥1

g(d)
d

(
log x

d + γ
)

= P(f)
(
log x+ γ −

∑
n≥1

Λf (n)−Λ(n)
n

)
, and so

the error term in our main result is

≤ 1

x

∑
d≤x

|g(d)|+
∑
d>x

|g(d)|
d

∣∣∣ log x
d
+ γ
∣∣∣.

Since 1/(1 − σ) ≥ 1 we can use the inequalities 1 ≤ (x/d)σ ≤ (x/d)σ/(1 − σ) for
d ≤ x, and

| log(x/d) + γ| ≤ 1 + log(d/x) ≤ (d/x)1−σ

1− σ

for d > x, to get a bound on the error term of x
σ−1

1−σ G̃(σ) as claimed. □



1.2.6. EXERCISES 21

G0UB Proposition 1.2.6. If f is a multiplicative function with |f(n)| ≤ 1 for all n,
then

1

log x

∣∣∣∑
n≤x

f(n)

n

∣∣∣≪ exp
(
− 1

2

∑
p≤x

1− Re(f(p))

p

)
.

Proof. Let h = 1 ∗ f , so that∑
n≤x

h(n) =
∑
n≤x

∑
d|n

f(d) =
∑
d≤x

f(d)
(x
d
+O(1)

)
= x

∑
d≤x

f(d)

d
+O(x).

We deduce, applying Proposition
Prop2.1
1.2.2 (since (

eq:sumps
1.2.6) is satisfied as Λh = Λ + Λf ,

and then by exercise
ex:WhichHypo
1.2.5(iii)), that

1

log x

∣∣∣∑
n≤x

f(n)

n

∣∣∣ ≤ 1

x log x

∑
n≤x

|h(n)|+O
( 1

log x

)
≪ 1

log2 x

∑
n≤x

|h(n)|
n

+
1

log x

≪ exp

∑
p≤x

|1 + f(p)| − 2

p

+
1

log x

using Mertens’ theorem. Now 1
2 (1 − Re(z)) ≤ 2 − |1 + z| ≤ 1 − Re(z) whenever

|z| ≤ 1, and so the result follows. □

We expect that, for non-negative real multiplicative functions f , the quantity

R(f ;x) :=
∑
n≤x

f(n)

n

/∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ . . .

)
,

should typically be bounded, based on the heuristic discussion above. For example
R(dκ;x) ∼ (e−γ)κ/|Γ(κ+ 1)| by exercise

k-div
1.1.14(iii) and Mertens’ Theorem.

SumCompare Exercise 1.2.3. Suppose that f and g are real multiplicative functions with
f(n), g(n) ≥ 0 for all n ≥ 1.

(i) Prove that 0 ≤ R(f ;x) ≤ 1.
(ii) Prove that R(f ;x) ≥ R(f ;x) · R(g;x) ≥ R(f ∗ g;x).
(iii) Deduce that if f is totally multiplicative and 0 ≤ f(n) ≤ 1 for all n ≥ 1

then 1 ≥ R(f ;x) ≥ R(1;x) ∼ e−γ .
(iv) Suppose that f is supported only on squarefree integers (that is, f(n) = 0

if p2|n for some prime p). Let g be the totally multiplicative function with
g(p) = f(p) for each prime p. Prove that R(f ;x) ≥ R(g;x).

1.2.6. Exercises

Exercise 1.2.4. ∗ Prove that if f(.) is multiplicative with −1 ≤ f(pk) ≤ 1 for
each prime power pk then limx→∞ P(f ;x) exists and equals P(f)

ex:WhichHypo Exercise 1.2.5. (i) Show that if |f(n)| ≤ 1 for all n then there exist
constants A,C for which

∑
m≤z |Λf (m)| ≤ Az + C, for all z ≥ 1.

(ii) Prove that if |f(pk)| ≤ Bk for all prime powers pk then |Λf (pk)| ≤
(2k − 1)Bk log p for all prime powers pk.

(iii) Show this is best possible (Hint: Try f(pk) = −(−B)k).
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(iv) Show that if f(2k) = −1 for all k ≥ 1 then F (1) = 0 and∑
2k≤x

Λf (2
k) ≤ −(x log 2− log x− 1).

(v) Give an example of an f where B > 1, for which
∑
n≤x |Λf (n)| ≫ x1+δB .

This explains why, when we consider f with values outside the unit circle, we prefer
working with the hypothesis |Λf (n)| ≤ κΛ(n) rather than |f(pk)| ≤ B.

ex:OleksiyRestrict Exercise 1.2.6. Suppose that each |f(n)| = −1, 0 or 1, and each |Λf (n)| ≤
κΛ(n). Prove that, for each prime p, either f(pk) = f(p)k for each k ≥ 2, or
f(pk) = 0 for each k ≥ 2.

SizeP(f,x) Exercise 1.2.7. (i) Let f be a real-valued multiplicative function for which

there exist constants κ ≥ 1 and ϵ > 0, such that |f(pk)| ≤ dκ(p
k)(pk)

1
2−ϵ for every

prime power pk. Prove that

P(f ;x) ≪κ,ϵ exp
(
−
∑
p≤x

1− f(p)

p

)
.

This should be interpreted as telling us that, in the situations which we are inter-
ested in, the values of f(pk) with k > 1 have little effect on the value of P(f ;x).
(ii) Show that if, in addition, there exists a constant δ > 0 for which∣∣∣1 + f(p)

p
+
f(p2)

p2
+ . . .

∣∣∣ ≥ δ

for every prime p then

P(f ;x) ≍κ,δ,ϵ exp
(
−
∑
p≤x

1− f(p)

p

)
.

(iii)∗ Prove that if |Λf (n)| ≤ Λ(n) for all n then the above hypotheses hold with
κ = 1, ϵ = 1

2 and δ = 1
4 .

Exercise 1.2.8. ∗ Show that if g(.) is multiplicative then
∑
n≥1 |g(n)|/nσ <∞

ex2.0
if and only if

∑
pk |g(pk)|/pkσ <∞.

Exercise 1.2.9. ∗ Deduce, from Proposition
pr2.1
1.2.1 and the previous exercise,ex:Prop2.1

that if
∑
pk |f(pk)− f(pk−1)|/pk <∞ then

∑
n≤x f(n) ∼ xP(f) as x→ ∞.

Exercise 1.2.10. ∗ For any natural number q, prove that for any σ ≥ 0 weex2.2
have ∣∣∣ ∑

n≤x
(n,q)=1

1− ϕ(q)

q
x
∣∣∣ ≤ xσ

∏
p|q

(
1 +

1

pσ

)
.

Taking σ = 0, we obtain the sieve of Eratosthenes bound of 2ω(q).1

(i) Prove that the bound is optimized by the solution to
∑
p|q(log p)/(p

σ +

1) = log x, if that solution is ≥ 0.
(ii) Explain why the bound is of interest only if 0 ≤ σ < 1.

1Where ω(q) denotes the number of distinct primes dividing q.
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(iii) Suppose that the prime factors of q are all ≤ y = x1/u. Selecting σ =

1− log(u log u)
log y , determine when this method allows us to give an asymptotic

estimate for the number of integers up to x, that are coprime with q.
(Hint: Use exercise

ex2.7
1.1.12.)

ex:near1 Exercise 1.2.11. Suppose that f is a multiplicative function “close to 1”, that
is |f(pk) − f(pk−1)| ≤ 1

2pk

(
k+r
r

)
for all prime powers pk, for some integer r ≥ 0.

Prove that ∑
n≤x

f(n) = xP(f) +O((log x)r+1).

(Hint: Use Proposition
pr2.1
1.2.1 with σ = 0, the Taylor expansion for (1− t)−r−1 and

Mertens’ Theorem.)

Exercise 1.2.12. ∗ Let σ(n) =
∑
d|n d. Prove that

ex2.3 ∑
n≤x

µ(n)2σ(n)

ϕ(n)
=

15

π2
x+O(

√
x log x).

Exercise 1.2.13. † Let f be multiplicative and write f = dk ∗ g where k ∈ Nex2.5
and dk deontes the k-divisor function. Assuming that |g| is small, as in Proposition
pr2.1
1.2.1, develop an asymptotic formula for

∑
n≤x f(n).

ex:Pr2.1RightConstant Exercise 1.2.14. Fix κ > 0. Assume that f is a non-negative multiplicative
function and that each |Λf (n)| ≤ κΛ(n).

(i) In the proof of Proposition
Prop2.1
1.2.2, modify the bound on f(n) log(x/n)

using exercise
k-div
1.1.14 , to deduce that for any A > κ,∑

n≤x

f(n) ≤ x

log x+O(1)

(
A
∑
n≤x

f(n)

n
+O

( (log x)κ−1

Γ(κ)

))
(ii) Deduce that 1

x

∑
n≤x f(n) ≤ κ(eγ + o(1)) P(f ;x) +O((log x)κ−2).

The bound in (i) is essentially “best possible” since exercise
k-div
1.1.14 implies that∑

n≤x

dκ(n) ∼ κ
x

log x

∑
n≤x

dκ(n)

n
.

ex:WeightL(x/n) Exercise 1.2.15. Let f be a multiplicative function with each |f(n)| ≤ 1.

(i) Show that
∑
n≤x f(n) log

x
n =

∫ x
t=1

1
t

∑
n≤t f(n) dt.

(ii) Deduce, using Proposition
FirstLip
1.2.4, that∑

n≤x

f(n) log
x

n
−
∑
n≤x

f(n) ≪ x

log x
exp

(∑
p≤x

|1− f(p)|
p

)
.

ex:f(n)f(n+1) Exercise 1.2.16. Suppose that f and g are multiplicative functions with each

|f(n)|, |g(n)| ≤ 1. Define Pp(f) :=
(
1 − 1

p

)(
1 + f(p)

p + f(p2)
p2 + . . .

)
, and then

Pp(f, g) = Pp(f) + Pp(g) − 1. Finally let P(f, g) =
∏
p Pp(f, g). Prove that if∑

p
|1−f(p)|

p ,
∑
p

|1−g(p)|
p <∞ then

lim
x→∞

1

x

∑
n≤x

f(n)g(n+ 1) = P(f, g).





CHAPTER 1.3

Integers without large prime factors

ch:smooths
1.3.1. “Smooth” or “friable” numbers

Let p(n) and P (n) be the smallest and largest prime factors of n, respectively.
Given a real number y ≥ 2, the integers, n, all of whose prime factors are at most
y (that is, for which P (n) ≤ y) are called “y-smooth” or “y-friable”.1 Smooth
numbers appear all over analytic number theory. For example most factoring al-
gorithms search for smooth numbers (in an intermediate step) which appear in a
certain way, since they are relatively easy to factor. Moreover all smooth num-
bers n may be factored as ab, where a ∈ (A/y,A] for any given A, 1 ≤ A ≤ n.
This “well-factorability” is useful in attacking Waring’s problem and in finding
small gaps between consecutive primes (see chapter

ch:MaynardTao
??). However, counting the

y-smooth numbers up to x can be surprisingly tricky. Define

Ψ(x, y) :=
∑
n≤x

P (n)≤y

1.

We can formulate this as a question about multiplicative functions by considering
the multiplicative function given by f(pk) = 1 if p ≤ y, and f(pk) = 0 otherwise.

If x ≤ y then clearly Ψ(x, y) = [x] = x+O(1). Next suppose that y ≤ x ≤ y2.
If n ≤ x is not y-smooth then it must be divisible by a unique prime p ∈ (y, x].
Thus, by exercise

exmertens
1.1.10(i),

Ψ(x, y) = [x]−
∑

y<p≤x

∑
n≤x
p|n

1 = x+O(1)−
∑

y<p≤x

(x
p
+O(1)

)

= x
(
1− log

log x

log y

)
+O

( x

log y

)
.

This formula tempts one to write x = yu, and then, for 1 ≤ u ≤ 2, we obtain

Ψ(yu, y) = yu(1− log u) +O
( yu

log y

)
.

We can continue the process begun above, using the principle of inclusion and
exclusion to evaluate Ψ(yu, y) by subtracting from [yu] the number of integers which
are divisible by a prime larger than y, adding back the contribution from integers
divisible by two primes larger than y, and so on.2 The estimate for Ψ(yu, y) involves
the Dickman-de Bruijn function ρ(u) defined as follows:

1“Friable” is French (and also appears in the O.E.D.) for “crumbly”. Its usage, in this context,
is spreading, because the word “smooth” is already overused in mathematics.

2A result of this type for small values of u may be found in Ramanujan’s unpublished

manuscripts (collected in The last notebook), but the first published uniform results on this
problem are due to Dickman and de Bruijn.

25



26 1.3. INTEGERS WITHOUT LARGE PRIME FACTORS

For 0 ≤ u ≤ 1 let ρ(u) = 1, and let ρ(u) = 1 − log u for 1 ≤ u ≤ 2. For u > 1
we define ρ by means of the differential-difference equation

uρ′(u) = −ρ(u− 1);

indeed there is a unique continuous solution given by the (equivalent) integral
(delay) equation

uρ(u) =

∫ u

u−1

ρ(t)dt.

The integral equation implies (by induction) that ρ(u) > 0 for all u ≥ 0, and
then the differential equation implies that ρ′(u) < 0 for all u ≥ 1, so that ρ(u) is
decreasing in this range. The integral equation implies that uρ(u) ≤ ρ(u− 1), and
iterating this we find that ρ(u) ≤ 1/[u]!.

smooth Theorem 1.3.1. Uniformly for all u ≥ 1 we have

Ψ(yu, y) = ρ(u)yu +O
( yu

log y
+ 1
)
.

In other words, if we fix u > 1 then the proportion of the integers ≤ x that have
all of their prime factors ≤ x1/u, tends to ρ(u), as x→ ∞.

Proof. Let x = yu, and we start with

Ψ(x, y) log x =
∑
n≤x

P (n)≤y

log n+O
(∑
n≤x

log(x/n)
)
=

∑
n≤x

P (n)≤y

logn+O(x).

Using log n =
∑
d|n Λ(d) we have∑

n≤x
P (n)≤y

log n =
∑
d≤x

P (d)≤y

Λ(d)Ψ(x/d, y) =
∑
p≤y

(log p)Ψ(x/p, y) +O(x),

since the contribution of prime powers pk (with k ≥ 2) is easily seen to be O(x).
Thus

E2.10E2.10 (1.3.1) Ψ(x, y) log x =
∑
p≤y

log p Ψ
(x
p
, y
)
+O(x).

(Compare this to the formulae in Exercise
MobPNT
1.1.16.)

Now we show that a similar equation is satisfied by what we think approximates
Ψ(x, y), namely xρ(u). Put E(t) =

∑
p≤t

log p
p − log t so that E(t) = O(1) by

(
Pavg
1.1.10). Now∑

p≤y

log p

p
ρ
( log(x/p)

log y

)
=

∫ y

1

ρ
(
u− log t

log y

)
d(log t+ E(t)),

and making a change of variables t = yν we find that∫ y

1

ρ
(
u− log t

log y

)
d(log t) = (log y)

∫ 1

0

ρ(u− ν)dν = (log x)ρ(u).

Moreover, since E(t) ≪ 1 and ρ is monotone decreasing, integration by parts gives∫ y

1

ρ
(
u− log t

log y

)
d(E(t)) ≪ ρ(u− 1) +

∫ y

1

∣∣∣ d
dt
ρ
(
u− log t

log y

)∣∣∣dt≪ ρ(u− 1).



1.3.1. “SMOOTH” OR “FRIABLE” NUMBERS 27

Thus we find that

E2.11E2.11 (1.3.2) (xρ(u)) log x =
∑
p≤y

log p
(x
p
ρ
( log(x/p)

log y

))
+O(ρ(u− 1)x).

Subtracting (
E2.11
1.3.2) from (

E2.10
1.3.1) we arrive at

E2.12E2.12 (1.3.3) |Ψ(x, y)− xρ(u)| log x ≤
∑
p≤y

log p
∣∣∣Ψ(x

p
, y
)
− x

p
ρ
( log x/p

log y

)∣∣∣+ Cx,

for a suitable constant C.
Suppose that the Theorem has been proved for Ψ(z, y) for all z ≤ x/2, and we

now wish to establish it for x. We may suppose that x ≥ y2, and our induction
hypothesis is that for all t ≤ x/2 we have∣∣∣Ψ(t, y)− tρ

( log t
log y

)∣∣∣ ≤ C1

( t

log y
+ 1
)
,

for a suitable constant C1. From (
E2.12
1.3.3) we obtain that

|Ψ(x, y)−xρ(u)| log x ≤ C1

∑
p≤y

log p
( x

p log y
+1
)
+Cx ≤ C1x+O

( x

log y
+y
)
+Cx.

Assuming, as we may, that C1 ≥ 2C and that y is sufficiently large, the right hand
side above is ≤ 2C1x, and we conclude that |Ψ(x, y)−xρ(u)| ≤ C1x/ log y as u ≥ 2.
This completes our proof. □

Now ρ(u) ≤ 1/[u]! decreases very rapidly. Therefore the main term in Theorem
smooth
1.3.1 dominates the remainder term only in the narrow range when uu ≪ log y.
However the asymptotic Ψ(yu, y) ∼ ρ(u)yu has been established in a much wider
range than in Theorem

smooth
1.3.1 by Hildebrand

Hild86
[?],3 who showed that

HildPsiHildPsi (1.3.4) Ψ(yu, y) = ρ(u)yu
{
1 +O

(
log(u+ 1)

log y

)}
for y ≥ exp((log log x)2) where x = yu. This is an extraordinarily wide range, given
that Hildebrand also showed that this asymptotic holds in the only slightly larger
range y ≥ (log x)2+o(1) if and only if the Riemann Hypothesis is true.

One can prove Theorem
smooth
1.3.1 in a number of ways. The key to the proof that

we gave is the identity (
E2.10
1.3.1), but there are other identities that one can use.

Indeed few are more elegant than de Bruijn’s identity:

EDeBEDeB (1.3.5) Ψ(x, y) = [x]−
∑

y<p≤x

Ψ
(x
p
, p
)
+O(x).

However, this works out less successfully than (
E2.10
1.3.1), perhaps because only the X-

variable in Ψ(X,Y ) varies in (
E2.10
1.3.1), whereas both variables vary in (

EDeB
1.3.5).

How does the result in Theorem
smooth
1.3.1 compare to the heuristic of chapter

C2
1.2?

If f(pk) = 1 if prime p ≤ y and f(pk) = 0 otherwise then Ψ(x, y) =
∑
n≤x f(n).

The heuristic of chapter
C2
1.2 then proposes the asymptotic x

∏
y<p≤x(1−

1
p ) ∼ x/u

by Mertens’ Theorem. This is far larger than the actual asymptotic ∼ xρ(u) of
Theorem

smooth
1.3.1, since ρ(u) ≤ 1/[u]! (and a more precise estimate is given in exercise

3Hildebrand’s proof uses a strong form of the prime number theorem, which we wish to avoid,
since one of our goals is provide a different, independent proof of a strong prime number theorem.
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ex2.9
1.3.6). Hence, removing the multiples of the small primes leaves far fewer integers
than the heuristic suggests.

1.3.2. Rankin’s trick and beyond, with applications

Good upper bounds may be obtained for Ψ(x, y), uniformly in a wide range, by
a simple application of Rankin’s trick (recall Exercise

ex2.1
1.2.2). Below we shall write

ζ(s, y) =
∏
p≤y

(
1− 1

ps

)−1

=
∑
n≥1

P (n)≤y

n−s,

where the product and the series are both absolutely convergent in the half-plane
Re(s) > 0.

Exercise 1.3.1. ∗ (i) Show that, for any real numbers x ≥ 1 and y ≥ 2,ex2.6
the function xσζ(σ, y) for σ ∈ (0,∞) attains its minimum when σ = α = α(x, y)
satisfying

log x =
∑
p≤y

log p

pα − 1
.

(ii) Use Rankin’s trick (see Exercise
ex2.1
1.2.2) to show that

Ψ(x, y) ≤
∑
n≥1

P (n)≤y

min
{
1,
x

n

}
≤ xαζ(α, y) = min

σ>0
xσζ(σ, y).

(iii) Establish a wide range in which∑
n≥1

P (n)≤y

min
{
1,
x

n

}
∼ x log y ·

∫ ∞

u

ρ(t)dt.

By a more sophisticated argument, using the saddle point method, Hildebrand
and Tenenbaum

HTPsi
[?] established an asymptotic formula for Ψ(x, y) uniformly in

x ≥ y ≥ 2:

HilTenHilTen (1.3.6) Ψ(x, y) =
xαζ(α, y)

α
√
2πϕ2(α, y)

(
1 +O

( 1
u

)
+O

( log y
y

))
,

with α as in Exercise
ex2.6
1.3.1(i), ϕ(s, y) = log ζ(s, y) and ϕ2(s, y) =

d2

ds2ϕ(s, y). This

work implies that if y ≥ (log x)1+δ then the (easy) upper bound obtained in Exercise
ex2.6
1.3.1(ii) is larger than Ψ(x, y) by a factor of about

√
u log y, that is Ψ(x, y) ≍

xαζ(α, y)/(
√
u log y). However, in Exercise

ex2.6
1.3.1(ii), we saw that Rankin’s method

really gives an upper bound on min{1, xn}, summed over all y-smooth n. The result
of Exercise

ex2.6
1.3.1(ii) then implies that the upper bound is too large by a factor of

only ≍
√
u log u.

We now improve Rankin’s upper bound, yielding an upper bound for Ψ(x, y)
which is also too large by a factor of only ≍

√
u log u.

Rankin2 Proposition 1.3.2. Let x ≥ y ≥ 3 be real numbers. There is an absolute
constant C such that for any 0 < σ ≤ 1 we have

Ψ(x, y) ≤ C
y1−σ

σ log x
xσζ(σ, y).
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Proof. We consider∑
n≤x

P (n)≤y

log n =
∑
n≤x

P (n)≤y

∑
n=dm

Λ(d) =
∑
m≤x

P (m)≤y

∑
d≤x/m
P (d)≤y

Λ(d).

The inner sum over d is∑
p≤min(y,x/m)

log p
[ log(x/m)

log p

]
≤

∑
p≤min(y,x/m)

log(x/m)

= min(π(y), π(x/m)) log(x/m),

and so we find that

Ψ(x, y) log x =
∑
n≤x

P (n)≤y

(
log n+ log(x/n)

)

≤
∑
n≤x

P (n)≤y

(
min(π(y), π(x/n)) + 1

)
log(x/n).

We now use the Chebyshev bound π(x) ≪ x/ log x (see (
Cheb1
1.1.7)), together with the

observation that for any 0 < σ ≤ 1 and n ≤ x we have

y1−σ(x/n)σ

σ
≥

{
x/n if x/y ≤ n ≤ x

y log(x/n)/ log y if n ≤ x/y.

Thus we obtain that

Ψ(x, y) log x≪
∑
n≤x

P (n)≤y

y1−σ

σ

(x
n

)σ
≤ y1−σ

σ
xσζ(σ, y),

as desired. □

1.3.3. Large gaps between primes

We now apply our estimates for smooth numbers to construct large gaps be-
tween primes. The gaps between primes get arbitrarily large since each of m! +
2,m! + 3, . . . ,m! +m are composite, so if p is the largest prime ≤ m! + 1, and q
the next prime, then q − p ≥ m. Note that m ∼ log p/(log log p) by Stirling’s for-
mula (Exercise

ex:stirling
1.1.5), whereas we expect, from (

PNT
1.1.1), gaps as large as log p. Can

such techniques establish that there are gaps between primes that are substantially
larger than log p (and substantially smaller)? That is, if p1 = 2 < p2 = 3 < . . . is
the sequence of prime numbers then

LargePrimeGapsLargePrimeGaps (1.3.7) lim sup
n→∞

pn+1 − pn
log pn

= ∞.

In section
ch:MaynardTao
?? we will return to such questions and prove that

SmallPrimeGapsSmallPrimeGaps (1.3.8) lim inf
n→∞

pn+1 − pn
log pn

= 0.

long gaps Theorem 1.3.3. There are arbitrarily large pn for which

pn+1 − pn ≥ 1

2
log pn

(log log pn) log log log log pn
(log log log pn)2

.

In particular (
LargePrimeGaps
1.3.7) holds.
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Proof. The idea is to construct a long sequence of integers, each of which is
known to be composite since it divisible by a small prime. Let m =

∏
p≤z p. Our

goal is to show that there exists an interval (T, T + x] for which (T + j,m) > 1 for
each j, 1 ≤ j ≤ x, with T > z (so that every element of the interval is composite).
Erdős formulated an easy way to think about this problem

The Erdős shift : There exists an integer T for which (T + j,m) > 1 for each
j, 1 ≤ j ≤ x if and only if for every prime p|m there exists a residue class ap
(mod p) such that for each j, 1 ≤ j ≤ x there exists a prime p|m for which j ≡ ap
(mod p).

Proof of the Erdős shift. Given T , let each ap = −T , since if (T+j,m) >
1 then there exists a prime p|m with p|T + j and so j ≡ −T ≡ ap (mod p). In the
other direction select T ≡ −ap (mod p) for each p|m, using the Chinese Remainder
Theorem, and so if j ≡ ap (mod p) then T + j ≡ (−ap) + ap ≡ 0 (mod p) and so
p|(T + j,m). □

The y-smooth integers up to x, can be viewed as the set of integers up to x,
with the integers in the residue classes 0 (mod p) sieved out, by each prime p in the
range y < p ≤ x. The proportion of the integers that are left unsieved is ρ(u) (as
we proved above), which is roughly 1/uu. This is far smaller than the proportion
suggested by the usual heuristic:4∏

y<p≤x

(
1− 1

p

)
∼ log y

log x
=

1

u
,

by Mertens’ Theorem.
To construct as long an interval as possible in which every integer has a small

prime factor, we need to sieve as efficiently as possible, and so we adapt the smooth
numbers to our purpose. This is the key to the Erdős-Rankin construction (and
indeed, it is for this purpose, that Rankin introduced his moment method). We
will partition the primes up to x into three parts, those ≤ y, those in (y, ϵz], and
those in (ϵz, z] where ϵ is a very small constant. We select y and z to be optimal
in the proof below; good choices turn out to be

x = yu with u = (1 + ϵ)
log log x

log log log x
; and z =

x

log x
· (log log x)

2

log log log x
.

Notice that y · ϵz ≥ x, and that Ψ(x, y) = o(x/ log x) by Exercise
ex2.8
1.3.5.

(I) We select the congruence classes ap = 0 (mod p) for each prime p ∈ (y, ϵz]. Let

N0 := {n ≤ x : n ̸∈ 0 (mod p) for all p ∈ (y, ϵz]}.

The integers n counted in N0 either have a prime factor p > ϵz or not. If they
do then we can write n = mp so that m = n/p ≤ x/ϵz ≤ y and therefore m is
composed only of prime factors ≤ y. Otherwise if n does not have a large prime
factor then all of its prime factors are ≤ y. By this decomposition, (

Cheb1
1.1.7) and then

4For a randomly chosen interval, the proportion of integers removed when we sieve by the

prime p is 1
p
; and the different primes act “independently”.
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Exercise
exmertens
1.1.10, we have

#N0 =
∑

ϵz<p<x

[x/p] + Ψ(x, y) =
∑

ϵz<p<x

x

p
+O

(
x

log x

)
= x log

(
log x

log ϵz

)
+O

(
x

log x

)
∼ x

log log x

log x
.

(II) Now for each consecutive prime pj ≤ y let

Nj : = {n ∈ N0 : n ̸∈ ap (mod p) for all p = p1, . . . , pj}
= {n ∈ Nj−1 : n ̸∈ ap (mod p) for p = pj}.

We select ap for p = pj so as to maximize #{n ∈ Nj−1 : n ≡ ap (mod p)}, which
must be at least the average 1

p #Nj−1. Hence #Nj ≤ (1− 1
pj
)#Nj−1, and so if pk

is the largest prime ≤ y then, by induction, we obtain that

r := #Nk ≤
∏
p≤y

(
1− 1

p

)
#N0 ∼ e−γ

log y
x
log log x

log x
∼ e−γ(1 + ϵ)

z

log z

using Mertens’ Theorem. This implies that r < #{p ∈ (ϵz, z]} using (
Cheb1
1.1.7) (which

we proved there with constant c = log 2), since e−γ < log 2.

(III) Let Nk = {b1, . . . , br}, and let pℓ+1 < pℓ+2 < . . . < pℓ+r be the r smallest
primes in (ϵz, z]. Now let ap = bj for p = pℓ+j for j =, 2, . . . , r. Hence every integer
n ≤ x belongs to an arithmetic progression ap (mod p) for some p ≤ z.

We have now shown how to choose ap (mod p) for each p ≤ z so that every
n ≤ x belongs to at least one of these arithmetic progressions. By the Erdős shift
we know that there exists T (mod m), where m =

∏
p≤z p for which (T + j,m) > 1

for 1 ≤ j ≤ x. We select T ∈ (m, 2m] to guarantee that every element of the
interval (T, T + x] is greater than any of the prime factors of m. Hence if pn is the
largest prime ≤ T , then pn+1 − pn > x.

