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PREFACE

AG to work on: sort out / finalize? part 1. Sort out what we discuss about
Halasz once the paper has been written. Ch3.3, 3.10 (Small gaps)and then all the
Linnik stuff to be cleaned up; i.e. all of chapter 4. Sort out 5.6, 5.7 and chapter 6 !

Riemann’s seminal 1860 memoir showed how questions on the distribution of
prime numbers are more-or-less equivalent to questions on the distribution of zeros
of the Riemann zeta function. This was the starting point for the beautiful theory
which is at the heart of analytic number theory. Until now there has been no other
coherent approach that was capable of addressing all of the central issues of analytic
number theory.

In this book we present the pretentious view of analytic number theory; allowing
us to recover the basic results of prime number theory without use of zeros of the
Riemann zeta-function and related L-functions, and to improve various results in
the literature. This approach is certainly more flexible than the classical approach
since it allows one to work on many questions for which L-function methods are
not suited. However there is no beautiful explicit formula that promises to obtain
the strongest believable results (which is the sort of thing one obtains from the
Riemann zeta-function). So why pretentious?

e It is an intellectual challenge to see how much of the classical theory one
can reprove without recourse to the more subtle L-function methodology (For a
long time, top experts had believed that it is impossible is prove the prime number
theorem without an analysis of zeros of analytic continuations. Selberg and Erdos
refuted this prejudice but until now, such methods had seemed ad hoc, rather than
part of a coherent theory).

e Selberg showed how sieve bounds can be obtained by optimizing values over
a wide class of combinatorial objects, making them a very flexible tool. Pretentious
methods allow us to introduce analogous flexibility into many problems where the
issue is not the properties of a very specific function, but rather of a broad class of
functions.

e This flexibility allows us to go further in many problems than classical meth-
ods alone, as we shall see in the latter chapters of this book.

The Riemann zeta-function ((s) is defined when Re(s) > 1; and then it is given
a value for each s € C by the theory of analytic continuation. Riemann pointed
to the study of the zeros of ((s) on the line where Re(s) = 1/2. However we have
few methods that truly allow us to say much so far away from the original domain
of definition. Indeed almost all of the unconditional results in the literature are
about understanding zeros with Re(s) very close to 1. Usually the methods used to
do so, can be viewed as an extrapolation of our strong understanding of {(s) when
Re(s) > 1. This suggests that, in proving these results, one can perhaps dispense
with an analysis of the values of ((s) with Re(s) < 1, which is, in effect, what we
do.

Our original goal in the first part of this book A ggcover all the main
results of Davenport”s Multiplicative Number Theory%etentious methods,
and then to p X&l‘?%smuCh as possible of the result of classical literature, such as
the results in [77. urns out that pretentious methods yield a much easier proof



of Linnik’s Theorem, and quantitatively yield much the same quality of results
throughout the subject.

However Siegel’s Theorem, giving a lower bound on |L(1, x)|, is one result that
we have little hope of addressing without considering zeros of L-functions. The dif-
ficulty is that all proofs of his lower bound run as follows: Either the Generalized
Riemann Hypothesis (GRH) is true, in which case we have a good lower bound,
or the GRH is false, in which case we have a lower bound in terms of the first
counterexample to GRH. Classically this explains the inexplicit constants in ana-
lytic number theory (evidently Siegel’s lower bound cannot be made explicit unless
another proof is found, or GRH is resolved) and, without a fundamentally different
proof, we have little hope of avoiding zeros. Instead we give a proof, due to Pintz,
that is formulated in terms of multiplicative functions and a putative zero.

Although this is the first coherent account of this theory, our work rests on
ideas that have been around for some time, and the contributions of many au-
thors. The central role in our development belongs to Haldsz’s Theorem. Much
is based on the results and perspectives of Paul Erdds and Atle Selberg. Other
early authors include Wirsing, Haldsz, Daboussi and Delange. More recent influen-
tial authors include Elliott, Hall, Hildebrand, Iwaniec, Vl@#t&%%gry and Vaughan,
Pintz, and Tenenbaum. In addition, Tenenbaum’s book [7] gives beautiful insight
into multiplicative functions, often from a classical perspective.

Our own thinking has developed in part thanks to conversations with our col-
laborators John Friedlander, Régis de la Bréteche, and Antal Balog. We are par-
ticularly grateful to Dimitris Koukoulopoulos and Adam Harper who have been
working with us while we have worked on this book, and proved several results that
we needed, when we needed them! Various people have contributed to our devel-
opment of this book by asking the right questions or making useful mathematical
remarks — in this vein we would like to thank Jordan Ellenberg, Hugh Montgomery.

The exercises: In order to really learn the subject the keen student should try
to fully answer the exercises. We have marked several with { if they are difficult,
and occasionally 1t if extremely difficult. The T questions are probably too difficult
except for well-prepared students. Some exercises are embedded in the text and
need to be completed to fully understand the text; there are many other exercises
at the end of each chapter. At a minimum the reader might attempt the exercises
embedded in the text as well as those at the end of each chapter with are marked
with *.



Part 1.

Contents

Introductory results

Chapter 1.1. The prime number theorem

1.1.1.
1.1.2.
1.1.3.
1.1.4.

1.1.5.

1.1.6.
1.1.7.

Partial Summation
Chebyshev’s elementary estimates
Multiplicative functions and Dirichlet series
The average value of the divisor function and Dirichlet’s hyperbola
method
The pri 1Jilumber theorem and the Mo&bius function: proof of
Theorem [T.T.
Selberg’s formula
Exercises

Chapter 1.2. First results on multiplicative functions

1.2.1.
1.2.2.
1.2.3.
1.2.4.
1.2.5.
1.2.6.

A heuristic

Multiplicative functions and Dirichlet series
Multiplicative functions close to 1
Non-negative multiplicative functions
Logarithmic means

Exercises

Chapter 1.3. Integers without large prime factors

1.3.1.
1.3.2.
1.3.3.
1.3.4.

“Smooth” or “friable” numbers

Rankin’s trick and beyond, with applications
Large gaps between primes

Additional exercises

Chapter 1.4. Selberg’s sieve applied to an arithmetic progression

1.4.1.
1.4.2.
1.4.3.
1.4.4.
1.4.5.
1.4.6.

Selberg’s sieve

The Fundamental Lemma of Sieve Theory

A stronger Brun-Titchmarsh Theorem

Sieving complex-valued functions

Multiplicative functions that only vary at small prime factors
Additional exercises

Chapter 1.5. The structure of mean values

1.5.1.
1.5.2.
1.5.3.
1.5.4.
1.5.5.

Some familiar Averages

Multiplicative functions that vary only the large prime factors
A first Structure Theorem

An upper bound on averages

Tterating identities

D UL W W

10
11

15
15
16
17
18
20
21

25
25
28
29
32

35
35
37
39
41
41
42

45
45
46
47
48
49



1.5.6.

Part 2.

CONTENTS
Exercises

Mean values of multiplicative functions

Chapter 2.1. Distances. The Theorems of Delange, Wirsing and Halész

2.1.1.
2.1.2.
2.1.3.
2.1.4.
2.1.5.
2.1.6.
2.1.7.

The distance between two multiplicative functions
Delange’s Theorem

A key example: the multiplicative function f(n) =n
Halédsz’s theorem; the qualitative version

A better comparison theorem

Distribution of values of a multiplicative function, I
Additional exercises

1Q

Chapter 2.2. Additive functions

2.2.1.
2.2.2.
2.2.3.

2.2.4.

Delange’s Theorem

Additive Functions

The Turan-Kubilius inequality and the number of prime factors of
typical integer

The Central-Limit Theorem and the Erdés-Kac theorem

Chapter 2.3. Halédsz’s theorem

2.3.1.
2.3.2.
2.3.3.
2.3.4.
2.3.5.

The main result

Proof of the prime number theorem

Real valued multiplicative functions: Deducing Wirsing’s theorem
Distribution of values of a multiplicative function, II

Best Constants

Chapter 2.4. Perron’s formula and its variants

24.1.
2.4.2.
2.4.3.
2.4.4.
2.4.5.
2.4.6.
2.4.7.
2.4.8.

Deriving Perron’s formula
Discussion of Perron’s formula
Perron’s formula

The basic identity

Complications with the small primes
An explicit version

Moving and truncating the contours
Exercises

Chapter 2.5. The proof of Haldsz’s Theorem

2.5.1.
2.5.2.
2.5.3.
2.5.4.

A mean square estimate
Proof of Halédsz’s theorem
A hybrid result

Exercises

Chapter 2.6. Some examples, and a discussion of whether Haldsz’s Theorem

2.6.1.
2.6.2.
2.6.3.
2.6.4.

is best possible
Two examples
The Selberg-Delange Theorem
Functions for Halasz’s Theorem cannot be improved
Halédsz’s Theorem is close to best possible for all f

Chapter 2.7. Consequences of the proof of Haldsz’s theorem

49

o1

53
53
56
56
99
60
61
62

65
65
66

67
69

73
73
74
(0]
76
7

79
79
80
81
82
83
84
85
86

87
87
88
89
90

91
91
91
92
93

95



2.7.1.
2.7.2.
2.7.3.
2.7.4.
2.7.5.
2.7.6.

CONTENTS

Rotating f

Multiplicative functions in short intervals
Lipschitz estimates

The structure of mean values (revisited)

Two repulsion results

Exercises: Applications of the Lipschitz result

Chapter 2.8. Proofs of consequences of the proof of Haldsz’s theorem

2.8.1.
2.8.2.
2.8.3.

The maximum modulus principle
Repulsion revisited
Short interval results for multiplicative functions in the unit circle

Chapter 2.9. Small mean values

2.9.1.
2.9.2.
2.9.3.
2.9.4.
2.9.5.

Random totally multiplicative functions

When the mean value, at the primes, is close to 0
A first converse result

The converse theorem

Siegel’s Theorem when we have a small mean value

95
95
96
97
98
99

101
101
102
103

109
109
109
111
111
114



Part 1

Introductory results



In the the first four chapters we introduce well-known results of analytic number
theory, from a perspective that will be useful in the remainder of the book.



PNT

PS2

CHAPTER 1.1

The prime number theorem

As a boy Gauss determined, from studying the primes up to three million,
that the density of primes around x is 1/logz, leading him to conjecture that the
number of primes up to x is well-approximated by the estimate

(1.1.1) n(z) =Y 1~

~ logz’

p<z

It is less intuitive, but simpler, to weight each prime with log p; and to include the
prime powers in the sum (which has little impact on the size). Thus we define the
von Mangoldt function

(1.1.2) An) = logp if n=p™, where p is prime, andm > 1

0 otherwise,

. Eﬂ% .
and then, in place of (II.T.1), we conjecture that

(1.1.3) P(x) = Z A(n) ~ z.

n<x
The equivalent estimates (E.ﬂ}.l) and (ETNTF.QB), known as the prime number theorem,
are difficult to prove. In this chapter we show how the prime number theorem
is equivalent to understanding the mean value of the Mobius function. This will
motivate our study of multiplicative functions in general, and provide new ways of
looking at many of the classical questions in analytic number theory.

1.1.1. Partial Summation

Given a sequence of complex numbers a,, and some function f : R — C, we
wish to determine the value of

B
> anf(n)
n=A+1
from estimates for the partial sums S(t) := >, ., ax. Usually f is continuously

differentiable on [A, B], so we can replace our sum by the appropriate Riemann-
Stieltjes integral, and then integrate by parts as follows:*

B B b /
T wf= [ sase) = sOr0R - [ soroa
- B
(1.1.4) = S(B)F(B) = S~ [ sOF B

PS2
(Note that (hél) continues to hold for all non-negative real numbers A < B).

LThe notation “t*” denotes a real number “marginally” larger than ¢.

3
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In Abel’s approach one does not need to make any assumption about f: Simply
write a, = S(n) — S(n — 1), so that

B B
Y anfn)= Y f(n)(S(n)=Sn-1)),
n=A+1 n=A+1

and with a little rearranging we obtain

B

B—-1
L15) Y anf(n) = S(BF(B) — S(AF(A) = 3 S)(f(n+1) — f(n).
n=A

n=A-+1

If we now suppgsg, that f jg continuously differentiable on [A, B] (as above) then
we can rewrite (I.1.5) as (I.1.4).

NT
EXERCISE 1.1.1. Use partial summation to show that (FTIl) is equivalent to

(1.1.6) O(x) =Y logp =z + o(w);

p<z

NT2
and then show that both are equivalent to (Il3)

The Riemann zeta function is given by

C(s) = i ni =11 (1 - }%)_1 for Re(s) > 1.

This definition is restricted to the region Re(s) > 1, since it is only there that
this Dirichlet series and this Euler product both converge absolutely (see the next
subsection for definitions).

EXERCISE 1.1.2. (i) Prove that for Re(s) > 1

(s = {y}
¢(s) —5/1 ys+1dy— o1 ° 1 ys+1dy.
where throughout we write [t] for the integer part of ¢, and {¢} for its fractional
part (so that t = [t] + {¢}).
The right hand side is an analytic function of s in the region Re(s) > 0 except for

a simple pole at s = 1 with residue 1. Thus we have an analytic continuation of
¢(s) to this larger region, and near s = 1 we have the Laurent expansion

C(s):s_%Jr’ercl(s—l)Jr....

. . . . |ex:harmonic
(The value of the constant + is given in exercise [[.1.4.

.. 1y 1

(11) Deduce that ¢(1 + 1Og?) = log.m tg;;’{gfﬁoo(.logm>‘ . - .

(iii) 1 Adapt the argument in Exercise [[.1.5 to obtain an analytic continuation
of ((s) to the region Re(s) > —1.

(iv) 1 Generalize.




1.1.2. CHEBYSHEV’S ELEMENTARY ESTIMATES 5

1.1.2. Chebyshev’s elementary estimates

Chebyshev made significant progress on the distribution of primes by showing
that there are constants 0 < ¢ < 1 < C with
x x
1.1.7 1)— < <(C 1) —.
(1.17) (o4 o1) o < la) < (C+ o1 o

Moreover he showed that if
()

z—oo x/logx
exists, then it must equal 1.
The key to obtaining such information is to write the prime factorization of n

in the form
logn = Z A(d)
d|n
Summing both sides over n (and re-writing “d|n” as “n = dk”), we obtain that

(1.1.8) Y logn=>" 3" Ad)=>_v(z/k).
k=1

n<x n<x n=dk

ex:stirlin
Using Stirling’s formula, Exercise T.1.5, we deduce that

(1.1.9) Z1/J(x/k):xlog:c—m+0(logx).
k=1
Cheb3
EXERCISE 1.1.3. Use (l.el.9) to prove that
lim sup —= ¥(z) > 1> liminf ——= w(x)
200 T T—00 T

so that if lim,_, 1¥(x)/z exists it must be 1.

Chebl Cheb
To obtain Chebyshev’s estimates (| 1. ), take ( .6.2) at 2z and subtract twice
that relation taken at x. This yields
zlogd + O(logx) = ¥(2x) — ¥ (22/2) + ¢ (2z/3) — (22 /4) +

and upper and lower estimates for the right hand side above follow upon truncating
the series after an odd or even number of steps. In particular we obtain that

P(2z) > xlog4 + O(log x),

Chebl
which gives the lower bound of (II.I.7) with ¢ = log2 a permissible value. And we
also obtain that

¥(2z) — P(z) < xlogd + O(log z),
which, when used at /2, z/4, ... and gnmmed, leads to ¢(z) < xlog 4+0((logz)?).
Thus we obtain thE er bound in ; [.7) with C = log4 a permissible value.
Returning to % we may recast it as

Slogn=>"A@) Y 1= ZA(d)(% +0(1)).
n<z d<z k<z/d d<z

Using Stirling’s formula, and the recently established ¢ (z) = O(z), we conclude

that Ald
zlogx + O(z) = xz %,
d<z
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or in other words

(1.1.10) Zloﬂ = Z@H)(l) = logz + O(1).

p

p<zx n<x

In this proof we see interplay between algebra (summing the identity logn =
>_djn A(d)) and analysis (evaluating log [2]! using Stirling’s formula), which fore-
shadows much of what is to come.

1.1.3. Multiplicative functions and Dirichlet series

The main objects of study in this book are multiplicative functions. These are
functions f : N — C satisfying f(mn) = f(m)f(n) for all coprime integers m and
n. If the relation f(mn) = f(m)f(n) holds for all integers m and n we say that f is
completely multiplicative. If n = H p is the prime factorization of n, where the
primes p; are distinct, then f(n) = H f (pj ') for multiplicative functions f. Thus
a multiplicative function is specified by its values at prime powers and a completely
multiplicative function is specified by its values at primes.

One can study the multiplicative function f(n) using the Dirichlet series,

H(Hf@u&?u...).

p%

The product over primes above is called an Fuler product, and viewed formally the
equality of the Dirichlet series and the Euler product above is a restatement of the
unique factorization of integers into primes. If we suppose that the multiplicative
function f does not grow rapidy — for example, that |f(n)| < n* for some constant
A — then the Dirichlet series and Euler product will converge absolutely in some
half-plane with Re(s) suitably large.

Given any two functions f and g from N — C (not necessarily multiplicative),
their Dirichlet convolution f * g is defined by

(f+g)n)= > fla)g

ab=n

If F(s) => o2, f(n)n™* and G(s) = Y o2, g(n)n~* are the associated Dirichlet
series, then the convolution f * g corresponds to their product:

F(s)G(s) =Y (f*nﬂ
n=1

The basic multiplicative functions and their associated Dirichlet series are:

e The function §(1) = 1 and §(n) = 0 for all n > 2 has the associated Dirichlet
series 1.

e The function 1(n) = 1 for all n € N has the associated Dirichlet series (s)
which converges absozté‘%%ly when Re(s) > 1, and whose analytic continuation we
discussed in Exercise

e For a natural number k, the k-divisor function dg(n) counts the number of
ways of writing n as aj - - - ag. That is, dy is the k-fold convolution of the function
1(n), and its associated Dirichlet series is ((s)*. The function da(n) is called the
divisor function and denoted simply by d(n). More generally, for any complex



1.1.4. THE AVERAGE VALUE OF THE DIVISOR FUNCTION AND DIRICHLET’S HYPERBOLA METHOI?

number z, the 2-th divisor function d,(n) is defined as the coefficient of 1/n° in the
Dirichlet series, ((s)?.2

e The Mdbius function p(n) is defined to be 0 if n is divisible by the square
of some prime and, if n is square-free, pu(n) is 1 or —1 depending on whether
n has an even or odd number of prime factors. The associated Dirichlet series
oo w(n)n™% = ((s)~! so that p is the same as d_;. We deduce that px1 = 4.

e The von Mangoldt function A(n) is not multiplicative, but is of great interest
to us. We write its associated Dirichlet series as L(s). Since

logn = ZA(d) = (1*A)(n)
d|n
hence —('(s) = L(s){(s), that is L(s) = (=¢’/¢)(s). Writing this as

1 !
@ (=¢'(9))
we deduce that
Lammu | (1.1.11) A(n) = (pxlog)(n) = Z wu(a)loghb.

ab=n
As mentioned earlier, our goal in this chapter is to show that the prime number
theorem is equivalent to a statement about the mean value of the multiplicative
function p. We now formulate this equivalence precisely.
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2 and the divisor m cannot be so paired. Since a or n/a

21_2 > 144,

d|n
d<ym

exception is when n = m
must be < y/n we have

where d,, = 1 if n is a square, and 0 otherwise. Therefore

ddm)=2>" > 1+ > 1

n<x n<z dln n<x
d<~/m n=d2
> (1 +2 ) 1)
d<{z d?2<n<z
d|n
= > Qla/d —2d+1),
d<Vz
and so
(1.113) > d(n) =2z Z f—x—i—O Vz) = zlogx — x + 2yx + O(V),
n<az d<f

. lex:harmonic
by Exercise T.1.4.

The method described above is called the hyperbola method because we are
trying to count the number of lattice points (a,b) with a and b non-negative and
lying below the hyperbola ab = x. Dirichlet’s idea may be thought of as choosing
parameters A, B with AB = z, and dividing the points under the hyperbola ac-
cording to whether @ < A or b < B or both. We remark that an outstanding open

blem, known as the Dirichlet dlivisor problem, is to show that the error term in
-1.13) may be improved to O(z21€) (for any fixed € > 0)
| For) our subsequent work, v&Ee use)lﬂ(xer(;lse hiﬁgﬁlci)l—zz;rleéast Pfl 13) as

(1.1.14) > (logn — d(n) + 2v) = O(v/x).

n<x

1.1.5. The prime number theorem and Modbius function: proof of
Theorem 1.1.1

First we show that the estimate M (z) = > . u(n) = o(x) implies the prime
number theorem v (z) = x + o(x).
Define the arithmetic function a(n) = logn — d(n) + 27, so that

a(n) = (1% (A —1))(n) + 271 (n).

When we form the Dirichlet convolution of a with the Mobius function we therefore
obtain

(mxa)(n) = (u*1x(A—=1))(n)+2y(ux*1)(n) = (A —1)(n) +2vyd(n),

where §(1) = 1, and 6(n) = 0 for n > 1. Hence, when we sum (y * a)(n) over all
n < x, we obtain

D (uxa)(n) = (Aln) = 1)+ 2y = ¢(x) -z + O(1).

n<x n<x
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On the other hand, we may write the left hand side above as
> u(d)a(k),
dk<wz

and, as in the hyperbola method, split this into terms where k¥ < K or k > K (in
which case d < z/K). Thus we find that

> uldalk) =Y a(k)M(z/k)+ > pld) D alk).

dk<a k<K d<z/K K<k<z/d
. divest .
Using (I.1.14) we see that the second term above is
=0( X Ve/d) = 0@/VE).
d<z/K

Putting everything together, we deduce that

V(@) -2 =Y alk)M(z/k)+ O(x/VEK).
k<K
Now suppose that M (z) = o(z). Fix € > 0 and select K to be the smallest
integer > 1/€%, and then let ax = >, |a(k)|/k. Finally choose y. so that
|M(y)| < (¢/ou)y whenever 3 > y.. Inserting all this into the last line for z > Ky,
yields ¢(z) — 2 < (e/ar)r Y i |a(k)|/k + ez < ex. We may conclude that
Y(z) — 2 = o(z), the prime number theorem.

Now we turn to the converse. Consider the arithmetic function —u(n)logn
which is the coefficient of 1/n® in the Dirichlet series (1/¢(s))’. Since

Ly e L
(@) =~cr =@
we obtain the identity —u(n)logn = (u*x A)(n). As p*x1 =4, we find that
(1.1.15) > (wx(A=1))(n) == p(n)logn — 1.

n<zx n<lzx

Pr51
The right hand side of (Fﬂ@ is

—logxz Z n)log(x/n) —1 = —(logz)M (Zlog :c/n)

n<z n<z n<zx

—(logz) M (z) + O(x),

tirli
upon using Exercise IR e left hand side of h_l_lf) ) is
Z wula)(A Z,u ( (z/a) fx/a)
ab<z a<lz

Now suppose that ¥(x) — z = o(z), the prime number theorem, so that, for given

e > 0 we have |[¢(t) —t| < et if t > T.. Suppose that T > T, and = > TV/¢. Using

this ¢ (z/a) — z/a| < ex/a for a < z/T (so that z/a > T), and the Chebyshev

Egﬁlaﬁ)@ [(xz/a) — z/a| < x/a for ©/T < a < x, we find that the left hand side of
.1715) is

< Z ex/a + Z x/a < exlogz + xlogT.
a<z/T z/T<a<lz
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Combining these observations, we find that

log T
IM(z)] < ex + 22
log x

< ex,

if z is sufficiently large. Since € was arbitrary, we have demonstrated that M (z) =

o(x).
1.1.6. Selberg’s formula

The elementary techniques discussed above were brilliantly used by Selberg to
get an asymptotic formula for a suitably weighted sum of primes and products of
two primes. Selberg’s formula then led Erd6s and Selberg to discover elementary
proofs of the prime number theorem. We will not discuss these elementary proofs
of the prime number theorem here, but let us see how Selberg’s formula follows
from the ideas developed so far.



ex:harmonic

1.1.7. EXERCISES 11

The left hand side is

S k) >0 b)) <Y (x/k)PT <

k<z I<z/k k<z
Pré1
by (I[.1.16), and we conclude that

> As(n) = 2zlogz + O(x).

n<z

The difference between the left hand side above and the left hand side of our
desired formula is the contribution of the prime powers, which is easily shown to
be <« v/zlogx, and so our Theorem follows. (]

1.1.7. Exercises

EXERCISE 1.1.4. * (i) Using partial summation, prove that for any = > 1

Z :Lzlogx+[z]—/11$dt.