We need to determine how big this gap is compared to the size of the primes
involved. Now pn ≤ 2m and logm ≤ ψ(z) ≤ z log 4 + O(log z) by (

Cheb1
1.1.7), so that

z ≥ 2
3 log pn. This implies the theorem. □
Exercise 1.3.2. ∗ Assuming the prime number theorem, improve the constant

1
2 in this lower bound to eγ + o(1). 5

The Erdős shift for arithmetic progressions: It is not difficult to modify the above
argument to obtain large gaps between primes in any given arithmetic progression.
However there is a direct connection between strings of consecutive composite num-
bers, and strings of consecutive composite numbers in an arithmetic progression:
Let m be the product of a finite set of primes that do not divide q. Select integer
r for which qr ≡ 1 (mod m). Hence

(a+ jq,m) = (ar + jqr,m) = (ar + j,m),

and so, for T = ar,

ErdosShiftErdosShift (1.3.9) #{1 ≤ j ≤ N : (a+ jq,m) = 1} = #{1 ≤ j ≤ N : (T + j,m) = 1}.

5Using additional ideas, this has recently
FGKT, Mayn2
[?, ?] been improved to allow any constant c > 0 in

place of 1
2
, resolving the great Paul Erdős’s favourite challenge problem. We shall return to this

in chapter
SelbergWtsAgain
??.
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In other words, the sieving problem in an arithmetic progression is equivalent to
sieving an interval.

1.3.4. Additional exercises

ex:3.4 Exercise 1.3.3. Suppose that f is a non-negative multiplicative function, for
which f(pk) = 0 if p > y, and

∑
d≤D Λf (d) ≪ min{D, y logD

log y } for all D ≥ 1. Prove

that ∑
n≤x

f(n) ≪ y1−σ

σ log x
xσF (σ)

for any 0 < σ ≤ 1. When is this an improvement on the bound in Exercise
ex2.1
1.2.2?

Exercise 1.3.4. Prove that if f is a non-negative arithmetic function, and
F (σ) is convergent for some 0 < σ < 1 then∑

n≤x

f(n) + x
∑
n>x

f(n)

n
≤ xσ

σ log x
(F (σ)− σF ′(σ)).

(Hints: Either study the coefficient of each f(n); or bound
∑
n≤x f(n) log(x/n)

by integrating by parts, using the first part of Exercise
ex2.1
1.2.2, and then apply the

second part of Exercise
ex2.1
1.2.2 for (−F ′).)

Exercise 1.3.5. † For x = yu with y > (log x)2, let σ = 1 − log(u log u)
log y . If

ex2.8
y ≤ (log x)2, let σ = 1

2 + ϵ.
(i) Deduce from Proposition

Rankin2
1.3.2 and exercise

ex2.1
1.2.2(ii), together with exercise

ex2.7
1.1.12, that there exists a constant C > 0 such that

Ψ(x, y) +
∏
p≤y

(
1− 1

p

) ∑
n>x

P (n)≤y

x

n
≪ x

(
C

u log u

)u
+ x1/2+o(1).

(Hint: For small y, show that ζ(σ, y) ≪ xo(1).)
(ii) Suppose that f is a multiplicative function with 0 ≤ f(n) ≤ 1 for all integers
n, supported only on the y-smooth integers. Prove that∑

n>x
P (n)≤y

f(n)

n
≪
((

C

u log u

)u
+

1

x1/2+o(1)

)∏
p≤y

(
1 +

f(p)

p
+
f(p2)

p2
+ . . .

)
,

where x = yu with u ≥ 1. (Hint: Prove the result for totally multiplicative f , by
using exercise

SumCompare
1.2.3 to bound R(f ;∞)−R(f ;x) in terms of the analogous sum for

the characteristic function for the y-smooth integers. Then extend this result to all
such f .)
(iii) Suppose now that f is a multiplicative function with 0 ≤ f(n) ≤ dκ(n) for
all integers n, supported only on the y-smooth integers. State and prove a result
analogous to (ii). (Hint: One replaces C by Cκ. One should treat the primes p ≤ 2κ
by a separate argument)

ex2.9 Exercise 1.3.6. Prove that

ρ(u) =

(
e+ o(1)

u log u

)u
.
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(Hint: Select c maximal such that ρ(u) ≫ (c/u log u)u. By using the functional
equation for ρ deduce that c ≥ e. Take a similar approach for the implicit upper
bound.)

Exercise 1.3.7. ∗ A permutation π ∈ Sn ism-smooth if its cycle decompositionex2.10
contains only cycles with length at most m. Let N(n,m) denote the number of m-
smooth permutations in Sn. (i) Prove that

n
N(n,m)

n!
=

m∑
j=1

N(n− j,m)

(n− j)!
.

(ii) Deduce that N(n,m) ≥ ρ(n/m)n! holds for all m, n ≥ 1.
(iii)† Prove that there is a constant C such that for all m, n ≥ 1, we have

N(n,m)

n!
≤ ρ
( n
m

)
+
C

m
.

(One can take C = 1 in this result.)
Therefore, a random permutation in Sn is n/u-smooth with probability → ρ(u) as
n→ ∞.





CHAPTER 1.4

Selberg’s sieve applied to an arithmetic
progression

In order to develop the theory of mean-values of multiplicative functions, we
shall need an estimate for the number of primes in short intervals. We need only
an upper estimate for the number of such primes, and this can be achieved by a
simple sieve method, and does not need results of the strength of the prime number
theorem. We describe a beautiful method of Selberg which works well in this and
many other applications. In fact, several different sieve techniques would also work;
see, e.g., Friedlander and Iwaniec’s Opera de Cribro for a thorough treatment of
sieves and their many applications.

1.4.1. Selberg’s sieve
C71

Let I be the set of integers in the interval (x, x+y], that are ≡ a (mod q). For
a given integer P which is coprime to q, we wish to estimate the number of integers
in I that are coprime to P ; that is, the integers that remain when I is sieved (or
sifted) by the primes dividing P . Selberg’s sieve yields a good upper bound for
this quantity. Note that this quantity, plus the number of primes dividing P , is
an upper bound for the number of primes in I; selecting P well will give us the
Brun-Titchmarsh theorem. When P is the product of the primes ≤ x1/u, other
than those that divide q, we will obtain (for suitably large u) strong upper and
lower bounds for the size of the sifted set; this result, which we develop in Section
C73
1.4.2, is a simplified version of the fundamental lemma of sieve theory.

Let λ1 = 1 and let λd be any sequence of real numbers for which λd ̸= 0 only
when d ∈ S(R,P ), which is the set of integers d ≤ R such that d is composed
entirely of primes dividing P (where R is a parameter to be chosen later). We say
that λ is supported on S(R,P ). Selberg’s sieve is based on the simple idea that
squares of real numbers are ≥ 0, and so(∑

d|n

λd

)2
is

{
= 1 if (n, P ) = 1

≥ 0 always.

Therefore we obtain that ∑
n∈I

(n,P )=1

1 ≤
∑
n∈I

(∑
d|n

λd

)2
.

Expanding out the inner sum over d, the first term on the right hand side above is∑
d1,d2

λd1λd2
∑

x<n≤x+y
n≡a (mod q)

[d1,d2]|n

1,

35
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where [d1, d2] denotes the l.c.m. of d1 and d2. Since P is coprime to q, we have
λd = 0 whenever (d, q) ̸= 1. Therefore the inner sum over n above is over one
congruence class (mod q[d1, d2]), and so within 1 of y/(q[d1, d2]). We conclude
that ∑

n∈I
(n,P )=1

1 ≤ y

q

∑
d1,d2

λd1λd2
[d1, d2]

+
∑
d1,d2

|λd1λd2 |

=
y

q

∑
d1,d2

λd1λd2
[d1, d2]

+
(∑

d

|λd|
)2

E3.1E3.1 (1.4.1)

The second term here is obtained from the accumulated errors obtained when
we estimated the number of elements of I in given congruence classes. In order that
each error is small compared to the main term, we need that 1 is small compared
to y/(q[d1, d2]), that is [d1, d2] should be small compared to y/q. Now if d1, d2 are

coprime and close to R then this forces the restriction that R≪
√
y/q.

The first term in (
E3.1
1.4.1) is a quadratic form in the variables λd, which we wish

to minimize subject to the linear constraint λ1 = 1. Selberg made the remarkable
observation that this quadratic form can be elegantly diagonalized, which allowed
him to determine the optimal choices for the λd: Since [d1, d2] = d1d2/(d1, d2),
and (d1, d2) =

∑
ℓ|(d1,d2) ϕ(ℓ) we have

E3.2E3.2 (1.4.2)
∑
d1,d2

λd1λd2
[d1, d2]

=
∑
ℓ

ϕ(ℓ)
∑
ℓ|d1
ℓ|d2

λd1
d1

λd2
d2

=
∑
ℓ

ϕ(ℓ)

ℓ2

(∑
d

λdℓ
d

)2
=
∑
ℓ

ϕ(ℓ)

ℓ2
ξ2ℓ ,

where each

ξℓ =
∑
d

λdℓ
d
.

So we have diagonalized the quadratic form. Note that if ξℓ ̸= 0 then ℓ ∈ S(R,P ),
just like the λd’s.

We claim that (
E3.2
1.4.2) provides the desired diagonalization of the quadratic

form. To prove this, we must show that this change of variables is invertible, which
is not difficult using the fact that µ ∗ 1 = δ. Thus

λd =
∑
ℓ

λdℓ
ℓ

∑
r|ℓ

µ(r) =
∑
r

µ(r)
∑
r|ℓ

λdℓ
ℓ

=
∑
r

µ(r)

r
ξdr.

In particular, the constraint λ1 = 1 becomes

E3.3E3.3 (1.4.3) 1 =
∑
r

µ(r)

r
ξr.

We have transformed our problem to minimizing the diagonal quadratic form in
(
E3.2
1.4.2) subject to the constraint in (

E3.3
1.4.3). Calculus reveals that the optimal choice

is when ξr is proportional to µ(r)r/ϕ(r) for each r ∈ S(R,P ) (and 0 otherwise).
The constant of proportionality can be determined from (

E3.3
1.4.3) and we conclude

that the optimal choice is to take (for r ∈ S(R,P ))

E3.4E3.4 (1.4.4) ξr =
1

L(R;P )

rµ(r)

ϕ(r)
where L(R;P ) :=

∑
r≤R

p|r =⇒ p|P

µ(r)2

ϕ(r)
.
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For this choice, the quadratic form in (
E3.2
1.4.2) attains its minimum value, which is

1/L(R;P ). Note also that for this choice of ξ, we have (for d ∈ S(R,P ))

λd =
1

L(R;P )

∑
r≤R/d

p|r =⇒ p|P

dµ(r)µ(dr)

ϕ(dr)
,

and so

E3.5E3.5 (1.4.5)
∑
d≤R

|λd| ≤
1

L(R;P )

∑
d,r
dr≤R

p|dr =⇒ p|P

µ(dr)2d

ϕ(dr)
=

1

L(R;P )

∑
n≤R

p|n =⇒ p|P

µ(n)2σ(n)

ϕ(n)
,

where σ(n) =
∑
d|n d.

Putting these observations together, we arrive at the following Theorem.

thm7.1 Theorem 1.4.1. Suppose that (P, q) = 1. The number of integers from the
interval [x, x+y] that are in the arithmetic progression a (mod q), and are coprime
to P , is bounded above by

y

qL(R;P )
+

1

L(R;P )2

( ∑
n≤R

p|n =⇒ p|P

µ(n)2σ(n)

ϕ(n)

)2
for any given R ≥ 1, where L(R;P ) is as in (

E3.4
1.4.4).

1.4.2. The Fundamental Lemma of Sieve Theory
C73

We will need estimates for the number of integers in an interval of an arith-
metic progression that are left unsieved by a subset of the primes up to some
bound. Sieve theory provides a strong estimate for this quantity, and indeed the
fundamental Lemma of sieve theory provides an extraordinarily precise answer for
a big generalization of this question. Given our limited needs we will provide a
self-contained proof, though note that it is somewhat weaker than what follows
from the strongest known versions of the fundamental lemma.

FLS Theorem 1.4.2 (The Fundamental Lemma of Sieve Theory). Let P be an in-
teger with (P, q) = 1, such that every prime factor of P is ≤ (y/q)1/u for some
given u ≥ 1. Then, uniformly, we have∑

x<n≤x+y
(n,P )=1

n≡a (mod q)

1 =
y

q

ϕ(P )

P

(
1 +O(u−u/2)

)
+O

((y
q

)3/4+o(1))
.

As mentioned already, one can obtain stronger results by other methods. In
particular, the error terms above may be improved to O(u−u) in place of O(u−u/2),
and O((y/q)1/2+o(1)) in place of O((y/q)3/4+o(1)).

We will obtain the upper bound of the Fundamental Lemma by directly ap-
plying Theorem

thm7.1
1.4.1 and using our understanding of multiplicative functions to

evaluate the various terms there.
We will deduce the lower bound from the upper bound, via a sieve identity,

which is a technique that often works in sieve theory. We have already seen sieve
identities in the previous chapter (e.g. (

E2.10
1.3.1) and (

EDeB
1.3.5)), and they are often used

to turn upper bounds into lower bounds. In this case we wish to count the number
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of integers in a given set I that are coprime to a given integer P . We begin by

writing P = p1 · · · pk with p1 < p2 < . . . < pk, and Pj =
∏j−1
i=1 pi for each j > 1,

with P1 being interpreted as 1. Since every element in I is either coprime to P , or
its common factor with P has a smallest prime factor pj for some j, we have

SieveId1SieveId1 (1.4.6) #{n ∈ I : (n, P ) = 1} = #I −
k∑
j=1

#{n ∈ I : pj |n and (n, Pj) = 1}.

Good upper bounds on each #{n ∈ I : pj |n and (n, Pj) = 1} will therefore yield a
good lower bound on #{n ∈ I : (n, P ) = 1}.

Proof. We again let I := {n ∈ (x, x + y] : n ≡ a (mod q)}. We prove

the upper bound using Theorem
thm7.1
1.4.1 with R =

√
y/q. Therefore if p|P then

p ≤ y := R2/u, and so

L(R;P ) =
∑
r≥1

p|r =⇒ p|P

µ(r)2

ϕ(r)
+O

( ∑
r>R

p|r =⇒ p|P

µ(r)2

ϕ(r)

)

=
P

ϕ(P )

{
1 +O

(( C

u log u

)u/2
+

1

R1/2+o(1)

)}
by exercise

ex2.8
1.3.5(iii) with κ = 2 for the error term. Moreover, by the Cauchy-

Schwarz inequality, and then exercises
ex:near1
1.2.11 and

ex2.8
1.3.5(i), we have( ∑

n≤R
p|n =⇒ p|P

µ(n)2σ(n)

ϕ(n)

)2
≤
(∑
n≤R

σ(n)2

ϕ(n)2

)
Ψ(R,R2/u) ≪ R2

( C

u log u

)u/2
.

Inserting these estimates into the bound of Theorem
thm7.1
1.4.1, yields the upper bound∑

n∈I
(n,P )=1

1 ≤ y

q

ϕ(P )

P

(
1 +O

(( C

u log u

)u/2))
+O

((y
q

)3/4+o(1))
,

which implies the upper bound claimed, with improved error terms.
We now prove the lower bound using (

SieveId1
1.4.6), and that #I = y/q +O(1). The

upper bound that we just proved implies that∑
n∈I
pj |n

(n,Pj)=1

1 =
∑

x/pj<n≤(x+y)/pj
(n,Pj)=1

n≡ap−1
j (mod q)

1

≤ y

qpj

ϕ(Pj)

Pj

(
1 +O

(( C

uj log uj

)uj/2))
+O

(( y

qpj

)3/4+o(1))
,

where uj := log(y/qpj)/ log pj . Inserting this into (
SieveId1
1.4.6), for the main term we

have

1−
k∑
j=1

1

pj

ϕ(Pj)

Pj
=
ϕ(P )

P
.

Since the second error term is larger than the first only when u → ∞, hence
when we sum over all pj , the second error term remains ≪ (y/q)3/4+o(1). For the
first error term we begin by noting that uj = log(y/q)/ log pj − 1 ≥ u − 1 and so
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(uj/u)
2(C/uj log uj)

uj/2 ≪ (C ′/u log u)u/2 for some constant C ′ > 0. We deal with
the sum over j by then noting that ϕ(Pj)/Pj ≪ (uj/u)ϕ(P )/P and so

k∑
j=1

1

pj

ϕ(Pj)

Pj

u2

u2j
≪ ϕ(P )

P

u

log(y/q)

∑
p≤(y/q)1/u

log p

p
≪ ϕ(P )

P
,

by (
Pavg
1.1.10). This completes our proof. □
Exercise 1.4.1. ∗ Suppose that y, z, q are integers for which log q ≤ z ≤ y/q,FLS3

and let m =
∏
p≤z p. Use the Fundamental Lemma of Sieve Theory to prove that

if (a, q) = 1 then ∑
x<n≤x+y

n≡a (mod q)
(n,m)=1

1 ≪ y

ϕ(q) log z
.

Taking the special case here with z = (y/q)1/2 , and trivially bounding the num-
ber of primes ≤ z that are ≡ a (mod q), we deduce the most interesting corollary
to Theorem

FLS
1.4.2:

BTfromFLS Corollary 1.4.3 (The Brun-Titchmarsh Theorem). Let π(x; q, a) denote the
number of primes p ≤ x with p ≡ a (mod q). There exists a constant κ > 0 such
that

π(x+ y; q, a)− π(x; q, a) ≤ κy

ϕ(q) log(y/q)
.

1.4.3. A stronger Brun-Titchmarsh Theorem

We have just seen that sieve methods can give an upper bound for the number
of primes in an interval (x, x + y] that belong to the arithmetic progression a
(mod q). The smallest explicit constant κ known for Corollary

BTfromFLS
1.4.3 is κ = 2, due

to Montgomery and Vaughan, which we prove in this section using the Selberg
sieve:

BTstrong Theorem 1.4.4. There is a constant C > 1 such that if y/q ≥ C then

OurBTOurBT (1.4.7) π(x+ y; q, a)− π(x; q, a) ≤ 2y

ϕ(q) log(y/q)
,

for any arithmetic progression a (mod q) with (a, q) = 1.

Since π(x + y; q, a) − π(x; q, a) ≤ y/q + 1, we deduce (
OurBT
1.4.7) for q ≤ y ≤

q exp(q/ϕ(q)).
One can considerably simplify proofs in this area using Selberg’s monotonicity

principle: For given integers ω(p) < p, for each prime p, and any integer N , define

S+(N, {ω(p)}p) := max
I an interval
#(I∩Z)=N

max
Ω(p)⊂Z/pZ ∀p
#Ω(p)=ω(p)

#{n ∈ I : n ̸∈ Ω(p) for all primes p}

#I
∏
p

(
1− ω(p)

p

)
where the first “max” is over all intervals containing exactly N integers, and the
second “max” is over all sets Ω(p) of ω(p) residue classes mod p, for each prime p.
We can analogously define S−(N, {ω(p)}p) as the minimum.

Selbergmonotone Lemma 1.4.5 (Selberg’s monotonicity principle). If ω1(p) ≤ ω2(p) for all primes
p then, for all integers N ≥ 1,

S+(N, {ω2(p)}p) ≥ S+(N, {ω1(p)}p) ≥ S−(N, {ω1(p)}p) ≥ S−(N, {ω2(p)}p).
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Proof. We shall establish the result when ω′(p) = ω(p) for all primes p ̸= q,
and ω′(q) = ω(q) + 1, and then the full result follows by induction. So given the
sets {Ω(p)}p and an interval I, let N := {n ∈ I : n ̸∈ Ω(p) for all primes p}. Let
m be the product of all primes p ̸= q with ω(p) ̸= 0, and then define Ij := I + jm
for j = 0, 1, . . . , q − 1. Define J := {j ∈ [0, q − 1] : −jm ̸∈ Ω(q)} so that
#J = q − ω(q). Let Ωj(p) = Ω(p) for all p ̸= q and Ωj(q) = (Ω(q) + jm) ∪ {0};
notice that #Ωj(q) = #Ω(q)+1 whenever j ∈ J . Moreover, lettingNj := {n+jm ∈
Ij : n+ jm ̸∈ Ωj(p) for all primes p} we have

#Nj = #N \#{n ∈ N : n ≡ −jm (mod q)}.

We sum this equality over every j ∈ J . Notice that each n ∈ N satisfies n ≡ −jm
(mod q) for a unique j ∈ J , and hence

∑
j∈J #Nj = (#J − 1)#N , which implies

that

#N ≤ (1− ω(q)/q)

(1− ω′(q)/q)
max
j∈J

#Nj ;

and therefore S+(N, {ω(p)}p) ≤ S+(N, {ω′(p)}p). The last step can be reworked,
analogously, to also yield S−(N, {ω(p)}p) ≥ S−(N, {ω′(p)}p). □

Proof of Theorem
BTstrong
1.4.4. Let P be the set of primes ≤ R so that Proposi-

tion
NasProp
1.2.5 (with σ = 3

4 say) yields

L(R;P ) ≥ logR+ γ′ + o(1)

where γ′ := γ +
∑
p

log p
p(p−1) ; and Exercise

ex2.3
1.2.12 gives that∑

n≤R

µ(n)2σ(n)

ϕ(n)
=

15

π2
R+ o(R).

Inserting these estimates into Theorem
thm7.1
1.4.1 with R := π2

15

√
y
2 we deduce that

FirstSieveFirstSieve (1.4.8) #{n ∈ [x, x+ y) : (n, P ) = 1} ≤ 2y

log y + c+ o(1)

where c := 2γ′ − 1− log 2 + 2 log(π2/15) = 0.1346 . . . This implies (
OurBT
1.4.7) for q = 1

when y ≥ C, for some constant C (given by when c+ o(1) > 0).
Given y and q, let Y = y/q and let m be the product of the primes ≤ R that

do not divide q. Suppose that Y ≥ C.
Let {a + jq : 1 ≤ j ≤ N} be the integers ∈ (x, x + y] in the arithmetic

progression a (mod q) (so thatN = Y +O(1)). By (
ErdosShift
1.3.9) we know that the number

of these integers that are coprime to m, equals exactly the number of integers in
some interval of length N that are coprime to m, and this is ≤ S+(N, {ω1(p)}p),
by definition, where Ω1(p) = {0} for each p|m and Ω1(p) = ∅ otherwise. Now
suppose that Ω2(p) = {0} for each p|P and Ω2(p) = ∅ otherwise, so that Selberg’s
monotonicity principle implies that S+(N, {ω1(p)}p) ≤ S+(N, {ω2(p)}p). In other
words

max
x

#{n ∈ (x, x+N ] : (n,m) = 1} ≤ P/m

ϕ(P/m)
·max
T

#{n ∈ (T, T+N ] : (n, P ) = 1},

and the result follows from (
FirstSieve
1.4.8) since P/m divides q.

□
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1.4.4. Sieving complex-valued functions

In our subsequent work we shall need estimates for∑
n≤x

(n,P )=1

nit,

where t is some real number, and P is composed of primes smaller than some
parameter y. It is perhaps unusual to sieve the values of a complex valued function
(since the core of every sieve methods involves sharp inequalities). In this section
we show that the estimates developed so far allow such a variant of the fundamental
lemma.

FLit Proposition 1.4.6. Let t and y be real numbers with y ≥ 1+ |t| and let x = yu

with u ≥ 1. Let P be an integer composed of primes smaller than y. Then∑
n≤x

(n,P )=1

nit =
x1+it

1 + it

ϕ(P )

P
+O

(
x
ϕ(P )

P
u−u/2 + x

3
4+ϵ
)
.

Proof. Let λd be weights as in Selberg’s sieve, supported on the set S(R,P ).
Since (

∑
d|n λd)

2 is at least 1 if (n, P ) = 1 and non-negative otherwise, it follows

that

FLit1FLit1 (1.4.9)
∑
n≤x

(n,P )=1

nit =
∑
n≤x

nit
(∑
d|n

λd

)2
+O

(∑
n≤x

(∑
d|n

λd

)2
−

∑
n≤x

(n,P )=1

1
)
.

The error term here is precisely that considered in the proof of Theorem
FLS
1.4.2 and

so we can use the bound from there.
A straightforward argument using partial summation shows that∑

n≤N

nit =
N1+it

1 + it
+O((1 + |t|) logN),

and therefore for any d∑
n≤N
d|n

nit = dit
∑

m≤N/d

mit =
1

d
· N

1+it

1 + it
+O((1 + |t|) logN).

Therefore the main term in (
FLit1
1.4.9) equals∑

d1,d2

λd1λd2
∑
n≤x

[d1,d2]|n

nit =
x1+it

1 + it

∑
d1,d2

λd1λd2
[d1, d2]

+O
(
(1 + |t|) log x

(∑
d

|λd|
)2)

.

We have seen the sum in the main term in (
E3.2
1.4.2), and that it equals 1/L(R;P ).

The error term is bounded by using (
E3.5
1.4.5). These can both be evaluated using the

estimates proved (for this purpose) in the proof of Theorem
FLS
1.4.2. □

1.4.5. Multiplicative functions that only vary at small prime factors
C2a

The characteristic function of the integers that are coprime to P , is given by the
totally multiplicative function f with f(p) = 0 when p|P , and f(p) = 1 otherwise.
Hence Theorem

FLS
1.4.2 (with x = a = 0, q = 1) can be viewed as a mean value

theorem for a certain class of multiplicative functions (those which only take values
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0 and 1, and equal 1 on all primes p > y). We now deduce a result of this type for
a wider class of multiplicative functions:

GenFundLem Proposition 1.4.7. Suppose that |f(n)| ≤ 1 for all n, and f(pk) = 1 for all
p > y. If x = yu then

1

x

∑
n≤x

f(n) = P(f ;x) +O
(
u−u/3+o(u) + x−1/6+o(1)

)
.

This result is weaker than desirable since if u is bounded then the first error
term is bigger than the main term unless

∑
p≤x

1−f(p)
p is very small. We would

prefer an estimate like P(f ;x){1+O(u−c1u)}+O(x−c2) for some c1, c2 > 0. When
each f(p) = 0 or 1 this is essentially the Fundamental lemma of the sieve (Theorem
FLS
1.4.2). However it is false, in general, as one may see in Proposition

Flit
?? and even

for real-valued f , as may be seen by taking f(p) = −1 for all p ≤ y (though we
only prove this later in chapter

*
??). We guess that one does have an estimate

P(f ;x){1 +O(u−cu)}+O( 1
log x ), for real f with each f(p) ∈ [−1, 1], a challenging

open problem.

Proof of Proposition
GenFundLem
1.4.7. We may write each integer n as ab where

P (a) ≤ y, and p|b =⇒ p > y, so that f(n) = f(a)f(b) = f(a), and thus∑
n≤x

f(n) =
∑
a≤x

P (a)≤y

f(a)
∑
b≤x/a

p|b =⇒ p>y

1.

If a ≥ x/y then the inner sum equals 1, as it only counts the integer 1. Otherwise
we apply Theorem

FLS
1.4.2 with P =

∏
p≤y p (and taking there x, y, a, q as 0, x, 0, 1,

respectively). If A = x1/3 < a < x/y then we deduce the crude upper bound
≪ x/(a log y) for the inner sum, by Merten’s Theorem. Finally if a ≤ x1/3 then

log(x/a)/ log y ≥ 2u/3, giving ϕ(P )
P

x
a (1 + O(u−u/3+o(1))) + O((xa )

3/4+o(1)) for the
inner sum. Combining these estimates, we now have a main term of

ϕ(P )

P
x
∑
a≥1

P (a)≤y

f(a)

a
= P(f ;x) x,

and an error term which is

≪ u−u/3+o(1)x
ϕ(P )

P

∑
a≥1

P (a)≤y

1

a
+

∑
a≤x1/3

(x
a

)3/4+o(1)
+

x

log y

∑
a>x1/3

P (a)≤y

1

a
+

∑
x/y≤a≤x
P (a)≤y

1

≪ u−u/3+o(1)x+ x5/6+o(1)

as desired, using exercise
ex2.8
1.3.5(i) to bound the last two sums. □

1.4.6. Additional exercises

Exercise 1.4.2. ∗ Prove that our choice of λd (as in section
C71
1.4.1) is only

supported on squarefree integers d and that 0 ≤ µ(d)λd ≤ 1.

Exercise 1.4.3. ∗ (i) Prove the following reciprocity law : If L(d) and Y (r) are
supported only on the squarefree integers then

Y (r) := µ(r)
∑

m: r|m

L(m) for all r ≥ 1 if and only if L(d) = µ(d)
∑
n: d|n

Y (n) for all d ≥ 1.
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(ii) Deduce the relationship, given in Selberg’s sieve, between the sequences λd/d
and µ(r)ξr/r.
(iii) Suppose that g is a multiplicative function and f = 1 ∗ g. Prove that∑

d1,d2≥1

L(d1)L(d2)f((d1, d2)) =
∑
n≥1

g(n)Y (n)2.

(iv) Suppose that L is supported only on squarefree integers in S(R,P ). Show that
to maximize the expression in (iii), where each f(p) > 1, subject to the constraint
L(1) = 1, we have that Y is supported only on S(R,P ), and then Y (n) = c/g(n)
where c =

∑
n 1/g(n). Use this to determine the value of each L(m) in terms of g.

(v) Prove that 0 ≤ f(m)µ(m)L(m) ≤ 1 for all m; and if R = ∞ then L(m) =
µ(m)/f(m) for all m ∈ S(P ).

Exercise 1.4.4. ∗ Show that if (am, q) = 1 and all of the prime factors of mFLS1
are ≤ (x/q)1/u then∑

n≤x
(n,m)=1

n≡a (mod q)

log n =
ϕ(m)

m

x

q
(log x− 1)

{
1 +O(u−u/2)

}
+O

((x
q

)3/4+o(1)
log x

)
.

Exercise 1.4.5. † Fill in the final computational details of the proof of Theorem
BTstrong
1.4.4 to determine a value for C.

Exercise 1.4.6. Use Selberg’s monotonicity principle, and exercise
ex2.2
1.2.10 with

q =
∏
p≤z p where z = (y/q)1/u (and exercise

ex2.7
1.1.12) to prove the Fundamental

Lemma of Sieve Theory in the form∑
x<n≤x+y
(n,P )=1

n≡a (mod q)

1 =
y

q

ϕ(P )

P
+O

(y
q

(e+ o(1)

u log u

)u
· log y

)
.

Exercise 1.4.7. Prove that if P is the set of all primes ≤ y, and 0 < |t| ≤ y
then for any x we have ∑

n≤x
(n,P )=1

1

n1+it
≪ 1 +

1

|t| log y
.

Exercise 1.4.8. Suppose that f(n) is a multiplicative function with each
|f(n)| ≤ 1. Prove that ∑

n≤x
(n,P )=1

f(n)− ϕ(P )

P

∑
n≤x

f(n)

≪ x
ϕ(P )

P
u−u/2 + x

3
4+ϵ +

∑
d≤R2

µ2(d)3ω(d)

∣∣∣∣∣∣∣∣
∑
n≤x
d|n

f(n)− 1

d

∑
n≤x

f(n)

∣∣∣∣∣∣∣∣ ,
where ω(d) denotes the number of prime factors of d. (Hint: Modify the technique
of Proposition

FLit
1.4.6.)





CHAPTER 1.5

The structure of mean values

MeanF(n)

We have encountered two basic types of mean values of multiplicative functions:

• In Chapter
C2
1.2 we gave a heuristic which suggested that the mean value of f

up to x, should be ∼ P(f ;x). We were able to show this when
∑
p≤x |1 − f(p)|/p

is small, and in particular in the case that f(p) = 1 for all “large” primes, that is.
for the primes p > y (Proposition

GenFundLem
1.4.7).

• In Chapter
ch:smooths
1.3 we considered an example in which the mean value is far

smaller than the heuristic, in this case f(p) = 1 for all “large” primes, that is. for
the primes p ≤ y.

These behaviours are very different, though arise from quite different types of mul-
tiplicative functions (the first varies from 1 on the “small primes”, the second on
the “large primes”). In the next two sections we study the latter case in more
generality, and then consider multiplicative functions which vary on both the small
and large primes. The error terms in most of the results proved in this chapter
will be improved later once we have established some fundamental estimates of the
subject.

1.5.1. Some familiar Averages

Let f be a multiplicative function with each |f(n)| ≤ 1, and then let

S(x) =
∑
n≤x

f(n) and − F ′(s)

F (s)
=
∑
n≥1

Λf (n)/n
s.

Looking at the coefficients of −F ′(s) = F (s) · (−F ′(s)
F (s) ) we obtain that

f(n) log n =
∑
ab=n

f(a)Λf (b).

Summing this over all n ≤ x, and using exercise
ex:WeightL(x/n)
1.2.15(i), we deduce that

S(x) log x =
∑
n≤x

Λf (n)S(x/n) +

∫ x

1

S(t)

t
dt.

Now, as |S(t)| ≤ t the last term is O(x). The terms in the sum for which n is a
prime power also contribute O(x), and hence

HildIdentityHildIdentity (1.5.1) S(x) log x =
∑
p≤x

f(p) log p S(x/p) +O(x).

This is a generalization of the identities in exercise
MobPNT
1.1.16 (i, iii), and (

E2.10
1.3.1).

45
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1.5.2. Multiplicative functions that vary only the large prime factors

Our goal is to use the identity in (
HildIdentity
1.5.1) to gain an understanding of S(x) in

the spirit of chapter
ch:smooths
1.3. To proceed we define functions

s(u) := y−uS(yu) =
1

yu

∑
n≤yu

f(n) and χ(u) :=
1

yu

∑
m≤yu

Λf (m).

Using the definitions, we now evaluate, for x = yu, the integral

1

u

∫ u

0

s(u− t)χ(t)dt =
1

u

∫ u

0

1

yu−t

∑
a≤yu−t

f(a) · 1

yt

∑
b≤yt

Λf (b)dt

=
1

x

∑
ab≤x

f(a)Λf (b)
1

u

∫ u− log a
log y

log b
log y

1dt

=
1

x

∑
n≤x

f(n) log n

(
1− log n

log x

)
.

The difference between this and 1
x

∑
n≤x f(n) log

x
n is

≤ log x

x

∑
n≤x

|f(n)|
(
1− log n

log x

)2

≤ log x

x

∑
n≤x

(
1− log n

log x

)2

≪ 1

log x
;

that is

ConvPreciseConvPrecise (1.5.2)
1

x

∑
n≤x

f(n) log
x

n
=

1

u

∫ u

0

s(u− t)χ(t)dt+O

(
1

log x

)
Combining this with exercise

ex:WeightL(x/n)
1.2.15(ii) we deduce that

s-Identitys-Identity (1.5.3) s(u) =
1

u

∫ u

0

s(u− t)χ(t)dt+O

 1

log x
exp

(∑
p≤x

|1− f(p)|
p

) .

The integral
∫ u
0
g(u − t)h(t)dt is known as the (integral) convolution of g and h,

and is denoted by (g ∗ h)(u).
In the particular case that f(pk) = 1 for all p ≤ y we have S(x) = [x] for x ≤ y,

and so s(t) = 1 + o(y−t) for 0 ≤ t ≤ 1. Moreover (
s-Identity
1.5.3) becomes

s-Id2s-Id2 (1.5.4) s(u) =
1

u

∫ u

0

s(u− t)χ(t)dt+O

(
u

log y

)
.

This suggests that if we define a continuous function σ with σ(t) = 1 for 0 ≤ t ≤ 1
and then

IntDelEqnIntDelEqn (1.5.5) σ(u) =
1

u

∫ u

0

σ(u− t)χ(t)dt for all u ≥ 1,

then we must have, for x = yu

IntDel1IntDel1 (1.5.6)
1

x

∑
m≤x

f(m) = σ(u) +O

(
log u

log y

)
.

We will deduce this, later, once we have proved the prime number theorem (which
is relevant since it implies that χ(t) = 1 + o(1) for 0 < t ≤ 1, and |χ(t)| ≤ 1 + o(1)
for all t > 0) but, for now, we observe that a result like (

IntDel1
1.5.6) shows that the mean

value of every multiplicative function which only varies on the large primes, can be
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determined in terms of an integral delay equation like (
IntDelEqn
1.5.5). This is quite different

from the mean value of multiplicative functions that only vary on the small primes,
which can be determined by the Euler product P(f ;x).

1.5.3. A first Structure Theorem

We have seen that the mean value of a multiplicative function which only varies
on its small primes is determined by an Euler product, whereas the the mean value
of a multiplicative function which only varies on its large primes is determined by
an integral delay equation. What about multiplicative functions which vary on
both? In the next result we show how the mean value of a multiplicative function
can be determined as the product of the mean values of the multiplicative functions
given by its value on the small primes, and by its value on the large primes.

Structure1 Theorem 1.5.1. Let f be a multiplicative function with |f(n)| ≤ 1 for all n.
For any given y, we can write 1 ∗ f = g ∗ h where g only varies (from 1) on the
primes > y, and h only varies on the primes ≤ y:

g(pk) =

{
1 if p ≤ y

f(pk) if p > y
and h(pk) =

{
f(pk) if p ≤ y

1 if p > y.

Then, for x = yu we have

1stStructure1stStructure (1.5.7)
1

x

∑
n≤x

f(n) =
1

x

∑
n≤x

g(n) · 1
x

∑
n≤x

h(n) +O
( 1
u

exp
(∑
p≤x

|1− f(p)|
p

))
.

If u is sufficiently large (as determined by the size of
∑
p≤x

|1−f(p)|
p ) then the

error term here is o(1), and hence

StructAsympStructAsymp (1.5.8)
1

x

∑
n≤x

f(n) =
1

x

∑
n≤x

g(n) · 1
x

∑
n≤x

h(n) + o(1).

In Theorem
StructThm
?? we will prove that (

StructAsymp
1.5.8) holds whenever u → ∞. This is “best

possible” as will be discussed in Chapter
C20
??.

Proof. Let H = µ ∗ h so that h = 1 ∗H and f = g ∗H. Therefore

1

x

∑
n≤x

f(n) =
1

x

∑
ab≤x

H(a)g(b) =
∑
a≤x

H(a)

a

1

x/a

∑
b≤x/a

g(b).

By Proposition
FirstLip
1.2.4 this is∑

a≤x

H(a)

a
· 1
x

∑
b≤x

g(b) +O
(∑
a≤x

|H(a)|
a

log(2a)

log x
exp

(∑
p≤x

|1− g(p)|
p

))
.

We may extend both sums over a, to be over all integers a ≥ 1 since the error term
is trivially bigger than the main term when a > x. Now∑

a≥1

|H(a)|
a

log a =
∑
a≥1

|H(a)|
a

∑
pk∥a

k log p

≤ 2
∑
p≤y
k≥1

k log p

pk

∑
A≥1

|H(A)|
A

≪ log y · exp
(∑
p≤

|H(p)|
p

)
,
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writing a = pkA with (A, p) = 1 and then extending the sum to all A, since
|H(pk)| ≤ 2. Now ∑

p≤x

|1− g(p)|+ |H(p)|
p

=
∑
p≤x

|1− f(p)|
p

,

and so the error term above is acceptable. Finally we note that∑
a≤x

H(a)

a
=

1

x

∑
n≤x

h(n) +O
(
u−u/3+o(u) + x−1/6+o(1)

)
by applying Proposition

GenFundLem
1.4.7, and the result follows. □

1.5.4. An upper bound on averages

For any multiplicative function f with |f(n)| ≤ 1 for all n we have |χ(t)| ≪ 1
for all t > 0. We can then take absolute values in (

s-Identity
1.5.3) to obtain the upper bound

|s(u)| ≪ 1

u

∫ u

0

|s(t)|dt+ 1

log x
exp

(∑
p≤x

|1− f(p)|
p

)
.

In this section we will improve this upper bound using the Brun-Titchmarsh The-
orem to

propHal1propHal1 (1.5.9) |s(u)| ≪ 1

u

∫ u

0

|s(t)|dt+ 1

log x
.

If we could assume the prime number theorem then we could obtain this result with
“≪” replaced by “≤”.

Proof of (
propHal1
1.5.9). Now, for z = y + y1/2 + y2/x, using the Brun-Titchmarsh

theorem,∑
y<p≤z

log p
∣∣∣S(x

p

)∣∣∣ ≤ ∑
y<p≤z

log p max
y≤u≤z

∣∣∣S(x
u

)∣∣∣≪ (z − y) max
y≤u≤z

∣∣∣S(x
u

)∣∣∣
≤
∫ z

y

∣∣∣S(x
t

)∣∣∣dt+ (z − y) max
y≤t,u≤z

∣∣∣S(x
t

)
− S

(x
u

)∣∣∣,
and if y ≤ t, u ≤ z then∣∣∣S(x

t

)
− S

(x
u

)∣∣∣ ≤ ∣∣∣x
y
− x

z

∣∣∣ = x · z − y

y2
.

Summing over such intervals between y and 2y we obtain∑
y<p≤2y

log p
∣∣∣S(x

p

)∣∣∣≪ ∫ 2y

y

∣∣∣S(x
t

)∣∣∣dt+ x

y1/2
+ y.

We sum this over each dyadic interval between 1 and x. By (
HildIdentity
1.5.1) this implies that

|S(x)| log x ≤
∑
p≤x

log p
∣∣∣S(x

p

)∣∣∣+O(x)

≪
∫ x

1

∣∣∣S(x
t

)∣∣∣dt+ x = x

∫ x

1

|S(w)|
w2

dw + x.

Taking w = xt and dividing through by x log x, yields (
propHal1
1.5.9). □
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By partial summation, we have∑
n≤x

f(n)

n
=

1

x

∑
n≤x

f(n) +

∫ x

1

∑
n≤w

f(n)
dw

w2
=
S(x)

x
+

∫ x

1

S(w)

w2
dw

= s(u) + log y

∫ u

0

s(t)dt.

Using (
propHal1
1.5.9), and that s(t) ≥ 1/2 for 0 ≤ t ≤ 1/2 log y, we deduce the same upper

bound for the logarithmic mean of f that we had for the mean of f (in (
propHal1
1.5.9)):

propHal1logpropHal1log (1.5.10)
1

log x

∣∣∣∑
n≤x

f(n)

n

∣∣∣ ≤ 1

u

∫ u

0

|s(t)|dt
(
1 +O

(
1

log x

))
.

1.5.5. Iterating identities
IterateAverages

In this section we develop further identities, involving multi-convolutions of
multiplicative functions, which turn out to be useful. We have already seen that
f(n) log n =

∑
ar=n Λf (a)f(r), so iterating this twice yields

f(n) log n− Λf (n) =
∑
ar=n
r>1

Λf (a)

log r
f(r) log r =

∑
ar=n
r>1

Λf (a)

log r

∑
bm=r

Λf (b)f(m).

The log r in the denominator is difficult to deal with but can be replaced using the
identity 1

log r =
∫∞
0
r−αdα, and so

f(n) log n− Λf (n) =

∫ ∞

0

∑
abm=n

Λf (a)
Λf (b)

bα
f(m)

mα
dα

(the condition r > 1 disappears because Λf (1) = 0). If we now sum the left hand
side over all n ≤ x then we change the condition on the sum on the right-hand side
to abm ≤ x.

There are several variations possible on this basic identity. If we iterate (
HildIdentity
1.5.1)

then we have log(x/p) in the denominator. We remove this, as above, to obtain

S(x) log x =

∫ ∞

0

∑
pq≤x

(f(p)pα log p)(f(q) log q)x−αS

(
x

pq

)
dα+O(x log log x),

though some effort is needed to deal with the error terms. One useful variant is to
restrict the primes p and q to the ranges Q ≤ p ≤ x/Q, q > Q at the cost an extra
O(x logQ) in the error term.

1.5.6. Exercises

ex:ConvolutionId Exercise 1.5.1. Prove that

1

u

∫ u

0

s(u− t)χ(t)dt =
log y

u

∫ u

0

s(t)(2t− u)ytdt

Exercise 1.5.2. Define χ∗(u) := 1
ψ(yu)

∑
m≤yu Λf (m), so that if |Λf (m)| ≤

κΛ(m) for all m then |χ∗(u)| ≤ κ. Prove that if κ = 1 and ψ(x) = x+O(x/(log x)2)
then

∫ u
0
s(u− t)χ∗(t)dt =

∫ u
0
s(u− t)χ(t)dt+O(1/ log y).

Exercise 1.5.3. Convince yourself that the functional equation for estimating
smooth numbers, that we gave earlier, is a special case of (

s-Identity
1.5.3).
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Exercise 1.5.4. Improve (
propHal1
1.5.9) to |s(u)| ≤ 1

u

∫ u
0
|s(t)|dt + o(1) assuming the

prime number theorem. Moreover improve the error term to O( log log x
log x ) assuming

that θ(x) = x+O( x
(log x)2 ).



Part 2

Mean values of multiplicative
functions



We introduce the main results in the theory of mean values of multiplicative
functions. We begin with results as we look at the mean up to x, as x→ ∞. Then
we introduce and prove Halász’s Theorem, which allows us to obtain results that
are uniform in x. The subtle proof of Halász’s Theorem requires a chapter of its
own.



CHAPTER 2.1

Distances. The Theorems of Delange, Wirsing and
Halász

In Chapter
C2
1.2 we considered the heuristic that the mean value of a multiplica-

tive function f might be approximated by the Euler product P(f ;x) (see (
E2.2
1.2.2)

and (
E2.3
1.2.3)). We proved some elementary results towards this heuristic and were

most successful when f was “close to 1” (see §
S2.2
1.2.3) or when f was non-negative

(see §
sec:Non-neg
1.2.4). Even for nice non-negative functions the heuristic is not entirely ac-

curate, as revealed by the example of smooth numbers discussed in Chapter
C3
??.

We now continue our study of this heuristic, and focus on whether the mean value
can be bounded above by something like |P(f ;x)|. We begin by making precise
the geometric language, already employed in §

S2.2
1.2.3, of one multiplicative function

being “close” to another.

2.1.1. The distance between two multiplicative functions

The notion of a distance between multiplicative functions makes most sense in
the context of functions whose values are restricted to the unit disc U = {|z| ≤ 1}.
In thinking of the distance between two such multiplicative functions f and g,
naturally we may focus on the difference between f(pk) and g(pk) on prime powers.
An obvious candidate for quantifying this distance is∑

pk≤x

|f(pk)− g(pk)|
pk

,

as it is used in Propositions
pr2.1
1.2.1,

FirstLip
1.2.4,

NasProp
1.2.5 and

G0UB
1.2.6. However, it turns out that

a better notion of distance involves 1− Re(f(pk)g(pk)) in place of |f(pk)− g(pk)|.

lem4.1 Lemma 2.1.1. Suppose we have a sequence of functions ηj : U × U → R≥0

satisfying the triangle inequality

ηj(z1, z3) ≤ ηj(z1, z2) + ηj(z2, z3),

for all z1, z2, z3 ∈ U . Then we may define a metric UN = {z = (z1, z2, . . .) :
each zj ∈ U} by setting

d(z,w) =
( ∞∑
j=1

ηj(zj , wj)
2
) 1

2

,

assuming that the sum converges. This metric satisfies the triangle inequality

d(z,w) ≤ d(z,y) + d(y,w).

53
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Proof. Expanding out we have

d(z,w)2 =
∞∑
j=1

ηj(zj , wj)
2 ≤

∞∑
j=1

(ηj(zj , yj) + ηj(yj , wj))
2

by the assumed triangle inequality for ηj . Now, using Cauchy-Schwarz, we have
∞∑
j=1

(ηj(zj , yj) + ηj(yj , wj))
2 = d(z,y)2 + d(y,w)2 + 2

∞∑
j=1

ηj(zj , yj)ηj(yj , wj)

≤ d(z,y)2 + d(y,w)2 + 2
( ∞∑
j=1

ηj(zj , yj , )
2
) 1

2
( ∞∑
j=1

ηj(yj , wj)
2
) 1

2

= (d(z,y) + d(y,w))2,

which proves the triangle inequality. □

A nice class of examples is provided by taking ηj(z) = aj(1−Re (zj)) for non-
negative aj , with U = U. We now check that this satisfies the hypothesis of Lemma
lem4.1
2.1.1.

lem4.0 Lemma 2.1.2. Define η : U × U → R≥0 by η(z, w)2 = 1 − Re(zw). Then for
any w, y, z in U we have

η(w, y) ≤ η(w, z) + η(z, y).

Proof. (Terry Tao) Any point u on the unit disk is the midpoint of the line
between two points u1, u2 on the unit circle, and thus their average (that is u =
1
2 (u1 + u2)).

1 Therefore

1

8

2∑
i,j=1

|ti − uj |2 =
1

4

2∑
i,j=1

(1− Re(tiuj))

= 1− Re

1

2

2∑
i=1

ti ·
1

2

2∑
j=1

uj

 = Re(1− tu) = η(t, u)2.

Define the four dimensional vectors v(w, z) := (w1 − z1, w1 − z2, w2 − z2, w2 − z1)
and v(z, y) := (z1 − y1, z2 − y2, z2 − y1, z1 − y2), with v(w, y) := v(w, z) + v(z, y),
so that η(t, u) = 1√

8
|v(t, u)| where t, u is any pair from w, y, z. Using the usual

triangle inequality, we deduce that

η(w, y) =
1√
8
|v(w, y)| ≤ 1√

8
(|v(w, z)|+ |v(z, y)|) = η(w, z) + η(z, y).

□

Proof. (Oleksiy Klurman) Define ∆(u) =
√
1− |u|2, so that 2η(u, v)2 =

∆(u)2 +∆(u)2 + |u− v|2. The result follows from applying the triangle inequality
to the vector addition

(w − z,∆(w),∆(z), 0) + (z − y, 0,−∆(z),∆(y)) = (w − y,∆(w), 0,∆(y)).

□
1To see this, draw the line L from the origin to u and then the line perpendicular to L, going

through u. This meets the unit circle at u1 and u2. If u was on the unit circle to begin with then
u1 = u2 = u.
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We can use the above remarks to define distances between multiplicative func-
tions taking values in the unit disc. If we let aj = 1/p for each prime p ≤ x then
we may define the distance (up to x) between the multiplicative functions f and g
by

D(f, g;x)2 =
∑
p≤x

1− Re f(p)g(p)

p
.

By Lemma
lem4.1
2.1.1 this satisfies the triangle inequality

triangle1triangle1 (2.1.1) D(f, g;x) + D(g, h;x) ≥ D(f, h;x).

Exercise 2.1.1. (i) Determine when D(f, g;x) = 0.
(ii) Determine when D(f, g;x) + D(g, h;x) = D(f, h;x).

Exercise 2.1.2. It is natural to multiply multiplicative functions together, and
to ask if f1 and g1 are close to each other, and f2 and g2 are close to each other, is
f1f2 is close to g1g2? Indeed prove this variant of the triangle inequality:

triangle2triangle2 (2.1.2) D(f1, g1;x) + D(f2, g2;x) ≥ D(f1f2, g1g2;x).

There are several different distances that one may take. There are advantages
and disadvantages to including the prime powers in the definition of D (see, e.g
exercise

ex:product
??),

D∗(f, g;x)2 =
∑
pk≤x

1− Re f(pk)g(pk)

pk
;

but either way the difference between two such notions of distance is bounded by
a constant. Another alternative is to define a distance Dα, defined by taking the
coefficients aj = 1/pα and zj = f(p), as p runs over all primes for any fixed α > 1,
which satisfies the analogies to (

triangle1
2.1.1) and (

triangle2
2.1.2).

ex:MertensIneq Exercise 2.1.3. Combine the last two variants of distance to form D∗
α. Use

the triangle inequality (and exponentiate) to deduce Mertens inequality : For all
σ > 1 and all t ∈ R,

ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1;

as well as ζ(σ)3|ζ(σ + 2it)| ≥ |ζ(σ + it)|4.

lem4.3 Exercise 2.1.4. Prove that if each |ap| ≤ 2 and α = 1 + 1/ log x then∑
p≤x

ap
p

=
∑

p prime

ap
pα

+O(1) .

(Hint: Consider the primes p ≤ x, and those > x, separately.) Deduce that for any
multiplicative functions f and g taking values in the unit disc we have

D(f, g;x)2 =
∑

p prime

1− Re f(p)g(p)

pα
+O(1)

Exercise 2.1.5. Suppose that f is a multiplicative function taking values in
the unit disc and Re(s) > 1. Recall that F (s) :=

∑
n≥1 f(n)/n

s. Prove that

logF (s) =
∑

p prime

Λf (n)/ logn

ns
=

∑
p prime

f(p)

ps
+O(1).
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Deduce from this and the previous exercise that

TruncRightTruncRight (2.1.3)

∣∣∣∣F (1 + 1

log x
+ it

)∣∣∣∣ ≍ log x exp
(
− D(f(n), nit;x)2

)
.

2.1.2. Delange’s Theorem

We are interested in when the mean value of f up to x is close to its “expected”
value of P(f ;x), or even P(f). Proposition

pr2.1
1.2.1 implies (as in exercise

ex:Prop2.1
1.2.9) that if

f is a multiplicative function taking values in the unit disc U and
∑
p |1−f(p)|/p <

∞ then
∑
n≤x f(n) ∼ xP(f) as x → ∞. Delange’s theorem, which follows, is

therefore a refinement of Proposition
pr2.1
1.2.1.

Delange Theorem 2.1.3. (Delange’s theorem) Let f be a multiplicative function tak-
ing values in the unit disc U. Suppose that

D(1, f ;∞)2 =
∑
p

1− Re f(p)

p
<∞.

Then ∑
n≤x

f(n) ∼ xP(f ;x) as x→ ∞.

We shall prove Delange’s Theorem in the next chapter. Delange’s Theorem
is not exactly what we asked for in the discussion above, so the question now is
whether limx→∞ P(f ;x) exists and equals P(f). It is straightforward to deduce
the following:

DelangeCor Corollary 2.1.4. Let f be a multiplicative function taking values in the unit
disc U. Suppose that

lim
x→∞

∑
p≤x

1− f(p)

p
converges (to a finite value).

Then ∑
n≤x

f(n) ∼ xP(f) as x→ ∞.

We postpone the proof of Delange’s theorem to the next chapter.

2.1.3. A key example: the multiplicative function f(n) = niα

Delange’s theorem gives a satisfactory answer in the case of multiplicative func-
tions at a bounded distance from 1, and we are left to ponder what happens when
D(1, f ;x) → ∞ as x → ∞. One would be tempted to think that in this case
1
x

∑
n≤x f(n) → 0 as x→ ∞ were it not for the following important counter exam-

ple. Let α ̸= 0 be a fixed real number and consider the completely multiplicative
function f(n) = niα. By partial summation we find that

eq:4.1eq:4.1 (2.1.4)
∑
n≤x

niα =

∫ x+

0+
yiαd[y] ∼ x1+iα

1 + iα
.

The mean-value at x then is ∼ xiα/(1 + iα) which has magnitude 1/|1 + iα| but
whose argument varies with x. In this example it seems plausible enough that
D(1, piα;x) → ∞ as x→ ∞ and we now supply a proof of this important fact. We
begin with a useful Lemma on the Riemann zeta function.
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lem4.3.0 Lemma 2.1.5. If s = σ + it with σ > 0 then∣∣∣∣ζ(s)− s

s− 1

∣∣∣∣ ≤ |s|
σ
.

If σ > 1 and |s− 1| ≫ 1 then

|ζ(s)| ≪ log(2 + |s|).

Proof. The first assertion follows easily from Exercise
zeta
1.1.2. To prove the

second assertion, we deduce from Exercise
zeta2
1.1.6 that, for any integer N ≥ 1, we

have

ζ(s) =

N∑
n=1

1

ns
+
N1−s

s− 1
− s

∫ ∞

N

{y}
ys+1

dy.

Choose N = [|s|] + 1, and bound the sum over n trivially to deduce the stated
bound for |ζ(s)|. □

Zetaprimebound Exercise 2.1.6. Use similar ideas to prove that if s = σ + it with σ > 1 and
|s− 1| ≫ 1 then |ζ ′(s)| ≪ log2(2 + |s|).

lem4.3.1 Lemma 2.1.6. Let α be any real number. Then for all x ≥ 3 we have

D(1, piα;x)2 = log(1 + |α| log x) +O(1),

in the case |α| ≤ 100. When |α| ≥ 1/100 we have

D(1, piα;x)2 ≥ log log x− log log(2 + |α|) +O(1),DLowerTBigDLowerTBig (2.1.5)

and D(1, piα;x)2 ≤ log log x+ 8 log log(2 + |α|) +O(1)

Proof. We take f(n) = 1 in (
TruncRight
2.1.3). The first two estimates follow directly

from the bounds of Lemma
lem4.3.0
2.1.5, and are equivalent to

EquivUpperBoundsEquivUpperBounds (2.1.6)
∑
p≤x

Re(piα)

p

{
= log(1/|α|) +O(1), if 1/ log x ≤ |α| ≤ 100;

≤ log log(2 + |α|) +O(1), if |α| ≥ 1/100.

The first estimate yields the third estimate for 1/100 ≤ |α| ≤ 100 so henceforth
we assume |α| > 100. Our goal is to prove that |

∑
y≤p≤x 1/p

1+iα| ≪ 1 whenever

x ≥ y := exp((log |α|)8), since then

−
∑
p≤x

Re(piα)

p
+O(1) ≤

∑
p≤y

1

p
+O(1) ≤ 8 log log |α|+O(1),

which implies the third estimate. To establish this we write∣∣∣ ∑
y<p≤x

1

p1+iα

∣∣∣ = ∣∣∣log{ζ(1 + 1

log x
+ iα

)}
− log

{
ζ
(
1 +

1

log y
+ iα

)}∣∣∣+O(1)

=
∣∣∣∫ x

y

−ζ ′

ζ

(
1 +

1

log u
+ iα

) du

u log2 u

∣∣∣+O(1).
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Exercise
Zetaprimebound
2.1.6 provides the upper bound |ζ ′(1 + 1

log u + iα)| ≪ log2 |α|, so we need

a upper bound on 1/|ζ(1 + 1
log u + iα)|: By (

TruncRight
2.1.3),

log 1
/∣∣∣ζ(1 + 1

log u
+ iα

)∣∣∣ = −
∑
p≤u

cos(α log p)

p
+O(1)

≤
(∑
p≤u

1

p

)1/2(∑
p≤u

cos2(α log p)

p

)1/2
+O(1)

≤
(
log log u

)1/2(1
2

∑
p≤u

1 + cos(2α log p)

p

)1/2
+O(1)

≤ 3

4
log log u+O(1),

by the second estimate of (
EquivUpperBounds
2.1.6). Inserting these estimates in above yields∣∣∣ ∑

y<p≤x

1

p1+iα

∣∣∣≪ 1 +

∫ x

y

(log |α|)2(log u)3/4

u log2 u
du≪ 1,

and the result follows □

One important consequence of Lemma
lem4.3.1
2.1.6 and the triangle inequality is that

a multiplicative function cannot pretend to be like two different problem examples,
niα and niβ .

cor:repulsive Corollary 2.1.7. Let α and β be two real numbers and let f be a multiplicative
function taking values in the unit disc. If δ = |α− β| then(

D(f, piα;x) + D(f, piβ ;x)
)2

≥

{
log(1 + δ log x) +O(1), if δ ≤ 1/10;

log log x− log log(2 + δ) +O(1), if δ ≥ 1/10.