1<n<z

(ii) Deduce that for any z > 1 we have the approximation

)

8=

1
>~ —(ogz+7)| <
n

n<x

where 7 is the Fuler-Mascheroni constant,

N
. 1 < {t}
EXERCISE 1.1.5. (i) For an integer N > 1 show that

N {ty
1

(ii) Deduce that x —1> %" _ log(z/n) >z —2 —logx for all z > 1.
(iii) Using that [;"({t} —1/2)dt = ({z}* — {2})/2 and integrating by parts,
show that

[ B L [T 00,
(iv) Conclude that N! = C\F(N/e)N{l + O(l/N)}7 where
C’:exp(l—;/Oo{t};{t}th).Infactsz,

and the resulting asymptotic for N!, namely N! ~ v27N(N/e)V
known as Stirling’s formula.

EXERCISE 1.1.6.
(i) Prove that for Re(s) > 0 we have

1 =~ {y}
/ S—1+S/N ys+1dy
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(ii) Deduce that, in this same range but with s # 1, we can define

N
1 Nl
= i - .
C(S) Ng;noo { ns 1—s }

n=1

EXERCISE 1.1.7. * Using that ¢(2z) —¢(z)+1(22/3) > xlog4+0O(log x), prove

Bertrand’s postulate that there is a prime between N and 2N, for N sufficiently
large.

Cheb
EXERCISE 1.1.8. (i) Using (I.el.8:), prove that if L(z) := > _ logn

then
P(x) = (x/6) < L(z) — L(x/2) = L(x/3) — L(z/5) + L(x/30) < ¢().
(ii) Deduce, using (%le%}), that with
o log2 log3 logb log30
2 3 5 30

we have kz + O(logz) < ¥(z) < ¢k + O(log” z).
(iii) T Improve on these bounds by similar methods.

= 0.9212920229.. .,

EXERCISE 1.1.9. (i) Use partial summation to prove that if
Aln) —1
I .
Ngnoo Z — exists,
n<N

then the prime number theorem, in the form i (x) = = + o(z), follows.
(i) T Prove that t e prime number theorem implies that this limit holds.
(iii) Using exercise [I.1.2, prove that —(¢'/¢)(s) — ((s) has a Taylor expansion
—2y+c(s—1)+... around s = 1.
(iv) Explain why we cannot then deduce that
. An) -1 . A(n)—1 . - ‘
lim Z - = lim Z mra— which exists and equals — 2+.

N—o00 s—1t
n<N y n>1

EXERCISE 1.1.10. *

. ﬁé%gl . . .
(i) Use (T.1.10) and partial summation show that there is a constant ¢ such

that
1 1
Zf =loglogx +c+ O () .
P logz

p<w
(ii) Deduce Mertens’ Theorem, that there exists a constant v such that

1 -
I(-3)~ s
D log x

p<z

In the two preceding exercises the constant « is in fact the Euler-Mascheroni
constant, but this is not so straightforward to establish. The n xt exercise gives
one way of obtaining information about the constant in Exercise T.1.T0

EXERCISE 1.1.11. 1 In this exercise, put 0 =1+ 1/logx.

(i) Show that

Sw(1-2) =X Lro(d) - [T ao().

p>x p>x
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(ii) Show that

> (tog (1—%)71—log (1—%)71) - —/01 1_t6_tdt+0(b;;z).

p<z

exmerten
(iii) Conclude, using exercise h? that the constant ~ in exercise [I.1. l()iu;

equals
1 —t o _—t
1_
/ € _at— / ¢t
0 t 1t

il
That this equals the Euler-Mascheroni constant is established in F’

EXERCISE 1.1.12. * Uniformly for n in the range 1 ; <n <1, show that

Zlogip<<y7;

1-n
pSyp "

and

3 b <lost/n) + 01,

1 ui
= og(y")
Hint: Split the sum into those primes with p”7 < 1, and those with p” > 1.

EXERCISE 1.1.13. * If f and g are functions from N to C, show that the relation
f = 1x*g is equivalent to the relation g = u* f. (Given two proofs.) This is known
as Mébius inversion.

EXERCISE 1.1.14. (i) Given a natural number &, use the hyperbola method
together with induction and partial summation to show that

Z di(n) = 2Py (log z) + O(z*~/k+e)
n<lx
where P (t) denotes a polynomial of degree k — 1 with leading term t*~1/(k — 1)!.
(ii) Deduce, using partial summation, that if Ry (t) + R} (t) = Px(t) then
Z di(n)log(x/n) = xRy (log z) + O(x'~1/k+e),
n<x

(iii) Deduce, using partial summation, that if Qi (u) = Py(u) + [, Pe(t)dt then

Z dkfln) = Qi (logz) + O(1).

n<z
Analogies of these estimates hold for any real £ > 0, in which case (k — 1)! is
replaced by I'(k).
EXERCISE 1.1.15. Modify the above proof to show that
(i) If M(z) < z/(logz)? then ¢ (z) — 2 < x(loglogz)?/(log ).
(ii) Conversely, if ¥(z) — 2 < z/(logx)? then M(z) < x/(log z)™n1:A),
EXERCISE 1.1.16. (i) * Show that
M(z)logax = — Zlogp M(z/p) + O(x).

p<z
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(ii) Deduce that

M
lim inf (z) + lim sup

T—>00 X T—00

=0.

x
(iii) Use Selberg’s formula to prove that

((z) — z)loga = — Y _logp <¢ (;) - x) +0(x).

p<z p
(iv) Deduce that
lim inf ¥(@) - + lim sup v(z) - = 0.
T—00 €T T—00

Compare!



E2.2

CHAPTER 1.2

First results on multiplicative functions

We have just seen that understanding the mean value of the Mobius function
leads to the prime number theorem. Motivated by this, we now begin a more
general study of mean values of multiplicative functions.

1.2.1. A heuristic

PrS4
In Section T.T.4 we saw that one can estimate the mean value of the k-divisor
function by writing dj as the convolution 1 *d;_1. Given a multiplicative function
f, let us write f as 1* g so that g is also multiplicative. Then

> s =YY gl =Y g@|5].

n<x n<z d|n d<z

Since [z] = z + O(1) we have

(1.2.1) 3" fn) :xz%iﬁo(zhy(d)\).

n<lz d<z d<z

In several situations, for exa@;)ile in the case of the k-divisor function treated
earlier, the remainder term in (I.2.1) may be shown to be small. Omitting this

term, and approximating >, g(d)/d by [[,-,(1 + g(p)/p + a(P®)/p* +...) we
arrive at the following heuristic:

(1.2.2) Z fn) =z P(f;x)

Wa??

where “~” is interpreted as “is roughly equal to”, and
(1.2.3)

P(f;x)=H(1+g§f)+gg)+...):IE(1—;)(1+1@+JC§§)+...).

p<z

In the special case that 0 < f(p) < f(p?) < ... for all primes p (so that g(d) > 0
for all d), one easily gets an upper bound of the correct order of magnitude: If
f=1xgthen g(d) > 0 for all d > 1 by assumption, and so

PSFOESSUIFIEDINC

n<x d<z d<z

P(f;x)

SL\ 8

(as in (F23)).

In the case of the k-divisor function, the heuristic (I.2:2) predicts that

S a1 (15" s e

n<x p<zx

15
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which is off from the correct asymptotic formula, ~ z(log x)*=1/(k —1)!, by only
a constant factor (see exercise 4( )). Moreover dy(p’) > di(p’~!) for all p? so
this yields an (unconditional) upper bound.

One of our aims will be to obtain results that are uniform over the class of
all mutiplicative functions. Thus for example we could consider x to be large and
consider the multiplicative function f with f(p*) = 0 for p < y/z and f(p¥) =1
for p > /z. In this case, we have f(n) =1 if n is a prime between /z and x and
f(n) =0 for other n < z. Thus, the heuristic suggests that

1 e 7 2¢e Tx
W(I)—TF(\/E)—Fl:Zf(n)%I H (1—7> ~N—— ~ ———.
= iy D logy/z  logx
Comparing this to the prime number theorem, the heuristic is off by a constant

factor again, this time 2e™7 ~ 1.1....
This heuristic suggests that the sum of the Mobius function,

x) = Z u(n) is comparable with x H ( ) LZ’;.

n<zc p<z (IOg .’E)

However M (z) is known to be much smaller. The best bound that wepk{;ow un-

conditionally is that M (x ) < zexp(—c(logz)3 ) (see chapter F’}‘l’sg)—?lréfﬁ expect
M (x) to be as small as 227¢ (as this is equivalent to the unproved Riemann Hy-
pothesis). In any event, the heuristic certainly suggests that M (z Mo( x), which
is equivalent to the prime number theorem, as we saw in Theorem

IPNT!

1.2.2. Multiplicative functions and Dirichlet series

Given a multiplicative function f(n) we define F(s) == > -, ffjj) as usual,
and now define the coefficients Af(n) by

P 5~ Al

F(s) = ns
Comparing the coefficient of 1/ns in —F'(s) = F(s) - (—F'(s)/F(s)) we have
(1.2.4) n)logn = ZAf f(n/d).
d|n

EXERCISE 1.2.1. Let f be a multiplicative function. and fix k > 0

(i) Show that Af(n) =0 unless n is a prime power.
(ii) Show that if f is totally multiplicative then A¢(n) = f(n)A(n).
(iii) Show that As(p) = f(p)logp, As(p?) = (2f(p*) — f(p)*)logp, and that
every A ;(p*) equals log p times some polynomial in f(p), f(p?),..., f(p").
(iv) Show that if [A¢(n)| < kA(n) for all n, then |f(n)| < dx(n).

We will work mostly under the hypothesis |Af(n)| < xkA(n) for all n, which
has several advantages. The most important is that we avoid examples in which
mean values are very small for reasons concerning just one prime. For example,
the multiplicative function (—1)"~!, for which f(p*) = 1 for all odd primes p and
f(2¥) = —1, has sum up to x equal to either 1 or 0, and 3" _ 5 f(n)f(n+1) = —N,
yet, other than at the prime 2, it is the same as the multiplicative function 1, which
has large mean value. Many of our results can be extended to a much wider selection
of multiplicative functions, via convolutions.
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EXERCISE 1.2.2. Suppose that f is a non-negative arithmetic function, and
that F(o) = > 72, f(n)n™7 is convergent for some o > 0.

(i) Prove that >° _ f(n) < z7F(0).
(ii) Moreover show that if 0 < ¢ < 1 then

f(n)
RERIREAES' g .
S i)+ 23 Y <a (o)
n<lz n>x
This technique is known as Rankin’s trick, and is surprisingly effective. The values
f(p*) for p* > = appear in the Euler product for F'(¢) and yet are irrelevant to the

mean value of f(n) for n up to 2. However, for a given x, we can take f(p¥) =0
for every p¥ > x, to minimize the value of F(o) above.

1.2.3. Multiplicative functions close to 1

E2.2
The heuristic (hQ) is accurate and easy to justify when the function g is small
in size, or in other words, when f is close to 1. We give a sample such result which
will lead to several applications.

PROPOSITION 1.2.1. Let f =1 g be a multiplicative function. If

o0
lg(d)] _ ~
> o =Gl
d=1
s convergent for some o, 0 < o <1, then

|3 ) 2P (f)] < 2Clo),

n<zx
where P(f) :=P(f;0), and
.1
Jim 5200 =
n<zx
If G(0) converges then G(1) does. If each |f(n)| < 1 then G(1) converges if
; [1=f(p)|
and only if 5 == < oo
E2.1
PRrROOF. The argument giving (m) yields that

S s - 31 < S )

n<x d<z d<z

Since P(f) = > 451 9(d)/d we have that

Zor -l 2P

d<z d>x

Combining these two inequalities yields

(1.25) |3 s - o) < 3 lata) +2 3 19D

n<x d<z d>x

We now use Rankin’s trick: we multiply the terms in the first sum by ( dgthm L,
and in the second sum by (d/z)'~7 > 1, so that the right hand side of (IT.

<l (5)+ Z'g () — 27G(o),

d<z
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the first result in the lemma. This immediately implies the second result for 0 <

o<1
SweetBound
One can rewrite the right hand side of (I.2.5) as

/Zlg

n>t

= 0g—00(T),

because ), _, |g(n)|/n is bounded, and tends to zero as ¢t — oco. This implies the
second result for o = 1. O

1.2.4. Non-negative multiplicative functions

Let us now consider our heuristic for the special case of non-negative multi-
plicative functions wi%@ Euitable growth conditions. Here we shall see that right
side of our heuristic (T.2:2) is at least a good upper bound for > __ f(n).

PROPOSITION 1.2.2. Let f be a non-negative multiplicative function, and sup-
pose there are constants A and B for which

(1.2.6) > Ag(m) < Az + B,

m<z

for all z > 1. Then for x > 2B we have

f(n
Zf logﬂc—l—l—BZ

n<lz

PrOOF. We begin with the decomposition

Zf(n)logxzz:f( logn—l—Zf ) log(x/n)

n<w n<z n<z
<Y Fmlogn+ Y fm)(F 1),
n<z n<z

which holds since 0 <logt <t — 1 for all ¢t > 1. For the first term we have

Y fm)logn=73" " f(r)As(m) <Y f(r) D As(m

n<x n<z n=mr r<z m<zx/r
<> 5)(5F + ).
r<z
The result follows by combining these two inequalities. O

Prog2.1 E2.3
Proposition [[.2.2 establishes the heuristic (II.2.3) for many common multiplica-
tive functions:

COROLLARY 1.2.3. Let f be a non-negative multiplicative function for which
either 0 < f(n) <1 for alln, or|As(n)| < kA(n) for all n, for some given constant
k> 1. Then

(1.2.7) % > fn) <an P(fi2) <exp (=3 1—;(?))

Moreover if 0 < f(n) <1 for all n then

Jim =37 f(n) = PP

n<x
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PROOF. The bypathesis jmplies that (T6) Holds: If [f(n)] < 1 then this
follows by exercise T.2.5(1 each [Af(n)| < kA(n) then the Chebyshev estimates
give that

D M) <KD A(n) < Az + B,

n<z n<z

any constant A > klog4 bein Igegniissible.
So we apply Proposition ; 2 )27 and bound the right-hand side using Mertens’

Theorem, and
Z f(n < H ( f( ) >’

n<x p<lx
Si P(fz )
to obtain the first inequality. The second inequality then follows from exercise VA
with € = l
E2.5
I3, ( f(p))/p diverges, then (II.2.7) shows that
i 2 32700 =0 =P

Suppose now that 3 (1 — f(p))/p converges. If we write f = 1% g then this
condition assures us that >_ . [g(p )| /p* converges, which in turn is equivalent

to the convergence of >°, |g( )|/n by exercise I[.2Z.8. The second statement in
Proposition I 2.1 now finishes our proof. [l

cord Ig the coming chapters we will establish appropriate generalizations of Corollary
W For example, for real-valued multiplicative functions with —1 < f(n) < 1,
Wirsing proved that 3, ., f(n) ~ P(f)z. Thigimplies that 3° _ p(n) = o(z) and
hence the prime number theorem, by Theorem II.1.1. We will go on to study Haldsz’s
seminal result on the mean values of complex-valued multiplicative functions which

take values in thgrgrgp disc

Proposition T.2.2 also enables us to prove a preliminary result indicating that
mean values of multiplicative functions vary slowly. The result given here is only
Eggful when f is “close” to 1, but we shall see a more general such result in Chapter

7

PROPOSITION 1.2.4. Let f be a multiplicative function with |f(n)| < 1 for all
n. Then for all 1 <y < /x we have

DRI PWLES L]
n<x n<z/y

Proor. Write f = 1 % g, so that g is a multiplicatgve.sfunsction with each
(Dhhip) — 1, and each Ag(p) = Ag(p) — A(p) (so that (h—.q?ﬂ%%ﬁolds by exercise
; ecall that

d
ED IR LIRS ST
n<lx d<z d<z
so that

129 |13 5-L Y sw| < LY @i Y @ L

n<z n<z/y d<wm d<z/y z/y<d<wz
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Prop2.1
Appealing to Proposition T.2.7 we find that for any z > 3

z 1-—
Z|g |<<10gzz|g logzeXp(Z| gf(p”)

n<z n<z p<z

. . . . . . FirstLipl
From this estimate and partial summation we find that the right hand side of (I[.2.8)

logac (ZH_ )

proving our Proposition. O

1.2.5. Logarithmic means

In addition to the natural mean values % Zn<r f(n), we have already encoun-

tered logarithmic means @ Yonenf nr)z/n several times in our work above. We

n<x
now prove the analogy to Proposition for logarithmic means:
ProrosITION 1.2.5 (Naslund). Let f = 1% g be a multiplicative function and
Yoalg(d)|d=7 = G(o) < oo for some o € [0,1). Then
f(n) As(n) — A(n) a’
_ 1 — < G(o).
D P (legz = - < — Glo)

n<lx n>1
Proor. We start with

DR DD SIS PRI PR

n<z n<z d|n d<z m<z/d

. . lex:harmonic
and then, using exercise 1.1.4, we deduce that

> 10 Zg J(108 % +4)| < Z'g Ao IS gt

n<z d<z

Since g(n) logn is the coefficient of 1/n® in —G'(s) = G(s)(—G'/G)(s), thus g(n)logn =
(g * Ag)(n), and we note that Ay = A+ A,. Hence

y- g(mlogn g(n logn S g(a)Ay(b) —P(H Y Ag(m) — A(m)
ab m

n>1 a,b>1 m>1

Therefore Zd>1 )(log 7+ 7) = P(f) <logx = s M) and so
the error term in our main result is
lg(d)|
» S latd)|+ > s g ]
d<ZE
Since 1/(1 — o) > 1 we can use the inequalities 1 < (x/d)° < (z/d)? /(1 — o) for
d < zx, and

(d/z)=7

|log(z/d) + 7] < 1+log(d/z) < ~—5——

for d > x, to get a bound on the error term of

ﬁ:,l é(a) as claimed. 0
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PROPOSITION 1.2.6. If f is a multiplicative function with |f(n)| <1 for all n,
e (o)
1 —Re
logx‘z ‘<< eXp( 2;; D )

PROOF. Let h =1 f, so that

Snm =33 sy =3 s (L +om) =« 3 1 4 o)

n<z n<z d|n d<zx d<z

Prop2.
We deduce, applying Pr‘%)oi%g Ir20)2 since e. 1s satisfied as A, = A+ Ay,

and then by exercise

loga:‘nzgc ‘<xlogxz| |+O(log )
|h(n 1
Z n logac

n<zx

 BILESIGIEE) BN

P log x

log T

< exp

p<z

using Mertens’ theorem. Now (1 — Re(z)) < 2 —[1 4 z| < 1 — Re(z) whenever
|z] <1, and so the result follows. O

We expect that, for non—negative real multiplicative functions f, the quantity

R(f;z) : /H +—+f(p)+ )

n<m p<lx

should typically be bounded, based on th I&e uristic discussion above. For example
R(ds;x) ~ (e7")"/|T(k + 1)| by exercise 4(111) and Mertens’ Theorem.

EXERCISE 1.2.3. Suppose that f and g are real multiplicative functions with
f(n),g(n) >0 for all n > 1.

(i) Prove that 0 < R(f;z) <1
(ii) Prove that R(f;x) > R(f;z) - R(g;x) > R(f * g; x).
(iii) Deduce that if f is totally multiplicative and 0 < f(n) <1 for alln > 1
then 1 > R(f;2) > R(1;2) ~e™7.
(iv) Suppose that f is supported only on squarefree integers (that is, f(n) =0
if p?|n for some prime p). Let g be the totally multiplicative function with
g(p) = f(p) for each prime p. Prove that R(f;z) > R(g;z).

1.2.6. Exercises

EXERCISE 1.2.4. * Prove that if f(.) is multiplicative with —1 < f(p¥) < 1 for
each prime power p* then lim, ., P(f; ) exists and equals P(f)

EXERCISE 1.2.5. (i) Show that if |f(n)] < 1 for all n then there exist

constants A, C' for which ) _ [A¢(m)| < Az+ C, for all z > 1.

(ii) Prove that if |f(p*)| < B* for all prime powers p* then |Af(p*¥)| <
(28 —1)B*logp for all prime powers p*.

(iii) Show this is best possible (Hint: Try f(p*) = —(—B)F).



‘ ex:0leksiyRestrict ‘

SizeP(f,x)

22 1.2. FIRST RESULTS ON MULTIPLICATIVE FUNCTIONS

(iv) Show that if f(2¥) = —1 for all k > 1 then F(1) = 0 and

Z Ap(2%) < —(zlog2 —logx — 1).

2k <z

(v) Give an example of an f where B > 1, for which }_, _ [Ay(n)[ > pltos,
This explains why, when we consider f with values outside the unit circle, we prefer
working with the hypothesis |Af(n)| < kA(n) rather than |f(p*)| < B.

EXERCISE 1.2.6. Suppose that each |f(n)] = —1,0 or 1, and each [Af(n)| <
kA(n). Prove that, for each prime p, either f(p*) = f(p)¥ for each k > 2, or
f(p*¥) =0 for each k > 2.

EXERCISE 1.2.7. (i) Let f be a real-valued multiplicative function for which
there exist constants £ > 1 and € > 0, such that |f(pF)| < d,.(p*)(p*)2 ¢ for every
prime power p¥. Prove that

P(f;x) Kx,e €Xp ( — Z l;f(p))

p<z p

This should be interpreted as telling us that, in the situations which we are inter-
ested in, the values of f(p*) with k > 1 have little effect on the value of P(f;z).
(ii) Show that if, in addition, there exists a constant § > 0 for which

2
1 0 JE) s
p p
for every prime p then
1—
P(f7 x) =k,8,e €XD ( - Z ]‘)f(p))

p<z

(iii)* Prove that if [Af(n)| < A(n) for all n then the above hypotheses hold with
k=1, e:%andézi.
EXERCISE 1.2.8. * Show that if g(.) is multiplicative then > -, [g(n)|/n? < oo
if and only if }° lg(p*)| /P < .
r2.1
EXERCISE 1.2.9. * Deduce, from Proposition T9T and the previous exercise,
that if - . |f(P") — F(*1)|/p* < oo then >on<a f(n) ~2P(f) as z — oo.

EXERCISE 1.2.10. * For any natural number ¢, prove that for any o > 0 we

have
’ Z 1—@z‘§z“ﬂ(l+}%).

n<z plg
(n,q)=1

Taking o = 0, we obtain the sieve of Eratosthenes bound of 2¢(@) 1

(i) Prove that the bound is optimized by the solution to }  (logp)/(p” +
1) = logz, if that solution is > 0.
(ii) Explain why the bound is of interest only if 0 < o < 1.

IWhere w(q) denotes the number of distinct primes dividing q.
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(iii) Suppose that the prime factors of ¢ are all < y = z'/*

1— %, determine when this method allows us to give an asymptotic
estimate for the nuﬁﬁexlge; of integers up to x, that are coprime with q.

(Hint: Use exercise

. Selecting o =

EXERCISE 1.2.11. Suppose that f is a multiplicative function “close to 1”7, that

is |[f(p*) — f(p* 1) < ﬁ(kﬁ) for all prime powers p*, for some integer 7 > 0.
Prove that
Zf £)+0((loga)™).

(Hint: Use Proposition 2 I with o = 0, the Taylor expansion for (1 —¢)~""! and
Mertens’ Theorem.)

EXERCISE 1.2.12. * Let U(n) = Zd|n d. Prove that

15
Z pin Px—i—O(\/Elogx).

n<lz

EXERCISE 1.2.13. 1 Let f be multiplicative and write f = dj * g where k € N
1 fik deontes the k-divisor function. Assuming that |g| is small, as in Proposition
Io: [, develop an asymptotic formula for >° _ f(n).

EXERCISE 1.2.14. Fix k£ > 0. Assume that f is a non-negative multiplicative
function and that each |[Af(n)| < kA(n

(i) In the proof g’roposmion L. 2)2 modify the bound on f(n)log(z/n)

using exercise T.1.14 , to deduce that for any A > k,
f(n (log )"~
— (A (@]
%f _logm—i—O ( Z Jr ( (k) ))
(ii) Deduce that %anr f(n) < n(e” +o(1)) P(f;x) —|— O((logx)” 2.
The bound in (i) is essentially “best possible” since exercise T4 implies that
d(n)
di(
> Fiogs O
n<x n<x

EXERCISE 1.2.15. Let f be a multiplicative function with each |f(n)] < 1.

(i) Show that }-, ., f(n)log & s{ta >on<t f(n) dt
(ii) Deduce, using Propomtion s 221 f%

> fnylosZ 3 fm) (z“‘ 1,

n<z n<zx

EXERCISE 1.2.16. Suppose that f and g are multiplicative functions with each
2
@) lgm)| < 1. Define Py(f) == (1 - 1) (1+ L2 + L824 ), and then
Puo(f.9) = Pp(f) + Pp(g) — 1. Finally let P(f,g) = HpPp(f,g). Prove that if
[1—f(p)l [1—g9(p)]
Zp ) Zp ;I]P < oo then

Jim =37 f(n)gln +1) = P(f.9).







CHAPTER 1.3

Integers without large prime factors

1.3.1. “Smooth” or “friable” numbers

Let p(n) and P(n) be the smallest and largest prime factors of n, respectively.
Given a real number y > 2, the integers, n, all of whose prime factors are at most
y (that is, for which P(n) < y) are called “y-smooth” or “y-friable”.! Smooth
numbers appear all over analytic number theory. For example most factoring al-
gorithms search for smooth numbers (in an intermediate step) which appear in a
certain way, since they are relatively easy to factor. Moreover all smooth num-
bers n may be factored as ab, where a € (A/y, A] for any given A, 1 < A < n.
This “well-factorability” is useful in attacking Wari%%’,%[ gﬁgp}%% and in finding

small gaps between consecutive primes (see chapter [77). However, counting the
y-smooth numbers up to x can be surprisingly tricky. Define

U(z,y) = Z 1.

n<x
P(n)<y
We can formulate this as a question about multiplicative functions by considering
the multiplicative function given by f(p¥) = 1if p <y, and f(p*) = 0 otherwise.
If 2 <y then clearly ¥(x,y) = [z] = 2 + O(1). Next suppose that y < z < 3.
If n < x is not y—g%gggﬁh Sthen it must be divisible by a unique prime p € (y, z].

Thus, by exercise ﬁTIOanﬁ
V) =f- Y Si=z+00)- 3 (% +0(1))

y<p<zn<lz y<p<z
pln

(1) < 0(52)

This formula tempts one to write z = y*, and then, for 1 < u < 2, we obtain
yu
Ty, y) = y*(1 - lo o( )
(v y) =y"(1 —logu) + g

We can continue the process begun above, using the principle of inclusion and

exclusion to evaluate ¥(y“, y) by subtracting from [y*] the number of integers which

are divisible by a prime larger than y, adding back the contribution from integers

divisible by two primes larger than y, and so on.? The estimate for ¥(y“, %) involves
the Dickman-de Bruijn function p(u) defined as follows:

L«Fyiable” is French (and also appears in the O.E.D.) for “crumbly”. Its usage, in this context,
is spreading, because the word “smooth” is already overused in mathematics.

2A result of this type for small values of u may be found in Ramanujan’s unpublished
manuscripts (collected in The last notebook), but the first published uniform results on this
problem are due to Dickman and de Bruijn.

25
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For 0 <u <1let p(u) =1, and let p(u) =1 —logu for 1 <u < 2. For u > 1
we define p by means of the differential-difference equation
up'(u) = —p(u —1);

indeed there is a unique continuous solution given by the (equivalent) integral
(delay) equation

wiw = [ plo.

The integral equation implies (by induction) that p(u) > 0 for all v > 0, and
then the differential equation implies that p'(u) < 0 for all u > 1, so that p(u) is
decreasing in this range. The integral equation implies that up(u) < p(u — 1), and
iterating this we find that p(u) < 1/[u]!.

THEOREM 1.3.1. Uniformly for all w > 1 we have

U(y",y) = p(w)y" + O<1§/gy + 1)-

In other words, if we fix u > 1 then the proportion of the integers < z that have
all of their prime factors < '/, tends to p(u), as  — oo.

Proor. Let z =y, and we start with

U(x,y)logz = Z logn—l—O(Zlog(x/n)): Z logn + O(x).

P(n)<y P(n)<y

Using logn =3, A(d) we have
> logn= > Ad)¥(z/dy) = (logp)¥(z/p,y) + O(x),

n<z d<zx p<y
P(n)<y P(d)<y

since the contribution of prime powers p* (with k& > 2) is easily seen to be O(z).
Thus

(1.3.1) U(z,y)loge = Zlogp \I'( ) + O(x).

. ObPNT
(Compare this to the formulae in Exercise I, 16.)
Now we show that a similar equation is satisfied by what we think approximates
ng y), namely xp(u). Put E(t) = > loﬁp — logt so that E(t) = O(1) b
(I.1°10). Now

5 @p(M) _ /1yp<u _ %)d(logt+E(t»,

= b logy

and making a change of variables ¢t = y” we find that

/1y p(u - llg?g;)d(log t) = (logy) /01 p(u—v)dv = (logx)p(u).

Moreover, since E(t) < 1 and p is monotone decreasing, integration by parts gives

/1yp<u - Eg;)d(E(t)) < p(u—1) / ’dt ( IOgt)‘dt < p(u—1).
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Thus we find that
(1.3.2) (xp(u))logz = Z logp<x <log(x/p)>) + O(p(u — 1)x).

et logy

E2.11 E2.10
Subtracting (T.3.2) from (I.3.1) we arrive at

(1.3.3) | (z,y) — xp(u)|logx < Zlogp’\ll( ) - ;p<k;§gx;p)’ + Cuz,
p<y

for a suitable constant C.

Suppose that the Theorem has been proved for ¥(z,y) for all z < x/2, and we
now wish to establish it for 2. We may suppose that x > y?, and our induction
hypothesis is that for all ¢ < z/2 we have

1),

logt ‘
W(t,y)—t
‘ (t,y) pg;gy) < (
for a suitable constant Cy. From (IT. 3'.3) we obtain that

|U(z,y) —zp(u |logx<Clzlogp< Tog +1)+Cw<Clx+O(—+y>+0x
pP<y

Assuming, as we may, that C; > 2C and that y is sufficiently large, the right hand
side above is < 2C)x, and we conclude that |U(x,y) —zp(u)| < Ciz/logy as u > 2.
This completes our proof. [l

) < 1/[u]! decreases very rapidly. Therefore the main term in Theorem

How
T3, domlnates the remainder term only in the narrow range when u" < logy.
However the asymptotic W(y", y) ~ p(u)y" been established in a much wider
range than in Theorem [I.3.T by Hildebrand [7],” who showed that
log(u + 1)
1.34 U(y", y) = vy =7
(134 ') = play {10 (2

for y > exp((loglog x)?) where x = y“. This is an extraordinarily wide range, given
that Hildebrand also showed that this asymptotic holds in the only slightly larger
range 3 > (log x)2+0(1) if an sﬁ)llc}g¥hif the Riemann Hypothesis is true.

One can prove Theor .Tin a number of ways. The key to the proof that
we gave is the identity (T.3.1), but there are other identities that one can use.
Indeed few are more elegant than de Bruijn’s identity:

(1.3.5) U(z, -y \If(ap) +O(a).

y<p<zx

However, this works out less swf ully than ﬁ) perhaps becaus ]S)Ikly the X-
variable in ¥(X,Y") varies in ( Whegeas both variables vary in (I

How does the result in Theorem compare to the heuristic of chapter h—?’
If f(p*) = 1 if prime p < y and f(p ) = 0 otherwise then ¥(z,y) = > .. f(n).

y<p§x(1 B %) ~zfu
by Merte % ’]f“ll;eorem. This is far larger than the actual asymptotic ~ zp(u) of
Theorem [[.3.1, since p(u) < 1/[u]! (and a more precise estimate is given in exercise

The heuristic of chapterFTZ then proposes the asymptotic z []

3Hildebrand’s proof uses a strong form of the prime number theorem, which we wish to avoid,
since one of our goals is provide a different, independent proof of a strong prime number theorem.
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ex2.9
}.{3.6). Hence, removing the multiples of the small primes leaves far fewer integers
than the heuristic suggests.

1.3.2. Rankin’s trick and beyond, with applications
Good upper bounds may be obtained for ¥(z, y), 11&15011"me in a wide range, by

a simple application of Rankin’s trick (recall Exercise [.2.2). Below we shall write
1\ !
=TI (1-5) = ¥
Py b n2>1
P(n)<y

where the product and the series are both absolutely convergent in the half-plane
Re(s) > 0.
EXERCISE 1.3.1. * (i) Show that, for any real numbers x > 1 and y > 2,

the function 27¢(o,y) for o € (0,00) attains its minimum when o = a = a(z,y)

satisfying
log p
1 = .

Py
2.1
(ii) Use Rankin’s trick (see Exercise EETZ) to show that

U(z,y) < n; min {17 %} < z%(a,y) = gn>i18x"C(J, Y).
P(n)<y
(iii) Establish a wide range in which

Z min{l,%}wxlogy-/ p(t)dt.

n>1 u
P(n)<y
By a more so 'sstlicated argument, using the saddle point method, Hildebrand
and Tenenbaum [7] established an asymptotic formula for ¥(z,y) uniformly in
x>y >2:

(1.3.6) U(z,y) = M(l +O(%) +O<lo§y)>’

an/2m s, y)

with a as in Exercise Ei.(%l@(i), o(s,y) = log((s,y) and ¢o(s,y) = %gf)(s,y). This
work implies that ify > (log z)'*° then the (easy) upper bound obtained in Exercise
3.1(11) is larger than ¥(z,y) by a factor_of about /ulogy, that is ¥(z,y) <
x*((a,y)/(v/ulogy). However, in Exercise [[.3.1(ii), we saw that Rankin’s method
really gives E#n%?per bound on min{1, £}, summed over all y-smooth n. The result
of Exercise [[.3.1(ii) then implies that the upper bound is too large by a factor of
only = y/ulogu.
We now improve Rankin’s upper bound, yielding an upper bound for ¥(z,y)
which is also too large by a factor of only =< /ulogu.

PrROPOSITION 1.3.2. Let © > y > 3 be real numbers. There is an absolute
constant C' such that for any 0 < 0 <1 we have
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PROOF. We consider

o dogn= > D Ad)= D D A

n<z n<r n=dm m<z d<z/m
P(n)<y P(n)<y P(m)<y P(d)<y

The inner sum over d is

> logp[w}ﬁ Y. log(z/m)

p<min(y,z/m) p<min(y,z/m)
— min(r(y), 7(x/m)) log(x/m),
and so we find that

U(z,y)logz = Z (logn + log(:r/n))

n<lz

P(n)<y

< Z (min(w(y)m(m/n)) + 1) log(z/n).
P?ng);y

Chebl
We now use the Chebyshev bound 7 (z) < z/logz (see (l.el.i)), together with the
observation that for any 0 < 0 < 1 and n < x we have

yr=7(x/n)’ < x/n ifr/y<n<cz
o ~ |ylog(z/n)/logy ifn<z/y.
Thus we obtain that
l1—0o 1l—0
Yy T\ Yy o
— <
U(z,y)logr < ; - (n) < ——a7((0,y),
P(n)<y

as desired. O

1.3.3. Large gaps between primes

We now apply our estimates for smooth numbers to construct large gaps be-
tween primes. The gaps between primes get arbitrarily large since each of m! +
2,m! 4+ 3,...,m! +m are composite, so if p is the largest prime < m! + 1, and q
the next prirlne,egcleggiglﬁ > m. Note that m ~]Jagp/(loglogp) by Stirling’s for-
mula (Exercise [[.1.5], whereas we expect, from (I.1.1), gaps as large as logp. Can
such techniques establish that there are gaps between primes that are substantially
larger than logp (and substantially smaller)? That is, if p; =2 <p2s =3 < ... s
the sequence of prime numbers then
(1.3.7) lim sup Pnil ZPn _

n—soc  10gpn
. ch:MaynardTao .
In section [77 we will return to such questions and prove that

(1.3.8) lim inf 22— P
n—oo  logpy

THEOREM 1.3.3. There are arbitrarily large p,, for which
(loglog p,) log log log log py,
(loglog log pn)? '

1
Pn+1 — Pn Z . logpn

. LargePrimeGaps
In particular (1.3.7) holds.
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PROOF. The idea is to construct a long sequence of integers, each of which is
known to be composite since it divisible by a small prime. Let m = Hp<z p. Our
goal is to show that there exists an interval (T, T 4 z] for which (T + j,m) > 1 for
each j,1 < j <z, with T > z (so that every element of the interval is composite).
Erdés formulated an easy way to think about this problem

The Erdds shift: There exists an integer T for which (T" + j,m) > 1 for each
j,1 < j < z if and only if for every prime p|m there exists a residue class a,
(mod p) such that for each j,1 < j < x there exists a prime p|m for which j = a,
(mod p).

PROOF OF THE ERDOS SHIFT. Given T, let each a, = —T, since if (T'+j,m) >
1 then there exists a prime p|m with p|T + j and so j = —T = a,, (mod p). In the

other direction select T' = —a, (mod p) for each p|m, using the Chinese Remainder
Theorem, and so if j = a, (mod p) then T+ j = (—ap) + ap, =0 (mod p) and so
pI(T + 5, m). O

The y-smooth integers up to x, can be viewed as the set of integers up to z,
with the integers in the residue classes 0 (mod p) sieved out, by each prime p in the
range y < p < x. The proportion of the integers that are left unsieved is p(u) (as
we proved above), which is roughly 1/u*. This is far smaller than the proportion
suggested by the usual heuristic:*

M (1) losw
D logz u’

y<p<z

by Mertens’ Theorem.

To construct as long an interval as possible in which every integer has a small
prime factor, we need to sieve as efficiently as possible, and so we adapt the smooth
numbers to our purpose. This is the key to the Erdds-Rankin construction (and
indeed, it is for this purpose, that Rankin introduced his moment method). We
will partition the primes up to z into three parts, those < y, those in (y,ez], and
those in (ez, z] where € is a very small constant. We select y and z to be optimal
in the proof below; good choices turn out to be

2
x=y" with u = (1 +E)M; and 2= — . (oglog z) .
logloglog x logz logloglogx

2.8
Notice that y - ez > x, and that ¥(x,y) = o(x/log x) by Exercise 1335,

(I) We select the congruence classes a, = 0 (mod p) for each prime p € (y, ez]. Let
No:={n<z: ng0 (mod p) for all p € (y,ez]}.

The integers n counted in Ny either have a prime factor p > €z or not. If they
do then we can write n = mp so that m = n/p < x/ez < y and therefore m is
composed only of prime factors < y. Otherwise if n does not hav%ﬁlﬂ)?rge prime
factor then all of its prime factors are < y. By this decomposition, (I.1.7) and then

4For a randomly chosen interval, the proportion of integers removed when we sieve by the
prime p is %; and the different primes act “independently”.
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t
Exercise T .QIrU,eI:;e have
x
= W( bl
#No= D [a/pl +¥(e,y) <§ S+ <1ng>

ez<p<x

1
=z log 08T
log ez log T

II) Now for each consecutive prime p; < y let
p Py

log log x

log x

Nj:={neNy: néa, (modp)foralp=npi,....p;}
={neN;_1: n¢a, (modp)forp=np;}.
We select a,, for p = p; so as to maximize #{n € Nj_1 : n =a, (mod p)}, which
must be at least the average % #N,_1. Hence #N; < (1— pij)#J\/'j,l, and so if py,
is the largest prime < y then, by induction, we obtain that

7 logl
rim i< T (1) 0o~ o BT 14
o<y logy logzx log 2z

Cheb
using Mertens’ Theorem. This implies that r < #{p € (ez, 2]} using ( 1. ?1) (which
we proved there with constant ¢ = log2), since e™?7 < log 2.

(II) Let Ny = {b1,...,b,}, and let ppy1 < peg2 < ... < peyr be the r smallest
primes in (ez, z]. Now let a, = b; for p = pe; for j =,2,...,r. Hence every integer
n < x belongs to an arithmetic progression a, (mod p) for some p < z.

We have now shown how to choose a, (mod p) for each p < z so that every
n < x belongs to at least one of these arithmetic progressions. By the Erd&s shift
we know that there exists 7' (mod m), where m = [[ . p for which (T'+j,m) > 1
for 1 < j < z. We select T € (m,2m] to guarantee that every element of the
interval (T, T + z] is greater than any of the prime factors of m. Hence if p,, is the
largest prime < 7T, then p,11 —pn > 2.

We need to determine how big this gap is compared to the size ng btﬁle primes
involved. Now p,, < 2m and logm < ¢(z) < zlog4 + O(log z) by (h?), so that
z > glog Pr. This implies the theorem. (I

EXERCISE 1.3.2. * Assuming the prime number theorem, improve the constant
1 in this lower bound to 7 + o(1). ®
The Erdds shift for arithmetic progressions: It is not difficult to modify the above
argument to obtain large gaps between primes in any given arithmetic progression.
However there is a direct connection between strings of consecutive composite num-
bers, and strings of consecutive composite numbers in an arithmetic progression:
Let m be the product of a finite set of primes that do not divide g. Select integer
r for which gr =1 (mod m). Hence

(a+jg,m) = (ar + jqr,m) = (ar + j,m),
and so, for T' = ar,
(139) #{1<j<N: (a+jgm)=1}=#{1<j<N: (T+jm)=1}.

5 FGKT Mayn2 _
Usmg additional ideas, this has recently [7 een 1mproved to allow any constant ¢ > 0 in
place of gfggggﬁ EIRE Lrgat Paul Erdés’s favourlte challenge problem. We shall return to this

in chapter
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In other words, the sieving problem in an arithmetic progression is equivalent to
sieving an interval.

1.3.4. Additional exercises

EXERCISE 1.3.3. Suppose that f is a non-negative multiplicative function, for
which f(p*) =01if p >y, and 3, p As(d) < min{D,y logD} for all D > 1. Prove
that -

1—0o

Z fn UlogxxUF(a)

n<z

for any 0 < o < 1. When is this an improvement on the bound in Exercise 1.2.27

EXERCISE 1.3.4. Prove that if f is a non-negative arithmetic function, and
F(o) is convergent for some 0 < o < 1 then

g

S s+ 3 1 < (ro) o '(0)),

n<x n>x

(Hints: Either study the coefficient of each f(n); or bound >°, .. f(n)log(z/n)
by integrating by parts, using the first part of Exercise ; 2.2, and then apply the
second part of Exercise hz for (—F").)

EXERCISE 1.3.5. T For # = y* with y > (logx)?, let 0 = 1 — % If
y= (log {,13)2, let 0 = % te Rankin2 ex2.1
(i), Deduce from Proposition [.3.2 and exercise [.2.2(ii), together with exercise
hrz, that there exists a constant C' > 0 such that

T C v
1- = z 1/240(1)
U(z,y) +H( ) > n<<m<ulogu) +

p<y n>x
P(n)<y

(Hint: For small g, show that ¢(o,y) < 2°(1).)
ii) Suppose that f is a multiplicative function with 0 < f(n) < 1 for all integers
n, supported only on the y-smooth integers. Prove that

2 @ < ((ulocgu>u+ zl/ifo(l)) I f;p) f;p;) )

n>wx <y
P(n)<y

where © = y* with u > 1. (Hint: Prove the result for totally multiplicative f, by
using exercise Wound R(f;00) — R(f;x) in terms of the analogous sum for
the characteristic function for the y-smooth integers. Then extend this result to all
such f.)

(iii) Suppose now that f is a multiplicative function with 0 < f(n) < d.(n) for
all integers n, supported only on the y-smooth integers. State and prove a result
analogous to (ii). (Hint: One replaces C by C'*. One should treat the primes p < 2k
by a separate argument,)

EXERCISE 1.3.6. Prove that
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(Hint: Select ¢ maximal such that p(u) > (c/ulogu)®. By using the functional
equation for p deduce that ¢ > e. Take a similar approach for the implicit upper
bound.)

EXERCISE 1.3.7. * A permutation 7w € S,, is m-smooth if its cycle decomposition
contains only cycles with length at most m. Let N(n,m) denote the number of m-
smooth permutations in S,. (i) Prove that

N(n,m " N(n—j,m
) 8N g

(ii) Deduce that N(n,m) > p(n/m)n! holds for all m, n > 1.
(iii)t Prove that there is a constant C' such that for all m, n > 1, we have

N(n,m) n C
Ny, ©
n! m
(One can take C' =1 in this result.)
Therefore, a random permutation in S, is n/u-smooth with probability — p(u) as
n — 0o.

Jj=1

m






CHAPTER 14

Selberg’s sieve applied to an arithmetic
progression

In order to develop the theory of mean-values of multiplicative functions, we
shall need an estimate for the number of primes in short intervals. We need only
an upper estimate for the number of such primes, and this can be achieved by a
simple sieve method, and does not need results of the strength of the prime number
theorem. We describe a beautiful method of Selberg which works well in this and
many other applications. In fact, several different sieve techniques would also work;
see, e.g., Friedlander and Iwaniec’s Opera de Cribro for a thorough treatment of
sieves and their many applications.

1.4.1. Selberg’s sieve

Let Z be the set of integers in the interval (z, z +y]|, that are = a (mod q). For
a given integer P which is coprime to ¢, we wish to estimate the number of integers
in Z that are coprime to P; that is, the integers that remain when 7 is sieved (or
sifted) by the primes dividing P. Selberg’s sieve yields a good upper bound for
this quantity. Note that this quantity, plus the number of primes dividing P, is
an upper bound for the number of primes in Z; selecting P well will give us the
Brun-Titchmarsh theorem. When P is the product of the primes < z/*, other
than those that divide ¢, we will obtain (for suitably large u) strong upper and

er bounds for the size of the sifted set; this result, which we develop in Section

4.2, is a simplified version of the fundamental lemma of sieve theory.