Proof. Indeed the triangle inequality gives that D(f, piα;x) + D(f, piβ ;x) ≥
D(piα, piβ ;x) = D(1, pi(α−β);x) and we may now invoke Lemma

lem4.3.1
2.1.6. □

An useful consequence of Lemma
lem4.3.1
2.1.6 when working with Dirichlet characters

(see Chapter
Ch:DirChars
?? for the definition) is the following:

cor:ftothekbound Corollary 2.1.8. Suppose that there exists an integer k ≥ 1 such that f(p)k =
1 for all primes p. For any fixed non-zero real α we have

D(f(p), piα;x)2 ≥ 1

k2
log log x+Ok,α(1).

Examples of this include f = µ the Möbius function, or indeed any f(n) which only
takes values −1 and 1, as well as f = χ a Dirichlet character (though one needs to
modify the result to deal with the finitely many primes p for which χ(p) = 0), and
even f = µχ.

Proof of Corollary
cor:ftothekbound
2.1.8. By the triangle inequality, we have kD(f(p), piα;x) ≥

D(1, pikα;x) and the result then follows immediately from Lemma
lem4.3.1
2.1.6. □

The problem example niα discussed above takes on complex values, and one
might wonder if there is a real valued multiplicative function f taking values in
[−1, 1] for which D(1, f ;x) → ∞ as x→ ∞ but for which the mean value does not
tend to zero. A lovely theorem of Wirsing shows that this does not happen.
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Wirsing Theorem 2.1.9 (Wirsing’s Theorem). Let f be a real valued multiplicative func-
tion with |f(n)| ≤ 1 and D(1, f ;x) → ∞ as x→ ∞. Then as x→ ∞

1

x

∑
n≤x

f(n) → 0.

Wirsing’s theorem applied to µ(n) immediately yields the prime number the-
orem (using Theorem

PNTM
1.1.1). We shall not directly prove Wirsing’s theorem, but

instead deduce it as a consequence of the important theorem of Halász, which we
discuss in the next section (see Corollary

Halreal
2.3.5 for a quantitative version of Theorem

Wirsing
2.1.9).

2.1.4. Halász’s theorem; the qualitative version

We saw in the previous section that the function f(n) = niα has a large mean
value even though D(1, f ;x) → ∞ as x → ∞. We may tweak such a function at
a small number of primes and expect a similar result to hold. More precisely, one
can ask if an analogy to Delange’s result holds: that is if f is multiplicative with
D(f(p), piα;∞) < ∞ for some α, can we understand the behavior of

∑
n≤x f(n)?

This is the content of the qualitative version of Halász’s theorem.

Hal1 Theorem 2.1.10. (Qualitative Halász theorem) Let f be a multiplicative
function with |f(n)| ≤ 1 for all integers n.
(i) Suppose that there exists α ∈ R for which D(f, piα;∞) < ∞. Write f(n) =
g(n)niα. Then, as x→ ∞,∑

n≤x

f(n) =
x1+iα

1 + iα
P(g;x) + o(x).

(ii) Suppose that D(f, piα;∞) = ∞ for all α ∈ R. Then, as x→ ∞,

1

x

∑
n≤x

f(n) → 0.

ex:fLimit Exercise 2.1.7. Deduce that if f is a multiplicative function with |f(n)| ≤ 1
for all integers n then 1

x

∑
n≤x f(n) → 0 if and only if either

(i) D(f, piα;∞) = ∞ for all α ∈ R; or
(ii) D(f, piα;∞) <∞ for some α ∈ R and f(2k) = −(2k)iα for all k ≥ 1.

Establish that (ii) cannot happen if |Λf (4)| ≤ Λ(4).

ex:SlowVary Exercise 2.1.8. If f is a multiplicative function with |f(n)| ≤ 1 show that
P(f ; y) is slowly varying, that is P(f ; y) = P(f ;x) +O(log(ex/y)/ log x) if y ≤ x.

Proof of Theorem
Hal1
2.1.10(i). We will deduce (i) from Delange’s Theorem

Delange
2.2.1 and exercise

ex:SlowVary
2.1.8. By partial summation we have∑

n≤x

f(n) =

∫ x

1

tiαd
(∑
n≤t

g(n)
)
= xiα

∑
n≤x

g(n)− iα

∫ x

1

tiα−1
∑
n≤t

g(n)dt.

Now D(1, g;∞) = D(f, piα;∞) <∞ and so by Delange’s theorem, if t is sufficiently
large then ∑

n≤t

g(n) = tP(g; t) + o(t).
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Substituting this into the equation above, and then applying exercise
ex:SlowVary
2.1.8, we

obtain∑
n≤x

f(n) = x1+iαP(g;x)− iα

∫ x

1

tiαP(g;x)dt+ o(x) =
x1+iα

1 + iα
P(g;x) + o(x).

□

We will deduce Part (ii) of Theorem
Hal1
2.1.10 from the quantitative version of

Halasz’s Theorem, which we will state only in section 7.
Applying Theorem

Hal1
2.1.10(i) with f replaced by f(n)/niα we obtain the follow-

ing:

cor:Compare Corollary 2.1.11. Let f be multiplicative function with |f(n)| ≤ 1 and sup-
pose there exists α ∈ R such that D(f, piα;∞) <∞. Then as x→ ∞

1

x

∑
n≤x

f(n) =
xiα

1 + iα
· 1
x

∑
n≤x

f(n)

niα
+ o(1).

This will be improved considerably in Theorem
AsympT2
??. Taking absolute values in

both parts of Theorem
Hal1
2.1.10 we deduce:

LimAbsVal Corollary 2.1.12. If f is multiplicative with |f(n)| ≤ 1 then

lim
x→∞

1

x

∣∣∣∣∣∣
∑
n≤x

f(n)

∣∣∣∣∣∣ exists.

2.1.5. A better comparison theorem

The following quantitative result, relating the mean value of f(n) to the mean-
value of f(n)nit for any t, improves the error term in Corollary

cor:Compare
2.1.11 to (better

than) O(x/(log x)1+o(1)), and provides an alternative proof of Theorem
Hal1
2.1.10, as-

suming Delange’s Theorem.

AsympT1 Lemma 2.1.13. Suppose f(n) is a multiplicative function with |f(n)| ≤ 1 for
all n. Then for any real number t with |t| ≤ x1/3 we have∑
n≤x

f(n) =
xit

1 + it

∑
n≤x

f(n)

nit
+O

(
x

log x
log(2+|t|) exp

(
D(f(n), nit;x)

√
2 log log x

))
.

ex:mtotheit Exercise 2.1.9. Prove that if |t| ≪ m and |δ| ≤ 1/2 then 2mit = (m− δ)it +
(m+ δ)it +O(|t|2/m2). Deduce that

∑
m≤z

mit =

{
z1+it

1+it +O(1 + t2)

O(z).

Proof of Lemma
AsympT1
2.1.13. Let g and h denote the multiplicative functions

defined by g(n) = f(n)/nit, and g = 1 ∗ h, so that h = µ ∗ g. Then∑
n≤x

f(n) =
∑
n≤x

g(n)nit =
∑
n≤x

nit
∑
d|n

h(d) =
∑
d≤x

h(d)dit
∑

m≤x/d

mit.
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We use the first estimate in exercise
ex:mtotheit
2.1.9 when d ≤ x/(1 + t2), and the second

estimate when x/(1 + t2) ≤ d ≤ x. This gives∑
n≤x

f(n) =
x1+it

1 + it

∑
d≤x

h(d)

d
+O

(
(1 + t2)

∑
d≤x/(1+t2)

|h(d)|+ x
∑

x/(1+t2)≤d≤x

|h(d)|
d

)
.

Applying Proposition
Prop2.1
1.2.2 and partial summation, we deduce that∑

n≤x

f(n) =
x1+it

1 + it

∑
d≤x

h(d)

d
+O

(
x

log x
log(2 + |t|)

∑
d≤x

|h(d)|
d

)

=
x1+it

1 + it

∑
d≤x

h(d)

d
+O

(
x

log x
log(2 + |t|) exp

(∑
p≤x

|1− g(p)|
p

))
.

We use this estimate twice, once as it is, and then with f(n) replaced by f(n)/nit,
and t replaced by 0, so that g and h are the same in both cases.

By the Cauchy-Schwarz inequality,∑
p≤x

|1− g(p)|
p

2

≤ 2
∑
p≤x

1

p
·
∑
p≤x

1− Re(g(p))

p
≤ 2D(g(n), 1;x)2(log log x+O(1)),

and the result follows, since D(f(n), nit;x)2 = D(g(n), 1;x)2 ≪ log log x. □

2.1.6. Distribution of values of a multiplicative function, I
DistI

Given a complex-valued multiplicative function f , Jordan Ellenberg asked whether
the arguments of the f(n) are uniformly distributed on [0, 2π). One observes that
the size of the f(n) is irrelevant so we may assume that each |f(n)| = 0 or 1.
Moreover if a positive proportion of f(n) = 0 then the values cannot be uniformly
distributed, so we may as well assume that every |f(n)| = 1.

One might guess that a random, complex-valued multiplicative f is indeed
uniformly distributed in angle, but not true for all f . There are some obvious
examples for which this does not occur, for example if each f(n) is real (and thus
1 or −1), or each f(n) is a mth root of unity for some fixed k ≥ 1. Another class
of examples is given by f(n) = nit for some t ∈ R (since nit all point roughly in
the same direction for N ≤ n ≤ Neπ/8t). Moreover one can multiply these, so that
f(n) = g(n)nit where each g(n)m = 1. Our main result states that if f(n) is not
uniformly distributed then f must be close to one of these examples.

For any 0 ≤ α < β < 1 define

Rf (N,α, β) :=
1

N
#

{
n ≤ N :

1

2π
arg(f(n)) ∈ (α, β]

}
− (β − α).

We say that the f(n) are uniformly distributed on the unit circle if Rf (N,α, β) → 0
for all 0 ≤ α < β < 1.

equidist Theorem 2.1.14. Let f be a multiplicative function with each |f(n)| = 1, for
which |Λf (4)| ≤ log 2. Either

(i) The f(n) are uniformly distributed on the unit circle; or
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(ii) There exists an integer m ≥ 1, a multiplicative function g(.) with each
g(n) an mth root of unity, and a t ∈ R such that D(f(p), g(p)pit;∞) ≪ 1.

This leads to the rather surprising (immediate) consequence:

equidistit Corollary 2.1.15. Let f be a completely multiplicative function with each
f(p) is on the unit circle. The f(n) are uniformly distributed on the unit circle
if and only if the f(n)/niγ are uniformly distributed on the unit circle for every
γ ∈ R.

To prove our distribution theorem we use

Weyl’s equidistribution theorem Let {ξn : n ≥ 1} be any sequence of points
on the unit circle. The set {ξn : n ≥ 1} is uniformly distributed on the unit circle
if and only if limN→∞

1
N

∑
n≤N ξ

m
n exists and equals 0, for each non-zero integer

m.

Proof of Theorem
equidist
2.1.14. By Weyl’s equidistribution theorem the f(n)

are uniformly distributed on the unit circle if and only if limN→∞
1
N

∑
n≤N f(n)

m

exists and equals 0, for each non-zero integer m. By Halász’s theorem (Theorem
Hal1
2.1.10 and exercise

ex:fLimit
2.1.7) this fails if and only if there exists α ∈ R for which

D(f(p)m, piα;∞) ≪ 1 for some α ∈ R. By taking conjugates, if necessary, we
may assume that m ≥ 1. Let t = α/m and g(p) be the mth root of unity

nearest to f(p)/pit, so that | arg(f(p)g(p)/pit)| ≤ π/m. Now if |θ| ≤ π/m then
1 − cos θ ≤ 1 − cos(mθ) and so D(f(p), g(p)pit;∞) ≤ D(f(p)m, piα;∞) ≪ 1, since
(g(p)pit)m = piα. □

If an is a sequence with each |an| = 1. We say that {an : n ≥ 1} is uniformly
distributed on the mth roots of unity if, for each mth root of unity ξ, we have
#{n ≤ x : an = ξ} ∼ x/m.

Theorem
equidist
2.1.14 (continued): If m is minimal in case (ii), then g(.) is uni-

formly distributed on the mth roots of unity.

Proof. We claim that limx→∞
1
x

∑
n≤x g(n)

k = 0 for all 1 ≤ k ≤ m−1. If this

is false for some k then, by Halasz’s Theorem, we know that D(g(p)k, piβ ;∞) ≪ 1
for some β ∈ R. Hence, by the triangle inequality,

D(f(p)k, pi(β+kt);∞) ≤ D(f(p)k, g(p)kpikt;∞) + D(g(p)kpikt, pi(β+kt);∞)

≤ k D(f(p), g(p)pit;∞) + D(g(p)k, piβ ;∞) ≪ 1,

which implies that limx→∞
1
x

∑
n≤x f(n)

k ̸= 0 by exercise
ex:fLimit
2.1.7, a contradiction.

The result can then be deduced from the following exercise. □

Exercise 2.1.10. Suppose that each g(n) is amth root of unity. Prove that g(.)
is uniformly distributed on the mth roots of unity if and only if 1

x

∑
n≤x g(n)

k → 0
as x→ ∞ for 1 ≤ k ≤ m− 1.

2.1.7. Additional exercises

Exercise 2.1.11. Prove that η(z, w) := |1 − zw| also satisfies the triangle
inequality inside U; i.e. |1 − zw| ≤ |1 − zy| + |1 − yw| for w, y, z ∈ U. Prove
that we get equality if and only if z = y, or w = y, or |w| = |z| = 1 and y is on
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the line segment connecting z and w. (Hint: |1 − zw| ≤ |1 − zy| + |zy − zw| ≤
|1− zy|+ |y − w| ≤ |1− zy|+ |1− yw|.)

This last notion comes up in many arguments and so it is useful to compare
the two quantities:

Exercise 2.1.12. By showing that 1
2 |1 − z|2 ≤ 1 − Re(z) ≤ |1 − z| whenever

|z| ≤ 1, deduce that

1

2

∑
p≤x

|1− f(p)g(p)|2

p
≤ D(f, g;x)2 ≤

∑
p≤x

|1− f(p)g(p)|
p

.

We define D(f, g;∞) := limx→∞ D(f, g;x). In the next exercise we relate dis-
tance to the product P(f ;x), which is the heuristic mean value of f up to x:

ex:PasD Exercise 2.1.13. Suppose that f is a multiplicative function for which |Λf (n)| ≤
Λ(n) for all n.

(i) Prove that limx→∞ D(f, g;x) exists.
(ii) Show that log |P(f ;x)| = −D(1, f ;x)2 +O(1).
(iii) Deduce that limx→∞ |P(f ;x)| exists if and only if D(1, f ;∞) <∞.
(iv) Show that |P(f ;x)| ≤ 1 and |P(f ;x)| = 1 +O(D∗(1, f ;x)2).

ex:divergence Exercise 2.1.14. Come up with an example of f , with |f(n)| = 1 for all n,
for which D(1, f ;∞) converges but

∑
p(1− f(p))/p diverges. Deduce that P(f ;x)

does not tend to a limit as x→ ∞.

ex:4.4.1 Exercise 2.1.15. If f is a multiplicative function with |f(n)| ≤ 1 show that
there is at most one real number α with D(f, piα;∞) <∞.

ex:Wirsing Exercise 2.1.16. Deduce Wirsing’s Theorem (Theorem
Wirsing
2.1.9) from Theorem

Hal1
2.1.10(ii). (Hint: You might use the Brun-Titchmarsh Theorem.)

ex:f(n)f(n+1)2 Exercise 2.1.17. Suppose that f is a multiplicative function with−1 ≤ f(n) ≤
1 for each integer n. Assume that 1

x

∑
n≤x f(n) ̸→ 0.

(i) Prove that limx→∞
1
x

∑
n≤x f(n) exists and is > 0, and that

lim
x→∞

1

x

∑
n≤x

f(n)f(n+ 1) = P(f, f).

(Hint: Use exercise
ex:f(n)f(n+1)
1.2.16 and Wirsing’s Theorem.)

(ii) Prove that this is > 0 unless P2(f) ≤ 1
2 or P3(f) ≤ 1

2 .
(iii) Prove that if f(n) only takes on values 1 and −1, then P(f, f) ̸= 0.

ex:f(n)f(n+1)3 Exercise 2.1.18. Suppose that f is a multiplicative function with−1 ≤ f(n) ≤
1 for each integer n.

(i) If f(2k)f(2)k ≥ 0 for all integers k ≥ 1, prove that, for all integers n ≥ 1,

f(n)f(n+ 1) + f(2n)f(2n+ 1) + f(2n+ 1)f(2n+ 2) ≥ −1.

(ii) Deduce that
∑
n≤x f(n)f(n+ 1) ≥ − 1

3x+O(log x).

(iii) More generally show that

1

x

∑
n≤x

f(n)f(n+ 1) ≥ f(2)

3

∑
k≥1

f(2k)f(2k+1)

2k
− 2

3
+ o(1).
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(iv) Prove that if the lower bound in (iii) is −1 + o(1) then |Λf (2k)| = (2k −
1) log 2.

(v) Prove that if |Λf (2k)| ≤ log 2 for all k ≥ 1 then



CHAPTER 2.2

Additive functions

We define h(n) to be an additive function if

h(mn) = h(m) + h(n) whenever (m,n) = 1.

A famous example is ω(n) =
∑
p|n 1, the number of distinct prime factors of n. Since

h(n) is an additive function if and only if zh(n) is a multiplicative function (for any
fixed z ̸= 0), the studies of additive and multiplicative functions are entwined. The
goal of this chapter is to prove Delange’s Theorem, which we do using a relatively
easy result about the “usual” size of an additive function, which will also imply
a famous a result of Hardy and Ramanujan on the number of prime factors of a
typical integer. We will also indicate how one can deduce the Erdős-Kac theorem
on the distribution of ω(n). Later, in chapter 11, we will see how the much more
precise Selberg-Delange theorem, using deeper methods of multiplicative functions,
allows one to estimate the number of integers with a given number of prime factors.

2.2.1. Delange’s Theorem

We dedicate this chapter to the surprising proof of Delange’s theorem:

Delange Theorem 2.2.1 (Delange). Let f be a multiplicative function taking values in
the unit disc U for which D(1, f ;∞) <∞. Then∑

n≤x

f(n) ∼ xP(f ;x) as x→ ∞.

We shall deduce Delange’s Theorem from the following result about multiplica-
tive functions that have small difference:

CloseMultFns Proposition 2.2.2. Let f and g be multiplicative functions with each f(n), g(n) ∈
U. Then ∑

n≤x

f(n)g(n) = .P(f ;x)
∑
n≤x

g(n) +O

(
xD∗(f, 1;∞) +

x

log x

)
.

We deduce Delange’s Theorem when D∗(f, 1;∞) = o(1) by taking g = 1. Note
that D∗(f, g;∞) < D(f, g;∞) +O(1) <∞.

Deduction of Theorem
Delange
2.2.1. We decompose f as gℓ where

g(pk) =

{
f(pk) if pk ≤ y;

1 if pk > y
and ℓ(pk) =

{
1 if pk ≤ y

f(pk) if pk > y
,

so that D∗(1, f ;∞) = D∗(1, g;∞) + D∗(1, ℓ;∞) and D∗(1, g;∞) = D∗(1, f ; y). Fix
ϵ > 0 and then y sufficiently large so that D∗(1, ℓ,∞) = D∗(1, f ;∞)−D∗(1, f ; y) < ϵ.

65
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By Proposition
CloseMultFns
2.2.2 with f = ℓ we have∑

n≤x

f(n) = P(ℓ;x)
∑
n≤x

g(n) +O (ϵx) .

as D∗(f, g;∞) = D∗(gℓ, g;∞) ≤ D∗(ℓ, 1;∞) < ϵ. Now, by Proposition
GenFundLem
1.4.7 with

x ≥ yu where 1/uu/3 < ϵ, we have∑
n≤x

g(n) = P(g;x)x+O (ϵx) ,

The result follows since P(ℓ;x)P(g;x) = P(f ;x), letting ϵ→ 0. □

2.2.2. Additive Functions

To prove Proposition
CloseMultFns
2.2.2 we define an additive function h(.) with h(pk) =

f(pk) − 1 for all prime powers pk. We have f(pk) ≈ eh(p
k) if |1 − f(pk)| is small,

which it usually is. Hence f(n) ≈ eh(n). The key to the proof of Proposition
CloseMultFns
2.2.2

is that additive functions h are mostly very close to their mean value µh; hence
f(n) ≈ eµh for most integers n, and the result then follows since eµh ≈ P(f ;x). In
this section we fill in the details of this surprising argument.

Exercise 2.2.1. Suppose that h(.) is an additive function with each |h(pk)| ≪
1. Prove that

1

x

∑
n≤x

h(n) = µh +O

(
1

log x

)
where µh :=

∑
pk≤x

h(pk)

pk

(
1− 1

p

)
.

The Turán-Kubilius inequality shows that the values of h(n) tend to be very
close to the mean value of h(n). It accomplishes this by bounding the variance:

PropDel Proposition 2.2.3 (Turán-Kubilius). If h(.) is an additive function then∑
n≤x

|h(n)− µh|2 ≪ x
∑
pk≤x

|h(pk)|2

pk
.

The “best-possible” implicit constant in this result is 3/2 + o(1).

To apply this result we need to make a few simple, technical remarks.

prodnums Exercise 2.2.2. (i) For any complex numbers w1, . . ., wk and z1, . . ., zk in
the unit disc we have

|z1 · · · zk − w1 · · ·wk| ≤
j∑
j=1

|zj − wj |.

(ii) Deduce that if f and g are multiplicative functions, taking values in U, then∣∣∣∣∣∣ 1x
∑
n≤x

f(n)− 1

x

∑
n≤x

g(n)

∣∣∣∣∣∣ ≤
∑
pk≤x

|f(pk)− g(pk)|
pk

.

Since |z1 − z2|2 ≤ 2(1− Re(z1z2)) whenever |z1|, |z2| ≤ 1, we have

usefulInequsefulIneq (2.2.1)
∑
pk≤x

|f(pk)− g(pk)|2

pk
≤ 2

∑
pk≤x

1− Re(f(pk)g(pk))

pk
= 2 D∗(f, g;x)2

expapprox Exercise 2.2.3. Show that if |z| ≤ 1 then |ez−1| ≤ 1 and z = ez−1+O(|z−1|2).
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We now proceed to the surprising proof of Delange.

Deduction of Proposition
CloseMultFns
2.2.2. Using the last two exercises (the latter

with z = f(pk)) we obtain

f(n) =
∏
pk∥n

f(pk) =
∏
pk∥n

ef(p
k)−1 +O

∑
pk∥n

|f(pk)− 1|2
 .

Let h(.) be the additive function defined by h(pk) = f(pk) − 1. Therefore, since
each |g(n)| ≤ 1,∑

n≤x

g(n)f(n)−
∑
n≤x

g(n)eh(n) ≪
∑
n≤x

∑
pk∥n

|f(pk)− 1|2

≤ x
∑
pk≤x

|f(pk)− 1|2

pk
≪ x D∗(f, 1, x)2.

Now since Re(h(n)) ≤ 0 for all n, therefore Re(µh) ≤ 0 and |eh(n) − eµh | ≪
|h(n)− µh|. Hence∣∣∣∣∣∣
∑
n≤x

g(n)eh(n) − eµh

∑
n≤x

g(n)

∣∣∣∣∣∣ ≤
∑
n≤x

|eh(n) − eµh | ≪
∑
n≤x

|h(n)− µh|

≪

x∑
n≤x

|h(n)− µh|2
1/2

≪ x D∗(f, 1, x) +
x

log x
.

by the Cauchy-Schwarz inequality, and Proposition
PropDel
2.2.3.

Now µh =
∑
p≤x µh,p where µh,p :=

∑
k: pk≤x

h(pk)
pk

(
1− 1

p

)
, so that

eµh,p = 1+ µh,p +O(µ2
h,p) =

(
1− 1

p

)∑
k≥0

f(pk)

pk
+O

 1

x
+

1

p

∑
k≥1: pk≤x

|h(pk)|2

pk

 ,

which is the pth factor from P(f, x), using the Cauchy-Schwarz inequality. We
deduce from exercise

prodnums
2.2.2 that

|eµh − P(f, x)| ≪
∑
pk≤x

(
|f(pk)− 1|2

pk
+

1

x

)
≪ D∗(f, 1, x)2 +

1

log x
.

The result follows by collecting up the displayed equations above. □

2.2.3. The Turán-Kubilius inequality and the number of prime factors
of typical integer

Proof of Proposition
PropDel
2.2.3, the Turán-Kubilius inequality. We be-

gin by proving the result assuming that h(pi) = 0 for all prime powers pi >
√
x. If

we expand the left hand side then the coefficient of h(pi)h(qj), where p and q are
distinct primes, is∑
n≤x

pi,qj∥n

1− 1

qj

(
1− 1

q

)∑
n≤x
pi∥n

1− 1

pi

(
1− 1

p

)∑
n≤x
qj∥n

1 +
1

piqj

(
1− 1

p

)(
1− 1

q

)∑
n≤x

1.
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The first sum here is∑
n≤x

pi,qj∥n

1 =

[
x

piqj

]
−
[

x

pi+1qj

]
−
[

x

piqj+1

]
+

[
x

pi+1qj+1

]

=
x

piqj

(
1− 1

p

)(
1− 1

q

)
+O(1).

Treating all three other sums analogously, we find that the coefficient of h(pi)h(qj)
is O(1). Summing over i and j we get the bound (and Cauchying)

≪
∑
pi≤

√
x

|h(pi)|2 ≤
∑
pi≤

√
x

pi
∑
pi≤x

|h(pi)|2

pi
≪ x

log x

∑
pi≤x

|h(pi)|2

pi

The quantity that remains equals∑
n≤x

∑
p≤

√
x

∣∣∣h(pvp(n))− ∑
k: pk≤x

h(pk)

pk

(
1− 1

p

) ∣∣∣2
≪
∑
n≤x

∑
p≤

√
x

|h(pvp(n))|2 + x
∑

k: pk≤x
p≤

√
x

|h(pk)|2

pk
≪ x

∑
pk≤x

|h(pk)|2

pk

using the Cauchy-Schwarz inequality, since pk∥n for ≤ x/pk integers n ≤ x.
Next we prove the result assuming that h(pi) = 0 for all prime powers pi ≤

√
x.

If n ≤ x and h(n) ̸= 0 then there is at most one prime power pi with pi∥n and
h(pi) ̸= 0. For each such pi there are ≤ x/pi such values of n. Therefore, the sum
on the left hand side above is

≤ x|µh|2 +
∑

√
x<pi≤x

|h(pi)− µh|2
x

pi
≤ x|µh|2 + x

∑
pi≤x

|h(pi)|2

pi
≪ x

∑
pk≤x

|h(pk)|2

pk
.

by the Cauchy-Schwarz inequality.
Finally, we can write any given h as h1 + h2 with h1(p) = 0 for all primes

p >
√
x, and h2(p) = 0 for all primes p ≤

√
x. Then µh = µh1 + µh2 by definition,

and so |h(n)−µh| ≤ |h1(n)−µh1 |+ |h2(n)−µh2 | by the triangle inequality. Using
Cauchy-Schwarz we then bound the required sum for h by the analogous sums for
h1 and h2, and our result follows. □

Let ω(n) =
∑
p|n 1 be the number of distinct prime factors of an integer, and

let Ω(n) =
∑
pk|n 1 be the number of prime factors of an integer, including multi-

plicities. Thus ω(12) = 2 while Ω(12) = 3. Both are additive functions, and we can
apply Proposition

PropDel
2.2.3 to both.

Corollary 2.2.4 (Hardy and Ramanujan). For all, but at most o(x), integers
≤ x we have

ω(n),Ω(n) = log log n+O((log log n)1/2+ϵ).

Proof. Now µω :=
∑
p≤x 1/p = log log x + c + o(1) by exercise

exmertens
1.1.10. If N

is the set of integers n > x/ log x for which |ω(n) − log log n| ≥ 2(log log n)1/2+ϵ
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then |ω(n)−µω| ≥ (log log x)1/2+ϵ. Hence, applying Proposition
PropDel
2.2.3 with h(pk) =

ω(pk) = 1, we deduce that

#N · (log log x)1+2ϵ ≤
∑
n≤x

|ω(n)− µω|2 ≪ x log log x.

Hence #N ≪ x/(log log x)2ϵ and the result for ω(n) follows. Let M be the set of
integers n ∈ N for which Ω(n)− ω(n) ≥ 2(log log n)1/2+ϵ. Then

#M · (log log x)1/2+ϵ ≤
∑
n≤x

(Ω(n)− ω(n)) =
∑
n≤x

∑
pk|n
k≥2

1

=
∑
pk≤x
k≥2

∑
n≤x
pk|n

1 ≤
∑
pk≤x
k≥2

x

pk
≤
∑
p≤x

x

p(p− 1)
≤ x.