Let Ay = 1 and let Ay be any sequence of real numbers for which Ay # 0 only
when d € S(R, P), which is the set of integers d < R such that d is composed
entirely of primes dividing P (where R is a parameter to be chosen later). We say
that A is supported on S(R,P). Selberg’s sieve is based on the simple idea that
squares of real numbers are > 0, and so

2 =1 if P)=1
(Sn) s i (n, F)
i >0 always.
Therefore we obtain that
2
> ey (T
neZ n€Zl dln
(n,P)=1

Expanding out the inner sum over d, the first term on the right hand side above is

Z )‘d1 )\d2 Z 1,

dy,ds z<n<z+y
n=a (mod q)
[d1,d2]|n

35
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where [dy,ds] denotes the l.c.m. of dy and dy. Since P is coprime to ¢, we have
Ad = 0 whenever (d,q) # 1. Therefore the inner sum over n above is over one
congruence class (mod ¢[dy,d2]), and so within 1 of y/(q[d1,d2]). We conclude

that
Yy Ady Ay
1< = Ads A
> 1< qud dn d) +d§d |Ad; Ads |
1,42 1,02

nezl
(n,P)=1

Yy Ady Ady 2
(1.4.1) = adlzc;z ad (Zd:IAdI)

The second term here is obtained from the accumulated errors obtained when
we estimated the number of elements of 7 in given congruence classes. In order that
each error is small compared to the main term, we need that 1 is small compared
to y/(¢[d1,ds]), that is [dy, ds] should be small compared to y/q. Now if dy, ds are
coprime and close to B fhen this forces the restriction that R < \/m

The first term in (hﬂ‘l) is a quadratic form in the variables Ay, which we wish
to minimize subject to the linear constraint Ay = 1. Selberg made the remarkable
observation that this quadratic form can be elegantly diagonalized, which allowed
him to determine the optimal choices for the A\g: Since [dy,ds] = dida/(d1, d2),
and (di, dz2) = >4, 4,) 9(£) we have

Ad, Ads Ady Ad o(0) A ot
(142) dz; di,di Z¢ ; ddl ddz :ze: 2 (zd: dg) Z 2 54’
1,d2 dq
£|ds

Ade
(-3
So we have diagonalized the quadratic form. Note that if £ # 0 then ¢ € S(R, P),
just like the Ag’s. 5
We claim that (hTZ) provides the desired diagonalization of the quadratic
form. To prove this, we must show that this change of variables is invertible, which
is not difficult using the fact that g * 1 =¢§. Thus

Ad—z“fz =S u S = ZLm

r|e r|e

where each

In particular, the constraint A\; = 1 becomes

(1.4.3) Z 7@

g3 Ve have transformed our probleh% minimizing the diagonal quadratic form in
(h?) subject to the constraint in (II.4.3). Calculus reveals that the optimal choice
is when &, is proportional to u(r)r/¢(r) for each r € S(R%fg (and 0 otherwise).
The constant of proportionality can be determined from (I.4.3) and we conclude
that the optimal choice is to take (for r € S(R, P))

1 ru(r T
(1.4.4) &= TP qf((r)) where  L(R;P):= 2 ‘;((T)).
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E3.2
For this choice, the quadratic form in (m) attains its minimum value, which is
1/L(R; P). Note also that for this choice of £, we have (for d € S(R, P))

Ay = 1 Z dp(r)p(dr)

= L(R, P) ey ¢(dT) )
plr = p|P
and so
1 w(dr)?d 1 u(n)?o(n)
1.4.5 M| € ——— = T an)
(1.4:5) d%;' | S TP dz ¢(dr)  L(R;P) ,; ¢(n)
dr<R pln = p|P

pldr = p|P

where o(n) =3, d.
Putting these observations together, we arrive at the following Theorem.

THEOREM 1.4.1. Suppose that (P,q) = 1. The number of integers from the
interval [z, x+y] that are in the arithmetic progression a (mod q), and are coprime
to P, is bounded above by

y ! ()0 (n) 2
P Py 2w )
pln => p|P

E3.4
for any given R > 1, where L(R; P) is as in ([.4.4).

1.4.2. The Fundamental Lemma of Sieve Theory

We will need estimates for the number of integers in an interval of an arith-
metic progression that are left unsieved by a subset of the primes up to some
bound. Sieve theory provides a strong estimate for this quantity, and indeed the
fundamental Lemma of sieve theory provides an extraordinarily precise answer for
a big generalization of this question. Given our limited needs we will provide a
self-contained proof, though note that it is somewhat weaker than what follows
from the strongest known versions of the fundamental lemma.

THEOREM 1.4.2 (The Fundamental Lemma of Sieve Theory). Let P be an in-
teger with (P,q) = 1, such that every prime factor of P is < (y/q)"/* for some
gwen u > 1. Then, uniformly, we have

Y. 1= ‘Zé(P)(l + O(u‘”/2)> + O((z)g/“o(l)),

P
z<n<z+y
(n,P)=1
n=a (mod q)

As mentioned already, one can obtain stronger results by other methods. In
particular, the error terms above may be improved to O(u~*) in place of O(u~%/?),
and O((y/q)"/*t°W) in place of O((y/q)*/*+°W).

We will obt %gm;,h{f upper bound of the Fundamental Lemma by directly ap-
plying Theorem [[.4.1 and using our understanding of multiplicative functions to
evaluate the various terms there.

We will deduce the lower bound from the upper bound, via a sieve identity,
.WhiC}.l 15 a technique.that often works i Sigye theo Nop W have already seen sieve
identities in the previous chapter (e.g. (I.3.I) and (%.3.5)), and they are often used
to turn upper bounds into lower bounds. In this case we wish to count the number
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of integers in a given set Z that are coprime to a given integer P. We begin by
writing P = py---pp with p1 <py < ... <py, and P; = Hf;ll p; for each j > 1,
with P; being interpreted as 1. Since every element in [ is either coprime to P, or
its common factor with P has a smallest prime factor p; for some j, we have

k

(146)  #{neZ:(nP)=1}=#I - #{neI:p;nand (n,P;)=1}.
j=1

Good upper bounds on each #{n € Z : pj|n and (n, P;) = 1} will therefore yield a
good lower bound on #{n € Z: (n, P) = 1}.

PROOF. We again let 7 := {n < {x,x +y]: n=a (modgq)}. We prove
thm?.
the upper bound using Theorem [.4.1T with R = y/y/q. Therefore if p|P then
p <y:=R*" and so

Py _ p(r) p(r)
LR = 3 50 +o( 2 o)
p\r:7>p\P p|r = p|P

u/
= {1+ o((Gogs)” + )}

2.8
by exercise e}.{3.5(iii) with k = 2 for jhe, error termy. . Moreover, by the Cauchy-
ex:nearl ex .8(
a 3.5

Schwarz inequality, and then exercises [I.2. nd i), we have
p(n)?o(n)\2 o(n)? 2/u o/ C w2
) S U(R,R¥*) < R?(——) .
( nSZR p(n) ) (T; qﬁ(n)Q) ( ) (ulogu)
pln = p|P

Inserting these estimates into the bound of Theorem T.4.T; yields the upper bound

= <20l ) o))

(n,P)=1

which implies the upper bound claimed, wg?e \i,g}B{oved error terms.
We now prove the lower bound using (I.4.6), and that #Z = y/q + O(1). The

upper bound that we just proved implies that

Y o1= > 1

nel z/p;<n<(z+y)/p;
pjln (n,Pj)=1
(n1P1):1 =

n:ap;l (mod q)

A o) Do) )

J
Sieveldl
where u; = log(y/qp;)/logp;. Inserting this into (l:.LZIfIGi, for the main term we

have
1 g(P) _ o(P)
1-) 22— )
];Pj Py P

Since the second error term is larger than the first only when v — oo, hence
when we sum over all p;, the second error term remains < (y/ q)*/*+°() For the
first error term we begin by noting that u; = log(y/q)/logp; —1 > v — 1 and so
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(uj/u)?(C/u;logu;)¥/? < (C'/ulogu)™/? for some constant C’ > 0. We deal with
the sum over j by then noting that ¢(P;)/P; < (u;/u)¢(P)/P and so
k

1oP)u? _¢P) w logp _ ¢(P)
;pj Pj uj < 7P log(y/e) 2 <P

. p<(y/@)'/
av,
by (T.1.10). This completes our proof. O

EXERCISE 1.4.1. * Suppose that y, z, ¢ are integers for which loggq < z < y/q,
and let m = Hp< . p. Use the Fundamental Lemma of Sieve Theory to prove that
if (a,q) =1 then

Y
1l — .
2 ¢(q)log z

r<n<z+y
n=a (mod q)
(n,m)=1
Taking the special case here with z = (y/¢)'/? , and trivially bounding the num-
ber of primeﬁé z that are = a (mod ¢), we deduce the most interesting corollary
to Theorem [T.4.2:

COROLLARY 1.4.3 (The Brun-Titchmarsh Theorem). Let w(x;q,a) denote the
number of primes p < x with p = a (mod q). There exists a constant k > 0 such
that

m(x +y;q,a) — w(z;q9,a) < S —
~ ¢(q)log(y/q)
1.4.3. A stronger Brun-Titchmarsh Theorem

We have just seen that sieve methods can give an upper bound for the number

of primes in an interval (z,x + y] that belong to the arithmgﬂ(%oggf) ression a
(mod ¢). The smallest explicit constant x known for Corollary [.4.3'1s k = 2, due

to Montgomery and Vaughan, which we prove in this section using the Selberg
sieve:

THEOREM 1.4.4. There is a constant C > 1 such that if y/q > C then
2y
1.4.7 m(x+vy;q,a) —7m(x;q,0) < ———F—,
(147) ( )~ mlwig,a) ¢(q) log(y/q)

for any arithmetic progression a (mod q) with (a,q) = 1.
. OurBT
Since 7(x + y;q,a) — w(x;9,a) < y/q + 1, we deduce (I.4.7) for ¢ < y <
qexp(q/d(q))-

One can considerably simplify proofs in this area using Selberg’s monotonicity
principle: For given integers w(p) < p, for each prime p, and any integer N, define

STV, {w(p)}y) = e e #{neI: ndgQp) for all primes p}

Z an interval Q Z.]pZ N w(p)
#(INZ)=N %(Cmgu(p)p #7111, (1 B Tp)

where the first “max” is over all intervals containing exactly N integers, and the
second “max” is over all sets Q(p) of w(p) residue classes mod p, for each prime p.
We can analogously define S~ (N, {w(p)},) as the minimum.

LEMMA 1.4.5 (Selberg’s monotonicity principle). Ifwy(p) < wa(p) for all primes
p then, for all integers N > 1,

STN Awa(p)}p) = ST(N Awi(p)}p) = ST (N {wi(p)}p) = ST (N, {w2(p)}p)-
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PROOF. We shall establish the result when w’(p) = w(p) for all primes p # q,
and w'(q) = w(q) + 1, and then the full result follows by induction. So given the
sets {Q(p)}, and an interval Z, let N :={n € Z: n ¢ Q(p) for all primes p}. Let
m be the product of all primes p # ¢ with w(p) # 0, and then define Z; :=Z + jm
for j = 0,1,...,¢g — 1. Define J := {j € [0,g —1] : —jm & Q(q)} so that
#J =q—w(q). Let Q;(p) = Qp) for all p # ¢ and Q;(q) = (Q(q) + jm) U {0};
notice that #Q,(¢q) = #Q(¢)+1 whenever j € J. Moreover, letting N := {n+jm €
Z; : n+jm & Q;(p) for all primes p} we have

#N; =#N\#{neN: n=—jm (mod q)}.
We sum this equality over every j € J. Notice that each n € N satisfies n = —jm

(mod g¢) for a unique j € J, and hence -, ; #N; = (#J — 1)#N, which implies
that

A-wl@/a)
NS (g TP

and therefore ST (N, {w(p)},) < ST(N,{w'(p)}p). The last step can be reworked,
analogously, to also yield S~ (N, {w(p)}p) > S~ (N, {w'(p)},)- O

BTstron . .
RQOF OF THEOREM 1.4.4. i,et P be the set of primes < R so that Proposi-
tion .25 (with o0 = 2 say) yields

L(R; P) > log R+ + o(1)

2.3
where 7/ :=v 43" pi;g’_pl); and Exercise %2“[2 gives that

- ”(7;)(7‘;)(”) - gm o(R).
n<R

thm?7. 1
Inserting these estimates into Theorem T.4.T with R := 7{—;\/% we deduce that

2y
logy + ¢+ o(1)

where ¢ := 29/ — 1 —log 2 + 2log(n?/15) = 0.1346 ... This implies (%) forg=1
when y > C, for some constant C' (given by when ¢+ o(1) > 0).

Given y and g, let Y = y/q and let m be the product of the primes < R that
do not divide q. Suppose that Y > C.

Let {a +jg : 1 < j < N} be the integers grd()aszsgif—i;c y] in the arithmetic
progression ¢ (mod ¢) (so that N =Y +0O(1)). By (mnow that the number
of these integers that are coprime to m, equals exactly the number of integers in
some interval of length N that are coprime to m, and this is < ST(N, {wi(p)},),
by definition, where Q;(p) = {0} for each p|m and Q;(p) = @ otherwise. Now
suppose that Qa(p) = {0} for each p|P and Qa(p) = () otherwise, so that Selberg’s
monotonicity principle implies that ST(N, {w1(p)}p) < ST(N,{wa2(p)},). In other
words

(1.4.8) #{nex,x+y): (n,P)=1} <

P
mg?x#{n € (z,z+N]: (n,m) =1} < (P//ﬂ;l) ~mTax#{n € (T, T+N]: (n,P) =1},
FirstSi
and the result follows from (I.lZIr.SSti Since P/m divides q.
(]
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1.4.4. Sieving complex-valued functions

In our subsequent work we shall need estimates for

>
n<z
(n,P)=1

where t is some real number, and P is composed of primes smaller than some
parameter y. It is perhaps unusual to sieve the values of a complex valued function
(since the core of every sieve methods involves sharp inequalities). In this section
we show that the estimates developed so far allow such a variant of the fundamental
lemma.

PROPOSITION 1.4.6. Lett and y be real numbers with y > 1+|t| and let x = y*
with uw > 1. Let P be an integer composed of primes smaller than y. Then

1+t
it L ¢(P) ¢(P) —u/2 %+5
> n T 144t P +O(x p T )

n<x
(n,P)=1
PROOF. Let Ay be weights as in Selberg’s sieve, supported on the set S(R, P).
Since (Zd‘n Ag)? is at least 1 if (n, P) = 1 and non-negative otherwise, it follows
that

, , 2 2

149 Y w =Y (YA) +o(X (M) - X 1),
n<x n<z d|n n<z dln n<zx
(n,P)=1 (n,P)=1
The error term here is precisely that considered in the proof of Theorem T.4.2 and
so we can use the bound from there.
A straightforward argument using partial summation shows that
1+it

) N
> nt="—— +0((1 +[t]) log N),
bt 1+t

and therefore for any d

it it it 1 N1+it
E n''=d g m =E~1+it—|—0((l+|t|)logN).
nSlN m<N/d
d|n

FLit1
Therefore the main term in (th) equals

i it A 1)‘ 2 2
S dada Y wit= fﬂ_t ) [ddhd‘i] +O((1+|t|)logx<2|)\d|) )

dy,dz n<z di,d2 d
[d1,dz]|n

E3.2
We have seen the sum in the main tgrm in (hTQ), and that it equals 1/L(R; P).
The error term is bounded by using (T.4.5). These can both §valuated using the
estimates proved (for this purpose) in the proof of Theorem [4.2. O

1.4.5. Multiplicative functions that only vary at small prime factors

The characteristic function of the integers that are coprime to P, is given by the
totally multiplicatiye function f with f(p) = 0 when p|P, and f(p) = 1 otherwise.
Hence Theorem T.4.2 (with 2 = a = 0, ¢ = 1) can be viewed as a mean value
theorem for a certain class of multiplicative functions (those which only take values
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0 and 1, and equal 1 on all primes p > y). We now deduce a result of this type for
a wider class of multiplicative functions:

PROPOSITION 1.4.7. Suppose that |f(n)| < 1 for all n, and f(p*) = 1 for all
p>vy. If v =y" then

1
il Z f(n) = 'P(f; x) + O(u—u/3+o(u) + $—1/6+o(1)).
v n<z
This result is weaker than desirable since if u is bounded then the first error

term is bigger than the main term unless Zp<w 1—;‘(;;) is very small. We would

prefer an estimate like P(f;2){14+ O(u" ")} 4+ O(x~°) for some ¢y, ¢y > 0. When
gagh f(p) = 0 or 1 this is essentially the Fundamental lemma of the sieye (Theorem
h7[2) However it is false, in general, as one may see in Proposition [77 and even
for real-valued f, as may be seen, by taking f(p) = —1 for all p < y (though we
only prove this later in chapter b?) We guess that one does have an estimate
P(f;2){1+ 0w )} + O(@), for real f with each f(p) € [—1,1], a challenging
open problem.

GenFundLem
PROOF OF PROPOSITION 1.4.7. We may write each integer n as ab where
P(a) <y, and p|b = p >y, so that f(n) = f(a)f(b) = f(a), and thus

dfmy= > fla) > 1L

n<z a<lz b<z/a

P(a)<y plb = p>y
If a > z/y then thefiflsner sum equals 1, as it only counts the integer 1. Otherwise
we apply Theorem h?[.2 with P = Hpgyp (and taking there z,y,a,q as 0,2,0,1,
respectively). If A = /% < a < x/y then we deduce the crude upper bound
< z/(alogy) for the inner sum, by Merten’s Theorem. Finally if a < z'/? then
log(x/a)/logy > 2u/3, giving @f(l + O(uw/3to)) 4 O((£)3/4+°M) for the
inner sum. Combining these estimates, we now have a main term of

2oy M orgin

and an error term which is

<<u7u/3+o(1)z@ Z 24_ Z <§>3/4+0(1)+ x Z 1+ Z 1

logy a
a>1 a<zl/3 a>xl/3 z/y<a<lz
P(a)<y P(a)<y P(a)<y

< ufu/3+o(1)l, + x5/6+o(1)
2.8
as desired, using exercise 13 (i) to bound the last two sums. (]

1.4.6. Additional exercises

c71
EXERCISE 1.4.2. * Prove that our choice of A\g (as in section hl) is only
supported on squarefree integers d and that 0 < pu(d)Ag < 1.
EXERCISE 1.4.3. * (i) Prove the following reciprocity law: If L(d) and Y (r) are
supported only on the squarefree integers then
Y(r) := p(r) Z L(m) for allr > 1 if and only if L(d) = u(d) Z Y (n) for alld > 1.

m: r|m n: dln
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(ii) Deduce the relationship, given in Selberg’s sieve, between the sequences \;/d

and p(r)&,/r.
(iii) Suppose that g is a multiplicative function and f =1 % g. Prove that

S L)L) f((dr, da)) = 3 gn)Y (n).
di,da>1 n>1

(iv) Suppose that L is supported only on squarefree integers in S(R, P). Show that
to maximize the expression in (iii), where each f(p) > 1, subject to the constraint
L(1) = 1, we have that Y is supported only on S(R, P), and then Y (n) = ¢/g(n)
where ¢ =) 1/g(n). Use this to determine the value of each L(m) in terms of g.
(v) Prove that 0 < f(m)u(m)L(m) < 1 for all m; and if R = oo then L(m) =
w(m)/ f(m) for all m € S(P).

EXERCISE 1.4.4. * Show that if (am,q) = 1 and all of the prime factors of m
are < (x/q)"/* then
3/4+0(1)
Z logn:Mg(logz‘—1){1+O(u’“/2)}+0((£) logx).
n<z moq q
(n,m)=1

n=a (mod q)

BTst bk ERCISE 1.4.5. T Fill in the final computational details of the proof of Theorem
4.4 %0 determine a value for C.

2.2
EXERCISE 1.4.6. Use Selberg’s monotonicity e%igciple, and exercise FZTO with
q = [[,<.p where z = (y/q)** (and exercise M) to prove the Fundamental
Lemma of Sieve Theory in the form

_yo(P) y re+o(1)\u
z<§+y - ¢ P +O<5 ( ulogu ) ~logy).
nE((In’I:(?n:o}i q)

EXERCISE 1.4.7. Prove that if P is the set of all primes < y, and 0 < |t| < y
then for any x we have

1 1
, 1 .
Z nltit <l+ M]Ogy

n<zx
(n,P)=1
EXERCISE 1.4.8. Suppose that f(n) is a multiplicative function with each
|f(n)| < 1. Prove that

> s - 225 i)

n<x n<x
(n,P)=1

<<x@u7u/2 +.’£%+6+ Z ‘u2(d)3w(d) Zf(n)iézf(n) R

d<RZ? n<x n<x
d|n

where w(d) der%e% the number of prime factors of d. (Hint: Modify the technique
of Proposition [[.4.6.)
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CHAPTER 1.5

The structure of mean values

We have encountered two basic types of mean values of multiplicative functions:

e In Chapter % we gave a heuristic which suggested that the mean value of f
up to x, should be ~ P(f;x). We were able to show this when > _ |1 — f(p)|/p
is small, and in particular in the &LseFthgﬁc nf =1 for all “large” primes, that is.
for the primes p > g{l (Pro omtlonChT%i

e In Chapter mns&dered an example in which the mean value is far

smaller than the heuristic, in this case f(p) = 1 for all “large” primes, that is. for
the primes p < y.
These behaviours are very different, though arise from quite different types of mul-
tiplicative functions (the first varies from 1 on the “small primes”, the second on
the “large primes”). In the next two sections we study the latter case in more
generality, and then consider multiplicative functions which vary on both the small
and large primes. The error terms in most of the results proved in this chapter
will be improved later once we have established some fundamental estimates of the
subject.

1.5.1. Some familiar Averages

Let f be a multiplicative function with each |f(n)| < 1, and then let
F'(s
=3 sy and 5 = S At
n<lz n>1
Looking at the coefficients of —F'(s) = F(s) - (—F/(,S)) we obtain that

f(n)logn =Y f(a)As(b).

ab=n

. . A . ex:WeightL (x/n
Summing this over all n < z, and using exercise [[.2.15(1), we deduce that

St
z)logx = ZAf S(xz/n) + / ?dt.
n<xz 1

Now, as |S(t)] < ¢ the last term is O(x). The terms in the sum for which n is a
prime power also contribute O(z), and hence

(1.5.1) z)logz =Y _ f(p)logp S(x/p) + O(x).

p<z
MobPNT E2. 10
This is a generalization of the identities in exercise [[.1.16 (i, iii), and (I.3.1).

45
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1.5.2. Multiplicative functions that vary only the large prime factors

. . .. Hildldentit . )
Our goal is to uic% the identity in (I:5.T) to gain an understanding of S(z) in

the spirit of chapter 0 proceed we define functions
s(u) ==y~ "S(y" Zf and  x(u *ZAf
nlyY m<y"

Using the definitions, we now evaluate for z = y", the integral

1 u
a/ s(u—t)x(t)dt: E f(a E Ay (b)
0 a<y“ t b<y
u— log a
logy
=— E fla)As(b) / 1dt
log b
ab<z Togy
1
== g f(n)logn(l— ogn)I
T log

n<z

The difference between this and * 5D n<s f(n)log T is

1og T logn 2 log x logn 2 1
< 1-— ;
Z |f(n ( 1ogm> -z Z log = < logzx’

n<x n<x

that is

(1.5.2) % Z f(n) log T _ i/()u s(u—t)x(t)dt + O (lo;x>

n<lz

ex:WeightL (x/n
Combining this with exercise T.2. 5511 we Eieduce that

(1.5.3) s(u) = 7/0 s(w=tx(@)dt+ 0 | {77 exp (Z;C T)

u

The integral [, g(u — t)h(t)dt is known as the (integral) convolution of g and h,
and is denoted by (g * h)(u).
In the particular case that f(p*) =1 for all p < Yyye have S(x) = [z] for z <y,

and so s(t) =1+ o(y~") for 0 <t <1. Moreover(i 5.3) becomes
1M u

1.5.4 su:f/su—t tdt+0<).

(1.5.4) (u) ; (u = 1)x(t) gy

u
This suggests that if we define a continuous function o with o(t) =1 for 0 <¢ <1
and then

(1.5.5) olu) = & /u o(u — )y (t)dt for all u > 1,
u Jo

then we must have, for x = y*

(1.5.6) % S f(m) = o(w) + O <log“) .

= logy

We will deduce this, later, once we have proved the prime number theorem (which
is relevant since it implies that x(¢) = 1 + o(1) for 0 < <D1e71%nd Ix(t)] <1+0(1)
for all ¢ > 0) but, for now, we observe that a result like ( shows that the mean
value of every multlphcatlve function which only varies on the large primes, can be
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. . . . . IntDelE n . . . .
determined in terms of an integral delay equation like (II.5.5). This is quite different
from the mean value of multiplicative functions that only vary on the small primes,
which can be determined by the Euler product P(f;x).

1.5.3. A first Structure Theorem

We have seen that the mean value of a multiplicative function which only varies
on its small primes is determined by an Euler product, whereas the the mean value
of a multiplicative function which only varies on its large primes is determined by
an integral delay equation. What about multiplicative functions which vary on
both? In the next result we show how the mean value of a multiplicative function
can be determined as the product of the mean values of the multiplicative functions
given by its value on the small primes, and by its value on the large primes.

THEOREM 1.5.1. Let f be a multiplicative function with |f(n)| < 1 for all n.
For any given y, we can write 1 x f = g x h where g only varies (from 1) on the
primes >y, and h only varies on the primes < y:

B )1 i<y o opom o JI0Y) ip<y
o) {f(p’“) >y ") {1 o>y
Then, for x = y“ we have

(EUNES SVOEED SPORE SIDERICR o gt )}

n<lzx n<lzx n<z p<z

If w is sufficiently large (as determined by the size of >

<z 7‘1_513)') then the

error term here is o(1), and hence

(1.5.8) % Z f(n) = % Z g(n) - % Z h(n) + o(1).

n<x n<x n<x

StructThm StructAsym .
In Theorem 77 we will prove that (II.5. olds whenever ©w — oo. This is “best

possible” as will be discussed in Chapter [77.
PROOF. Let H = pu*x h so that h =1* H and f = g« H. Therefore

S WIOEED W OUED DS SIIC)

n<x ab<z a<lzx b<z/a

FirstLig
By Proposition T.2. is is

304 o5 M o (32 L)

a<lx b<z [

We may extend both sums over a, to be over all integers a > 1 since the error term
is trivially bigger than the main term when a > x. Now

Z 7|Hc(ea)| loga = Z 7‘Hc(za)| Z klogp

a>1 a>1 pklla
k1 H(A H
322 o;(;pz| ﬁl)|<<10gy'eXp(Z| (p)|>7
p<y p A>1 p< p

E>1
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writing @ = pFA with (4,p) = 1 and then extending the sum to all A, since
|H(p*)| < 2. Now

Z|1 |+|H Z|1f

p<lx p<z

and so the error term above is acceptable. Finally we note that

Z @ _ % Z hin) + O(u—u/3+o(u) + x—1/6+o(1))

alx n<lx
GenFundLem
by applying Proposition T.4.7, and the result follows. ([l

1.5.4. An upper bound on averages

For any multiplicative function f with |f(n)| <L for all n we have [x(t)| < 1
for all ¢ > 0. We can then take absolute values in (I-5.3) to obtain the upper bound

In this section we will improve this upper bound using the Brun-Titchmarsh The-
orem to

1/ 1
1.5. — —
(1.5.9) sl <y [ Is(oldt+

If we could assume the prime number theorem then we could obtain this result with
“&” replaced by “<”.

ropHall . .
PrOOF OF (I.5.9). Now, for z = y + y'/? + 42/, using the Brun-Titchmarsh
T
S(*)‘ < (z —y) max
u

theorem,
x
s(3)]
y<u<zl \u

> o [5(5)| = 3 s s
y<p<z -
s(7)-5(3)

y<p<z
z
< ][
Y

and if y <t,u < z then

5(2) -5 <[z = 25

Summing over such intervals between y and 2y we obtain

5w s < [

<p<2y

)

S(%) ‘dt + (2 —y) max

y<t,ulz

HildIdenti
We sum this over each dyadic interval between 1 and z. By (1.15. I eﬁnﬁﬁgtlmplies that
|S(z)|logx < Zlogp ’S(E)’ + O(x)
p<w p
x
S
< / S’(E)‘dt—kxzm/ [Stw )‘d +a
1 t 1 w?

11
Taking w = z! and dividing through by zlogz, yields ( 50 ([l
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By partial summation, we have

S [ o [ S

n<z n<x n<w

s(u )—Hogy/ s(t)dt.
11
Using (ir5° ’5a and that s(t) > 1/2 for 0 <t < 1/2logy, we deduce the sa@e ga%i)

bound for the logarithmic mean of f that we had for the mean of f (in (

u 1
0510 gl SR < L [ o (10 () )

1.5.5. Iterating identities
‘ IterateAverages ‘

In this section we develop further identities, involving multi-convolutions of
multiplicative functions, which turn out to be useful. We have already seen that
f(n)logn =73 _. As(a)f(r), so iterating this twice yields

ftogn = Asn) = 2 1Y ) togr = 30 T4 ST 450

ar=n ar=n —
r>1 r>1 bm=r

The logr in the denominator is difficult to deal with but can be replaced using the
. . 1 00 g
identity o = Jo r~“da, and so

f(n)logn — As(n / 3 Ag fsjj)da

abm=n

(the condition r > 1 disappears because A¢(1) = 0). If we now sum the left hand
side over all n < x then we change the condition on the sum on the right-hand side
to abm < z.
= HildIdentit
There are several variations possible on this basic identity. If we iterate (1151 .
then we have log(x/p) in the denominator. We remove this, as above, to obtain

log:c*/ Z

pglzx

P)p” log ) (£(q) log )" S (]fq) da + Oz log log ),

though some effort is needed to deal with the error terms. One useful variant is to
restrict the primes p and ¢ to the ranges Q < p < x/Q, ¢ > Q at the cost an extra
O(zlog @) in the error term.

1.5.6. Exercises

ex:ConvolutionId‘ EXERCISE 1.5.1. Prove that

1/ _ logy [* it
,/0 s(u—t)x(t)dt = /0 s(t)(2t —u)y*dt

u u

EXERCISE 1.5.2. Define x*(u) := mzmgy” Ag(m), so that if |Ap(m)| <
kA(m) for all m then |X (u)] < k. Prove that if k = 1 and ¢ (z) = 2+O(z/(log x)?)
then [ s(u—t)x = [, s(u—t)x(t)dt + O(1/logy).

EXERCISE 1.5.3. Convince youl.rself'that the' functional eapption for estimating
smooth numbers, that we gave earlier, is a special case of (I:5.3).
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11 W .
EXERCISE 1.5.4. Tmprove (F5%0)%0 [s(u)| < L [ s(t)|dt + o(1) assuming the

prime number theorem. Moreover improve the error term to O(lolgol%
that 6(z) = =z 4+ O(7=257)-

(log x)2

) assuming



Part 2

Mean values of multiplicative
functions



We introduce the main results in the theory of mean values of multiplicative
functions. We begin with results as we look at the mean up to x, as * — oco. Then
we introduce and prove Haldsz’s Theorem, which allows us to obtain results that
are uniform in z. The subtle proof of Haldsz’s Theorem requires a chapter of its
own.



CHAPTER 2.1

Distances. The Theorems of Delange, Wirsing and
Halasz

In Chapter % we considered the heuristic that the mean value of a mult'E%i(ﬁa—
tive fpncgion f might be approximated by the Euler product P(f;x) (see (%TQ)
and (h?,)) We proved some elementary resulfs fowards this heuristic and were
most successful when f was “close to 17 (see §I.2:3) or when f was non-negative
(see §ﬁ—.2.7[).—Eifgen for nice non-negative functions the heuristic is not entirely ag-
curate, as revealed by the example of smooth numbers discussed in Chapter %
We now continue our study of this heuristic, and focus on whether the mean value
can be bounded above by something like |P( s;zm.%" We begin by making precise
the geometric language, already employed in §I.2.3, of one multiplicative function
being “close” to another.

2.1.1. The distance between two multiplicative functions

The notion of a distance between multiplicative functions makes most sense in
the context of functions whose values are restricted to the unit disc U = {|z| < 1}.
In thinking of the distance between two such multiplicative functions f and g,
naturally we may focus on the difference between f(p*) and g(p*) on prime powers.
An obvious candidate for quantifying this distance is

|f(p*) — g(p¥)]

k
pkgw p

o . . r2.1 FirstLipsPro IGOUB .
as it is used in Propositions i.Z.I7 1.2.4, %.2.5 and [.2.6. However, it turns out that
a better notion of distance involves 1 — Re(f(p*)g(p*)) in place of |f(p*) — g(p*)|.

)

LEMMA 2.1.1. Suppose we have a sequence of functions n; : U x U — Rxq
satisfying the triangle inequality

nj(21,23) < nj(21, 22) +nj(22, 23),

for all z1, z5, 23 € U. Then we may define a metric UN = {z = (21,2,...) :
each z; € U} by setting

d(z, w) = (iflj(zjij)Q)é,

assuming that the sum converges. This metric satisfies the triangle inequality
d(z, w) < d(z,y) +d(y, w).

53
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PRrROOF. Expanding out we have
o0 oo
_ )2 < 2
= § n; (25, w;) E (i (25, 95) + n5(y5, w;))
: =

by the assumed triangle inequality for n;. Now, using Cauchy-Schwarz, we have

> iz, y5) + 05 (g5, w))? = dlz,y)? + d(y, w)> +2 > 125, y;)m; (y5, w;)
j=1 j=1
o] 1 1
< d(z,y)* +d(y,w)* + 2(2773‘(2]‘72/], )2 (Zm Yj» wy) )2
j=1
= (d(z,y) +d(y, w))>,
which proves the triangle inequality. O

A nice class of examples is provided by taking 7;(z) = a;(1 — Re (z;)) for non-
gg&ﬁt}ve a;, with U = U. We now check that this satisfies the hypothesis of Lemma

LEMMA 2.1.2. Define n: Ux U — Rxq by n(z,w)?> = 1 — Re(zw). Then for
any w, y, z in U we have
n(w,y) < n(w,z) +n(z,y).

ProOOF. (Terry Tao) Any point u on the unit disk is the midpoint of the line
between two points w1, us on the unit circle, and thus their average (that is u =
%(ul + ug)).> Therefore

2

1< 1
3 Z |t — uy|* = 1 Z (1 — Re(tsuy))

4,j=1 4,J=1
12
=1-Re 5;151 Zuj = Re(1 — ta) = n(t,u)>

Define the four dimensional vectors v(w, z) := (w1 — 21, w1 — 22, We — 22, Ws — 21)
and v(z,y) := (21 — Y1, 22 — Y2, 22 — Y1, 21 — Y2), with v(w,y) := v(w, 2) + v(z,y),
so that n(t,u) = %|v(t,u)| where ¢, is any pair from w,y, 2. Using the usual
triangle inequality, we deduce that

n(w,y) = %Iv(wvy)\ < %(Iv(wvz)l +v(z9))) = n(w, 2) +1(2,y).
]

PROOF. (Oleksiy Klurman) Define A(u) = /1 — |[u|?, so that 2n(u,v)? =
A(u)? 4+ A(u)? + |u — v]2. The result follows from applying the triangle inequality
to the vector addition

(w -z A(w)7 A(Z)7 0) + (Z - Y Oa —A(Z), A(y)) = (’LU -Y A(’IU), Oa A(y))
([l
1To see this, draw the line L from the origin to w and then the line perpendicular to L, going

through w. This meets the unit circle at u; and uz. If u was on the unit circle to begin with then
U] = Uz = U.
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We can use the above remarks to define distances between multiplicative func-
tions taking values in the unit disc. If we let a; = 1/p for each prime p < z then
we may define the distance (up to z) between the multiplicative functions f and g
by

ID)(f,g;:c)2 = Z M'

p
p<z
lem4.1
By Lemma -1 this satisfies the triangle inequality
(2.1.1) D(f,g;x) +D(g, h;x) > D(f, h; x).
EXERCISE 2.1.1. (i) Determine when D(f, g;x) = 0.

(ii) Determine when D(f, g;x) + D(g, h; x) = D(f, h; x).

EXERCISE 2.1.2. Tt is natural to multiply multiplicative functions together, and
to ask if f; and g; are close to each other, and f; and g are close to each other, is
f1f2 is close to g192? Indeed prove this variant of the triangle inequality:

(2.1.2) D(f1, 915 2) +D(f2, g2;2) > D(f1f2, 91925 ).

There are several different distances that one may take. There are advantages
and disagi}é{ar%g%ggg to including the prime powers in the definition of D (see, e.g

exercise [77),

. 1 —Re f(p")g(p*
D (g = 3 70w,
pF<z p
but either way the difference between two such notions of distance is bounded by
a constant. Another alternative is to define a distance D, defined by taking the

coefficients a; = 1/p* and z; = t(lp afey rlTps 5 over fnll primes for any fixed o > 1,

which satisfies the analogies to (

EXERCISE 2.1.3. Combine the last two variants of distance to form D}. Use
the triangle inequality (and exponentiate) to deduce Mertens inequality: For all
oc>1andallteR,

C(@)°1¢(o +at)[*C(o + 2it)| > 1;
as well as ((0)3¢(o + 2it)| > |¢(o +it)|*.

EXERCISE 2.1.4. Prove that if each |a,| <2 and o =1+ 1/logx then

o S 2 yon.
p<z p pprimep

(Hint: Consider the primes p < z, and those > x, separately.) Deduce that for any
multiplicative functions f and g taking values in the unit disc we have

D(fgie)t = 3 Ww(l)

p prime

EXERCISE 2.1.5. Suppose that f is a multiplicative function taking values in
the unit disc and Re(s) > 1. Recall that F(s) :=3_ -, f(n)/ns. Prove that

log F(s) = Y 7< [logn _ f o(1).

p prime p prime
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Deduce from this and the previous exercise that

1 .
(2.1.3) ‘F (1 + logz + it) =< logz exp ( - D(f(n),n”;x)z).

2.1.2. Delange’s Theorem

”

We are interested in when the mean value 0§ f up to x is close to it elgczp)egt?
T, 9) Rt if

value of P(f;z), or even P(f). Proposition [I.2.T implies (as in exercise

f is a multiplicative function taking values in the unit disc Uand > [1—f(p)|/p <
oo then >, . f(n) ~ aP(f) as  — oq. Delange’s theorem, which follows, is
therefore a refinement of Proposition T.2.T.

THEOREM 2.1.3. (Delange’s theorem) Let f be a multiplicative function tak-
ing values in the unit disc U. Suppose that

D(1, f; 00)? :ZM < oo.

» p
Then
Zf )~ zP(f;z) asx — 0.
n<z
We shall prove Delange’s Theorem in the next chapter. Delange’s Theorem
is not exactly what we asked for in the discussion above, so the question now is

whether lim,_, P(f;z) exists and equals P(f). It is straightforward to deduce
the following;:

COROLLARY 2.1.4. Let f be a multiplicative function taking values in the unit
disc U. Suppose that

: 1-f(p) :
Ill}n;o Z ————= converges (to a finite value).
p<z
Then
Z f(n) ~zP(f) asx — oo.

n<x

We postpone the proof of Delange’s theorem to the next chapter.

2.1.3. A key example: the multiplicative function f(n) = ni®

Delange’s theorem gives a satisfactory answer in the case of multiplicative func-
tions at a bounded distance from 1, and we are left to ponder what happens when
D(1, f;2) — oo as © — oo. One would be tempted to think that in this case
5 < f(n) = 0 as @ — oo were it not for the following important counter exam-
ple. Let o # 0 be a fixed real number and consider the completely multiplicative
function f(n) = n'®. By partial summation we find that

+ 1+ia

(2.1.4) Z n' /”” y“dfy] ~ 133_'_ —

n<z

The mean-value at z then is ~ ?*/(1 + ia) which has magnitude 1/|1 + ia| but
whose argument varies with x. In this example it seems plausible enough that
D(1,p**; ) — 0o as z — oo and we now supply a proof of this important fact. We
begin with a useful Lemma on the Riemann zeta function.
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DLowerTBig

EquivUpperBounds |

2.1.3. A KEY EXAMPLE: THE MULTIPLICATIVE FUNCTION f(n) = nt 57

LEMMA 2.1.5. If s = o + it with 0 > 0 then

i
o

- 5

=
Ifo>1 and|s—1| > 1 then
[C(s)| < log(2+ |s]).

. . . zeta
PROOF. The first assertion follows eas %thom Exercise I.T.2. To prove the

second assertion, we deduce from Exercise T.1.6 that, for any integer N > 1, we
have
N
T Gl S 1)
()= —+_—7 —S/N sl
n=1

Choose N = [|s|] + 1, and bound the sum over n trivially to deduce the stated
bound for |{(s)]. O

EXERCISE 2.1.6. Use similar ideas to prove that if s = ¢ + it with ¢ > 1 and
|s — 1] > 1 then |¢’(s)| < log®(2 + |s]).
LEMMA 2.1.6. Let o be any real number. Then for all x > 3 we have
D(1,p"*; 2)? = log(1 + |a|log z) + O(1),
in the case || < 100. When |a] > 1/100 we have
(2.1.5) D(1,p'; x)* > loglog x — loglog(2 + |a|) + O(1),
and D(1,p"; x)* <loglogx + 8loglog(2 + |a|) + O(1)

TruncRight
Proor. We take f(n) 5. 1,in ébful 5). "The first two estimates follow directly
from the bounds of Lemma b [.5, and are equivalent to

1o Y R {=log<1/|a|>+o<1>, i1/ logz < |a] < 100;

D <loglog(2 + |a|) + O(1), if || > 1/100.

p<z

The first estimate yields the third estimate for 1/100 < |a| < 100 so henceforth
we assume |af > 100. Our goal is to prove that |7 _ . 1/p'*i@| < 1 whenever

x >y := exp((log |a])®), since then

- Re(p') +om <y 1. O(1) < 8loglog|al + O(1),

p<z p<y

which implies the third estimate. To establish this we write

‘ 1
: : pl—i—ia
y<p<z

- ‘1og{g(1+ —l—ia)} —log{C(lﬁ-@-&-ia)H +0(1)

log x

x _ 1 d
:‘/ —C(H +ia) ° ‘+O(1).
y € logu ulog” u
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Zetaprimebound , 2
Exercise b 1 provides the upper bound | (1 + E +ia)| < log® |af, so we need
a upper bound on 1/|¢(1 + 1Ogu +ia)|: By (b .3),

1og1/‘g(1+®+m)‘ —;ms(alogp)+0(1)
<u

p

(S0 () o

p<u p<u

< (loglogu>1/2<% Z Hms(jalogp))uz oW

IA

p<u
3
< —loglogu+ O(1),
4
. [EquivUpperBounds . . .
by the second estimate of (b [.6). inserflng these estimates in above yields

1 T (], 2], 3/4
‘ 3 - <<1+/ (log |a])*(log u) du < 1,
p y

2
yipes ulog”u

and the result follows (]

. lem4.3.1 . . L.
One important consequence of Lemma b [.6 and the triangle inequality is that
a multiplicative function cannot pretend to be like two different problem examples,
n' and n*8.

COROLLARY 2.1.7. Let a and 8 be two real numbers and let f be a multiplicative
function taking values in the unit disc. If § = |a — G| then
i s 02 _ [log(1+dlogz) +O(1), if 5 < 1/10;
(D5 ) + D(f.p 7)) = { 80+ 0los0) + O o=y
loglog x —loglog(2 + ¢) + O(1), if 6 > 1/10.

PROOF Indeed the triangle inequality gives that D(f,p em+4 ,p*P
D(p*, pB; ) = D(1,p* (@A), ) and we may now invoke Lemma:Z [.6.

emd.3.1
An useful gopseguence of Lemma .1.6 when working with Dirichlet characters
(see Chapter [77 for the definition) is the following:

cor:ftothekbound\ COROLLARY 2.1.8. Suppose that there exists an integer k > 1 such that f(p)* =

1 for all primes p. For any fized non-zero real o we have
. 1
D(f(p).p'*2)* > 15 loglogx + Opa(1).

Examples of this include f = u the Mobius function, or indeed any f(n) which only
takes values —1 and 1, as well as f = x a Dirichlet character (though one needs to
modify the result to deal with the finitely many primes p for which x(p) = 0), and
even f = py.

cor:ftothekbound
PrOOF OF COROLLARY b .8. By the triangle inequality, we %ve kpgf pi%x) >
D(1,p*; z) and the result then follows immediately from Lemma D

The problem example n*®* discussed above takes on complex values, and one
might wonder if there is a real valued multiplicative function f taking values in
[—1, 1] for which D(1, f;z) — oo as & — oo but for which the mean value does not
tend to zero. A lovely theorem of Wirsing shows that this does not happen.
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THEOREM 2.1.9 (Wirsing’s Theorem). Let f be a real valued multiplicative func-
tion with |f(n)] <1 and D(1, f;x) — o0 as x — oo. Then as x — 00

%Zf(n)—m

n<x

Wirsing’s theorem gpplied to w(n) immediately yields the prime number the-
orem (using Theorem hl We shall not directly prove Wirsing’s theorem, but
instead deduce it as a consequence of thg jmportant theorem of Haldsz, which we
glscuss in the next section (see Corollary or a quantitative version of Theorem

2.1.4. Halasz’s theorem; the qualitative version

We saw in the previous section that the function f(n) = n'® has a large mean
value even though D(1, f;2) — oo as © — oo. We may tweak such a function at
a small number of primes and expect a similar result to hold. More precisely, one
can ask if an analogy to Delange’s result holds: that is if f is multiplicative with
D(f(p), p**;00) < oo for some a, can we understand the behavior of Y . f(n)?
This is the content of the qualitative version of Haldsz’s theorem.

THEOREM 2.1.10. (Qualitative Haldsz theorem) Let f be a multiplicative
function with | f(n)| <1 for all integers n.
(i) Suppose that there exists o € R for which D(f, p'®;00) < oo. Write f(n) =
g(n)ni®. Then, as x — oo,

> f(n)

n<z

1+w¢

P(g;m) + o(x).

(i) Suppose that D(f,p'*;00) = oo for all a € R. Then, as x — oo,

%Zf(n)%o

n<lx

EXERCISE 2.1.7. Deduce that if f is a multiplicative function with |f(n)| <1
for all integers n then £ 3~ f(n) — 0 if and only if either

n<z
(i) D(f,p™;00) = oo for all & € R; or
(i) D(f,p'>;00) < oo for some a € R and f(2F) = —(2%)' for all k > 1.
Establish that (ii) cannot happen if [Af(4)] < A(4).

EXERCISE 2.1.8. If f is a multiplicative function with |f(n)| < 1 show that
P(f;y) is slowly varying, that is P(f;y) = P(f;z) + O(log(ex/y)/logz) if y < x.

Hall
c1al BOOF OF TIF;{O&%%QI [.10(1). We will deduce (i) from Delange’s Theorem

b.?.l and exercise 2.1.8. By partial summation we have
x x
Z f(n) = / tw‘d(Zg(n)> =z’ Z g(n) — z'a/ o=l Zg(n)dt
n<xz 1 n<t n<x 1 n<t

Now D(1, g; 00) = D(f, p'®; 00) < oo and so by Delange’s theorem, if ¢ is sufficiently
large then

> 9(n) = tP(g:t) +oft).

n<t
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ex:SlowVar
Substituting this into the equation above, and then applying exercise b.l.& we

obtain
) T x1+ia
S £(n) = #1+iP(g; 2) — ia / EeP(g; 2)dt + o(x) = S P(giz) + o{x).
el 1 1+«
O

Hall
We will deduce Part (ii) of Theorem biiflo from the quantitative version of
Halasz’s Theorem, whicl yye will state only in section 7.
Applying Theorem 2.1.10(i) with f replaced by f(n)/n'® we obtain the follow-
ing:

COROLLARY 2.1.11. Let f be multiplicative function with |f(n)] < 1 and sup-

pose there exists a € R such that ]D)(f,p“"; o0) < 00. Then as x — 00

7Zf 1+za xz nm

n<x

mpT2
This will be improvgil 1consideraubly in Theorem ? 7 laking absolute values in
both parts of Theorem 2.T.10 we deduce:

COROLLARY 2.1.12. If f is multiplicative with |f(n)| <1 then

1 .
ml;rglog Zf(n) exists.
n<lz
2.1.5. A better comparison theorem

The following quantitative result, relating the mean value of f gnl) fo ! the mean-
value of f(n)n' for any ¢, improves the error term in Corollary b [.11 éali F)etter
than) O(z/(logz)'T°™M), and provides an alternative proof of Theorem E.1.10, as-
suming Delange’s Theorem.