Hence #M ≪ x/(log log x)1/2+ϵ, and the result for Ω(n) follows. □

2.2.4. The Central-Limit Theorem and the Erdős-Kac theorem

The Central-Limit Theorem tells us that if X1, X2, . . . is a sequence of inde-
pendent random variables then, under mild restrictions, the random variable given
by the sum

SN := X1 +X2 + . . .+XN

satisfies the normal distribution; that is, there exists mean µ and variance σ2 such
that, for any real number T ,

Prob(SN ≥ µ+ Tσ) → 1√
2π

∫ ∞

T

e−
1
2 t

2

dt,

as N → ∞. This is also called the Gaussian distribution, and in his handwritten
notes in the Göttingen library, one can find Gauss observing that the distribution
of primes in short intervals appears to satisfy such a distribution.

In order to prove that the given probability distributions SN converge to the
normal distribution, it suffices to verify that all of the integer moments give the
correct values. That is

E(SN − µ)m/σm →

{
2k!
2k·k! if m = 2k is even;

0 if m is odd,

as N → ∞, for each integer m ≥ 0. These results can all be found in any introduc-
tory text in probability theory, such as

ProbText
[?].

The Erdős-Kac theorem is a significant strengthening of the result of Hardy
and Ramanujan. It states that the values {ω(n) : n ≤ x} are distributed as in the
normal distribution with mean log log x and variance log log x; specifically that, for
any real number T ,

1

x
#{n ≤ x : ω(n) ≥ log log x+ T

√
log log x} → 1√

2π

∫ ∞

T

e−
1
2 t

2

dt,

as x → ∞. To prove this we will compare the moments of ω(n) − log log x with
the moments of a corresponding heuristic model, which satisfies the Central-Limit
Theorem. Like before we will split our consideration into the small and large prime
factors. To study the kth moments, we begin by working with the primes ≤ y
where yk ≤ x.
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Define

1p(n) :=

{
1 if p|n;
0 if p ∤ n

and then
ωy(n) :=

∑
p|n, p≤y

1 =
∑
p≤y

1p(n).

A randomly chosen integer is divisible by p with probability 1/p, so if we define
X2, X3, . . . to be independent random variables with

Xp :=

{
1 with probability 1/p;

0 with probability 1− 1/p,

then
Sy :=

∑
p≤y

Xp

gives a model for the values of ωy(n). This is, on average,

µy := E(Sy) =
∑
p≤y

E(Xp) =
∑
p≤y

1

p
,

and so we will study

1

x

∑
n≤x

(ωy(n)− µy)
k − E((Sy − µy)

k) =
k∑
j=1

(
k

j

)
(−µy)k−j

( 1
x

∑
n≤x

ωy(n)
j − E(Sjy)

)
.

We expand this last term as∑
p1,p2,...,pj≤y

( 1
x

∑
n≤x

1p1(n) . . . 1pj (n)− E(Xp1 . . . Xpj )
)

=
∑

p1,p2,...,pj≤y
d:=[p1,p2,...pj ]

( 1
x

[x
d

]
− 1

d

)
≪ 1

x

∑
p1,p2,...,pj≤y

1 =
π(y)j

x
.

Hence, in total, our upper bound is

≪
k∑
j=1

(
k

j

)
µk−jy

π(y)j

x
≤ (π(y) + µy)

k

x
= o(1).

We therefore deduce that

1

x
#{n ≤ x : ωy(n) ≥ µy + Tσy} → 1√

2π

∫ ∞

T

e−
1
2 t

2

dt,

where σ2
y :=

∑
p≤y

1
p

(
1− 1

p

)
. We let y = x1/L with L := log log x so that µy, σ

2
y =

log log x+O(logL).
Now we show that the large primes rarely make a significant contribution to

ω(n):
1

x

∑
n≤x

|ω(n)− ωy(n)| =
∑

y<p≤x

1

x

[
x

p

]
∼ logL

by exercise
exmertens
1.1.10. Hence there are o(x) values of n ≤ x for which |ω(n)−ωy(n)| ≥

(logL)2. The Erdős-Kac theorem follows.
This argument can be easily generalized:
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Exercise 2.2.4. Prove that Ω(n) :=
∑
pk|n 1 is normally distributed, for the

integers n ≤ x, with mean and variance ∼ log log x.

Exercise 2.2.5. Let h(.) be an additive function, and define hy(p
k) = h(pk)

if pk ≤ y, and hy(p
k) = 0 otherwise. For y = xL as above, assume that, for each

fixed integer k ≥ 1, we have∑
d: ω(d)≤k

|hy(d)| = o
( x

((1 + sy log log y)k

)
and that ∑

y<pk≤x

|h(pk)|
pk

= o(sy) where s
2
y :=

∑
pk≤y

|h(pk)|2

pk
.

Deduce that the values of h(n), with n ≤ x, are normally distributed.

A further generalization that is useful in applications, goes as follows:

Exercise 2.2.6. Let A be a set of x integers (possibly repeated). Suppose that
there exists a non-negative real-valued multiplicative function f(.) such that the
number of elements of A that are divisible by d is (f(d)/d)x+ rd. Let ωP(a) be the
number of distinct prime factors of a from the given set of primes P. Prove that if∑

d: p|d =⇒ p∈P
ω(d)≤k

|rd| = o
( x

((1 + µP)k

)

for each fixed integer k ≥ 1, where µP :=
∑
p∈P f(p)/p, then the values of ωP(a),

with a ∈ A, are normally distributed.

CloseMultFns2 Exercise 2.2.7. Suppose that f and g are multiplicative functions taking val-
ues in U. Let h be a multiplicative function for which h(pk) = f(pk) if |f(pk)| ≤
|g(pk)|, and h(pk) = g(pk) otherwise Then

P(h/f ;x)
∑
n≤x

f(n)− .P(h/g;x)
∑
n≤x

g(n) ≪ xD∗(f, g;∞) +
x

log x
.

Here (h/f)(pk) = h(pk)/f(pk) unless f(pk) = 0, in which case (h/f)(pk) = 1.





CHAPTER 2.3

Halász’s theorem

In this chapter we will state the quantitative form of Halász’s theorem; we
already saw the qualitative version in Theorem

Hal1
2.1.10(ii) (which we deduce from

the result given here). This reflects an important change in focus. Up until now
the results have been primarily aimed at letting us understand the mean value of
f up to x, as x→ ∞. Halász’s theorem allows us to work more explicitly with the
mean value of f up to x, for given large x.

2.3.1. The main result

The main result of Halász deals with the (difficult) case when D(f, piα;∞) = ∞
for all α. It is more precise and quantitative. To state it we do need some further
definitions. Given a multiplicative function f with |f(n)| ≤ 1 for all n, define

mindistmindist (2.3.1) M(x, T ) =Mf (x, T ) = min
|t|≤T

D(f, pit;x)2.

We define t(x, T ) = tf (x, T ) to be a value of t with |t| ≤ T at which this minimum
is attained.

Hal2 Theorem 2.3.1. (Halász’s theorem) Let f be a multiplicative function with
|f(n)| ≤ 1 for all n and let 1 ≤ T ≤ (log x)10 be a parameter. Then

1

x

∣∣∣∑
n≤x

f(n)
∣∣∣≪ (1 +M(x, T )) exp(−M(x, T )) +

1

T
.

The proof will appear in the next chapter. In this chapter we will discuss
various consequences of this key theorem. The following exercise helps us establish
limitations on the strength of Halász’s theorem:

ex:4.13 Exercise 2.3.1. Show that if T ≥ 1 then

1

2T

∫ T

−T
D(f, pit;x)2dt = log log x+O(1).

Deduce that Mf (x, T ) ≤ log log x+O(1), and conclude that the bound in Halász’s
theorem is never better than x log log x/ log x.

This implies the following:

Hal2Cor Corollary 2.3.2. Let f be a multiplicative function with |f(n)| ≤ 1 for all n.
Then

1

x

∣∣∣∑
n≤x

f(n)
∣∣∣≪ (1 +Mf (x, log x)) exp(−Mf (x, log x))

At first sight it is difficult to know how to interpret the use of the function
Mf (x, T ) and whether or not it accurately reflects the size of the mean value in
many cases. First let us relate it to more familiar quantities:

73
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MaxTruncRight Exercise 2.3.2. Prove that

max
|t|≤T

∣∣∣F(1 + it+
1

log x

)∣∣∣ ≍ log x exp(−Mf (x, T )).

From the result in this exercise, we might expect that the mean value of f up to
y is “typically” of size exp(−Mf (y, T )), and indeed we will exhibit this in Theorem
LBdL
2.6.3. Moreover we will give examples in sections

AsympExampConst
?? and

HalaszExample
?? to show that the extra

factor (1 +Mf (x, T )) is necessary.
When we go to prove Halász’s theorem, it is simpler to work only with totally

multiplicative f (note that if f is a given multiplicative function, and g is that totally
multiplicative function for which g(p) = f(p) for all p then Mf (x, T ) =Mg(x, t) by
definition). The following two exercises allow the reader to justify that this may be
done without loss of generality:

compare2Ms Exercise 2.3.3. If x ≥ y show that

0 ≤Mf (x, T )−Mf (y, T ) ≤ 2
∑

y<p≤x

1

p
= 2 log

log x

log y
+O(1).

Show that this bound cannot be improved in general.

MultnTotallyMult Exercise 2.3.4. By writing f = g ∗ h where g is the totally multiplicative
function with g(p) = f(p) for all primes p, show that Halász’s Theorem (Theorem
Hal2
2.3.1) holds for all multiplicative functions f with values inside the unit disk if it
does for totally multiplicative functions. (Hint: Note that h is only supported on
powerful numbers, and |h(pk)| ≤ 2 for all k. Use the hyperbola method to bound
the mean value of f . You might need to use exercise

compare2Ms
2.3.3)1

2.3.2. Proof of the prime number theorem

PNTexplicit1 Corollary 2.3.3. [The Prime Number Theorem] There exists a constant A
such that

ψ(x)− x≪ x
(log log x)A

log x
.

Proof. Note that

D(1, niα;x)2 + D(µ(n), niα;x)2 = 2
∑
p≤x

1

p
= 2 log log x+O(1).

Therefore, using Lemma
lem4.3.1
2.1.6, we deduce that for T ≥ 10,

Mµ(x, T ) ≥ log log x− 8 log log T +O(1).

Hence by Corollary
Hal2Cor
2.3.2 we have

1

x

∣∣∣∑
n≤x

µ(n)
∣∣∣≪ (log log x)9

log x
.

We deduce the result with A = 11, by exercise
ex:MobiusEquiv
1.1.15 (and this value for A can

probably be reduced with more effort). □

1This exercise also appeared in chapter 8; it now only appears here.
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We cannot hope, using only these methods, to improve the error term in Corol-
lary

PNTexplicit1
2.3.3 to better than (log log x)/ log x, as discussed in exercise

ex:4.13
2.3.1. However,

for many applications, we would like to improve this to ≪B x/(log x)B , for any
given B > 0. Fortunately, Koukoulopoulos

Koukou1
[?] recently developed a modification of

this approach which allowed him to achieve this goal, indeed proving that

ψ(x) = x+O
(
x exp

(
− (log x)3/5+o(1)

))
;

which is as small an error term as is known from classical methods. We will describe
Koukoulpoulos’s more sophisticated proof in chapter

ch:StrongPNT
??.

The proof of the prime number theorem given in Corollary
PNTexplicit1
2.3.3 depends on

the (simple) estimates for ζ(s) to the right of the 1-line, given in Lemma
lem4.3.0
2.1.5. One

can entirely avoid the use of ζ(s) and instead use the Brun-Titchmarsh Theorem
to obtain the estimates necessary to deduce a slightly weaker version of the prime
number theorem:

ex:BTbound1 Exercise 2.3.5. (i) Let |t| ≤ log x and P = {|t|100 < p ≤ x : cos(t log p) ≥
− 1

2}. Show that the primes in {p ≤ x} \ P belong to a union of intervals. Apply
the Brun-Titchmarsh theorem to each such interval to deduce that∑

p≤x
p ̸∈P

1

p
≤
{2
3
+ o(1)

}
log log x.

Deduce from this and the definition of P that D2(µ(n), nit;x) ≥
{

1
6+o(1)

}
log log x,

and hence ψ(x) = x+O(x/(log x)τ+o(1)) for τ = 1/6.
(ii) Use partial summation and the Brun-Titchmarsh theorem to show that one

can take τ = 1− 2
π .

2.3.3. Real valued multiplicative functions: Deducing Wirsing’s
theorem

Let f be a real multiplicative function with −1 ≤ f(n) ≤ 1 for all n. It seems
unlikely that f can pretend to be a complex valued multiplicative function niα.
The triangle inequality allows us to make this intuition precise:

realdist Lemma 2.3.4. Let f be a real multiplicative function with −1 ≤ f(n) ≤ 1 for
all n. For any real number |α| ≤ (log x)10 we have

D(f, piα;x) ≥ 1

3
D(1, f ;x) +O(1).

Proof. If D(1, p2iα;x) ≥ 2
3D(1, f ;x) +O(1) then the triangle inequality gives

2

3
D(1, f ;x)+O(1) ≤ D(1, p2iα;x) = D(p−iα, piα;x) ≤ D(f, piα;x)+D(f, p−iα;x) = 2D(f, piα;x).

Otherwise, since D(1, p2iα;x) = D(1, piα;x) +O(1) by Lemma
lem4.3.1
2.1.6,

D(f, piα;x) ≥ D(1, f ;x)− D(1, piα;x) ≥ 1

3
D(1, f ;x) +O(1).

□

Using Lemma
realdist
2.3.4 and Halász’s theorem with T = log x we deduce:
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Halreal Corollary 2.3.5. If f is a multiplicative function with −1 ≤ f(n) ≤ 1 then

1

x

∑
n≤x

f(n) ≪ (1 + D(1, f ;x)2) exp
(
− 1

9
D(1, f ;x)2

)
.

If f(n) ≥ 0 for all n then, evidently tf (x, T ) = 0, and so we can replace the
constant 1

9 by 1 in the Corollary. However when f(n) takes negative values things
are not so simple:

Exercise 2.3.6. Prove that if f(n) ≥ 0 for all n then tf (x, T ) = 0. Show also
that if f(p) = −1 for all primes p then tf (x, T ) ̸= 0.

The optimal constant, 0.32867 . . .,2 in place of 1
9 , has been obtained in Corollary

Halreal
2.3.5 by Hall and Tenenbaum

MR1113432
[?] (see section **).

Corollary
Halreal
2.3.5 implies a quantitative form of Wirsing’s Theorem

Wirsing
2.1.9 and,

this in turn, implies a quantitative form of the prime number theorem: Since
D(1, µ;x)2 = 2 log log x+O(1) we deduce that ψ(x)−x≪ x/(log x)2/9+o(1), though
this is weaker than Corollary

PNTexplicit1
2.3.3

2.3.4. Distribution of values of a multiplicative function, II

We develop the discussion from section
DistI
2.1.6, now using explicit estimates de-

rived from Halász’s theorem.

Exercise 2.3.7. Letm be the smallest positive integer with D(f(p)m, pimα;∞) <
∞ for some α ∈ R. Show that if r is any other integer with D(f(p)r, pirβ ;∞) <∞
for some β ∈ R, then m divides r.

If we are in case (ii) of Theorem
equidist
2.1.14 then we deduce, from Halász’s theorem

and the last exercise, that
∑
n≤N f(n)

k = o(N) if m does not divide k.

The characteristic function for the interval (α, β) is

β − α+
∑
k∈Z
k ̸=0

e(kα)− e(kβ)

2iπk
e(kt).

We can take this sum in the range 1 ≤ |k| ≤M with an error ≤ ϵ. Hence

R(N,α, β) =
∑

1≤|k|≤M

e(kα)− e(kβ)

2iπk

1

N

∑
n≤N

f(n)k +O(ϵ)

=
∑

1≤|r|≤R

e(mrα)− e(mrβ)

2iπmr

1

N

∑
n≤N

f(n)mr +O(ϵ)

writing k = mr and R = [M/k]. This formula does not change value when we
change {α, β} to {α + 1

m , β + 1
m}, nor when we change {f, α, β} to 1

m times the
formula for {fm,mα,mβ} and hence we deduce that

Rf (N,α, β) =
1

m
Rfm(N,mα,mβ) + oN→∞(1)

= Rf

(
N,α+

j

m
, β +

j

m

)
+ oN→∞(1), for 1 ≤ j ≤ m− 1,

for all 0 ≤ α < β < 1.

2More precisely − cosβ, where β is the unique root in (0, π) of sinβ − β cosβ = 1
2
π.
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2.3.5. Best Constants
sec:BestConsts

It is evident that tf (x, log x) = 0 if all f(n) ∈ [0, 1], and hence

∑
n≤x

f(n) ≪ x exp

−
∑
p≤x

1− f(p)

p


One might guess that this also holds for all real-valued f , but that is not true.

Lemma 2.3.6. Let θ1 be the solution to sin θ1 − θ1 cos θ1 = π
2 , and then κ =

− cos θ1 = .32867 . . .. If each f(p) ∈ [−1, 1] and |t| = (log x)O(1) then∑
p≤x

1− Re(f(p)/pit)

p
≥ κ

∑
p≤x

1− f(p)

p
+O(.).

Moreover this is the optimal such constant κ.

Exercise 2.3.8. Use the example f(n) = ni to show that there is no such
result for complex-valued f .

Proof. We wish to maximize λ, such that, for all f(p) with |f(p)| ≤ 1,

(1− λ)
∑
p≤x

1

p
≥
∑
p≤x

f(p)
cos(t log p)− λ

p
.

To maximize the right side we select f(p) = sign(cos(t log p)− λ), so that we need

(1− λ) log log x ≥
∑
p≤x

| cos(t log p)− λ|
p

.

To evaluate this sum when t = 1, one needs the prime number theorem. Under this
assumption we have

∑
p≤x

| cos(t log p)− λ|
p

=


η log log x+O(log log(1 + |t|)) if |t| ≥ 1

(1− λ) log(1/|t|) + η log(|t| log x) +O(1) if 1 > |t| ≥ 1/ log x

(1− λ) log log x+O(1) if |t| ≤ 1/ log x

where

η :=
1

2π

∫ π

−π
| cos θ − λ|dθ = 2

π
(sin θ0 − λθ0) + λ

and θ0 > 0 is the smallest real number for which λ = cos θ0. We need 1 − λ ≥ η.
The result follows by taking 1− λ = η and then θ1 = π − θ0.

The example f(p) = sign(cos(t log p) − κ) shows that the constant cannot be
increased. □





CHAPTER 2.4

Perron’s formula and its variants

NewHal

Perron’s formula is a key ingredient in the proof of Halász’s theorem. In this
chapter we will discuss how it is used. To do so, we move away from purely elemen-
tary techniques, and use standard (complex) analytic techniques that are useful
throughout analytic number theory.

In the next chapter we will finally prove Halász’s Theorem.

2.4.1. Deriving Perron’s formula

Many times now we have seen sums where some parameter n ranges up to x.
Perron’s formula gives an analytic way of expressing the condition whether n lies
below x or not, and this expression paves the way for attacking such sums using
analytic properties of the associated Dirichlet series.

Perron Lemma 2.4.1. Let y > 0 and c > 0 be real numbers. Then

qualperqualper (2.4.1)
1

2πi

∫ c+i∞

c−i∞

ys

s
ds = δ(y > 1) :=


1 if y > 1
1
2 if y = 1

0 if y < 1,

where the conditionally convergent integral is to be interpreted as limT→∞
∫ c+iT
c−iT .

Quantitatively, for y ̸= 1,

quanPerquanPer (2.4.2)
1

2πi

∫ c+iT

c−iT

ys

s
ds = δ(y > 1) +O

(
ycmin

(
1,

1

T | log y|

))
.

The formula (
qualper
2.4.1) may be verified by moving the line of integration to the

right when y < 1; that is, letting c tend to +∞ and using Cauchy’s theorem to
justify that the integral does not change. When y > 1 the idea is to move the line
of integration to the left; that is, to let c tend to −∞ and keeping in mind that
we cross a pole at s = 0 which gives a residue of 1. This argument can be made
precise, but a little care is needed as the integral is not absolutely convergent. The
reader should attempt to carry this out, or at any rate carry out the corresponding
argument for the variants in the exercise below where the integral is absolutely
convergent.

Perronvariants Exercise 2.4.1. Let y > 0 and c > 0 be real numbers. Show that

pervarpervar (2.4.3)
1

2πi

∫ c+i∞

c−i∞

ys

s2
ds =

{
log y if y ≥ 1

0 if y ≤ 1.

Now we return to the proof of Perron’s formula, Lemma
Perron
2.4.1.

79
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Proof. Integration by parts gives (for y ̸= 1)∫ c+iT

c−iT

ys

s
=

∫ c+iT

c−iT

1

s
d
( ys

log y

)
=

1

log y

( yc+iT
c+ iT

− yc−iT

c− iT

)
+

1

log y

∫ c+iT

c−iT

ys

s2
ds.

Since ∫ c+iT

c−iT

ys

s2
ds =

∫ c+i∞

c−i∞

ys

s2
ds+O(yc/T ),

using (
pervar
2.4.3) we conclude that for y ̸= 1

1

2πi

∫ c+iT

c−iT

ys

s
ds = δ(y > 1) +O

( yc

T | log y|

)
.

This establishes (
quanPer
2.4.2) when T | log y| ≥ 1. Now suppose that T | log y| ≤ 1. Here

1

2πi

∫ c+iT

c−iT

ys

s
ds =

1

2πi

∫ c+iT

c−iT

yc

s
(1 +O(|s| log y))ds = O(yc),

and so (
quanPer
2.4.2) holds again. From the quantitative version (

quanPer
2.4.2) the qualitative

relation (
qualper
2.4.1) (for y ̸= 1) follows upon letting T → ∞, and the case y = 1 was

checked in Exercise
casey=1
2.5.2. □

2.4.2. Discussion of Perron’s formula

Suppose that an are complex numbers with an = no(1), and define the Dirichlet
series let A(s) =

∑
n≥1 ann

−s. This is absolutely convergent for Re(s) > 1. If x is
not an integer, then Perron’s formula gives, for any c > 1,

PerFPerF (2.4.4)
∑
n≤x

an =
∑
n

an
1

2πi

∫ c+i∞

c−i∞

(x
n

)s ds
s

=
1

2πi

∫ c+i∞

c−i∞
A(s)

xs

s
ds.

We can interchange the sum and integral as everything is absolutely convergent for
arbitrary c > 1. Note that |xs| = xc increases as c increases, while |F (s)| may be
expected to increase as c decreases to 1. A convenient value for c that balances
these trends is to take c = 1 + 1/ log x, and we shall frequently do so below.

Unfortunately it is not easy to bound the integral in (
PerF
2.4.4) directly. If we use

the quantitative form of Perron’s formula with c = 1 + 1/ log x, and |an| ≤ dκ(n)
for all n then

PerFTPerFT (2.4.5)
∑
n≤x

an =
1

2πi

∫ c+iT

c−iT
A(s)

xs

s
ds+O

(x(log x)κ log T
T

)
(see exercise

Perex
2.5.4 below). Then estimating the integral trivially we would obtain,

choosing T = (log x)κ,∑
n≤x

an ≪ xc
(
max
|t|≤T

|A(c+ it)|
)∫ T

−T

dt

1 + |t|
+
x log(xT )

T

≪ x
(

max
|t|≤(log x)κ

|A(1 + 1/ log x+ it)|
)
log log x+

x

log x
.

When κ = 1 this bound is weaker than the trivial
∑
n≤x an ≪ x since one can show

that max|t|≤1 |A(1 + 1/ log x+ it)| ≫ 1.
In the case an = f(n) = 1, we have F (s) = ζ(s) and

∑
n≤x f(n) = x + O(1).

Now |ζ(c+ it)| is largest when t = 0 and here it attains the value ζ(c) ≈ 1/(c−1) =
log x. However such a large value is attained only when |t| ≪ 1/ log x. In estimating
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the Perron integral trivially, we have used this maximum value over a much larger
range and thereby lost a lot. For a general multiplicative function, the large values
of |F (c+ it)| are also concentrated in small intervals and thus we can hope to gain
a factor of log x in Halász’s theorem.

Hence we are hoping for a bound like∑
n≤x

f(n) ≪ x
max|t|≤(log x)κ |F (c+ it)|

log x
· log log x

so the trivial bound on Perron’s formula is too big only by a factor of log x. In
exercise

ex:4.13
2.3.1 we saw that the improved bound given by Halász’s Theorem is never

better than x log log x/ log x (and we will show that this is the “best possible” by
the examples in section

AsympExampConst
??). I This is what makes Halász’s Theorem so difficult to

prove: In most analytic arguments, one can freely lose powers of log x, here and
there.1

2.4.3. Perron’s formula
Perronsection

The most famous example comes in taking f(n) = Λ(n), to obtain

ψ(x) =
∑
n≤x

Λ(n) =
1

2iπ

∫ c+i∞

c−i∞

(
−ζ

′(s)

ζ(s)

)
xs

s
ds.

This is the basis Riemann’s approach to proving the prime number theorem, the
idea being that one shifts the contour to the left, and uses Cauchy’s residue theorem

to exactly determine the value of ψ(x) in terms of the poles of ζ
′(s)
ζ(s)

xs

s , which include

the zeros of ζ(s). Developing an understanding of the zeros of ζ(s) is difficult (and
indeed, after 150 years our understanding is somewhat limited), and this is the
primary difficulty that we seek to avoid in this book. Our approach here will be to
work on this contour, and other contours to the right of 1, and to better understand
the integrand.

We expect cancelation in the integral because xs = xc · xit has mean value 0
as t ranges through any interval of length 2π/ log x. In order to obtain significant
cancelation we need A(s)/s to not vary much as t runs through this interval. If we
integrate by parts, first integrating the xs, we do succeed in getting appropriate
cancelation:∫ c+iT

c−iT
A(s)

xs

s
ds =

[
A(s)

xs

s log x

]c+iT
c−iT

−
∫ c+iT

c−iT
A′(s)

xs

s log x
ds+

∫ c+iT

c−iT
A(s)

xs

s2 log x
ds.

The first term is ≪ x/T , whereas the second and third terms correspond to using
Perron’s formula to evaluate 1

log x

∑
n≤x f(n) log n and 1

log x

∑
n≤x f(n) log(x/n),

respectively. Thus integration by parts here corresponds to the identity

log x = log n+ log(x/n).

Note that the third term is thus ≪ x/ log x, and so we have∫ c+iT

c−iT
A(s)

xs

s
ds = − 1

log x

∫ c+iT

c−iT
A′(s)

xs

s
ds+O

( x

log x

)
.

1An important exception are log-free zero density estimates (very close to the 1-line), which

are a crucial ingredient in the classical proofs of Linnik’s theorem. Our techniques bear features
in common with these classical log-free arguments.
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In other words we have

Perron2Perron2 (2.4.6)
∑
n≤x

an = − 1

log x

∫ c+iT

c−iT

A′

A
(s) ·A(s)x

s

s
ds+O

( x

log x

)
,

from which we deduce∑
n≤x

an ≪
max|t|≤T A

(
1 + 1

log x + it
)

log x
· x
∫ T

−T

∣∣∣A′(c+ it)

A(c+ it)

∣∣∣ 1

1 + |t|
dt+

x

log x
.

Now we have |A|/ log x as desired, and we need to bound the integral. The integral
over A′/A is now the key difficulty and we have no technique to approach this for
general A. In the next chapter we obtain the upper bound

∫
t
|(F ′/F )(c+ it)|2dt≪

log x when an = f(n) so that A = F . In this case, by Cauchying, the above bound
is a factor of

√
log x bigger than the Halász bound. This suggests that if we can

get two F ′/F factors into our integral we might be in luck. In the next subsection
we do exactly this.

2.4.4. The basic identity
Keyid

Instead of directly developing (
PerFT
2.4.5), we work with a different identity which

turns out to be much more flexible. Herein we need only suppose that the sums
defining both F and F ′/F are absolutely convergent to the right of the 1-line

keyid Lemma 2.4.2. For any x > 2 with x not an integer, and any c > 1, we have∑
2≤n≤x

(
f(n)− Λf (n)

log n

)
=

∫ ∞

0

∫ ∞

0

1

2πi

∫ c+i∞

c−i∞

F ′

F
(s+α)F ′(s+α+ β)

xs

s
ds dβ dα.

Proof. We give two proofs. In the first proof, we interchange the integrals
over α and β, and s. First perform the integral over β. Since

∫∞
0
F ′(s+α+β)dβ =

1− F (s+ α) we are left with

1

2πi

∫ c+i∞

c−i∞

∫ ∞

0

(F ′

F
(s+ α)− F ′(s+ α)

)xs
s
dα ds,

and now performing the integral over α this is

1

2πi

∫ c+i∞

c−i∞

(
− logF (s) + F (s)− 1

)xs
s
ds.

Perron’s formula now shows that the above matches the left hand side of the stated
identity.

For the second (of course closely related) proof, Perron’s formula gives that

1

2πi

∫ c+i∞

c−i∞

F ′

F
(s+ α)F ′(s+ α+ β)

xs

s
ds =

∑
2≤ℓ,m
ℓm≤x

Λf (ℓ)

ℓα
f(m) logm

mα+β
.