LEMMA 2.1.13. Suppose f(n) is a multiplicative function with |f(n)] < 1 for

allm. Then for any real number t with |t| < z/3 we have

> fm) = tZ 00 (o stz ) exp (DU ) wm))

n<x

EXERCISE 2.1.9. Prove that if [¢| < m and |§] < 1/2 then 2mit = (m — §)%
(m + 6)® + O(|t|*/m?). Deduce that

5~ {355 ot
0(2).

m<z

AsympT1
Proor orF LEMMA 2. i 3. Let g and h denote the multiplicative functions
defined by g(n) = f(n)/n, and g = 1 x h, so that h = i * g. Then

Y f)=> gt =>" Zch =S " n(@d* Y mi.

n<x n<zx n<x d<z m<z/d
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ex:mtotheit
We use the first estimate in exercise }2).{1.9 when d < x/(1 + t?), and the second
estimate when x/(1 + t2) < d < x. This gives

xl-i—zt

S fp Xt ro(aee) S p@iea 3 M)

n<zx d<zx d<z/(1+t2) z/(1+t?)<d<z

. . Prop2.1 . .
Applying Proposition .27 and partial summation, we deduce that

S fm) =7 - ZM+O<b;Cbg(2+ItI)Z”LSj)|>

1+t = d =

- 1+t2h(dd) +0 (s togt2 + hep(30 2221 )

p<z p

n<lz

We use this estimate twice, once as it is, and then with f(n) replaced by f(n)/n®,
and t replaced by 0, so that g and h are the same in both cases.
By the Cauchy-Schwarz inequality,

SRl <o 3 25 I RED) <o), 1120 log s+ O(1),

p<z p<z p<z

and the result follows, since D(f(n),n";x)? = D(g(n), 1;2)? < loglog x. O

2.1.6. Distribution of values of a multiplicative function, I

Given a complex-valued multiplicative function f, Jordan Ellenberg asked whether
the arguments of the f(n) are uniformly distributed on [0, 27). One observes that
the size of the f(n) is irrelevant so we may assume that each |f(n)] = 0 or 1.
Moreover if a positive proportion of f(n) = 0 then the values cannot be uniformly
distributed, so we may as well assume that every |f(n)| = 1.

One might guess that a random, complex-valued multiplicative f is indeed
uniformly distributed in angle, but not true for all f. There are some obvious
examples for which this does not occur, for example if each f(n) is real (and thus
1 or —1), or each f(n) is a mth root of unity for some fixed £ > 1. Another class
of examples is given by f(n) = n' for some ¢t € R (since n' all point roughly in
the same direction for N < n < Ne™/ St). Moreover one can multiply these, so that
f(n) = g(n)n* where each g(n)™ = 1. Our main result states that if f(n) is not
uniformly distributed then f must be close to one of these examples.

For any 0 < a < 8 < 1 define

R¢(N,a, ) := % # {n < N: %arg(f(n)) € (a,ﬁ]} —(8—a).

We say that the f(n) are uniformly distributed on the unit circle if Ry(N,«, ) — 0
foral0 <a< fp<1.

THEOREM 2.1.14. Let f be a multiplicative function with each |f(n)| = 1, for
which |A¢(4)] <log2. Either

(i) The f(n) are uniformly distributed on the unit circle; or
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(ii) There exists an integer m > 1, a multiplicative function g(.) with each
g(n) an mth root of unity, and at € R such that D(f(p), g(p)p*t; ) < 1.

This leads to the rather surprising (immediate) consequence:

COROLLARY 2.1.15. Let f be a completely multiplicative function with each
f(p) is on the unit circle. The f(n) are uniformly distributed on the unit circle
if and only if the f(n)/n®Y are uniformly distributed on the unit circle for every
veR.

To prove our distribution theorem we use
Weyl’s equidistribution theorem Let {&, : n > 1} be any sequence of points
on the unit circle. The set {§, : n > 1} is uniformly distributed on the unit circle
if and only if limy_ o % Y onen & exists and equals 0, for each non-zero integer
m.

equidist
PROOF OF THEOREM hBy Weyl’s equidistribution theorem the f(n)
are uniformly distributed on the unit circle if and only if limy o Yonen f()™
ﬁxiqts and equals 0, for acht non-zero integer m. By Haldsz’s theorem (Theorem
.10 and exercise ET%_EEIS fails if and only if there exists o € R for which
D(f(p) ,p'¥ 00) < 1 for some a € R. By taking conjugates, if necessary, we
may assume that m > 1. Let ¢t = a/m and g(p) be the mth root of unity
nearest to f(p)/p®, so that |arg(f(p )ﬁ/p”ﬂ < w/m. Now if |8] < w/m then
1 —cosf < 1— cos(mb) and so D(f(p), g(p)p't;o0) < D(f(p)™,p'*;00) < 1, since

(g(p)p™)™ = p*=. O

If a,, is a sequence with each |a,| = 1. We say that {a,, : n > 1} is uniformly
distributed on the mth roots of unity if, for each mth root of unity £, we have
#{n<z: a, =&} ~x/m.

© uldiSt . . . . . .o . .
THEOREM b .I4 (continued): If m is minimal in case (ii), then ¢(.) is uni-
formly distributed on the mth roots of unity.

PROOF. We claim that lim,_, % anw g(n)* =0foralll <k < m~—1. If this

is false for some k then, by Halasz’s Theorem, we know that D(g(p)¥, p*#; 00) < 1
for some 8 € R. Hence, by the triangle inequality,

D(f(p)*, p" 7 T*); 00) < D(f(p), g(p)*p™; 00) + D(g(p)*p™*, P H); 00)
<k D(f(p), 9(p)p™; 00) + D(g(p)*,p"; 0) < 1,

flimit
which implies that lim, o * 5D < f(1 )k # 0 by exercise bexl FIma:uL contradiction.
The result can then be deduced from the following exercise. O

EXERCISE 2.1.10. Suppose that each g(n) is a mth root of unity Prove that g(.)

is uniformly distributed on the mth roots of unity if and only if £ > <. 9(n )k —0
asx oo forl <k<m-—1.
2.1.7. Additional exercises
EXERCISE 2.1.11. Prove that n(z,w) := |1 — zw| also satisfies the triangle

inequality inside U; ie. |1 — zw| < |1 — 27| + |1 — yw| for w,y,z € U. Prove
that we get equality if and only if z =y, or w = y, or |w| = |2| = 1 and y is on
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the line segment connecting z and w. (Hint: |1 — zw| < |1 — 27| + |27 — 2w| <
[1—zyl+ |y —wl < [1 -2y + [1 —ywl.)

This last notion comes up in many arguments and so it is useful to compare
the two quantities:

EXERCISE 2.1.12. By showing that 3|1 — 2> <1 — Re(z) < |1 — z| whenever
|z| <1, deduce that

igu_ﬂww(ﬁg;x)%g“—fw_

We define D(f, g;00) := limg; oo D(f, g; ). In the next exercise we relate dis-
tance to the product P(f;x), which is the heuristic mean value of f up to :

ex:PasD EXERCISE 2.1.13. Suppose that f is a multiplicative function for which |Af(n)| <
A(n) for all n.

(i) Prove that lim, . D(f, g; x) exists.

(ii) Show that log|P(f;z)| = —D(1, f;2)? + O(1).
(iii) Deduce that lim,_, |P(f; )| exists if and only if D(1, f;00) < oco.
(iv) Show that |P(f;z)| <1 and |P(f;x)| =1+ O(D*(1, f;x)?).
ex:divergence EXERCISE 2.1.14. Come up with an example of f, with |f(n)] = 1 for all n,
for which D(1, f;00) converges but > (1 — f(p))/p diverges. Deduce that P(f;z)
does not tend to a limit as x — oco.

ex:4.4.1 EXERCISE 2.1.15. If f is a multiplicative function with |f(n)| < 1 show that
there is at most one real number o with D(f, p’®; 00) < oo.

ex:Wirsing

Ha11 DXERCISE 2.1.16. Deduce Wirsing’s Theorem (Theorem 1797 %rom Theorem
1.10(ii). (Hint: You might use the Brun-Titchmarsh Theorem.)

‘ex:f(n)f(n+1)2

EXERCISE 2.1.17. Suppose that f is a multiplicative function with —1 < f(n) <
1 for each integer n. Assume that 13 _  f(n) 4 0.

(i) Prove that lim,_, % > f(n) exists and is > 0, and that

n<z

Jim 57 fn) (4 1) = A ).
n<z

ex:f(n)f(n+l
Hint: Use exercise [1.2.16 and K%irsin ’s Theorem.
g

(ii) Prove that this is > 0 unless Po(f) < 3 or P3(f) < 3.
(iii) Prove that if f(n) only takes on values 1 and —1, then P(f, f) # 0.

ex:f(n)f(n+1)3

EXERCISE 2.1.18. Suppose that f is a multiplicative function with —1 < f(n) <
1 for each integer n.

(i) If £(2%)f(2)* > 0 for all integers k > 1, prove that, for all integers n > 1,
fmfln+ 1)+ f2n)fCn+ 1)+ f2n+1)f(2n+2) > —1.
(ii) Deduce that Y, .. f(n)f(n+1) > —1z + O(logz).
(iii) More generally show that
1 f2) o~ FEE) R 2
S ey > S

— 5 +o(1).
n<xz k>1 3
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(iv) Prove that if the lower bound in (iii) is —1 + o(1) then |A((2%)] = (2¥ —
1) log 2.
(v) Prove that if |A;(2¥)| < log2 for all k£ > 1 then
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CHAPTER 2.2

Additive functions

We define h(n) to be an additive function if
h(mn) = h(m) 4+ h(n) whenever (m,n)=1.

A famous example isw(n) = >_ . 1, the number of distinct prime factors of n. Since

h(n) is an additive function if and only if z"("™) is a multiplicative function (for any
fixed z # 0), the studies of additive and multiplicative functions are entwined. The
goal of this chapter is to prove Delange’s Theorem, which we do using a relatively
easy result about the “usual” size of an additive function, which will also imply
a famous a result of Hardy and Ramanujan on the number of prime factors of a
typical integer. We will also indicate how one can deduce the Erdés-Kac theorem
on the distribution of w(n). Later, in chapter 11, we will see how the much more
precise Selberg-Delange theorem, using deeper methods of multiplicative functions,
allows one to estimate the number of integers with a given number of prime factors.

2.2.1. Delange’s Theorem

We dedicate this chapter to the surprising proof of Delange’s theorem:

THEOREM 2.2.1 (Delange). Let f be a multiplicative function taking values in
the unit disc U for which D(1, f;00) < 0. Then

Zf )~ 2P(f;z) asxz — 0.

n<lz

We shall deduce Delange’s Theorem from the following result about multiplica-
tive functions that have small difference:

PROPOSITION 2.2.2. Let f and g be multiplicative functions with each f(n), g(n) €

U. Then
D_ fm)gn) = P(Fi2) 3 _g(m) +0 (”“’D*(f, 1;00) + 1oz:c> '

n<z n<z

We deduce Delange’s Theorem when D*(f, 1;00) = o(1) by taking g = 1. Note
that D*(f, g;00) <D(f,g;00) + O(1) < o0

B lang
DeDUCTION OF THEOREM e én.eWe decompose f as gf where
k) ifph <y 1 if pb <y
gt = T TP ST g gy =TS
1 if p¥ >y f%) ifpt >y

so that D*(1, f; 00) = D*(1, g; 00) + D*(1, ¢; 00) and D*(1, g; 00) = D*(1, f;y). Fix
e > 0 and then y sufficiently large so that D*(1, £, c0) = D*(1, f; 00)—D*(1, f;y) <

65
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By Proposition E:.LQO.SZeMVI:I}EtEFnSf = { we have
Y f(n)=Pt2) Y g(n) + O (ex).

n<x n<x
GenFundL
as D*(f, g;00) = D*(g¢, g;00) < D*(4,1;00) < €. Now, by Proposition 2.7 with
x > y* where l/u“/3 < €, we have

> g(n) =P(g;x)x + O (ex),

n<lz

The result follows since P(¢; z)P(g;x) = P(f;x), letting e — 0. O

2.2.2. Additive Functions
L. CloseMultFns L . .
To prove Proposition b.?.? we define an additive function h(.) with h(p*) =
k
f(p¥) — 1 for all prime powers p*. We have f(p*) ~ e"®") if |1 — f(p*)| is ng%lsléMultFns

which it usually is. Hence f(n) =~ (™). The key to the proof of Proposition
is that additive functions h are mostly very close to their mean value pp; hence
f(n) = et for most integers n, and the result then follows since e#» ~ P(f;z). In

this section we fill in the details of this surprising argument.

EXERCISE 2.2.1. Suppose that h(.) is an additive function with each |h(p*)| <
1. Prove that

% > h(n) =pn+0 (1();9:) where ;= Y h(lf) (1 - 1) :

n<z pk<z p p

The Turdn-Kubilius inequality shows that the values of h(n) tend to be very
close to the mean value of h(n). It accomplishes this by bounding the variance:

PROPOSITION 2.2.3 (Turdn-Kubilius). If h(.) is an additive function then
h(p
S () - uf? <o 3 ML
n<z pk<zx

The “best-possible” implicit constant in this result is 3/2 + o(1).
To apply this result we need to make a few simple, technical remarks.

EXERCISE 2.2.2. (i) For any complex numbers wy, ..., wy and z1, ..., 2 in

the unit disc we have
|21+ 2 —wy - - wy SZ"ZJ — wjl.
(ii) Deduce that if f and g are multiplicative functions, taking values in U, then
1 1 |£ (") — g(")|
S Fm =2 gt < > -
n<x n<z pk<z
Since |21 — 22| < 2(1 - Re(zlz)) whenever |zl\ |z2| < 1, we have

21y Y MO0y 5o L RUGNIW) _ g g

pk<z pk<z

EXERCISE 2.2.3. Show that if |2| < 1 then [e*~1| < 1and z = "1 +O(]z—1[?).
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We now proceed to the surprising proof of Delange.

CloseMultFns .
DEDUCTION OF PROPOSITION 2.2.2. Using the last two exercises (the latter
with z = f(p*)) we obtain

=[] r") = T[ /v 0 | S 10" -1

p*lin pFn p*n

Let h(.) be the additive function defined by h(p*) = f(p¥) — 1. Therefore, since
each |g(n)| <1,

Do g f(n)= gn)e"™ <y > 1rp*) — 1)

n<zx n<zc n<x pk||n

f(P*) — 12

< o <z D*(f,1,2)%

Now since Re(h(n)) < 0 for all n, therefore Re(up) < 0 and ™ — etr| <
|h(n) — un|. Hence

S g™ — e S gm)| < ST — et | < 5 [h(n) - punl

n<z n<zx n<z n<z
1/2
x
h(n) — pn|? D*(f,1 —.
:Ej£:| (n) Hh| <z (fv 7x)_F10g1
n<x
PropDel
by the Cauchy-Schwarz inequality, and Proposition b.rZO.EK.e
k
Now pn = 3 <, Hh,p Where ppp i= 370 e, h;’; ) (1 — %)7 so that
S flp 11 R (")
el =1+ pny + Ok ) = ( )Z Olaty, 2 A
k>0 k>1: pk<z

which is the pth facjor jro P(f,x), using the Cauchy-Schwarz inequality. We
deduce from exercise Tat

le#r —P(f,2)] < Z <|f(p]3k_1 ) <D*(f,1,2)* +

logz’
pF<z &

The result follows by collecting up the displayed equations above. (I

2.2.3. The Turan-Kubilius inequality and the number of prime factors
of typical integer

PropDel
PROOF OF PROPOSITION }2?}?37,THE TURAN-KUBILIUS INEQUALITY. We be-
gin by proving the result assuming that h(p?) = 0 for all prime powers p* > /z. If
we expand the left hand side then the coefficient of h(p*)h(g?), where p and q are
distinct primes, is

DT HDE S

n<z n<x n<z

n<x _
p",q’In p'lIn ¢’ |In
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The first sum here is

Z 1_ X _ X _ X xr
- piqj pi+1qj piqj+1 + pi+1qj+1

(-

pha’lln
Treating all three other sums analogously, we find that the coefficient of h(p?)h(g’)
is O(1). Summing over ¢ and j we get the bound (and Cauchying)

. ; h pi 2 T h pz‘ 2
< ¥ ks 3y M« 5 RO
pi<\x pi<yz pikz p J pi<z p

The quantity that remains equals

>3 porer- 3 h%”(l—l)f

n<$p<f k: pk< p p
h
SPIPNCERIEED U RO ¢ ;3 D
n<z p<\/z ki p <w pk<ax
P<VE

using the Cauchy-Schwarz inequality, since p*||n for < x/p* integers n < .

Next we prove the result assuming that h(p?) = 0 for all prime powers p* < /7.
If n < 2 and h(n) # 0 then there is at most one prime power p’ with p?||n and
h(p') # 0. For each such p’ there are < x/p’ such values of n. Therefore, the sum
on the left hand side above is

h(p h(p
Sall 4 Y 00 -l < el 42 3 PO < 52 MR

VE<pi<z pi<w pr <z

by the Cauchy-Schwarz inequality.

Finally, we can write any given h as h; + ho with hy(p) = 0 for all primes
p > v/z, and ha(p) = 0 for all primes p < \/x. Then uj = pp, + w1, by definition,
and so |h(n) — pp| < |h1(n) — pry |+ |h2(n) — pr,| by the triangle inequality. Using
Cauchy-Schwarz we then bound the required sum for h by the analogous sums for
h1 and hs, and our result follows. O

Let w(n) = 3_,,, 1 be the number of distinct prime factors of an integer, and
let Q(n) =} x|, 1 be the number of prime factors of an integer, including multi-
plicities. Thus w(13) =2 while €2(12) = 3. Both are additive functions, and we can
apply Proposition 2.2.3 o both.

COROLLARY 2.2.4 (Hardy and Ramanujan). For all, but at most o(x), integers
< z we have

w(n), Q(n) = loglogn + O((loglogn)/2t¢).

t
PROOF. Now pu, := 3>, 1/p =loglogz + ¢+ o(1) by exercise TI.10. It N
is the set of integers n > x/logx for which |w(n) — loglogn| > 2(loglogn)'/?*¢
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[PropDel

1/2+¢ Hence, applying Proposition 2.2.3 with h(p*) =

then |w(n) — p,| > (loglog x)
w(p*) = 1, we deduce that

#N - (loglog x)* %€ < Z lw(n) — pe|* < zloglog .
n<x

Hence #N < z/(loglog z)%¢ and the result for w(n) follows. Let M be the set of
integers n € N for which Q(n) — w(n) > 2(loglogn)*/?*<. Then

#M - (loglog )!/2¢ < 3™ () —w(n) = 3 31

n<z n<z pk’|n
k>2

B PO OF 55 S
pk<:1;7lgw pk<lp pgxp(p_ )
k>2 pFln E>2

Hence #M < x/(loglog )/t and the result for Q(n) follows. O

2.2.4. The Central-Limit Theorem and the Erdds-Kac theorem

The Central-Limit Theorem tells us that if Xy, X5,... is a sequence of inde-
pendent random variables then, under mild restrictions, the random variable given
by the sum

Sy =Xi+Xo+...+ XN
satisfies the normal distribution; that is, there exists mean p and variance o2 such
that, for any real number T,

1 RO
Prob(Sy > pu+To —>—/ e 3t dt,
(S zu+To) = 7= |

as N — oo. This is also called the Gaussian distribution, and in his handwritten
notes in the Gottingen library, one can find Gauss observing that the distribution
of primes in short intervals appears to satisfy such a distribution.

In order to prove that the given probability distributions Sy converge to the
normal distribution, it suffices to verify that all of the integer moments give the
correct values. That is

2kl - :

s if m = 2k is even;

E S m m 2k . k! 1 9
(Sw =m)"/o {0 if m is odd,

as N — oo, for each integer m > 0. Th go{ﬁse%ts can all be found in any introduc-
tory text in probability theory, such asj%].i

The Erdés-Kac theorem is a significant strengthening of the result of Hardy
and Ramanujan. It states that the values {w(n): n < z} are distributed as in the
normal distribution with mean loglog x and variance loglog x; specifically that, for
any real number T,

1 R
S#{n <z w(n) > loglogz + T'y/logloga} — i/ e 34,
’ Var Jr

as x — oo. To prove this we will compare the moments of w(n) — loglog z with
the moments of a corresponding heuristic model, which satisfies the Central-Limit
Theorem. Like before we will split our consideration into the small and large prime
factors. To study the kth moments, we begin by working with the primes < y
where y* < z.
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Define
1 if pln;
Ip(n) == .
0 ifptn
and then
wy(n) = Z 1 = Z 1,(n).
pln, p<y p<y

A randomly chosen integer is divisible by p with probability 1/p, so if we define
Xo, X3,... to be independent random variables with

X 1 with probability 1/p;
P77 10 with probability 1 —1/p,
then

Sy = Z Xp
p<y
gives a model for the values of w,(n). This is, on average,

py :=E(Sy) = ZE(Xp) = Z %,

and so we will study ) )
k
LYl st =BG, i) = 3 () (3 Tt - Bis).

We expand this last term as

> X tm,m -, x,)
P1,P2,---:P; <Y n<z
Lz 1y 1 ()
= X GhEl-d=sr X =T
P1,P2,:P5 <Y P1,P2s- P <Y
d:=[p1,p2,---pj]

Hence, in total, our upper bound is

k .
B\ hom@) _ (m(y) + )"
3 (e ey
Jj=1
‘We therefore deduce that

1 1 1
;#{nga:: wy(n)ZMy—i-TUy}—)\/T?/T e 2 dt,

where 05 = Epgy %(1 — %) We let y = 2'/F with L := loglog x so that ) 05 =
loglogx + O(log L).

Now we show that the large primes rarely make a significant contribution to

w(n):
IEOERIOED M- HEET

< y<p<w
t
by exercise T1.10: Hence there are o(z) values of n < z for which |w(n) —wy(n)| >
(log L)%. The Erdés-Kac theorem follows.
This argument can be easily generalized:
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EXERCISE 2.2.4. Prove that Q(n) := > |, 1 is normally distributed, for the
integers n < x, with mean and variance ~ loglog z.

EXERCISE 2.2.5. Let h(.) be an additive function, and define h,(p*) = h(p*)
if p* <y, and hy(pk) = 0 otherwise. For y = ¥ as above, assume that, for each
fixed integer k£ > 1, we have

> @)= O(((l + 5, loglogy)’“)

d: w(d)<k
and that .
h h(p
Z | (i” =o(s )wheres Z |
y<pk<z pk<y

Deduce that the values of h(n), with n < z, are normally distributed.
A further generalization that is useful in applications, goes as follows:

EXERCISE 2.2.6. Let A be a set of x integers (possibly repeated). Suppose that
there exists a non-negative real-valued multiplicative function f(.) such that the
number of elements of A that are divisible by d is (f(d)/d)x +r4. Let wp(a) be the
number of distinct prime factors of a from the given set of primes P. Prove that if

X =l )

d: p|d = peP
w(d)<k

for each fixed integer k > 1, where up := Zpep f(p)/p, then the values of wp(a),
with a € A, are normally distributed.

EXERCISE 2.2.7. Suppose that f and g are multiplicative functions taking val-
ues in U. Let h be a multiplicative function for which h(p*) = f(p*) if |f(p*)| <
lg(p*)|, and h(p*) = g(p*) otherwise Then

P(h/f;2) Y f(n) = P(h/gix) Y g(n) < aD*(f,g;00) +

n<lx n<x

Here (h/f)(p*) = h(p*)/f(p*) unless f(p*¥) = 0, in which case (h/f)(p*) = 1.

logz’






CHAPTER 2.3

Halasz’s theorem

In this chapter we will state the quantitatiﬁgﬁorm of Haldsz’s theorem; we
already saw the qualitative version in Theorem 2.1.10(ii) (which we deduce from
the result given here). This reflects an important change in focus. Up until now
the results have been primarily aimed at letting us understand the mean value of
f up to z, as x — oo. Haldsz’s theorem allows us to work more explicitly with the
mean value of f up to z, for given large x.

2.3.1. The main result

The main result of Haldsz deals with the (difficult) case when D(f, p*®; c0) = oo
for all . It is more precise and quantitative. To state it we do need some further
definitions. Given a multiplicative function f with |f(n)| < 1 for all n, define

(23.1) M(a.T) = My(w.T) = min D(f.p"s )"

We define t(x,T) = ty(z,T) to be a value of ¢t with [t| < T at which this minimum
is attained.

THEOREM 2.3.1. (Haldsz’s theorem) Let f be a multiplicative function with
|f(n)| <1 for alln and let 1 <T < (logz)'® be a parameter. Then

%‘ Z f(n)‘ < (14 M(z,T))exp(—M(z,T)) + %

n<z

The proof will appear in the next chapter. In this chapter we will discuss
various consequences of this key theorem. The following exercise helps us establish
limitations on the strength of Haldsz’s theorem:

EXERCISE 2.3.1. Show that if T > 1 then
1 T
2T J_r

Deduce that My (z,T) <loglogx + O(1), and conclude that the bound in Haldsz’s
theorem is never better than xloglogx/logx.

D(f,p"; x)?dt = loglog x + O(1).

This implies the following:

COROLLARY 2.3.2. Let f be a multiplicative function with |f(n)| <1 for all n.
Then

IS 5] <€ 0+ My (e log ) exp(— My (2, o)

n<z

At first sight it is difficult to know how to interpret the use of the function
My(x,T) and whether or not it accurately reflects the size of the mean value in
many cases. First let us relate it to more familiar quantities:
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74 2.3. HALASZ’S THEOREM

EXERCISE 2.3.2. Prove that

1
ﬁg)T( ’F(l +it+ @N =logx exp(—M¢(z,T)).

From the result in this exercise, we might expect that the mean value of f up to
Yeisi “typically” of size exp(—M;y(y,T)), and indeed we ﬂll! exhibit this in Theorem
m Moreover we will give examples in sections 77 and 177 to show that the extra
factor (1 + My(x,T)) is necessary.

When we go to prove Haldsz’s theorem, it is simpler to work only with totally
multiplicative f (note that if f is a given multiplicative function, and g is that totally
multiplicative function for which g(p) = f(p) for all p then My(x,T) = My(z,t) by

definition). The following two exercises allow the reader to justify that this may be
done without loss of generality:

EXERCISE 2.3.3. If z > y show that

1 log x
o< M T)— M T) <2 - =21
> f(l‘, ) f(ya ) = y;z og logy

+0(1).

Show that this bound cannot be improved in general.

EXERCISE 2.3.4. By writing f = g * h where g is the totally multiplicative
ingtion with g(p) = f(p) for all primes p, show that Haldsz’s Theorem (Theorem
.3.1) holds for all multiplicative functions f with values inside the unit disk if it

does for totally multiplicative functions. (Hint: Note that h is only supported on
powerful numbers, and |h(p*)| < 2 for all k. Use the hyperhgla method to bound
the mean value of f. You might need to use exercise b:&%fp

2.3.2. Proof of the prime number theorem

COROLLARY 2.3.3. [The Prime Number Theorem] There exists a constant A
such that

(log log z)4
) —r <L ogr

PRrROOF. Note that

) . 1
D(1, 7' )% + D(u(n),n'"; )% = 2 Z — =2loglogz + O(1).

p<z

lemd.3.1
Therefore, using Lemma b(.eml -6, we deduce that for T > 10,
M, (x,T) > loglog x — 8loglogT + O(1).
12C
Hence by Corollary B?B.Zovl\rfe have

%‘ ZH(”)’ < (1oglogx)9.

= log x
. . ex:MobiusEquiv |
We deduce the result with A = 11, by exercise [I.1.15 an%i this value for A can
probably be reduced with more effort). O

IThis exercise also appeared in chapter 8; it now only appears here.
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%g 1ot hope, using only these methods, to improve the errog term.in Corol-
lary 2.3.3 to better than (loglogx)/logz, as discussed in exercise E 3.1. However,
for many applications, we would like to il%gggyﬁ this to <p z/(log x)B , for any

given B > 0. Fortunately, Koukoulopoulos [?] Tecently developed a modification of
this approach which allowed him to achieve this goal, indeed proving that

b(@) =2+ 0(wexp ( — (loga)/>+));

which is as small an error term as is known from classi %g%%go% We will describe
Koukoulpoulos’s more sophisticated proof in chapter [77

i K K PNTexplicitl
The proof of the prime number theorem given in Corollary b 3.3 bjgg%ngs on
the (simple) estimates for {(s) to the right of the 1-line, given in Lemma ne
can entirely avoid the use of {(s) and instead use the Brun-Titchmarsh Theorem

to obtain the estimates necessary to deduce a slightly weaker version of the prime
number theorem:

EXERCISE 2.3.5. (i) Let [t| < logz and P = {|t|}®° < p < x: cos(tlogp) >
—1}. Show that the primes in {p < 2} \ P belong to a union of intervals. Apply
the Brun-Titchmarsh theorem to each such interval to deduce that

Z ! < {g +0(1)}loglogw.

p<z p
pg¢P

Deduce from this and the definition of P that D?(u(n),n®;z) > { +o(1 )} loglog z,

and hence ¢(z) = z + O(x/(log z)7+t°W) for 7 = 1/6.
(ii) Use partial summation and the Brun-Titchmarsh theorem to show that one
can take 7 =1— 2

2.3.3. Real valued multiplicative functions: Deducing Wirsing’s
theorem

Let f be a real multiplicative function with —1 < f(n) < 1 for all n. It seems
unlikely that f can pretend to be a complex valued multiplicative function n*®
The triangle inequality allows us to make this intuition precise:

LEMMA 2.3.4. Let f be a real multiplicative function with —1 < f(n) <1 for
all n. For any real number |a| < (logx)* we have

D(f,p'*;x) > % D(1, f;2) + O(1).

PrOOF. If D(1, p?;x) > %]D)(l, f;2) + O(1) then the triangle inequality gives

D(L, f;2)+0(1) < D(1,p**2) = D(p~"*,p'* 2) < D(f,p'*;2)+D(f,p " 2) =
Otherwise, since D(1, p?*;z) = D(1,p'*;z) + O(1) by Lemma %gl‘ﬂ%
D(f, %) 2 D1, ;) ~ D(L,p% ) 2 3D(L, f52) + O(1).
(I

. realdist , .
Using Lemma 2.3.4 and Halasz’s theorem with T' = log x we deduce:

D(/f,

P a).
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COROLLARY 2.3.5. If f is a multiplicative function with —1 < f(n) <1 then

1
—Zf < (1+D(1, fix)?) exp (- 5 D(L, fi2)?).
n<x
If f(n) > 0 for all n then, evidently t¢(z,T) = 0, and so we can replace the
constant % by 1 in the Corollary. However when f(n) takes negative values things
are not so simple:

EXERCISE 2.3.6. Prove that if f(n) > 0 for all n then ¢¢(z,T") = 0. Show also
that if f(p) = —1 for all primes p then ¢;(x,T) # 0.

Halrea?e optimal constant, 0.3 D13 4322111 place of é, has been obtained in Corollary
b 3.5 by Hall apd Tepenbaum g (see section **).
E'g W
Corollary implies a quantitative form of Wirsing’s Theorem blrl sgm
this in turn, implies a quantltatlve form of the prime number theorem: Slnce
D(1, u;x)? = 2loglog z+O(1 e deduce that 1(z) —z < z/(log x)%/9t() “though

P
this is weaker than Corollary b 3.3 :

2.3.4. Distribution of values of a multiplicative function, II

ist
We develop the discussion from section B [.6, now using explicit estimates de-
rived from Haldsz’s theorem.

EXERCISE 2.3.7. Let m be the smallest positive integer with ]D)(f(p)f”, pime: 00) <
oo for some a € R. Show that if 7 is any other integer with D(f(p)", p""?; 00) < 0o
for some g € R, then m divides r.

equidist
If we are in case (ii) of Theorem 2.T. en we deduce, from Haldsz’s theorem

and the last exercise, that >_, _y f(n)F = o(N) if m does not divide k.
The characteristic function for the interval (a, ) is

B—a+ Z elka) — e(kf) e(kt).

ik
kEZ
k0
We can take this sum in the range 1 < |k| < M with an error < e. Hence

R(N,Oé,ﬂ): Z (k@é%%ﬂ-]:kﬁ Zf

1<|k|<M n<N
e(mra) —e(mrpg) 1 o
- Z 2irmr N Z f(n)™" + 0(e)
1<|r|<R n<N
writing & = mr and R = [M/k]. This formula does not change value when we

change {a, 3} to {&« + =,8 + L}, nor when we change {f,a,f} to = times the
formula for {f™, ma, mB} and hence we deduce that

1
Rf(NvO‘7B) = ERfm(Nvma7m/8) +0N—>oo(1)
:Rf(N7OZ+i,B+i) +OoNsoo(l), for 1 <j<m-—1,
m m
foral0<a< f<1.

2More precisely — cos 8, where 3 is the unique root in (0,7) of sin 8 — Bcos 8 = %77.



2.3.5. BEST CONSTANTS s

2.3.5. Best Constants

sec:BestConsts‘

It is evident that ¢(z,logxz) = 0 if all f(n) € [0, 1], and hence

Zﬂm<mm-§?tﬂﬁ
nsw p<z p

One might guess that this also holds for all real-valued f, but that is not true.
LEMMA 2.3.6. Let 01 be the solution to sinf)y — 0y cosfy = 3, and then xk =

—cosf = .32867.... If each f(p) € [~1,1] and |t| = (logz)°M) then
Z 1- Re(i(p)/plt) > KZ 1 _J(p) 4 O()

p<z p<lz

Moreover this is the optimal such constant k.

EXERCISE 2.3.8. Use the example f(n) = n' to show that there is no such
result for complex-valued f.

PROOF. We wish to maximize A, such that, for all f(p) with |f(p)| <1,

(EPD SRS B DEE

To maximize the right side we select f(p) = sign(cos(tlogp) — A), so that we need
Z | cos(tlogp) — Al

(1 —-X)loglogx > )

p<z

To evaluate this sum when ¢t = 1, one needs the prime number theorem. Under this
assumption we have

| cos(tlog p) — A| nloglogx 4 O(loglog(1 + [t])) ?f It > 1
d =T = {1 - N log(1/]t]) + nlog(|t|logz) + O(1) if 1> |t| > 1/logx
P g (1= A)loglogz + O(1) if [t| < 1/loga
where .
0= [ cosf — Aldo = 2 (sinfy — M) + A

T o o T
and 6y > 0 is the smallest real number for which A = cos€y. We need 1 — \ > .
The result follows by taking 1 — A\ = 7 and then 6, = m — 6.

The example f(p) = sign(cos(tlogp) — k) shows that the constant cannot be

increased. O
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CHAPTER 24

Perron’s formula and its variants

Perron’s formula is a key ingredient in the proof of Haldsz’s theorem. In this
chapter we will discuss how it is used. To do so, we move away from purely elemen-
tary techniques, and use standard (complex) analytic techniques that are useful
throughout analytic number theory.

In the next chapter we will finally prove Haldsz’s Theorem.

2.4.1. Deriving Perron’s formula

Many times now we have seen sums where some parameter n ranges up to x.
Perron’s formula gives an analytic way of expressing the condition whether n lies
below = or not, and this expression paves the way for attacking such sums using
analytic properties of the associated Dirichlet series.

LEMMA 2.4.1. Lety > 0 and ¢ > 0 be real numbers. Then

| peFio s 1 ify>1
Y .
24.1 — 2 ds=96 1):={¢1L —
( ) 2M% Joioo S s (y>1) 2 ny !
0 fy<l,

where the conditionally convergent integral is to be interpreted as limp_, o fccjzg
Quantitatively, for y # 1,
1 c+iT‘ys . 1
(2.4.2) i ) s ds=0(y >1)+ O(y min (1, il 10gy|>)'
ualper

The formula (B?f.lgfmay be verified by moving the line of integration to the
right when y < 1; that is, letting ¢ tend to +oo and using Cauchy’s theorem to
justify that the integral does not change. When y > 1 the idea is to move the line
of integration to the left; that is, to let ¢ tend to —co and keeping in mind that
we cross a pole at s = 0 which gives a residue of 1. This argument can be made
precise, but a little care is needed as the integral is not absolutely convergent. The
reader should attempt to carry this out, or at any rate carry out the corresponding
argument for the variants in the exercise below where the integral is absolutely
convergent.

EXERCISE 2.4.1. Let y > 0 and ¢ > 0 be real numbers. Show that

(2.4.3) Loy Jlosy iy >1
- omi 52 0 ify<l

c—100
, [Perron
Now we return to the proof of Perron’s formula, Lemma b.ZI. .

79
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PROOF. Integration by parts gives (for y # 1)

/C+iT £ _ /C+iT ld( ys ) _ 1 (yc+iT B yc—iT) N 1 /C+iT gds
e—iT S e—iT S \logy logy \c+iT c—1T logy Jo_ip 82

Since . _
[ = [T s 0w,
c—iT 82 c—1i00 82
ervar
using (E.4.§} we conclude that for y # 1
1 c+iT ys yc
LT sy o),
21 Je—ir S s=0y>1+ T|log y|

P
This establishes (Bl.lzlale Twhen T|logy| > 1. Now suppose that T|logy| < 1. Here

1 c+iT s 1 c+iT ¢ ’
Ygs = — L (14 0(Js|log y))ds = O(y°),

2mi Jo_ir S 21t Jo_ir S

quanPer . . . . uanPer . .
and so (olds again. From the quantitative version (B.ZI.Z) the qualitative
(24

relation for U ;é Q follows upon letting T — oo, and the case y = 1 was
checked in Exercise b5ﬁ |

2.4.2. Discussion of Perron’s formula

Suppose that a,, are complex numbers with a,, = n°"), and define the Dirichlet
series let A(s) = >, - ap,n™°. This is absolutely convergent for Re(s) > 1. If z is
not an integer, then Perron’s formula gives, for any ¢ > 1,

1 [t s zy\sds 1 fetiee x®
2.4.4 - — () == A(s) Zds.
( ) ;an zn:an 27 /C_l-oo n/ s 271 J e”ioo () S ds
We can interchange the sum and integral as everything is absolutely convergent for
arbitrary ¢ > 1. Note that |2°| = 2° increases as ¢ increases, while |F'(s)| may be
expected to increase as ¢ decreases to 1. A convenient value for ¢ that balances
these trends is to take ¢ = 1+ 1/logz, and we shall frequ etrlr_y do so below.
Unfortunately it is not easy to bound the integral in (géﬁl) directly. If we use
the quantitative form of Perron’s formula with ¢ = 1+ 1/logz, and |a,| < d.;(n)
for all n then
1 c+iT
(2.4.5) > an = oo

n<z

z(log z)" log T)

A(s)%ds + o( -

c—iT

[Perex
(see exercise b.5.4 below). Then estimating the integral trivially we would obtain,
choosing T' = (log x)",

T
. ) dt xlog(zT)
g an<<:t:(ﬁg);\A(c+zt)\)[Tl+|tl+ T

n<w
. x

x( ‘tlgrggé(x)ﬁ |[A(L1+1/logz + Zt)|) loglog x + gz’

When # = 1 this bound is weaker than the trivial >
that maxp <1 [A(1 +1/logx +it)| > 1.

In the case a, = f(n) = 1, we have F(s) = ((s) and > . f(n) =2+ O(1).

Now |¢(c+it)| is largest when t = 0 and here it attains the value ¢(c) = 1/(c—1) =

log x. However such a large value is attained only when [t| < 1/log . In estimating

n<a @n <K T since one can show
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the Perron integral trivially, we have used this maximum value over a much larger
range and thereby lost a lot. For a general multiplicative function, the large values
of |F(c+it)| are also concentrated in small intervals and thus we can hope to gain
a factor of log z in Haldsz’s theorem.

Hence we are hoping for a bound like

Zf(n) <Lz

n<x

Max|s| < (log z)~ | F (¢ + it)|
log x

-loglog x

so the trivial 1lgound on Perron’s formula is too big only by a factor of logz. In
exercise E.B.I we saw that the improved bound given by Haldsz’s Theorem is never

better than zloglogx/ ]gix gggmd c‘é’&»}"’ﬂl show that this is the “best possible” by

the examples in section [777]. is 1s what makes Halasz’s Theorem so difficult to
prove: In most analytic arguments, one can freely lose powers of logx, here and
there.!

2.4.3. Perron’s formula
The most famous example comes in taking f(n) = A(n), to obtain

s = am =g [ (-4

n<z —100

This is the basis Riemann’s approach to proving the prime number theorem, the

idea being that one shifts the contour to the left, and uses Cauchy’s residue theorem
the zeros of {(s). Developing an understanding of the zeros of ((s) is difficult (and

indeed, after 150 years our understanding is somewhat limited), and this is the
primary difficulty that we seek to avoid in this book. Our approach here will be to
work on this contour, and other contours to the right of 1, and to better understand
the integrand.

We expect cancelation in the integral because z® = z° - £ has mean value 0
as t ranges through any interval of length 27/logz. In order to obtain significant
cancelation we need A(s)/s to not vary much as ¢ runs through this interval. If we
integrate by parts, first integrating the x°, we do succeed in getting appropriate
cancelation:

c+iT s s c+iT c+iT s c+iT s
/ A(s)m—ds:[A(s) :c } / Al(s) < ds+/ A(S)L

T S slogzle—ir  Jo_ir slogx T s2logx

to exactly determine the value of 1(x) in terms of the poles of , which include

The first term is < /T, whereas the second and third terms correspond to using
Perron’s formula to evaluate 10;1 > n<e f(n)logn and @ > n<a f(n)log(z/n),
respectively. Thus integration by parts here corresponds to the identity

log z = logn + log(x/n).
Note that the third term is thus < z/logx, and so we have

c+iT s c+iT s
z 1 N x
/HT A(s)?ds——logx/c_m A(s)?ds—i-O(logx).

IAn important exception are log-free zero density estimates (very close to the 1-line), which
are a crucial ingredient in the classical proofs of Linnik’s theorem. Our techniques bear features
in common with these classical log-free arguments.
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In other words we have

1 ety x® x
2.4. = — Z(s) - A(s) ==
(2:4.6) Z n log x /c_l-T A (s) - Als) s ds+ O(logx)’

n<z

from which we deduce

Z < maXltlgT A(l + loglgm + Zt) /T A/( + Zt + x
an, T .
log x A(c+it) 1+ [t] log x

n<x

Now we have |A|/log z as desired, and we need to bound the integral. The integral
over A'/A is now the key difficulty and we have no technique to approach this for
general A. In the next chapter we obtain the upper bound [, [(F'/F)(c+it)[*dt <
log x when a,, = f(n) so that A = F. In this case, by Cauchying, the above bound
is a factor of y/logx bigger than the Haldsz bound. This suggests that if we can
get two F'/F factors into our integral we might be in luck. In the next subsection
we do exactly this.

2.4.4. The basic identity

PerFT
Instead of directly developing ( Es ), we work with a different identity which

turns out to be much more flexible. Herein we need only suppose that the sums
defining both F' and F’/F are absolutely convergent to the right of the 1-line

LEMMA 2.4.2. For any x > 2 with x not an integer, and any ¢ > 1, we have

Z (f(n) logn / / 27m/jerO r s+a)F’(s+a+ﬁ) ds dg do.

2<n<zx

PROOF. We give two proofs. In the first proof, we interchange the integrals
over o and 3, and s. First perform the integral over 3. Since fooo F'(s+a+p)dS =
1 — F(s + a) we are left with

ct+100 s
/ F’(s—i—a))% da ds,

2mi —ico
and now performing the integral over « this is

1 ct+ioo s
— (—logF(s) + F(s) — 1) L ds.

21 J oo S

Perron’s formula now shows that the above matches the left hand side of the stated

identity.
For the second (of course closely related) proof, Perron’s formula gives that
1 [etice pr x® As () f(m)logm
omi | f(S‘FOZ)FI(S"'a‘hB)gdSZ Z éa metB
c—to0 2<8,m
tm<z

Integrating now over v and 3 gives

Ay(0)f(m)
2 Togtomy =, 2 U0
tm<a -

where we use that >, A¢(0)f(m) = f(n). O

—~
~—
I
=
~
—
S
~—
N—
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REMARK 2.4.2.1. One idea is to use Perron’s formula further to the right of the
1-line so with ¢ =1 4 « for @ < a <1, and dividing through by =%, we obtain

- L [ F(l+a+it) ,
(1+a) )1 - Sl Sl e L L T
v D J(m)logn=—5 o ltatit "

n<z

Although this is not useful in of itself, computing the mean square yields Parseval’s
identity:

a1 F'(1+a+iy)|?
2.4.7 ﬁ“ﬂ> ) ‘7 - k—————ﬂd
(2:4.7) / ;y, O8N T on Ttatay |V

. . , . MRO2FBES4In1MR2016245
This was the basis of the proofs of Haldsz’s Theorem in W

2.4.5. Complications with the small primes

MeanSquarePrimes
In Lemmab 5.41n the next chapter, we give an upper bound on f [(F'/F)(c+

it)|?dt, but only in the case that f(p*) = 0 for all primes p < T2. Hence we need
to split f into its small and large prime factors: Let y > 2 be a parameter, and
define the multiplicative functions s(.) (for small) and ¢(.) (for large) by

o) = {f(n) PO <Y {f(n) it p(n) >y
0 otherwise 0 otherwise

where p(n) and P(n) denote the smallest and largest prime factor of n, respectively.
Therefore f is the convolution of s and ¢, and setting

S(s) = Z S(Tj) and L(s) = Z 57(1—2), we have F(s) =S(s)L(s).

n>1 n>1

We define As and Ay analogously. Note that S and £ depend on y.

LEMMA 2.4.3. Let F, S, L, and y be as above. Let ¢ > 1 be a real number.
Then

S c+zoo ’ ,
/o /0 27m/ +a+5)%(s+a)i(5+a+ﬂ) dsdBda
= Zf(n) - Z s(m) — Z S(m)Af(k).
n<z m<zx e log k

PROOF. We can swap the order of the integrals since we are in the domain of
absolute convergence. We begin by integrating over 5 obtaining, since lim,,_, o £(s+

atn) =1,
s Y " dsd
/0 27m/p s+a)( (s—l—a))?sa.

Next we integrate over a to obtain
1 c+ioco s

x
i) S(s)(—1 —log L(s) + ﬁ(s))?ds.
PerF
The third term is the Perron integral (b%rfél) with Dirichlet series S(s)L(s) = F(s)
d so we obtain the sum of f(n) over n < z. The first term is the Perron integral

(2.4.4) with Dirichlet series S(s) and so we obtain the sum of s(m) over m < x.
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The finally the middle term has Dirichlet series S(s)log £(s) which gives the sum
of s(m)A(k)/logk over mk < x. O

. L. . keyidrls .
We need to truncate all of the three infinite integrals in Lemma bi} We begin
by showing that the integrals over o and S can be reduced to a very short interval.

LEMMA 2.4.4. Let F, S, L, and y be as above. Let n > 0 and ¢ > 1 be real
numbers. Then

c+zoo L L
248/ / / s+a+6) (s+a)= (s—i—a—i—ﬁ) dsdﬂda
=0 0 2mi J,._ L

(2.4.9) =Y f) = D s / d s o né(ﬁ)ada.

n<z mn<z mkn<x

keyidrl keyidr2
PrROOF OF LEMMA 2%1 First we perform the integral over g in (biSc , ob-

taining

c+zoo 2
/a . 27”/0 s+a)(£(s+a+2n) *£(8+a))?dsda.