Integrating now over α and β gives∑
2≤ℓ,m
ℓm≤x

Λf (ℓ)f(m)

log(ℓm)
=

∑
2≤n≤x

(
f(n)− Λf (n)

log n

)
,

where we use that
∑
ℓm=n Λf (ℓ)f(m) = f(n). □
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Remark 2.4.2.1. One idea is to use Perron’s formula further to the right of the
1-line so with c = 1 + α for 1

log x ≤ α ≤ 1, and dividing through by xα, we obtain

x−(1+α)
∑
n≤x

f(n) log n = − 1

2iπ

∫ ∞

t=−∞

F ′(1 + α+ it)

1 + α+ it
xitdt.

Although this is not useful in of itself, computing the mean square yields Parseval’s
identity:

eq:Hal12eq:Hal12 (2.4.7)

∫ ∞

1

∣∣∣t−(1+α)
∑
n≤t

f(n) log n
∣∣∣2 dt
t

=
1

2π

∫ ∞

−∞

∣∣∣F ′(1 + α+ iy)

1 + α+ iy

∣∣∣2dy.
This was the basis of the proofs of Halász’s Theorem in

MR0230694
[?],

MRNotIn1
[?] and

MR2016245
[?].

2.4.5. Complications with the small primes

In Lemma
MeanSquarePrimes
2.5.4 in the next chapter, we give an upper bound on

∫ T
−T |(F ′/F )(c+

it)|2dt, but only in the case that f(pk) = 0 for all primes p ≤ T 2. Hence we need
to split f into its small and large prime factors: Let y ≥ 2 be a parameter, and
define the multiplicative functions s(.) (for small) and ℓ(.) (for large) by

s(n) =

{
f(n) if P (n) ≤ y

0 otherwise
and ℓ(n) =

{
f(n) if p(n) > y

0 otherwise
,

where p(n) and P (n) denote the smallest and largest prime factor of n, respectively.
Therefore f is the convolution of s and ℓ, and setting

S(s) =
∑
n≥1

s(n)

ns
and L(s) =

∑
n≥1

ℓ(n)

ns
, we have F (s) = S(s)L(s).

We define Λs and Λℓ analogously. Note that S and L depend on y.

keyidr1s Lemma 2.4.3. Let F , S, L, and y be as above. Let c > 1 be a real number.
Then∫ ∞

0

∫ ∞

0

1

2πi

∫ c+i∞

c−i∞
S(s)L(s+ α+ β)

L′

L
(s+ α)

L′

L
(s+ α+ β)

xs

s
dsdβdα

=
∑
n≤x

f(n)−
∑
m≤x

s(m)−
∑
mk≤x

s(m)
Λℓ(k)

log k
.

Proof. We can swap the order of the integrals since we are in the domain of
absolute convergence. We begin by integrating over β obtaining, since limη→∞ L(s+
α+ η) = 1, ∫ ∞

0

1

2πi

∫ c+i∞

c−i∞
S(s)L

′

L
(s+ α)

(
1− L(s+ α)

)xs
s
dsdα.

Next we integrate over α to obtain

1

2πi

∫ c+i∞

c−i∞
S(s)(−1− logL(s) + L(s))x

s

s
ds.

The third term is the Perron integral (
PerF
2.4.4) with Dirichlet series S(s)L(s) = F (s)

and so we obtain the sum of f(n) over n ≤ x. The first term is the Perron integral
(
PerF
2.4.4) with Dirichlet series S(s) and so we obtain the sum of s(m) over m ≤ x.
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The finally the middle term has Dirichlet series S(s) logL(s) which gives the sum
of s(m)Λℓ(k)/ log k over mk ≤ x. □

We need to truncate all of the three infinite integrals in Lemma
keyidr1s
2.4.3. We begin

by showing that the integrals over α and β can be reduced to a very short interval.

keyidr1 Lemma 2.4.4. Let F , S, L, and y be as above. Let η > 0 and c > 1 be real
numbers. Then

keyidr2keyidr2 (2.4.8)

∫ η

α=0

∫ 2η

β=0

1

2πi

∫ c+i∞

c−i∞
S(s)L(s+ α+ β)

L′

L
(s+ α)

L′

L
(s+ α+ β)

xs

s
dsdβdα

keyidr3keyidr3 (2.4.9) =
∑
n≤x

f(n)−
∑
mn≤x

s(m)
ℓ(n)

nη
−
∫ η

0

∑
mkn≤x

s(m)
Λℓ(k)

kα
ℓ(n)

n2η+α
dα.

Proof of Lemma
keyidr1
2.4.4. First we perform the integral over β in (

keyidr2
2.4.8), ob-

taining∫ η

α=0

1

2πi

∫ c+i∞

c−i∞
S(s)L

′

L
(s+ α)

(
L(s+ α+ 2η)− L(s+ α)

)xs
s
dsdα.

The term arising from L(s + α + 2η) above gives the third term in (
keyidr3
2.4.9), using

Perron’s formula. The term arising from L(s+ α) gives

−
∫ η

0

1

2πi

∫ c+i∞

c−i∞
S(s)L′(s+ α)

xs

s
ds dα =

1

2πi

∫ c+i∞

c−i∞
S(s)(L(s)− L(s+ η))

xs

s
ds,

upon evaluating the integral over α. Perron’s formula now matches the two terms
above with the first two terms in (

keyidr3
2.4.9). This establishes our identity. □

2.4.6. An explicit version

We now bound the contributions of the second and third terms in (
keyidr3
2.4.9), giving

the first error term in (
xkeyidr3
2.4.11).

errors23 Lemma 2.4.5. Keep the notations of Lemma
keyidr1
2.4.4, and suppose that |Λf (n)| ≤

κΛ(n) for all n. For η = 1/ log y, we have∑
mn≤x

s(m)
ℓ(n)

nη
+

∫ η

0

∑
mkn≤x

s(m)
Λℓ(k)

kα
ℓ(n)

n2η+α
dα≪ x

log x
(log y)κ.

Proof. We take the absolute value of all of the summands. Each integer
N ≤ x appears at most once in a non-zero term in the first sum, and then the
summand is ≤ |f(N)|/nη. We get an upper bound, using Corollary 1.2.3 of [The
Book], of

≪ x

log x

∏
p<y

(
1−|f(p)|

p

) ∏
y≤p≤x

(
1−|f(p)|

p1+η

)
≪ x

log x

∏
p<y

(
1−1

p

)−κ ∏
y≤p≤x

(
1− 1

p1+η

)−κ
≪ x

log x
(log y)κ

The second term in the lemma, is

≪
∫ η

0

∑
mkn≤x

|s(m)| |Λ(k)|
kα

|ℓ(n)|
n2η+α

dα≪
∫ η

0

x1−α
∑
mn≤x

|s(m)|
m1−α

|ℓ(n)|
n1+2η

dα,
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upon summing over k; and this is is

≪
∫ η

0

x1−α
∏
p<y

(
1− 1

p1−α

)−κ ∏
y≤p≤x

(
1− 1

p1+2η

)−κ
dα≪ x

log x
(log y)κ,

as desired. □

2.4.7. Moving and truncating the contours

Finally we need to truncate the integral over s at a reasonable height T . This
is a standard procedure in analytic number theory but we will complicate this by
moving the contour, for each α and β, to a convenient vertical line.

xkeyidr1 Proposition 2.4.6. Let 2
3 > η = 1

log y > 0 and c0 = 1+ 1
log x . If x > y ≥ T > 1

then
xkeyidr2xkeyidr2 (2.4.10)∫ η

0

∫ η

0

1

2πi

∫ c0+iT

c0−iT
S(s− α− β)L(s+ β)

L′

L
(s− β)

L′

L
(s+ β)

xs−α−β

s− α− β
ds dβ dα

xkeyidr3xkeyidr3 (2.4.11) =
∑
n≤x

f(n) +O

(
x

log x
(log y)κ +

x

T
(log x)κ

)
.

Moreover, one can replace each occurrence of

L′

L
(z) by

∑
y<n<x/y

Λℓ(n)

nz
,

Proof. Fix α, β ∈ [0, η]. If we write the terms in the Dirichlet series in (
keyidr2
2.4.8)

as a, b, c, d respectively, then, by Perron’s formula, the integral over s equals
∑
abcd≤x(bcd)

−α(bd)−β .
Each of c and d are > y, by the definition of L, and so each of a, b, c and d must be
≤ x/y. Hence we may truncate each of the Dirichlet series to a finite sum, meaning
that we may move the line of the s-integration to Re(s) = cα,β for any cα,β > 0.
Moreover we can, and will, replace

L′

L
(s+ α) =

∑
p(n)>y

Λℓ(n)

ns+α
by

∑
y<n<x/y

Λℓ(n)

ns+α
,

and similarly for (L′/L)(s+ α+ β).
Let cα,β = c0 − α− β/2, so that the inner integral over s in (

keyidr2
2.4.8) is

1

2πi

∫ c0+i∞

c0−i∞
S(s− α− β/2)

( ∑
y≤m≤x/y

Λℓ(m)

ms−β/2

)( ∑
y<n<x/y

Λℓ(n)

ns+β/2

)
L(s+ β/2)

xs−α−β/2

s− α− β/2
ds.

integralintegral (2.4.12)

The error introduced in truncating at T is, by the quantitative Perron formula,
(
quanPer
2.4.2),

≪
∑
a

∑
y<m,n<x/y

∑
b

Λ(m)Λ(n)

mαnα+β
|s(a)| |ℓ(b)|

bα+β

( x

abmn

)c0−α−β/2
min

(
1,

1

T | log(x/abmn)|

)
.
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The terms with N ≤ x/2 or N > 3x/2, where abmn = N , contribute

≪ x1−α−β/2

T

∑
y<m<x/y

Λ(m)

m1−β/2

∑
y<n<x/y

Λ(n)

n1+β/2

∑
a

|s(a)|
a1−α−β/2

∑
b

|ℓ(b)|
b1+β/2

≪ x1−α−β/2

T
min{log x, xβ/2/β}min{log x, 1/β}

∏
p≤y

(
1− 1

p1−α−β/2

)−κ ∏
y<p≤x

(
1− 1

p1+β/2

)−κ

≪ x1−α

T
min{log x, 1/β}2(log x)κ.

Integrating this over α > 0 and then β > 0 gives ≪ x
T (log x)

κ.

For the terms with x/2 ≤ N := k1k2mn ≤ 3x/2 we have (x/N)c0−α−β/2 ≪ 1.
Next we integrate over α and β, and then twice use the bound

∑
ab=c Λ(a)dκ(b) ≤

dκ(c) log c to obtain

≪ dκ(m)
∑

k2r=N/m

Λ(k1)

log(N/m)

∑
k2n=r

Λ(k2)dκ(n)

log r
≤ dκ(m)

∑
k1r=N/m

Λ(k1)dκ(r)

log(N/m)
≤ dκ(N),

where r only has prime factors > y. Hence these terms contribute

≪
∑

x/2≤N≤2x

dκ(N)min
(
1,

1

T | log(x/N)|

)
≪ x

T
(log x)κ−1 log T.

We now summarize the proof: We begin with identity in Lemma
keyidr1
2.4.4, re-

placing the inner integral in (
keyidr2
2.4.8) by (

integral
2.4.12). We truncate the inner integral

obtaining the error in Lemma
keyid3
??. The terms in (

keyidr3
2.4.9) are bounded by Lemma

errors23
2.4.5. Finally we replace β by 2β. proving the Proposition. □

2.4.8. Exercises

casey=1 Exercise 2.4.2. Verify (
qualper
2.4.1) directly in the case y = 1.

Exercise 2.4.3. Let y > 0 and c > 0 be real numbers. Show that

1

2πi

∫ c+i∞

c−i∞
ysΓ(s)ds = e−1/y.

Perex Exercise 2.4.4. Let an ∈ C. By dividing the n into the cases when |n− x| >
x/2, or |n− x| ≤ x/T , or kx/T ≤ |n− x| ≤ 2kx/T where k = 2j for 0 ≤ j ≤ J :=
[log2 T ], show that the error in Perron’s formula, (

PerFT
2.4.5), is

≪ xc

T

∞∑
n=1

|an|
nc

+

[log2 T ]∑
j=0

2c

2j

∑
|x−n|≤2jx/T

|an|.

Show that if each |an| ≤ dκ(n) then we obtain the claimed error term.

IntegwithF’ Exercise 2.4.5. Deduce (
Perron2
2.4.6) by applying Perron’s formula to the sum on

the right-hand side of the displayed equation in exercise
ex:AvofF
??.



CHAPTER 2.5

The proof of Halász’s Theorem

We will prove a technical version of Halász’s Theorem:

GenHal Theorem 2.5.1 (Halász’s Theorem). Let f be a multiplicative function with
|Λf (n)| ≤ κΛ(n) for all n. Then∑

n≤x

f(n) ≪ x

log x

∫ 1

1/ log x

(
max

|t|≤(log x)κ

∣∣∣F (1 + σ + it)

1 + σ + it

∣∣∣)dσ
σ

+
x

log x
(log log x)κ.

The following corollary is easier to work with in practice:

HalCor Corollary 2.5.2. Let f be a multiplicative function with |Λf (n)| ≤ κΛ(n) for
all n. We have∑

n≤x

f(n) ≪ (1 +M)e−Mx(log x)κ−1 +
x

log x
(log log x)κ.

where

max
|t|≤(log x)κ

∣∣∣F (1 + 1/ log x+ it)

1 + 1/ log x+ it

∣∣∣ =: e−M (log x)κ.

This leads to the statement of Halász’s Theorem, given in Theorem
Hal2
2.3.1.

The “trivial” upper bound on this sum is given by noting that each |f(n)| ≤
dκ(n) and then applying exercise

k-div
1.1.14(i), so that |

∑
n≤x f(n)| ≪κ x(log x)

κ−1.

Exercise 2.5.1. Prove that M ≥ κMf/κ(x, (log x)
κ) +O(1).

Hence, since M ≫ 1, Corollary
HalCor
2.5.2 gives bounds that are no worse than

trivial, and better if M is large.
Combining this last exercise with exercise

ex:4.13
2.3.1 we deduce the following conse-

quence:

HalCorSimp Corollary 2.5.3. We have∑
n≤x

f(n) ≪κ
x

log x
· (1 +M ′)(e−M

′
log x)κ.

where M ′ =Mf/κ(x, (log x)
κ).

2.5.1. A mean square estimate

To prove Halász’s theorem, we need an estimate for the mean square of the
sums over prime powers that appear in (

xkeyidr2
2.4.10).

MeanSquarePrimes Lemma 2.5.4. For any complex numbers {a(n)}n≥1, and any T ≥ 1 we have∫ T

−T

∣∣∣ ∑
T 2≤n≤x

a(n)Λ(n)

nit

∣∣∣2dt≪ ∑
T 2≤n≤x

n|a(n)|2Λ(n).

87
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Proof. Let Φ be an even non-negative function with Φ(t) ≥ 1 for −1 ≤ t ≤ 1,
for which the Fourier transform of Φ is compactly supported. For example, take
Φ(x) = 1

(sin 1)2 (
sin x
x )2 and note that Φ̂(x) is supported in [−1, 1]. We may then

bound our integral by

≤
∫ ∞

−∞

∣∣∣ ∑
T 2<n≤x

a(n)Λ(n)

nit

∣∣∣2Φ( t
T

)
dt

≤
∑

T 2<m,n≤x

Λ(m)Λ(n) |a(m)a(n)| |T Φ̂(T log(n/m))|.

Since 2|a(m)a(n)| ≤ |a(m)|2 + |a(n)|2 and symmetry, the above is

≤
∑

T 2<m≤x

|a(m)|2Λ(m)
∑

T 2≤n≤x

Λ(n)|T Φ̂(T log(n/m))|.

Since Φ̂ is compactly supported (and thus bounded), for a given m the sum over
n ranges over only those values with |n −m| ≪ m/T . Therefore, using the Brun-
Titchmarsh theorem, the sum over n is seen to be ≪ m. The lemma follows. □

2.5.2. Proof of Halász’s theorem

Proof of Theorem
GenHal
2.5.1. The integral in (

xkeyidr2
2.4.10), for fixed α, β ∈ [0, η], is

≪ x1−α−β/2
(
max
|t|≤T

|S(c0 − α− β/2 + it)L(c0 + β/2 + it)|
|c0 + β/2 + it|

)
×
∫ T

−T

∣∣∣ ∑
y≤m≤x/y

Λℓ(m)

mc0−β/2+it

∣∣∣∣∣∣ ∑
y≤n≤x/y

Λℓ(n)

nc0+β/2+it

∣∣∣dt,sboundsbound (2.5.1)

which allows us to apply Lemma
MeanSquarePrimes
2.5.4. Now∣∣∣∣S(c0 − α− β/2 + it)

S(c0 + β/2 + it)

∣∣∣∣≪ exp
(
κ
∑
p≤y

( 1

pc0−α−β/2
− 1

pc0+β/2

))
≪ 1,

since α, β, c0 − 1 ≪ η. Therefore

|S(c0 − α− β/2 + it)L(c0 + β/2 + it)|
|c0 + β/2 + it|

≪
∣∣∣F (c0 + β/2 + it)

c0 + β/2 + it

∣∣∣.
Using Cauchy-Schwarz and Lemma

MeanSquarePrimes
2.5.4 the integral in (

sbound
2.5.1) is

HalRev9HalRev9 (2.5.2) ≪
( ∑
y≤m≤x/y

Λ(m)

m1−β

) 1
2
( ∑
y≤n≤x/y

Λ(n)

n1+β

) 1
2 ≪ (x/y)β/2 min

(
log x,

1

β

)
,

provided y ≥ T 2. Combining the last two estimates, we find that the quantity in
(
sbound
2.5.1) is

≪ x1−αmin
(
log x,

1

β

)
max
|t|≤T

∣∣∣F (c0 + β/2 + it)

c0 + β/2 + it

∣∣∣.
Changing variable σ = β + 1/ log x, the integral in (

xkeyidr2
2.4.10) is

NB0NB0 (2.5.3) ≪
∫ 1

α=0

x1−α
∫ 2/ log y

1/ log x

(
max
|t|≤T

∣∣∣F (1 + σ + it)

1 + σ + it

∣∣∣)dσ
σ
dα.

Now
∫ 1

α=0
x1−αdα ≤

∫∞
α=0

x1−αdα = x/ log x. Moreover |F (1 + σ + it)| ≪ (log x)κ,
so that those σ for which |F (1+σ+ it)| is maximized with |t| > (log x)κ, contribute
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≪ x
log x log log x to the integral. The result then follows by letting y = T 2 where

T = (log x)κ+2 in Proposition
xkeyidr1
2.4.6. □

Proof of Corollary
HalCor
2.5.2. By the maximum modulus principle we have

that the maximum of
∣∣∣F (1+σ+it)

1+σ+it

∣∣∣ within the box

{u+ iv : 1 + 1/ log x ≤ u ≤ 2, |v| ≤ (log x)κ}

lies on one of the boundaries: If the maximum lies the boundary with |v| ≤ v1 :=
(log x)κ we have |F (1 + σ ± iv1)| ≪ (log x)κ ≤ |1 + σ ± iv1|, or on the boundary
with u = 2 we have |F (2 + it)| ≤ ζ(2)κ ≪ |2 + it|. Therefore the integral in (

xkeyidr4
??)

is ≪ log log x and the result follows. Hence we may assume that the maximum lies
on the line Re(s) = c0. Noting also that |F (1 + σ + it)| ≤ ζ(1 + σ)κ ≪ 1/σκ, we
obtain

max
|t|≤(log x)κ

∣∣∣F (1 + σ + it)

1 + σ + it

∣∣∣≪ min
(
e−M (log x)κ,

( 1
σ

)κ)
.

Inserting this in Halász’s theorem
GenHal
2.5.1 (and splitting the integral at σ = eM/κ/ log x)

we obtain the corollary. □

Proof of Corollary
Hal2Cor
2.3.2. Here κ = 1. By exercise

MaxTruncRight
2.3.2 we have e−M ≪

e−Mf (x,log x) so we have the upper bound≪ (1+Mf (x, log x))e
−Mf (x,log x)+log log x/ log x.

The second term is smaller than the first by the second part of exercise
ex:4.13
2.3.1. □

Proof of Theorem
Hal2
2.3.1. If T ≥ log x then Mf (x, log x) ≥ Mf (x, T ), so

that (1 +Mf (x, log x))e
−Mf (x,log x) ≤ (1 +Mf (x, T ))e

−Mf (x,T ), and the 1/T term
is smaller, by the second part of exercise

ex:4.13
2.3.1. If 1 ≤ T ≤ log x then we apply

Theorem
GenHal
2.5.1 with κ = 1 and observe that if the maximum of

∣∣∣F (1+σ+it)
1+σ+it

∣∣∣ occurs
with T < |t| ≤ log x then this is ≤ ζ(1 + σ)/|t| ≪ 1/(σT ). Bounding the integral
there using this estimate leads to the 1/T term, as claimed. □

2.5.3. A hybrid result

Corollary
HalCor
2.5.2 does not take into account the location of the maximum, even

though Theorem
GenHal
2.5.1 does. We remedy that here.

HalCorHybrid Corollary 2.5.5. Let t1 = tf (x, log x). Then∑
n≤x

f(n) ≪ (1 +Mf (x, log x) + log t1)
e−Mf (x,log x)

1 + |t1|
x+

x

log x
(log log x).

Proof. By exercise
MaxTruncRight
2.3.2 we have

e−M ≍ e−Mf (x,log x)

1 + |t|
≤ e−Mf (x,log x).

Substituting this into Corollary
HalCor
2.5.2 we get the result. □

In the next chapter we will compare the mean values of f(n) and f(n)/nit1 , and
obtain a stronger result (and stronger than Corollary

cor:Compare
2.1.11 and Lemma

AsympT1
2.1.13).
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2.5.4. Exercises

casey=1 Exercise 2.5.2. Verify (
qualper
2.4.1) directly in the case y = 1.

Exercise 2.5.3. Let y > 0 and c > 0 be real numbers. Show that

1

2πi

∫ c+i∞

c−i∞
ysΓ(s)ds = e−1/y.

Perex Exercise 2.5.4. Let an ∈ C. By dividing the n into the cases when n ≤ x/2,
or n > 3x/2, or kx/T ≤ |n− x| ≤ (k+ 1)x/T for 0 ≤ k ≤ T/2, show that the error
in Perron’s formula, (

PerFT
2.4.5), is

≪ xc

T

∞∑
n=1

|a(n)|
nc

+

T/2∑
k=0

2c

(k + 1)

∑
kx/T≤|x−n|≤(k+1)x/T

|a(n)|.

Show that if each |an| ≤ dκ(n) then we obtain the claimed error term.

IntegwithF’ Exercise 2.5.5. Deduce (
Perron2
2.4.6) by applying Perron’s formula to the sum on

the right-hand side of the displayed equation in exercise
ex:AvofF
??.



CHAPTER 2.6

Some examples, and a discussion of whether
Halász’s Theorem is best possible

In this chapter we show that Halász’s Theorem cannot be much improved. It
will be helpful to first give a few examples of multiplicative that will allow us to
appreciate the limitations in what can be proved here and later. After that we
discuss how to find f(.) for which the mean value is at least as big as the upper
bound given in Halász’s Theorem. Finally we show that for all f , there exist x-
values for which the mean value is bounded below by a quantity almost as big as
Halász’s bound.

2.6.1. Two examples
sec:examples

We now discuss two examples which establish that the theorems of this chapter
have the best possible error term. We will justify the claims of this subsection
in Chapter

CalculateExamples
??. In section

sec:BestConsts
2.3.5 we saw the following example of a completely

multiplicative, real-valued, function f , which correlates with pi:

f(p) =

{
1 if Re(pi) ≥ 0;

−1 if Re(pi) < 0.

In other words f(p) is chosen to be ±1 so that f(p) cos(log p) = | cos(log p)|. The
remarkable fact about the asymptotics of the mean value of f is that there exists a
constant c ̸= 0 such that∑

n≤x

f(n) = cx1+i(log x)
2
π−1 + cx1−i(log x)

2
π−1 + o(x(log x)

2
π−1)

= (2C cos(log x+ γ) + o(1))x(log x)
2
π−1

where c = Ceiγ . Note that this is a multiple of x(log x)
2
π−1 which oscillates between

−1 and 1, and is regularly 0.
A related construction is given by g(p) = (1+ f(p))/2, which only takes values

0 and 1, for which∑
n≤x

g(n) = (2C ′ cos(log x+ γ′) + o(1))x(log x)
1
π−1

for some real numbers C ′, γ′.

2.6.2. The Selberg-Delange Theorem
SDex

Selberg showed that for any κ ∈ C we have∑
n≤x

dκ(n) =
{ 1

Γ(κ)
+ o(1)

}
x(log x)κ−1 =

{eγ(1−κ)
Γ(κ)

+ o(1)
}
· x P(dκ;x).
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That is, the “expected” mean value x P(dκ;x) times eγ(1−κ)/Γ(κ). 1 The Γ function
is defined as the meromorphic function that extrapolates the factorial function,
and so satisfies the functional equation Γ(z + 1) = zΓ(z). Hence 1/Γ(κ) = 0 for
κ = 0,−1,−2, . . ., and one can show that these are the only such values. Hence
Selberg’s result only gives an asymptotic formula for κ ̸= 0,−1,−2, . . .; we will
discuss the mean of d−k, k ∈ N, in chapter

Kouk
??.

We can use this result (with κ = i) to establish that Halász’s Theorem cannot
be improved —see section

HalBesties
2.6.3.

TheoremSD Theorem 2.6.1 (Selberg-Delange). Let f be a multiplicative function with |f(n)| ≤
1 for all n ≥ 1. Assume that

HypLambdaHypLambda (2.6.1) ψf (x) :=
∑
n≤x

Λf (n) = κx+O
( x

(log x)τ

)
for some τ in the range 2−Re(κ) ≥ τ > 0. For any fixed ϵ > 0 we have

SDAsympSDAsymp (2.6.2) Sf (x) :=
∑
n≤x

f(n) =
eγ(1−κ)

Γ(κ)
P(f ;x) x+O

( x

(log x)τ−ϵ

)
.

The prime number theorem implies the result of Selberg for |τ | ≤ 1. We will
give the proof of the Selberg-Delange theorem in chapter ??, as well as a startling
application.

2.6.3. Functions for which Halász’s Theorem cannot be improved
HalBesties

Define f to be the multiplicative function with

f(p) =

{
i for p ≤

√
x;

(log x/p)−i for
√
x < p ≤ x.

An integer n ≤ x has no more than one prime factor >
√
x, and writing such

integers as pm, we obtain∑
n≤x

f(n) =
∑
n≤x

di(n) +
∑

√
x<p≤x

(f(p)− i)
∑

m≤x/p

di(n)

=
{ 1

Γ(i)
+ o(1)

} x

log x
log log x,

using the Selberg-Delange Theorem (as discussed in section
SDex
2.6.2). It is not difficult

to show that Mf (x, log x) = log log x+O(1), and so this example shows that∑
n≤x

f(n) ≍ (1 +M)e−Mx;

and therefore Corollary
HalCor
2.5.2 cannot be improved, other than perhaps tightening

the implicit constant.
This same idea will be developed developed further in section

HalaszExample
??, taking f(p) =

1 for p ≤ y, and f(p) = i for y < p ≤
√
x. This allows one to exhibit examples with

|S(x)| ≍ (1 +M)e−M for M of any size between 0 and log log x.

1One can show that this equals
∏

k≥1(1 − 1−κ
k

)e
1−κ
k in analogy to the Euler-Mascheroni

constant itself.
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2.6.4. Halász’s Theorem is close to best possible for all f
HalBestPoss

Halász’s Theorem states that

1

x

∣∣∣∑
n≤x

f(n)
∣∣∣≪ (1 +M(x, log x))e−M(x,log x).

We would like to show that this is more-or-less “best-possible” for all f and x in
that there exists z “close” to x for which

LowerBdConjLowerBdConj (2.6.3)
1

z

∣∣∣∑
n≤z

f(n)
∣∣∣≫ e−Mf (z,log z),

or something like that. If we replace M(z) by M(x) in this lower bound then it is
not difficult to prove this sort of thing.

Theorem 2.6.2. Suppose that |f(n)| ≤ 1 for all n. Let M =M(x) =Mf (x, T )
and select t1 so that |F (c0 + it1)| = e−M log x where c0 = 1 + 1

log x . There exists y

in the range xL ≤ y ≤ xU where L = e−U = e−M/4|c0 + it1|, for which∣∣∣∣∣∣
∑
n≤y

f(n)

∣∣∣∣∣∣ ≥ e−My

2|c0 + it1|
.

Proof. Suppose that the theorem is false. Now

F (c0 + it1) = (c0 + it1)

∫ ∞

1

sf (y)

yc0
dy.

where, as usual, sf (y) := (1/y1+it1)
∑
n≤y f(n). Therefore

e−M log x

|c0 + it1|
≤
∫ ∞

1

|sf (y)|
yc0

dy <

∫ xL

1

1

yc0
dy +

∫ xU

xL

2L

yc0
dy +

∫ ∞

xU

1

yc0
dy

≤ L log x+ 2L(e−L − e−U ) log x+ e−U log x <
e−M log x

|c0 + it1|
,

a contradiction. □

In fact (
LowerBdConj
2.6.3) is false, as the example of f(n) = 0 for all n ≥ 1 shows. A

less extreme example is given by f = µ: we will show (see chapter ??) that
(1/x)

∑
n≤x µ(n) ≪A 1/(log x)A for any fixedA > 0 while e−Mµ(x,log x) ≍ 1/(log x)2.

Another important example is given by f = χ, a non-principal Dirichlet character
(see chapter ??). We will show that (1/x)

∑
n≤x χ(n) ≪A 1/(log x)A for any fixed

A > 0 while e−Mχ(x,log x) ≍ 1/ log x.
We might revise our guess to state that (

LowerBdConj
2.6.3) holds if e−Mf (x,log x) ≫ 1/(log x)1−ϵ.

We will focus on the case in which t1 = tf (x, log x) = 0.
Another extraordinary example is given by the y-smooth numbers: Let f(p) = 1

for p ≤ y := xe
−M

and f(p) = 0 thereafter. Then (1/z)
∑
n≤z f(n) = 1/uu+o(u)

for z = yu. On the other hand e−Mf (z,log z) ≍ 1/u, so that (
LowerBdConj
2.6.3) can only be

satisfied if u ≪ 1. That is, given x, the closest z for which (
LowerBdConj
2.6.3) holds, satisfies

z = xO(e−M ). We can prove that something similar to this does always hold for
non-negative f :
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LBdL Theorem 2.6.3. Suppose that 0 ≤ f(n) ≤ 1 for all n, so that tf (x, T ) = 0.
Write M =M(x) =Mf (x, T ). If c = e−C > 0 is sufficiently small then there exists

y in the range xce
−M(x) ≤ y ≤ xlog((1+M(x))/c) for which

1

y

∑
n≤y

f(n) ≫ e−Mf (y,T )

Mf (x, T ) + C
.

Proof. By (
TruncRight
2.1.3) we have

e−M log x ≍
∑
n≥1

f(n)

nc0
= c0

∫ ∞

1

sf (y)

yc0
dy.

where, as usual, sf (y) := (1/y)
∑
n≤y f(n), and c0 = 1 + 1

log x . If y > x then

sf (y) ≪ (1 +M(y))e−M(y) ≪ (1 +M(x))e−M(x),

by Halász’s Theorem and as M(.) is increasing (exercise
compare2Ms
2.3.3). Therefore∫ ∞

xB

sf (y)

yc0
dy ≪ (1 +M(x))e−M(x)

∫ ∞

xB

dy

yc0
≪ ce−M log x,

where B := log((1 +M)/c). Moreover, since |sf (y)| ≤ 1, we have∫ xce−M

1

sf
yc0

dy ≤
∫ xce−M

1

dy

y
≪ ce−M log x.

Combining the three estimates so far obtained, we deduce that∫ xB

xce−M

sf (y)

yc0
dy ≫ e−M log x.

Now suppose that sf (y) ≤ ce−M(y)/(M(x) + C) for all y, xce
−M

< y < xB .
Since f(n) ≥ 0 for all n, we can improve the result of exercise

compare2Ms
2.3.3 to: If x ≥ y

then

0 ≤M(x)−M(y) ≤ log(
log x

log y
) + o(1).

Hence if y ≤ x then e−M(y) ≪ e−M log x
log y , so that∫ x

xce−M

sf (y)

yc0
dy ≪ ce−M

M + C

∫ x

xce−M

1

yc0
log x

log y
dy = ce−M log x.

On the other hand, if y ≥ x then e−M(y) ≤ e−M , so that∫ xB

x

sf (y)

yc0
dy ≤ ce−M

M + C

∫ xB

x

1

yc0
dy ≪ ce−M log x.

Combining these estimates yields a contradiction if c is sufficiently small. □



CHAPTER 2.7

Consequences of the proof of Halász’s theorem

ch:Usingt_f
In this section we use the proof of Halász’s theorem to find other results about

mean values of multiplicative functions, saving the proofs to section
ch:PfsConseqs
2.8. Important

constants in this theory are

λ := 1− 2

π
= 0.36338 . . . and λ≥0 := 1− 1

π
= .68169 . . .

(see section
sec:examples
2.6.1 to understand how these arise).

2.7.1. Rotating f

Let t1 = tf (x, T ). In Corollary
cor:Compare
2.1.11 we saw that if T → ∞ then

TwistCompareTwistCompare (2.7.1)
∑
n≤x

f(n) and
xit1

1 + it1

∑
n≤x

f(n)

nit1
,

differ by only o(x). We improve this as follows.

Recentering Corollary 2.7.1. Suppose that |Λf (n)| ≤ Λ(n) for all n and select t1 ∈ R
with |t1| ≤ log x for which |F (c0 + it1)| is maximized.. Then∑

n≤x

f(n) =
xit1

1 + it1

∑
n≤x

f(n)

nit1
,+O

(
x
(log log x)1+2λ

(log x)λ

)
If 0 ≤ f(n) ≤ 1 for all n then we can replace λ with λ≥0.

We will show that these results are best possible (in that the exponents λ and λ≥0

cannot be improved).
This leads to an improved hybrid bound:

UBdt Theorem 2.7.2. Suppose that f(n) is a multiplicative function with |f(n)| ≤ 1
for all n. Let t1 = tf (x, log x) and Mf =Mf (x, log x). Then

HalHybridHalHybrid (2.7.2)
1

x

∣∣∣∑
n≤x

f(n)
∣∣∣≪ (1 +Mf )e

−Mf

1 + |t1|
+

(log log x)2

(log x)λ
.

2.7.2. Multiplicative functions in short intervals

We are interested in the mean value of a multiplicative function in a short
interval [x, x+ z) with z as small as possible.

ShortHal Theorem 2.7.3 (Halász’s Theorem for intervals). Let f be a multiplicative func-
tion with |Λf (n)| ≤ κΛ(n) for all n. Given x and 0 < δ < 1

4 , we have∑
x<n≤x+x1−δ

f(n) ≪ x1−δ

log x

(∫ 1

1/ log x

(
max

|t|≤xδ(log x)κ

∣∣∣F (1 + σ + it)
∣∣∣)dσ

σ
+ (δ log x)κ + log log x

)
.

95
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This leads us to the following consequence

ShortHal2 Corollary 2.7.4. Let f be a multiplicative function with |Λf (n)| ≤ κΛ(n) for
all n. Given x and 0 < δ < 1

4 , we have∑
x<n≤x+x1−δ

f(n) ≪ x1−δ

log x

(
(1 +Mδ)e

−Mδ(log x)κ + (δ log x)κ + log log x
)
.

where

max
|t|≤xδ(log x)κ

∣∣∣F (c0 + it)
∣∣∣ =: e−Mδ(log x)κ.

Later we will deduce a weak form of Hoheisel’s theorem on primes in short
intervals:

HoheiselHoheisel (2.7.3)
∑

x<n≤x+x1−δ

Λ(n) = (1 +O(δ(log(1/δ))3))x1−δ.

In other words there exists a constant ∆ > 0 such that every interval (x, x+ x1−∆]
contains the expected number primes, up to a (multiplicative) constant.

2.7.3. Lipschitz estimates

We are also interested in bounding how much the mean value of a multiplicative
function can vary in short (multiplicative) intervals. The example f(n) = nit1 in
Corollary

Recentering
2.7.1 shows that the mean value tends to rotate with x, by a factor of

xit1 , which suggests renormalizing by dividing out by this. Therefore we consider
the behaviour of

sf (x) :=
1

x1+it1

∑
n≤x

f(n).

We are interested in the finding the Lipschitz constant λ(f), which is the maximum
constant ℓ such that if 0 ≤ θ ≤ 1 then

sf (x)− sf (x
1−θ) ≪

(
θ +

1

log x

)ℓ+o(1)
.

LipThm Theorem 2.7.5. If |Λf (n)| ≤ Λ(n) for all n then λ(f) ≥ 1− 2
π ; that is

sf (x)− sf (x
1−θ) ≪ θλ log

1

θ
+

(log log x)2

(log x)λ
.

Moreover there exists such an f , real-valued, for which λ(f) = λ.
If 0 ≤ f(n) ≤ 1 for all n then λ(f) ≥ λ≥0. Moreover there exists such an f for
which λ(f) = λ≥0.

If t1 ̸= 0 then the mean value of f at x and at x/w may point in different
directions, so we cannot, in general, hope for a non-trivial Lipschitz estimate in-
volving only the mean value. However, one deduces from Theorem

LipThm
2.7.5 a Lipschitz

estimate for the absolute values of the mean values:

LipAbsMeanLipAbsMean (2.7.4)
∣∣∣∣∣∣ 1
x

∑
n≤x

f(n)
∣∣∣− ∣∣∣ 1

(x/w)

∑
n≤x/w

f(n)
∣∣∣∣∣∣≪ θλ log

1

θ
+

(log log x)1+2λ

(log x)λ
.

where w = xθ.
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Exercise 2.7.1. Deduce that if f(n) ∈ R for all n, and w = xθ, then∣∣∣∣∣∣ 1x
∑
n≤x

f(n)− 1

x/w

∑
n≤x/w

f(n)

∣∣∣∣∣∣≪ θλ log
1

θ
+

(log log x)1+2λ

(log x)λ
.

(The difficulty herein stems from the fact that tf (x, log x) is not necessarily 0.)
Improve this if f(n) ≥ 0 for all n.s

2.7.4. The structure of mean values (revisited)

In section
MeanF(n)
1.5 we noted that mean values of multiplicative functions are either

given by
• Euler products, for example the integers up to x coprime to a given integer

m. In this case f(p) = 1 on the large primes p; or
• Solutions to integral delay equations, for example the number of y-smooth

integers up to x. In this case f(p) = 1 on the small primes p.

In Theorem
Structure1
1.5.1 we noted that if the mean value of f is large then we can write

f as the product of two multiplicative functions, one supported on small primes,
the other on the large primes, and the mean value of f is the product of the other
two mean values. We now prove Theorem

Structure1
1.5.1 with a much better error term. We

let f−, f+ be multiplicative functions such that

f−(p
k) =

{
f(pk)/(pk)it1 if p ≤ z

1 if p > z
and f+(p

k) =

{
(pk)it1 if p ≤ z

f(pk) if p > z
,

so that f = f−f+.

StrucThm Theorem 2.7.6 (Structure Theorem). Let f be a multiplicative function with
|Λf (n)| ≤ Λ(n) for all n. Given z = xθ, 1 ≤ z ≤ x we have

1

x

∑
n≤x

f(n) =
1

x

∑
n≤x

f−(n) ·
1

x

∑
n≤x

f+(n) +O

(
θλ log

1

θ
+

(log log x)1+2λ

(log x)λ
.

)
Exercise 2.7.1. Show that, in the structure theorem, we might have written

1

x

∑
n≤x

f(n) =
xit1

1 + it1
· 1
x

∑
n≤x

f−(n) ·
1

x

∑
n≤x

f∗(n) +O

(
θλ log

1

θ
+

(log log x)1+2λ

(log x)λ
.

)
where f∗(p

k) = 1 if p ≤ z, and = f(pk)/(pk)it1 if p > z.

It is not clear what is the best possible error term. In the example for which
f(p) = 0 if z1/2 < p ≤ z or x/z1/2 < p ≤ x, and f(p) = 1 otherwise, we have
0 ≤ f(n) ≤ 1 for all n: In this case the mean of f− is a fairly straightforward sieve
problem (see exercise below), and equals 1/2+O(θ2). On the other hand the mean
of f+ can be obtained as

1

x

∑
n≤x

f+(n) = 1− 1

x

∑
x/z1/2<p≤x

[
x

p

]
= 1 + log (1− θ/2) + o(1) = 1− θ/2 +O(θ2).

Finally f = f−+f+−1 since no integer up to x is divisible by primes from the two
classes with f(p) = −1, and so f has mean value 1/2 − θ/2 + O(θ2). In this case,
t1 = 0 and so we have

mean(f)−mean(f−) ·mean(f+) = −θ/4 +O(θ2),
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so the exponent in the structure theorem must be ≤ 1.
A more extreme example is given by f(p) = −1 if zθ < p ≤ z or x/zθ < p ≤ x,

and f(p) = 1 otherwise. By analogous arguments we find that the mean values of
f, f− and f+ are therefore −θ2 +O(θ4), θ2 +O(θ4) and 1 +O(θ2), respectively, so
that

mean(f) = −mean(f−) ·mean(f+)(1 +O(θ2)).

Finally the mean-value of the two f−’s are proved using inclusion-exclusion as
follows.

Exercise 2.7.2. (a) Prove that if m ≥ 1 then

SuperStructure1SuperStructure1 (2.7.5)
∑
d|n

ω(d)≤2k

(−m)ω(d) ≥ (1−m)ω(n) ≤
∑
d|n

ω(d)≤2k+1

(−m)ω(d)

for all integers k ≥ 0, where ω(r) =
∑
p|r 1.

(b) Apply this with m = 1 and 2 in our examples, to estimate (1/x)
∑
n≤x f−(n)

with an error term O(e−1/θ).

Let f = dκ where κ ̸= 0,−1, . . . and u = 1/θ. Certainly, if Re(κ) > 0 then
t1(f) = 0. Proposition

GenFundLem
1.4.7 tells us that

1

x

∑
n≤x

f−(n) ∼ P(dκ; z).

and Selberg’s estimate (from section
SDex
2.6.2) implies that

1

x

∑
n≤x

f(n) ∼ eγ(1−κ)

Γ(κ)
P(dκ;x).

Combining these two estimates with the Structure theorem implies that, in a certain
range for θ and κ, we have

1

x

∑
n≤x

f+(n) ∼
eγ(1−κ)

Γ(κ)
θκ.

2.7.5. Two repulsion results
sec:TwoSimpleRepuls

Halász’s Theorem gives an upper bound for the mean value of f in terms of an
integral of |F (c0 + it)| as t varies over the real numbers t ∈ [−T, T ]. The Corollary
showed that this can be bounded in terms of the largest value that |F (c0 + it)|
takes in the range, say at t1. It turns out that in other results we also use the
second largest value of |F (c0 + it)|, at least when, say, |t − t1| ≥ 1. We explore
this spectrum of large values in this subsection. Upper bounds for F (c0 + itk) are
equivalent to lower bounds on D(f(n), nitk , x) for each k, and we discuss the “best
possible” such results.

kRepulsion Proposition 2.7.7. For any multiplicative function f with values inside the
unit circle, let t1, t2, . . . , tk ∈ [−T0, T0] be values with each |ti − tj | ≫ 1, and the
D(f(n), nitk , x) placed in increasing order. Then

D(f(n), nitk , x)2 ≥
(
1− 1√

k

)
log log x+Ok(1).
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This is equivalent to ∣∣∣∣F (1 + 1

log x
+ itk

)∣∣∣∣≪ (log x)
1√
k

Proof. We begin, by Cauchying the sum,∑
p≤x

1

p

∣∣∣∣∣∣1k
k∑
j=1

pitj

∣∣∣∣∣∣
2

≤
∑
p≤x

1

p
·

1

k

∑
p≤x

1

p
+

1

k2

∑
1≤i ̸=j≤k

∑
p≤x

Re(pi(ti−tj))

p


≤ (log log x+O(1))

(
1

k
log log x+O (1)

)
taking α = ti − tj by (

EquivUpperBounds
2.1.6), and noting that 1 ≪ |α| ≪ (log x)2. Now, since

Re(f(p) 1k
∑k
j=1 p

−itj ) ≤ | 1k
∑k
j=1 p

itj |, we have

D(f(n), nitk , x)2 ≥ 1

k

k∑
j=1

D(f(n), nitj , x)2 =
∑
p≤x

1− Re(f(p) 1k
∑k
j=1 p

−itj )

p

≥ log log x+O(1)−
∑
p≤x

1

p

∣∣∣∣∣∣1k
k∑
j=1

pitj

∣∣∣∣∣∣
≥
(
1− 1√

k

)
log log x+O(1)

by the first bound in this proof. □

Corollary
cor:repulsive
2.1.7 gives a lower bound on D(f, nitj ;x)2, which we now improve to

the “best possible” general lower bound:

tRepulsion Lemma 2.7.8. For any multiplicative function f with values inside the unit
circle, and any real numbers t1, t2 with |t1 − t2| ≤ log x we have

max
j=1,2

D(f, nitj ;x)2 ≥
(
1− 2

π

)
·

{
log(|t1 − t2| log x) if |t1 − t2| ≤ 1

log log x if |t1 − t2| > 1
+O(1).

This is equivalent to

min
j=1,2

∣∣∣∣F (1 + 1

log x
+ itj

)∣∣∣∣≪ (min{1, |t1 − t2|} log x)
2
π

If 0 ≤ f(n) ≤ 1 for all n then we can replace 2
π here by 1

π .

Proof. We may assume β := |t1 − t2|/2 > 1/ log x, else the result is trivial.
Then

max
j=1,2

D(f, nitj ;x)2 ≥ 1

2

2∑
j=1

D(f, nitj ;x)2 =
∑
p≤x

1− Re f(p)(p−it1 + p−it2)/2

p

≥
∑
p≤x

1− | cos(β log p)|
p

+O(1).

since Re f(p)(p−it1 + p−it2)/2 ≤ |f(p)||(p−it1 + p−it2)/2| ≤ 1 · | cos(β log p)|.

Exercise 2.7.3. Complete the proof of the Lemma, using partial summation
and the prime number theorem.
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To prove the second result, for f with 0 ≤ f(n) ≤ 1 for all n, we simply replace
| cos(β log p)| by max{0, cos(β log p)} in the proof above. □

2.7.6. Exercises: Applications of the Lipschitz result

fSieve Exercise 2.7.2 (Sieving f by the primes ≤ z). Let κ = 1. For given z = xθ,
let m =

∏
p≤z p. Prove that for t1 := tf (x, log x) we have

1

x

∑
n≤x

f(n) =
∏
p≤z

(
1 +

f(p)

p1+it1
+

f(p)

p2(1+it1)
+ . . .

)
· 1
x

∑
n≤x

(n,m)=1

f(n)

+O

(
θλ log

1

θ
+

(log log x)1+2λ

(log x)λ
.

)
UseTotally Exercise 2.7.4. Given f , let g to be the totally multiplicative function with

g(p) = f(p) for all primes p. Prove that∑
n≤x

f(n) =
P(f(n)/nit,∞)

P(g(n)/nit,∞)

∑
n≤x

g(n) +O

(
x
log log x

(log x)λ

)
where t = tf (x, log x) = tg(x, log x). (Hint: Write f = g ∗ h and bound the size of
h(pk).)

ex:ConvolutionId Exercise 2.7.5. Use (
ConvPrecise
1.5.2) and Theorem

LipThm
2.7.5 to prove that

s(u)

1 + it1
=

1

u

∫ u

0

s(u− t)χ(t)dt+O

(
1

(log x)λ+o(1)

)
Exercise 2.7.6. Suppose that 2 ≤ w = xθ ≤

√
x then

1

logw

∑
x/w≤n≤x

f(n)

n
= (1 + it) · 1− w−it

it logw
· 1
x

∑
n≤x

f(n) +O

(
log(1/θ)

θ1−λ log x

)
.

Exercise 2.7.7. In this exercise we determine weighted means of f(n):

(i) Show that if σ > 1 and (σ − 1) log x→ ∞ then∑
n≤x

f(n)

nσ

/∑
n≤x

1

nσ
∼

∏
p prime

(
1− 1

pσ

)(
1 +

f(p)

pσ
+
f(p2)

p2σ
+ . . .

)
.

(ii) Show that if σ = 1 +A/ log x with A bounded then∑
n≤x

f(n)

nσ

/∑
n≤x

1

nσ
=

∫ 1

0

e−Ats(t)dt

/∫ 1

0

e−Atdt+O

(
A+ 1

log x

)
.

OtherMeans (iii) Show that if 0 < σ < 1 and (1− σ) log x→ ∞ then∑
n≤x

f(n)

nσ

/∑
n≤x

1

nσ
= c(σ, t1)

S(x)

x
+O

(
1

((1− σ) log x)λ+o(1)

)
.

where c(σ, t) := (1+it)(1−σ)
1+it−σ (in particular c(σ, 0) = 1).



CHAPTER 2.8

Proofs of consequences of the proof of Halász’s
theorem

ch:PfsConseqs

In this chapter we prove the results stated in section
ch:Usingt_f
2.7. To begin with we

need to clarify the use of the maximum modulus principle.

2.8.1. The maximum modulus principle

We will be considering quantities like max |F (1+σ+ it)| for σ ≥ σ0 and |t| ≤ T
for some σ0 > 0, and T ≥ 1. By the maximum modulus principle we know that the
maximum occurs on a boundary. We wish to show that the maximum more-or-less
occurs on the boundary with σ = σ0. What about the other possibilities?

If the maximum occurs with σ ≥ 1 then |F (1+σ+it)| ≤ ζ(1+σ)κ ≤ ζ(2)κ ≪κ 1.
Now suppose that the maximum occurs with t = T (the analogous proof works

if t = −T ), that is |F (1 + σ + iT )|, with σ0 < σ < 1. We consider F (sτ ) at
sτ := 1+ σ0 + i(T − τ) where 0 ≤ τ ≤ σ, so that |sτ − (1 + σ+ iT )| ≤ 2σ and note
that

log

(
F (sτ )

F (1 + σ + iT )

)
=

∑
n≤e1/σ

Λf (n)

nsτ log n

(
1− 1

nσ−σ0+iτ

)
−

∑
n>e1/σ

Λf (n)

n1+σ+iT log n

+
∑

n>e1/σ

Λf (n)

n1+σ0+i(T−τ) log n
.

The first and second sums are, in absolute value,

≪ σ
∑

n≤e1/σ

Λ(n)

n
+

∑
n>e1/σ

Λ(n)

n1+σ log n
≪ 1.

The average of the third sum, averaged over 0 ≤ τ ≤ σ, is, in absolute value,

≪
∑

n>e1/σ

Λ(n)

n log n

∣∣∣∣ 1σ
∫ σ

τ=0

niτdτ

∣∣∣∣≪ 1

σ

∑
n>e1/σ

Λ(n)

n(log n)2
≪ 1.

Combining these estimates implies that there exists sτ on the line Re(s) = 1 + σ0
for which

|F (sτ )| ≫ |F (1 + σ + iT )|.
The same averaging argument with σ = 1 implies that there exists t ∈ [−1, 1] for
which |F (1 + σ0 + it)| ≫ 1. Combining all this, we deduce that

MaxModLeftMaxModLeft (2.8.1) max
σ≥σ0

|t|≤T

|F (1 + σ + it)| ≪ max
|t|≤T

|F (1 + σ0 + it)|,

where the implicit constant depends only on κ.
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2.8.2. Repulsion revisited
sec:Nottoomany

We revisit the results of section
sec:TwoSimpleRepuls
2.7.5, putting them into a slightly more com-

plicated context, showing that F (c0 + it) can only be large in a few rare intervals.

LargeF Proposition 2.8.1. Fix θ, 0 < ϵ < 1 and 0 < ρ ≤ ϵ2/2. There are at most
1/ρ disjoint intervals [tj − δ, tj + δ] ⊂ [−(log x)κ, (log x)κ] with δ ≥ 1/(log x)ρ and
|F (c0 + itj)| ≥ (log x)ϵκ.

Rep1 Proposition 2.8.2. If t1, . . . , tℓ ∈ R satisfy |tj | ≤ (log x)κ, and |tj − tk| ≥
1/(log x)ρ, with 0 ≤ ρ ≤ 1, for all j ̸= k then

ℓ∑
j=1

log |F (1 + 1/ log x+ itj)| ≤ κ(ℓ+ ℓ(ℓ− 1)ρ)1/2 log log x+Oℓ(log log log x).

If, in addition, we have σ1, . . . , σℓ ≥ 1 + 1/ log x then we also have

ℓ∑
j=1

log |F (σj + itj)| ≤ κ(ℓ+ ℓ(ℓ− 1)ρ)1/2 log log x+Oℓ(log log log x).

Proof. We began by observing that since each |Λf (n)| ≤ κΛ(n), we have

ℓ∑
j=1

log |F (1 + 1/ log x+ itj)| =
∑
n≥2

1

n1+1/ log x log n
Re

Λf (n)
ℓ∑
j=1

n−itj


≤ κ

∑
n≥2

Λ(n)

n1+1/ log x log n

∣∣∣ ℓ∑
j=1

n−itj
∣∣∣.

By Cauchy-Schwarz the square of this sum is

≤
∑
n≥2

Λ(n)

n1+1/ log x log n
·
∑
n≥2

Λ(n)

n1+1/ log x log n

∣∣∣ ℓ∑
j=1

n−itj
∣∣∣2.

The first factor above is log log x+O(1). Expanding out the sum over j, the second
factor on the right hand side is

ℓ∑
j,k=1

log |ζ(1+1/ log x+i(tj−tk))| ≤ ℓ log log x+ℓ(ℓ−1)ρ log log x+O(ℓ2 log log log x),

where the first term comes from the j = k terms, and the second term from the
bound

log |ζ(1 + 1/ log x+ i(tj − tk))| ≤ ρ log log x+O(log log log x)

whenever j ̸= k, since 2(log x)κ ≥ |tj − tk| ≥ 1/(log x)ρ. The first part of the
Proposition follows.

To prove the second part we follow the analogous proof, and writing uj =

σj − 1 − 1/ log x, we have to bound |
∑ℓ
j=1 n

−(uj+itj)|2, averaged suitable over n.
The bounds on ζ, used to bound this, only get stronger as the uj get larger. □

Deduction of Proposition
LargeF
2.8.1. If this is false then we apply Proposition

Rep1
2.8.2 for some ℓ > 1/ρ so that

ϵ ≤ 1

ℓ

ℓ∑
j=1

log |F (1 + 1/ log x+ itj)|
κ log log x

≤
(
ρ+

1− ρ

ℓ

)1/2

+Oℓ

(
log log log x

log log x

)
< (2ρ−ρ2)1/2+o(1) < ϵ,
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if x is sufficiently large, a contradiction. □

We are more precise than Proposition
Rep1
2.8.2 in the special case ℓ = 2:

1-2/Pi Proposition 2.8.3. Let f be a multiplicative function with |Λf (n)| ≤ κΛ(n)
for all n. Select t1 ∈ R with |t1| ≤ (log x)κ which maximizes |F (1 + 1/ log x+ it1)|.
If t ∈ R satisfies |t| ≤ (log x)κ then

|F (1 + 1/ log x+ it)|
(log x)κ

≪


1

(1+|t−t1| log x)κ(1− 2
π

)
if |t− t1| ≤ 1;(

(log |t−t1|)2
log x

)κ(1− 2
π )

if |t− t1| > 1.

If f(n) ≥ 0 for all n then we obtain the analogous result with 1
π in place of 2

π .
There are such multiplicative functions f for which these bounds are attained.

Proof. Proceeding as in the proof of Proposition
Rep1
2.8.2, we have

log |F (1 + 1/ log x+ it2)| ≤ κ
∑
n≥2

Λ(n)

n1+1/ log x log n
| cos(τ log n)|,

where τ = |t − t1|/2. Using the prime number theorem in the form ψ(x) = x +
O(x/ log x), this sum is log log x+O(1) if τ ≤ 1/ log x and

= log(1/τ) +
2

π
log(τ log x) +O(1)

for 1/ log x < τ ≤ 1, since
∫ 1

0
| cos(2πt)|dt = 2/π. If τ > 1 then the result follows

from a strong form of the prime number theorem. Notice that we get equality for
the multiplicative function f1 if t2 = −t1 and f1(n) = κ sign(cos(t1 log p)) whenever
n is a prime power.

If f(n) ≥ 0 for all n, then t1 = 0. At any other t, we have F (c0+it) = F (c0 − it)
so each of their logs

≤ κ
∑
n≥2

Λ(n)max{0, cos(t log n)}
n1+1/ log x log n

and we get the same results, with
∫ 1

0
max{0, cos(2πt)}dt = 1

π replacing 2
π . Here we

get equality for the multiplicative function f2 if f2(n) := (1 + f1(n))/2 whenever n
is a prime power. □

2.8.3. Short interval results for multiplicative functions in the unit
circle

The multiplicative function nit has mean value xit/(1+ it) up to x, so to study
the change in the mean value we should look at

1

x1+it1

∑
n≤x

f(n)

where t1 is chosen with |t1| ≤ (log x)κ to maximize |F (c0 + it1)|. For any z, 1 ≤
z ≤

√
x we wish to bound

1

x1+it1

∑
n≤x

f(n)− 1

(x/z)1+it1

∑
n≤x/z

f(n).

Note that t1 depends on x, so there is no guarantee that t1(x) = t1(x/z). How-
ever if they are very different then one can show that the mean values are ≪
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1/(log x)κ(1−2/π) by Corollary
HalCor
2.5.2. To evaluate this difference let’s apply Propo-

sition
xkeyidr1
2.4.6 for x and x/z.

Proof of Theorem
LipThm
2.7.5. (i) The main term, from (

xkeyidr2
2.4.10), becomes, di-

viding through by xc0+it1 and (x/z)c0+it1 , respectively,∫ η

0

∫ η

0

1

πi

∫
−T≤t≤T
s=c0+it

S(s−α−β)L(s+β)L
′

L
(s−β)L

′

L
(s+β)

xi(t−t1)−α−β

s− α− β
(1−zα+β−i(t−t1))dsdβdα.

We now follow the proof of Theorem
GenHal
2.5.1 with y = max{z, T 2}, and obtain three

terms from

|1− zα+β−i(t−t1)| ≤ |1− zi(t−t1)|+ |1− zα+β | ≪ min{1, |t− t1| log z}+(α+β) log z.

For the first term we need to bound

max
|t|≤T

|F (c0 + it)|
(log x)κ

min{1, |t− t1| log z}.

Henceforth let κ = 1. If |t − t1| ≤ 1 then, as min{1, |t − t1| log z} ≤ (|t −
t1| log z)1−2/π, Proposition

1-2/Pi
2.8.3 implies that

|F (c0 + it)|
log x

min{1, |t− t1| log z} ≤
(
log z

log x

)1−2/π

.

If |t− t1| > 1 then, by Proposition
1-2/Pi
2.8.3,

|F (c0 + it)|
log x

min{1, |t− t1| log z} ≤
(
(log log x)2

log x

)1−2/π

.

Let ∆ := max{log z, (log log x)2}. Combining all this, and using the maximum
modulus principle as in the proof of Corollary

HalCor
2.5.2, the bound in (

NB0
2.5.3) is replaced

by

NB1NB1 (2.8.2) ≪
∫ 1

α=0

x1−α log x

∫ 1

σ=1/ log x

min

{(
∆

log x

)1−2/π

,
1

σ log x

}
dσ

σ
dα

≪ x

(
∆

log x

)1−2/π

log

(
log x

∆

)
.

For both the α log z and β log z terms we use only that |F (1 + σ + it)| ≪ 1/σ.
Hence the bound in (

NB0
2.5.3) is replaced by

NB2NB2 (2.8.3) ≪
∫ 1

α=0

x1−αα log z

∫ 1

1/ log x

dσ

σ2
dα≪ x

log z

log x
,

for the α log z term, and by

NB3NB3 (2.8.4) ≪
∫ 1

α=0

x1−α
∫ 2/ log y

1/ log x

σ log z
dσ

σ2
dα≪ x

log z

log x
log

(
log x

log y

)
for the β log z term. This yields the proof of the bound in (i). The example is
example 2 of section

ch:asymp
??.

To obtain (ii) we follow the same proof replacing 2/π by 1/π throughout. The
example is given as example 3 of section

ch:asymp
??. □
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Proof of Theorem
StrucThm
2.7.6. By Corollary

Recentering
2.7.1 we can assume, that t1 = 0

though this is not necessary. We use the formulas in the proof of Theorem
GenHal
2.5.1 to

study the difference ∑
n≤x

f(n)− Cf,z
∑
n≤x

f+(n)

where y = max{z, T 2}, and

Cf,z :=
S(c0 + it1)

S+(c0 + it1)
=
∏
p≤z

(
1− 1

pc0

)(
1 +

f(p)/pit1

pc0
+
f(p2)/p2it1

p2c0
+ . . .

)
,

which satisfies |Cf,z| ≤ 1. This choice of y ensures that L = L+ so the differences
in the formulas occurs in the S terms. Hence in the integrand in (

xkeyidr2
2.4.10) we replace

S(s− α− β) by

StartStart (2.8.5) S(s− α− β)− Cf,zS+(s− α− β),

and then one takes the absolute value of this as one follows the proof of Theorem
GenHal
2.5.1, as in (

sbound
2.5.1). We observe that |w − w+| ≪ (|w|+ |w+|)min{1, | log(w/w+)|}

for any w,w+ ∈ C, and so we wish to study, for s = c0 + it,

log

(
S(c0 + it1)

S(s− α− β)

S+(s− α− β)

S+(c0 + it1)

)
=

∑
n: P (n)≤z

(Λf (n)− nit1Λ(n))

nc0+it1 log n

(
1− 1

ni(t−t0)−α−β

)
≪κ log(1 + |t− t0| log z) + (α+ β) log z

since

1− 1

ni(t−t0)−α−β
= 1− 1

ni(t−t0)
+

1

ni(t−t0)

(
1− 1

n−α−β

)
≪ min{1, |t−t0| log n}+(α+β) log n

for n ≤ y. Therefore the absolute value of (
Start
2.8.5) is

≪ (|S(s− α− β)|+ |Cf,zS+(s− α− β)|) · (min{1, |t− t0| log z}+ (α+ β) log z) .

We are multiplying through by exactly the same quantity as in in the proof of
Theorem

LipThm
2.7.5, so we can quote (

NB1
2.8.2), (

NB2
2.8.3), (

NB3
2.8.4) from there. Hence we have

proved that

1

x

∑
n≤x

f(n) = Cf,z ·
1

x

∑
n≤x

f+(n) +O

(
θ1−

2
π log

1

θ
+

(log log x)3−4/π

(log x)1−2/π

)
where z = xθ. We now apply the same estimate with f replaced by f−. To do this
we note that

|F−(c0)| =

∣∣∣∣∣∣
∏
p≤z

(
1 +

f(p)/pit1

pc0
+
f(p2)/p2it1

p2c0
+ . . .

) ∏
z<p≤x

(
1 +

1

pc0
+

1

p2c0
+ . . .

)∣∣∣∣∣∣
≥

∣∣∣∣∣∣
∏
p≤x

(
1 +

f(p)

pc0+it1
+

f(p2)

p2c0+2it1
+ . . .

)∣∣∣∣∣∣ = |F (c0 + it1)|

Hence we obtain

1

x

∑
n≤x

f−(n) = Cf,z +O

(
θ1−

2
π log

1

θ
+

(log log x)3−4/π

(log x)1−2/π

)
,
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and the result follows, by inserting this into the previous estimate. We note that,
by definition,

Cf,z = P(f−, z) +O(θ).

One obtained a much stronger version of the mean value estimate for f− in Propo-
sition

GenFundLem
1.4.7, in which the error term has a dependence on θ more like e1/θ. □

Proof of Corollary
Recentering
2.7.1. If |t1| > (log x)κ/2 then the contribution of the

interval around s = c0 + it1 is negligible, since the |s| in the denominator in the
proof of Theorem

GenHal
2.5.1 swamps the F in the numerator. Hence we are left to

consider the contribution in an interval around t2. By Proposition
1-2/Pi
2.8.3 we know

that |F (c0 + it2)| ≤ 1/(log x)1−2/π+o(1), and then (being a bit more precise) the
result follows exactly as in the proof of Theorem

GenHal
2.5.1.

Henceforth we assume that |t1| ≤ (log x)κ/2. We follow the proof of Theorem
LipThm
2.7.5 with y = T 2. The main term from (

xkeyidr2
2.4.10), minus xit1/(1 + it1) times the

main term from (
xkeyidr2
2.4.10) with f(n) replaced by f(n)/nit1 (and altering the range

of the s-integration to t1 − T ≤ t ≤ t1 + T ), equals∫ η

0

∫ η

0

1

πi

∫
−T≤t≤T
s=c0+it

S(s−α−β)L(s+β)L
′

L
(s−β)L

′

L
(s+β)xs−α−β

(
1

sα,β
− 1

(1 + it1)(sα,β − it1)

)
dsdβdα,

where sα,β = s− α− β. Now∣∣∣∣ 1

sα,β
− 1

(1 + it1)(sα,β − it1)

∣∣∣∣≪ min {1, |t− t1|}+ α+ β +
1

log x
,

and the result follows from the estimates (
NB1
2.8.2), (

NB2
2.8.3), (

NB3
2.8.4) in the proof of

Theorem
LipThm
2.7.5. To obtain the result about non-negative f , we follow the same

proof replacing 2/π by 1/π throughout. □

Proof of Theorem
ShortHal
2.7.3. We may assume δ > 0 is small, else the result

is trivial; and then that δ > 1/ log x else the result follows from Theorem
GenHal
2.5.1.

We apply Perron’s formula, as in Lemma
keyidr1
2.4.4, at x, subtracted from the same

formula at x(1 + x−δ). We then move the contours as described in section
sec:Tailor
??,

tailor the integrals as in Lemma
keyid3
?? (and the error term is acceptable taking T =

xδ(log x)κ+2), and now proceed as in the proof of Theorem
GenHal
2.5.1, though with the

integral multiplied through by

|(1 + x−δ)s−α−β − 1| ≪ min{|s|x−δ, 1}.
This leads to the bound (in analogy to (

NB0
2.5.3))

NB01NB01 (2.8.6) ≪
∫ 1

α=0

x1−δ−α
∫ 2/ log y

1/ log x

(
max
|t|≤T

|F (1 + σ + it)|min

{
1,

1

|t|x−δ

})dσ
σ
dα.

The contribution of those σ for which the maximum of |F (1 + σ + it)| occurs with
T ≥ |t| > xδ(log x)κ, is

≪ x

log x

∫ 1

1/ log x

(log x)κ

xδ(log x)κ
dσ

σ
≪ x1−δ

log x
log log x

since |F (1 + σ + it)| ≪ (log x)κ, so this establishes the main term.
Finally we need to deal with the error terms∑

x<mn≤x+x1−δ

s(m)
ℓ(n)

nη
+

∫ η

0

∑
x<mkn≤x+x1−δ

s(m)
Λℓ(k)

kα
ℓ(n)

nη+α
dα,
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which come from taking the difference in (
keyidr3
2.4.9). We will show that this is

≪ x−δ

 ∑
x<mn≤x+x1−δ

dκ(m)
dκ(n)

nη
+

∫ η

0

∑
x<mkn≤x+x1−δ

dκ(m)
Λ(k)

kα
dκ(n)

nη+α
dα


(where m and n are again restricted to those integers at which s(.) and ℓ(.) are
supported, respectively) and then the result follows from Lemma

errors23
2.4.5. To prove

this we split each sum by the hyperbola method. In the second sum we might have
m,n ≤ x1/3, in which case the longest sum is over k in the range (X,X +Z] where
X := x/mn ≥ x1/3 and Z = Xx−δ ≤ X1−3δ. Then∑
x/mn<k≤(x+x1−δ)/mn

|Λℓ(k)|
kα

≪
∑

X<k≤X(1+x1−δ)

Λ(k)

Xα
≪ x−δ

∑
X<k≤2X

Λ(k)

Xα
≪

∑
x/mn<k≤2x/mn

Λ(k)

kα

by the Brun-Titchmarsh theorem. A similar argument works for the n-variable by
similar sieve methods (with the weight Λκ(n)). For the m-variable we need that∑

X<m≤X+X/xδ

P (m)≤y

dκ(m) ≪ x−δ
∑

X<m≤2X
P (m)≤y

dκ(m).

This should be provable directly using some imagination. For now, in the κ = 1 case,
this follows if ψ(X +X/

√
Y , Y ) − ψ(X,Y ) ≪ ψ(X,Y )/

√
Y for X1/2 > Y ≥ X2δ,

which can be deduced from
FG
[?] □

Proof of Corollary
ShortHal2
2.7.4. We apply the maximum modulus principle to

F (1 + σ + it) in
{1/ log x ≤ σ ≤ 1, |t| ≤ xδ},

and to F (1 + σ + it)/(1 + σ + it) in

{1/ log x ≤ σ ≤ 1, xδ ≤ |t| ≤ xδ(log x)κ},

so that the maximum of |F (1 + σ + it)|min
{
1, 1

|1+σ+it|x−δ

}
occurs on one of the

boundaries. On the three boundaries σ = 1, and t = ±xδ(log x)κ this quantity
is bounded. So, the maximum either occurs in t = ±xδ or on the final boundary
σ = 1/ log x. By (

MaxModLeft
2.8.1) we know that this is≪ the maximum on the line Re(s) = c0.

Combining this upper bound with |F (1 + σ + it)| ≤ ζ(σ)κ ≪ 1/σκ in appropriate
ranges, we deduce the claimed result. □





CHAPTER 2.9

Small mean values

Halász’s Theorem is a general tool that allows us to bound the mean value of a
multiplicative function up to x, but is insensitive to mean values≪ log log x/(log x),
as we saw in Exercise

ex:4.13
2.3.1. Are there mean values this small and, if so, can we

modify Halász’s method to bound them more suitably?

2.9.1. Random totally multiplicative functions

Let’s suppose that each f(p) is an independent random variable on the unit
circle. Now

E
(∣∣∣∑

n≤x

f(n)
∣∣∣2) =

∑
n≤x

E(|f(n)|2) +
∑

m ̸=n≤x

E(f(m)f(n)).

which equals [x], if each E(f(p)k) = 0 for each integer k ̸= 0 and prime p (which
happens, for example, if the probability distribution for each f(p) is equi-distributed
on the unit circle). So we “expect”

∑
n≤x f(n) ≪ x1/2+o(1), a massive amount of

cancelation. If the f(p) = −1 or 1 with equal probability, then the right side
becomes #{m,n ≤ x : mn ∈ Z2}; so if g = (m,n) we write m = gr2 and n = gs2

to get

≤
∑
g≤x

(
√
x/g)2 = x

∑
g≤x

1/g = x log x+O(1)

so, again we “expect”
∑
n≤x f(n) ≪ x1/2+o(1).

While “most” mean values are very small (as we have just shown), those associ-
ated with arithmetic tend to be much bigger, and the challenge is to prove that there
is any cancelation at all. Moreover even if we are sure that

∑
n≤x f(n) ≪ x1/2+o(1)

(like in the case f = µ), it may still to be a big challenge to prove a much weaker
bound like

∑
n≤x f(n) ≪ x/(log x)3. Certainly Halász’s Theorem will not allow us

to do so directly.
.

2.9.2. When the mean value, at the primes, is close to 0

The Selberg-Delange Theorem allows us to estimate mean values of multiplica-
tive functions f with |f(n)| ≤ 1, that average κ on the primes, for any |κ| ≤ 1,
except when κ = 0 or −1. In this section we explore the case κ = 0. The case when
κ = −1 is more difficult since it includes f = µ, which is equivalent to the prime
number theorem (see Theorem

PMNTM
??).

mean0 Theorem 2.9.1. For any κ ≥ 1 there exists a constant β = β(κ) ≫ κ such
that for any multiplicative function f(.) satisfying |Λf (n)| ≤ κΛ(n) for all n ≥ 1,

109



110 2.9. SMALL MEAN VALUES

we have that if
∑
n≤x Λf (n) ≤ cx/(log x)k then∑

n≤x

f(n) ≪ (βk)kx(log x)κ−1−k.

Trivially we have |
∑
n≤x f(n)| ≤

∑
n≤x dκ(n) ≪ x(log x)κ−1, so an interpre-

tation of our result states that if the mean value of f on the primes is the trivial
bound times ≪ 1/(log x)k, then the mean value of f on the integers is the trivial
bound times ≪k 1/(log x)k.

Proof. We will assume that |
∑
n≤x f(n)| ≤ c′(βk)kx(log x)κ−1−k for all x ≤

2m, and prove the result by induction on m. Evidently we can select c′ so that
the result is true for all m < m0, so now we assume m ≥ m0. Now if 2m < x ≤
2m+1 and Λf (b) ̸= 0 then x/b ≤ x/2 ≤ 2m, Therefore, selecting B = x1/(βk), as
f(n) log n =

∑
ab=n f(a)Λf (b)∣∣∣∣∣∣

∑
n≤x

f(n) log n

∣∣∣∣∣∣ ≤
∑

a≤x/B

|f(a)|

∣∣∣∣∣∣
∑
b≤x/a

Λf (b)

∣∣∣∣∣∣+
∑
b≤B

|Λf (b)|

∣∣∣∣∣∣
∑

x/B<a≤x/b

f(a)

∣∣∣∣∣∣
≤ c

∑
a≤x/B

dκ(a)
x/a

(log x/a)k
+ 2c′κ(βk)k

∑
b≤B

Λ(b)
x/b

(log x/b)k+1−κ

≤ c
x

(logB)k

∑
a≤x/B

dκ(a)

a
+ 2c′κ(βk)k

x

(log x/B)k+1−κ

∑
b≤B

Λ(b)

b

≤ c
x(log x)κ

(logB)k
+ 4c′κ(βk)k

x logB

(log x/B)k+1−κ ≤ c′

2
(βk)kx(log x)κ−1−k.

The result then follows by partial summation. □

For now, let G(s) := 1/F (s) =
∑
n≥1 g(n)/n

s, so that Λg(n) = −Λf (n).

Exercise 2.9.1. Show that if
∑
n≤x Λf (n) ≤ cx/(log x)k then

∑
n≤x g(n) ≪

kkx/(log x)k. (Hint: Use the relation Λg(n) = −Λf (n).)

Exercise 2.9.2. (i) Show that if
∑
n≤x(Λf (n) + g(n)) ≤ cx/(log x)k then∑

n≤x f(n) ≪ kkx/(log x)k. (Hint: Use the convolution (Λf + g) ∗ f .)
(ii) Deduce that if ψ(x)− x ≤ cx/(log x)k then M(x) ≪ kkx/(log x)k. (Hint: Take
f = µ in (i).)

Exercise 2.9.3. (i) If
∑
n≤N |fj(n)| ≪ N(logN)αj and |

∑
n≤N fj(n)| ≪

N(logN)αj−m for j = 1, 2, for some m > 0, prove that
∑
n≤N |f(n)| ≪ N(logN)α

and |
∑
n≤N f(n)| ≪ 2mN(logN)α−m where f = f1 ∗ f2 and α = α1 + α2 + 1.

(ii) Assume
∑
n≤x µ(n) ≪A x/(log x)A for all A (which we prove in chapter ??).

Suppose that |Λf (n)| ≤ κΛ(n) and
∑
n≤x Λf (n) = −x+O(x/(log x)m). Prove that∑

n≤x f(n) ≪ x(log x)κ+1−m (Hint: Apply Theorem
mean0
2.9.1 to f ∗ 1.)

(iii) Suppose that |Λf (n)| ≤ κΛ(n) and
∑
n≤x Λf (n) = −rx + O(x/(log x)m) for

some integer r ≥ 1. Prove that
∑
n≤x f(n) ≪ x(log x)κ+2r−1−m.
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2.9.3. A first converse result

By very similar techniques we can get a partial converse to the last result.

Theorem 2.9.2. Suppose that |Λf (n)| ≤ κΛ(n) for all n ≥ 1, and define
G(s) = 1/F (s). If

∑
n≤x f(n) ≤ cx/(log x)k and

∑
n≤x g(n) ≤ cx/(log x)k then∑

n≤x

Λf (n) ≪ 2k
x

(log x)k−1−κ .

If f = di then g = d−i, so we can take k = 1 in the hypothesis by Selberg’s
result, but then

∑
n≤x Λf (n) ∼ ix so the exponent cannot be improved to anything

bigger than k − 1.
If f is totally multiplicative then g(n) = µ(n)f(n). We do not know of any

examples in which it is easy to prove that both f and µf have small mean value,
so it is difficult to apply the last result, in practice.

Proof. By partial summation we have∑
n≤x

f(n) log n ≤ c
x

(log x)k−1
+ c

∫ x

1

dt

(log t)k
≤ 2c

x

(log x)k−1
.

Since −F ′/F = (−F ′)G hence Λf (n) =
∑
ab=n f(a) log a g(b) and so∑

n≤x

Λf (n) =
∑
a≤

√
x

f(a) log a
∑
b≤x/a

g(b) +
∑
b≤

√
x

g(b)
∑

√
x<a≤x/b

f(a) log a

≤ c
∑
a≤

√
x

|f(a)| log a x/a

(log x/a)k
+ 4c

∑
b≤

√
x

|g(b)| x/b

(log
√
x)k−1

≤ c2k
x

(log x)k−1

 ∑
a≤

√
x

dκ(a)

a
+ 4

∑
b≤

√
x

dκ(b)

b

≪ 2k
x

(log x)k−1−κ .

□

2.9.4. The converse theorem
Dimitris

In the Selberg-Delange theorem we saw that if a multiplicative function f is
κ on average on the primes, where |κ| ≤ 1, then it has mean value ≫ x/(log x)2

unless κ = 0 or −1. Could this, in some sense, be an “if and only if” condition?
Koukoulopoulos

Koukou2
[?] has recently shown something of this nature. We suppose that

BoundinABoundinA (2.9.1)
∑
n≤x

f(n) ≪ x

(log x)A

uniformly for all x ≥ 1, and ask what this implies about f . We begin with a result
in the case that f is real-valued:

KoukouConverseReal Theorem 2.9.3 (Koukoulopoulos converse theorem, I). Let f be a real, multi-
plicative function with |f(n)| ≤ 1 for all n. Suppose that (

BoundinA
2.9.1) holds for some

given A > 1. Then either,
(i) f(p) is close to 0 on average, in the sense that∑

p≤x

f(p)

p
is bounded below;

or, if not,



112 2.9. SMALL MEAN VALUES

(ii) f(p) is close to −1 on average, in the very strong sense that∑
p≤x

(1 + f(p)) log p≪ x

(log x)A−2
.

The exponent “A−2” is more-or-less best possible, as is shown by the example
f = d−1+ϵ: The Selberg-Delange theorem implies that

∑
n≤x f(n) ≍ x/(log x)2−ϵ,

yet neither (i) nor
∑
p≤x(1 + f(p)) log p = o(x) is satisfied.

Exercise
ex:MobiusEquiv
1.1.15, f = µ, is an example of case (ii). The generic example for case

(i) is a real, non-principal, Dirichlet character f = χ; we develop this theory in the
next part of the book. In so doing we will be able to establish strong upper bounds
on
∑
p≤x f(p) log p under the hypothesis of (i).

L1it Exercise 2.9.4. (i) Show that F (s) converges for all s with Re(s) ≥ 1 if (
BoundinA
2.9.1)

holds with A > 1.

(ii) Show that if lim infx→∞ Re
(∑

p≤x
f(p)
p1+it

)
= −∞ then F (1 + it) = 0.

Proof. If (i) does not hold then F (1) = 0 by exercise
L1it
2.9.4. Define g = 1 ∗ f

so that ∑
n≤x

g(n) =
∑
a≤

√
x

∑
b≤x/a

f(b) +
∑
b≤

√
x

f(b)
∑

√
x<a≤x/b

1

= O
( ∑
a≤

√
x

x/a

(log x)A

)
+
∑
b≤

√
x

f(b)
(x
b
−
√
x+O(1)

)
= −x

∑
b>

√
x

f(b)

b
+O

( x

(log x)A−1

)
≪ x

(log x)A−1

using that F (1) =
∑
b≥1 f(b)/b = 0, and partial summation with (

BoundinA
2.9.1). Now, by

definition, g(n) ≥ 0 for all n, and g(p) = 1 + f(p), so that
∑
p≤x(1 + f(p)) log p =∑

p≤x g(p) log p ≤
∑
n≤x g(n) log x and the result follows. □

It is slightly more complicated to prove such a result in the case that f can take
complex values, since instead of considering 1 ∗ f , we now consider (1 ∗ h) ∗ (1 ∗ h)
where h(n) = f(n)/nit.

DirPos Exercise 2.9.5. Suppose that |Λh(n)| ≤ Λ(n) for all n ≥ 1. Prove that

(i) If h(n) ∈ R and f = 1 ∗ h then each 0 ≤ Λf (n) ≤ 2Λ(n), and each
f(n) ≥ 0.

(ii) If f = (1 ∗ h) ∗ (1 ∗ h) then each 0 ≤ Λf (n) ≤ 4Λ(n), and each f(n) ≥ 0.

KoukouConverse Theorem 2.9.4 (Koukoulopoulos converse theorem, II). Let f be a multiplica-
tive function with |Λf (n)| ≤ Λ(n) for all n ≥ 1. Suppose that (

BoundinA
2.9.1) holds for some

given A > 4. Then either,
(i) f(p) is close to 0 on average, in the sense that∑

p≤x

Re(f(p)p−it)

p
is bounded below

for every real number t (where the bound may depend on t); or, if not,
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(ii) f(p) is close to −pit on average, in the very strong sense that∑
p≤x

(1 + Re(f(p)p−it)) log p≪|t|
x

(log x)A−2
.

Proof. If (i) does not hold let h(n) = f(n)n−it, so that H(1) = F (1+ it) = 0
by exercise

L1it
2.9.4. By partial summation we have∑

n≤x

h(n) = x−it
∑
n≤x

f(n) + it

∫ x

1

∑
n≤y

f(n) y−1−itdy ≪ (1 + |t|) x

(log x)A
.

Now applying the proof in Theorem
KoukouConverseReal
2.9.3 to g = 1 ∗ h we obtain∑

n≤x

g(n) ≪ (1 + |t|) x

(log x)A−1
,

and the analogous result with g replaced by g. If we define G = g ∗ g then, since
|g(n)| ≤ d(n)∑

n≤x

G(n) =
∑
a≤

√
x

g(a)
∑
b≤x/a

g(b) +
∑
b≤

√
x

g(b)
∑

√
x<a≤x/b

g(a)

= (1 + |t|)
∑
a≤

√
x

|g(a)| x/a

(log x)A−1

≪ (1 + |t|) x

(log x)A−1
exp

( ∑
p≤

√
x

|g(p)|
p

)
.

Now G(n) ≥ 0 for all n by exercise
DirPos
2.9.5, and G(p) = 2(1 + Re(h(p))), so that

2
∑
p≤x

(1+Re(h(p))) =
∑
p≤x

G(p) ≤
∑
n≤x

G(n) ≪ (1+|t|) x

(log x)A−1
exp

( ∑
p≤

√
x

|1 + h(p)|
p

)
.

Now each |h(p)| ≤ 1, so the right hand side is≪t x/(log x)
A−3. By Cauchy-Schwarz

we deduce, since |1 + h(p)|2 = 1 + |h(p)|2 + 2Re(h(p)) ≤ 2(1 + Re(h(p))), that(∑
p≤x

|1 + h(p)|
)2

≤
∑
p≤x

1 · 2
∑
p≤x

(1 + Re(h(p))) ≪ x2

(log x)A−2
,

and therefore, by partial summation, if A > 4 then∑
p≤x

|1 + h(p)|
p

≪ 1.

Substituting this in two equations above, the result follows. □

In
koukoul
[?], Koukoulopoulos proves the result for any A > 2, which is essentially

best possible, by extending this proof a little further.

Exercise 2.9.6. Show that if
∑
n≤x f(n) = o(x/(log x)4) then the bound in

(ii) is o(x/(log x)2).
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2.9.5. Siegel’s Theorem when we have a small mean value

Exercise 2.9.7. Suppose that η, 0 < η < 1 and γη := ζ(1 − η) + 1/η. Use
exercise

zeta2
1.1.6 to show that∣∣∣ ∑

m≤x

1

m1−η − xη − 1

η
− γη

∣∣∣ ≤ 1

x1−η

Also show that 1 ≥
∑
m≤x

1
m1−η − xη−1

η ≥ 0 so that 0 ≤ γη ≤ 1 < 1/η.

Siegel1 Proposition 2.9.5. Let f be a real-valued completely multiplicative function
with −1 ≤ f(n) ≤ 1 for all n. Assume that for some 0 < θ ≤ 1 there exists a
constant q ≥ 2 such that

PowerWinPowerWin (2.9.2)
∑
n≤x

f(n) ≤ qx1−θ.

(i) If F (s) ̸= 0 for real s, 1− 1
log q ≤ s ≤ 1 then F (1) ≫ 1/ log q.

(ii) If F (1− η) = 0 for some η ∈ (0, 1/ log q) then F (1) ≫ η.

Proof. By partial summation we have, by (
PowerWin
2.9.2), that for any fixed τ ∈

(1− θ, 1], ∑
n>x

f(n)

nτ
≪ qx1−θ−τ .

This implies that F (s) converges for all real s > 1 − θ. Let g = 1 ∗ f , so that
1 ≥ g(n) ≥ 0 for all n. Assume 0 < η < θ. Hence, for DM = x,

1 ≤
∑
n≤x

g(n)

n1−η
=
∑
d≤D

f(d)

d1−η

∑
m≤x/d

1

m1−η +
∑
m≤M

1

m1−η

∑
D<d≤x/m

f(d)

d1−η

=
∑
d≤D

f(d)

d1−η

( (x/d)η − 1

η
+ γη +O

(d1−η
x1−η

))
+O

( ∑
m≤M

1

m1−η qD
η−θ
)

=
xη

η

∑
d≤D

f(d)

d
+
(
γη −

1

η

)∑
d≤D

f(d)

d1−η
+O

( D

x1−η
+
q

η
MηDη−θ

)
=
xη

η
F (1) +

(
γη −

1

η

)
F (1− η) +O

(( q
η

) 1
1+θ

xη−
θ

1+θ

)
choosing D = (qx/η)1/(1+θ).

Now since F (s) =
∏
p(1 − f(p)p−s)−1 for Re(s) > 1 we see that F (s) > 0 for

real s > 1. If F (s) ̸= 0 for all s, 1 − η < s ≤ 1 then F (1 − η) ≥ 0, by continuity,

and thus
(
γη − 1

η

)
F (1− η) ≤ 0 as γη < 1/η. Therefore

F (1) ≥ ηx−η +O(q/(qx/η)θ/(1+θ))

If F (s) ̸= 0 for real s, 1 − 1
log q ≤ s ≤ 1, select x = (q log q)C/θ for a large

constant C, and η = 1/ log q, so that F (1) ≫ 1/ log q.
If F (1− η) = 0 for some η ∈ (0, 1/ log q) then select x = (Cq/η)1/θ for a large

constant C, so that F (1) ≫ η. □