. . . keyidr3
The term arising from L(s + « + 2n) above gives the third term in (bﬁé , using
Perron’s formula. The term arising from L£(s + «) gives

C+ZOO ’ 1 oo o
_/ 2ri / SEL s+ a) ds do = 2 S(s)(L(s) — L(s+ U))?dsy

i c—100
upon evaluating the integral over gon s formula now matches the two terms
above with the first two terms in ( 4.9). This establishes our identity. g

2.4.6. An explicit version

keyidr3
We now bound the ¢ontribytions of the second and third terms in ( T r, giving
the first error term in E T11).
. keyidri
LEMMA 2.4.5. Keep the notations of Lemma|2.4.4, and suppose that |Ar(n)| <

kA(n) for alln. Forn=1/logy, we have

) £(n) x P
Z / Z n2n+a da < @(log y)".

mn<x mkn<zx

ProoOF. We take the absolute value of all of the summands. Each integer
N < z appears at most once in a non-zero term in the first sum, and then the
summand is < |f(N)|/n". We get an upper bound, using Corollary 1.2.3 of [The
Book], of

“ogr L5 T1 (=08 < oz IL0-) " T ()

<y y<p<z

X
< —(logy)"
<logx(0gy)

The second term in the lemma, is

[A(K)| [¢(n)] T ila |s(m)| [£(n)]
<</ Z m)|— 2n+ado¢ < ; T Z i n1+2nda’

mkn<z mn<x
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upon summing over k; and this is is

K 1 —r x
-« K
<</ II 1_ pi- a) II <1_p1+2n> da < logﬂc(IOgy) ’

p<y y<p<z

as desired. O

2.4.7. Moving and truncating the contours

Finally we need to truncate the integral over s at a reasonable height 7". This
is a standard procedure in analytic number theory but we will complicate this by
moving the contour, for each o and 3, to a convenient vertical line.

PROPOSITION 2.4.6. Let 2 >n =

>0andcy =1+ Ifr>y>T>1

1Ogll logz
then
(2.4.10)
co+iT ,C/ [/ xsfozfﬁ
/ / 27rz/CO T 3_a_6)£(8+ﬁ)f(5—5)f(3+5)mdsdﬁda

(2.4.11) =Y fn (

n<x

x
—(logy)” +(10gw)“)-
T
Moreover, one can replace each occurrence of

Low Yy MO

y<n<z/y

keyidr2

ProOF. Fix «, 8 € [0,7n)]. If we write the terms in the Dirichlet series in (%

as a, b, ¢, d respectively, then, by Perron’s formula, the integral over s equalsy ., .. (bed)~(bd)~#

Each of ¢ and d are > y, by the definition of £, and so each of a, b, c and d must be

< z/y. Hence we may truncate each of the Dirichlet series to a finite sum, meaning

that we may move the line of the s-integration to Re(s) = cq g for any co 3 > 0.
Moreover we can, and will, replace

L Ao(n Ao(n
Tera- ¥ My

p(n)>y y<n<z/y

and similarly for (£'/L£)(s + a + B). ovide
Let ¢q,3 = co — a — /2, so that the inner integral over s in (bﬁé) is

(2.4.12)
1 cotioo Ay(m) Ay(n) xs—a—h/2
2i co—ioo S(sfa—ﬂ/z)( Z mf—ﬁﬂ)( Z nSi-ﬁ/2>£(S+B/2)s—a—ﬁ/2d8'

y<m<z/y y<n<z/y

H{(aen grror introduced in truncating at T is, by the quantitative Perron formula,

Am)A(m), , b)Y @ \co—a—B/2 1
<X X Y e @l () win (1 e )

a y<mn<z/y b
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The terms with N < /2 or N > 3x/2, where abmn = N, contribute

xlfafﬁ/Q A(m)

e D B L Zal = ﬁ/QZbHB/Q
y<m<z/y y<n<z/y
pl—a—p/2 8/2 1 -
L — T min{log x, 2"/ /A} min{log =, 1/5} H ( W) H (1 — ,
P<y y<p<z

xl—a

< min{log z,1/5}?(log x)".

Integrating this over a > 0 and then § > 0 gives < #(logz)".

For the terms with 2/2 < N := kijkomn < 32/2 we have (z/N)®0~*=8/2 « 1,
Next we integrate over o and 8, and then twice use the bound ) A(a)d,(b) <
dy(c)log ¢ to obtain

. Alky) AU)du(n) _ Ak)d(r)
< d( )W;Wm Tog(N/m) k%; gy S el )W;V/m Tog (N < d.(N),

ab=c

where r only has prime factors > y. Hence these terms contribute

1 T
< de (N min(l,i) < Z(logz)* tlogT.
z/2<N<2zx
keyidril

We now summarize the p oof egln V{lth identity in Lemma bil re-
placing the inner integral in 3ls y . eit l}éncate the inner integral
glol:cc%ndgg the error in Lemma he terms in (2.4.9) are bounded by Lemma
inally we replace 8 by 2,6’ proving the Proposition. ([

2.4.8. Exercises
1
EXERCISE 2.4.2. Verify (El.lzla. e) rdirectly in the case y = 1.

EXERCISE 2.4.3. Let y > 0 and ¢ > 0 be real numbers. Show that
1 c+ioo 1/
— T(s)ds =e /Y.
omi ), YT)ds=e
EXERCISE 2.4.4. Let a,, € C. By dividing the n into the cases when |n — x| >
x/2, or |n — x| < z/T, or k:x/T <|n—zl < 2]4::1:/1;&71]_3161“6.1@ =2 for0<j<J:=
[log, T'], show that the error in Perron’s formula, (b.ZI.S), is

C o0

|an| 2¢

n=1 7=0 ‘m—n‘g2jm/T

Show that if each |a,| < dx(n) then we obtain the claimed error term.

Perron2 . ,
EXERCISE 2..4.5. Deduoe (b.ZI.Gi by apply:mg Per.ro S, :fg)vrgﬂ.ﬂa to the sum on
the right-hand side of the displayed equation in exercise [77.

1

1+8/2

z
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CHAPTER 2.5

The proof of Halasz’s Theorem

We will prove a technical version of Haldsz’s Theorem:

THEOREM 2.5.1 (Haldsz’s Theorem). Let f be a multiplicative function with
|[Af(n)| < kA(n) for all n. Then

1 .
F(l14o0+it)|\do x
—_— ) — logl .
Zf loga?/ <\t\§8§§(x>~ 14+0+1t D o + logaz( og log )

n<ez 1/logz

The following corollary is easier to work with in practice:

COROLLARY 2.5.2. Let f be a multiplicative function with |A;(n)| < kA(n) for
alln. We have

Y T
Z f(n (14 M)e Mz(logz) 1 + ﬁ(loglog:r)”.
n<z 08 ¥
where '
POt loge i)
[t|<(ogz)= | 1+ 1/logx + it ' '

Hal2

This leads to the statement of Haldsz’s Theorem, given in Theorem baB
The “trivial” upper bound o t(lns sum is given by noting that each |f(n)| <
d.(n) and then applying exercise T.T.14(i), so that | Y. __ f(n)| <. z(logz)~~*.

n<z
EXERCISE 2.5.1. Prove that M > xMjy,,.(z, (logz)") + O(1).

. HalCor
Hence, since M > 1, Corollary b.5.2 gives bounds that are no worse than
trivial, and better if M is large x4 13 .
Comblnlng this last exercise with exercise b 3.1 we deduce the following conse-
quence:

COROLLARY 2.5.3. We have

> fn ) <n o — (1 M) (e ™ log z)".

n<x
where M' = My ,.(z, (log x)*).
2.5.1. A mean square estimate

To prove Haldsz’s theorem, we nee f{m %S‘rzlmate for the mean square of the
sums over prime powers that appear in (2.

LEMMA 2.5.4. For any complex numbers {a(n)}n>1, and any T > 1 we have

/ TT‘ 2 W\Z‘M > nla(m)PA®).

T T2<n<z T2<n<z

87
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PROOF. Let ® be an even non-negative function with ®(¢) > 1 for —1 <t <1,
for which the Fourier transform of ® is compactly supported. For example, take
D(z) = (Sinll)Q(%)2 and note that ®(z) is supported in [—1,1]. We may then
bound our integral by

JL X ety

< 3 Am)A®) latm)a(n)] [T (T log(n/m))|.

T2<mmn<z

Since 2|a(m)a(n)| < |a(m)|* + |a(n)|* and symmetry, the above is

< D lam)PA(m) Y AW)|TH(Tlog(n/m))-

T2<m<z T2<n<zx
Since ® is compactly supported (and thus bounded), for a given m the sum over
n ranges over only those values with |[n —m| < m/T. Therefore, using the Brun-
Titchmarsh theorem, the sum over n is seen to be < m. The lemma follows. [
2.5.2. Proof of Halasz’s theorem

GenHal keyidr2
ProOOF OF THEOREM 2.5.T. The integral in (bx.zle. [0 , for fixed a, B € [0,7)], is

1—a—p/2 |S(co — = B/2 +it)L(co + B/2 + it)]
< (\Itrf?T( lco + B/2 +it| )

T
Ay(m) Ay(n)
(251) X /;T ’ Z mCo*ﬁ/QJr’L't Z nCo+ﬁ/2+it dt7
y<m<z/y y<n<z/y
. eanSquarePrimes
which allows us to apply Lemma BB.ZL Now
S(co —a— B/2 +1it) ( ( 1 1 ))
— 1
‘ S(Co + 5/2 + it) < exp HZ pco—()t—ﬁ/2 pco+5/2 <1

P<y
since «, B, co — 1 < n. Therefore

|S(co —a— B/2+it)L(co + B/2 + it)| <’F(co+5/2+it)’

lco + B/2 + it| co+B8/2+it I

s Pri bound
Using Cauchy-Schwarz and Lemma g%a?zl the emrflenxlge;‘al in (E.SOTI ) is
A(m)\ z A(n)\ 2 82 . 1
(25.2) < ( Z ka) ( Z n1+5) < (z/y)"’* min (logac, B),

y<m<z/y y<n<z/y

ggg{lidésd y > T2. Combining the last two estimates, we find that the quantity in
.2.5. ) is

1 F 2+t
<zl min(loga:,f) |H|12}T<‘ (co+B/2+1 )‘
t|<

P s aagn |
X 1
Changing variable ¢ = 8+ 1/log z, the integral in (2.4.10) 1s
1 2/logy (1 BN d
(253) < / xl_o‘/ (max ‘w‘)ida
a=0 1/logx [t|<T 1+o0+it g

Now fizo ' 7da < [ @'"*do = x/log x. Moreover |F(1+ o + it)| < (log )",
so that those o for which |F(1+4 o+ it)| is maximized with |¢| > (log )", contribute
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loglog x to the mtegralk Thelresult then follows by letting y = T2 where
xkeyidr
#+2 in Proposition . O

<

log T

= (log z)

alCor . L
PrROOF OF COROLLARY %52 By the maximum modulus principle we have

that the maximum of ‘%’ within the box

{u+iv: 1+1/loge <u <2, |v] < (logzx)~}

lies on one of the boundaries: If the maximum lies the boundary with |v| < vy :=
(log )" we have [F(1 + o £ iv)| < (logz)™ < |1 + o £ ivi], or on the boundary ..
with u = 2 we have |F(2 4 it)| < ((2)" < |2 + it|. Therefore the integral in (77;
is < loglog x and the result follows. Hence we may assume that the maximum lies
on the line Re(s) = ¢g. Noting also that |F(1+ o +it)| < ((1+ 0)® < 1/o", we

obtain
F(14 o +it) 1\~
max 7‘ < min ( M(log x)", ( ) )
[t|<(logz)= | 14 o+t o
Gen
Inserting this in Haldsz’s theorem b.S. [ (and splitting the integral at ¢ = eM/*/log )
we obtain the corollary. O

al2Cor axTruncRight M
PrROOF OF COROLLARY % 3.2. Here k = 1. By exercise g 3.2 we have e <

e~ M (@108 2) 50 we have the upper bound < (1+M(x,log z))e™Ms(@log I)—i—log ]ﬁg 3:/ log x.
The second term is smaller than the first by the second part of exercise

Hal
PROOF OF THEOREM 2.3.1. If T > loga then My(x,logz) > My(z,T), so
that (14 My (x,logz))e™Mr(mlogz) < (1 +eMJZ(Jf3 Ne Mi@T) “and the 1/T term
is smaller, by the second part of exercise f1<T< log:c then we apply

enHal
Theorem b 5.1 with K = 1 and observe that if the maximum of ’%

with T' < [t| <loga then this is < {(1+ 0)/|t| < 1/(cT). Bounding the integral
there using this estimate leads to the 1/T term, as claimed. O

occurs

2.5.3. A hybrid result
Corollary b 5 ,2 qqo?s not take into account the location of the maximum, even

though Theorem does We remedy that here.
COROLLARY 2.5.5. Let t; = ty(x,logx). Then
M (z.1 log 1) S (o8 ) T (logl
t .
;f 1+ M¢(z,logz) + log 1) 510 x-i—logx(og ogT)

. axTruncRight
PROOF. By exercise g.B.Z we have

e—Mf(rc,log z)

e—M = < e—Mf(m,logm).
14|
. . L. alCor
Substituting this into Corollary 5.5.2 we get the result. O

In the next chapter we will compare the mean values of f r{‘ng and f(n ”1 nd
obtain a stronger result (and stronger than Corollary E L.IT and L emma
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2.5.4. Exercises
1
EXERCISE 2.5.2. Verify (El.lzla. e) rdirectly in the case y = 1.

EXERCISE 2.5.3. Let y > 0 and ¢ > 0 be real numbers. Show that
1 c+ioo

27 J oo y°T(s)ds = e /Y.
EXERCISE 2.5.4. Let a, € C. By dividing the n into the cases when n < x/2,
orn > 3z/2, or kx/T < ln.— x| < (k+1)z/T for 0 < k < T/2, show that the error
in Perron’s formula, (b.ZI.S), is

T/2

¢ = |a(n 2¢
<<T;1'7§LC> LD TD DR T

k=0 kx/T<|x—n|<(k+1)x/T

Show that if each |a,| < d,;(n) then we obtain the claimed error term.

Perron2 . ,
EXERCISE 2.5.5. Deduce (b.ZI.Gi by applying Perro S, :fg‘;gyﬂlla to the sum on
the right-hand side of the displayed equation in exercise [77.
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CHAPTER 2.6

Some examples, and a discussion of whether
Halasz’s Theorem is best possible

In this chapter we show that Haldsz’s Theorem cannot be much improved. It
will be helpful to first give a few examples of multiplicative that will allow us to
appreciate the limitations in what can be proved here and later. After that we
discuss how to find f(.) for which the mean value is at least as big as the upper
bound given in Haldsz’s Theorem. Finally we show that for all f, there exist z-
values for which the mean value is bounded below by a quantity almost as big as
Halész’s bound.

2.6.1. Two examples

We now discuss two examples which establish that the theorems of this chapter
have the beﬁ:‘sa 1@3%{%}]3% a?ngrl%%ggl;géé tc\é\ges 1:%vﬂl justify .the claims of this subsection
in Chapter [77. In secftion 2.3.5 we saw the following example of a completely

multiplicative, real-valued, function f, which correlates with p’:

)1 if Re(p') > 0;
) = {—1 if Re(p’) < 0.

In other words f(p) is chosen to be 1 so that f(p)cos(logp) = |cos(logp)|. The
remarkable fact about the asymptotics of the mean value of f is that there exists a
constant ¢ # 0 such that

Z f(n) = ca"tilogz)* ! + ez i (logz)* ' + o(z(logz) = 1)

n<lz

= (2C cos(log z + ) 4+ o(1))z(log x)%_l
where ¢ = Ce?. Note that this is a multiple of z(log z) =~ which oscillates between
—1 and 1, and is regularly 0.
A related construction is given by g(p) = (14 f(p))/2, which only takes values

0 and 1, for which

Z g(n) = (2C" cos(logz + ') + o(1))z(log z) =~

n<x

for some real numbers C’,v'.

2.6.2. The Selberg-Delange Theorem

Selberg showed that for any x € C we have

eY(1—r)

Z de(n) = {ﬁ + 0(1)} r(logz)"~t = {W + 0(1)} ~x P(dg; x).

91
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That is, the “expected” mean value  P(d,; x) times €Y' =%) /T'(x). * The T function
is defined as the meromorphic function that extrapolates the factorial function,
and so satisfies the functional equation I'(z + 1) = 2I'(z). Hence 1/T'(x) = 0 for
k = 0,—1,—2,..., and one can show that these are the only such values. Hence
Selberg’s result only gives an asymptotic fgrn%ula for k # 0,— 2,...; we will
discuss the mean of d_j, k& € N, in chapter }'7%

We can use this result lgv?sth Kk =1) to establish that Haldsz’s Theorem cannot

esties
be improved —see section b 6.3.

THEOREM 2.6.1 (Selberg-Delange). Let f be a multiplicative function with |f(n)| <
1 for alln > 1. Assume that

(2.6.1) V(@) =) As(n) = ”‘”O(@)

n<z
for some T in the range 2—Re(k) > 7 > 0. For any fized € > 0 we have
ev(l )

(2.6.2) =3 f(n) r PUe )x+O<W>.

n<x

The prime number theorem implies the result of Selberg for |7| < 1. We will
give the proof of the Selberg-Delange theorem in chapter 7?7, as well as a startling
application.

2.6.3. Functions for which Haldsz’s Theorem cannot be improved
Define f to be the multiplicative function with
7 for p < /x;
Flv) = v
(logz/p) for \/r <p <.

An integer n < x has no more than one prime factor > +/z, and writing such
integers as pm, we obtain

i)=Y "dim)+ > (fp)—i) Y din)

n<x n<x Vr<p<z m<z/p

1 T
=4 — 1 log1
{I‘(z) +of )} log 0808 L,

SD
using the Selberg-Delange Theorem (as discussed in section b??z?) It is not difficult
to show that My (z,logz) = logloga + O(1), and so this example shows that

> fn) =< (14 M)e~

n<lz

alCor . . .
and therefore Corollary B.S.Z cannot be improved, other than perhaps tightening
the implicit constant. u

K K N . . alaszExample
This same idea will be developed developed further in section 77, taking f(p) =
1for p <y, and f(p) =1 for y < p < y/z. This allows one to exhibit examples with
|S(z)| < (1+ M)e=™ for M of any size between 0 and log log x.

11—k
LOne can show that this equals [Ii>1(1 — %)e™® in analogy to the Euler-Mascheroni

k
constant itself.
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2.6.4. Halasz’s Theorem is close to best possible for all f

HalBestPoss

Halédsz’s Theorem states that

f’Zf ‘<< (1+ M(z,logz))e M@logz)

n<z

We would like to show that this is more-or-less “best-possible” for all f and z in
that there exists z “close” to z for which

1
LowerBdConj | (2.6.3) ,’ Z f(n)‘ > e*Mf(z,logz)’
z
n<z

or something like that. If we replace M(z) by M(z) in this lower bound then it is
not difficult to prove this sort of thing.

THEOREM 2.6.2. Suppose that |f(n)| <1 for alln. Let M = M(x) = My(x,T)
and select t1 so that |F(co +it1)| = e =™ logx where ¢y = 1 + ogz- Lhere exists y

in the range ¥ <y < 2V where L = =Y = =M J4|cy + ity|, for which

—-M

Y
Zf 2|Co+2t1|

n<y
PROOF. Suppose that the theorem is false. Now

F(CO —|—Zt1) = (Co +Zt1)/100 L(y)dy

co

where, as usual, sy(y) := (1/y*+) > n<y f(n). Therefore

_Ml o0 mL 1 xU
e ngg/ ISf(y)ldy</ 7dy+/
co + it 1 Yo 1 yee oL

< Llogz +2L(e " —e V) logz +e Yloga <

oo
1
L
2U YO

e Mlogx
|Co + it1| ’

a contradiction. O

In fact (E%?%)B—f“lcs?nalse, as the example of f(n) = 0 for all n > 1 shows. A
less extreme example is given by f = u: we will show (see chapter 7?) that
(1/2) Y, <, (n) <a 1/(logz)? for any fixed A > 0 while e Mu(®:1087) = 1 /(log x)2.
Another important example is given by f = x, a non-principal Dirichlet character
(see chapter 7?). We will show that (1/z)Y", ., x(n) <4 1/(logz)* for any fixed
A > 0 while e~ Mx(@1082) <1 /]og z.

We might revise our guess to state that (E%]%s if e~ Ms(@log @) 5 1 /(log x)~.
We will focus on the case in which ¢ = t;(z,logz) = 0.

Another extraordinary example is given by the y-smooth numbers Let f(p) =1

for p < y:=a2° " and f(p) = 0 thereafter. Then (1/2)3] )B;c 1/uwte(w
wer. on

for z = y*. On the other hand e~ Ms(zlog2) — 1/u, so tha wlierﬁng can only be

satisfied if u <« 1. That is, given z, the closest z for which ( h_Iﬁs satisfies

z = 20" We can prove that something similar to this does always hold for

non-negative f:
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THEOREM 2.6.3. Suppose that 0 < f(n) < 1 for all n, so that t;(z,T) = 0.
Write M = M(x) = My (x,T). Ifc=e~C > 0 is sufficiently small then there exists
y in the range ¢ 7 <y < g108((HM@)/O) for which

1 eijwf(yxT)
" > fm)> M@, T)+C

n<y

Righ
PRrROOF. By (El.rul 5) e have
_ f(n *se(y
e Mlogxxz (CO):CO ' i )dy.

n co
n>1 Yy

where, as usual, s¢(y) == (1/y) >, <, f(n), and co =1 + @. If y > « then

sp(y) < (L+ M(y)e ™M@ < (14 M(a))e M),
oM
by Haldsz’s Theorem and as M (.) is increasing (exercise bc?2m3.§r). *Therefore
< 55(y) M@ [T dy M
/ ——=dy < (14+ M(x))e~ (’”)/ — < ce” " logu,
B YO B YO
where B :=log((1 4+ M)/c). Moreover, since |ss(y)| < 1, we have

C(iilvl CEiM

T xT

d

/ ijdy < / il < ce Mlog z.
1 yee 1 Y

Combining the three estimates so far obtained, we deduce that
B
T
s
/ Maly > e Mlog .
‘,L-C(iiM

yeo

Now suppose that s;(y) < ce™M®) /(M (x) + C) for all y, xce;i\; < it xB.
Since f(n) > 0 for all n, we can improve the result of exercise b.l}.% to: Ifx >y

then 1
ogx
0 < M(x) — M(y) < log(-222) + o(1).
< M(x) (y) < og(logy) +o(1)
Hence if y < & then e™ M) <« e‘M}EEz, so that
o sp(y) ce”M 7 L logz
\/CUCS*IW yco dy < M + C xce*]\/l yCO logydy =ce log'x'

On the other hand, if y > x then e~ M) < e~M 5o that
M B

B
T osp(y) ce | M
/m e dy < M—l—C/x yTOdy<<ce log x.

Combining these estimates yields a contradiction if ¢ is sufficiently small. O




CHAPTER 2.7

Consequences of the proof of Halasz’s theorem

ch:Usingt_f

In this section we use the proof of Halasz’s theorem to find oth ght%%%gosnsag)osut
mean values of multiplicative functions, saving the proofs to section 2.3. lmpor%ant

constants in this theory are
2 1
Ai=1—— = 036338... and A>p:=1-—— = .68169...
s = ™
: 1
(see section bs.efic. ['fo tnderstand how these arise).

2.7.1. Rotating f
:C
Let t; = ty(z,T). In Corollary E?r. T'We saw that if T — oo then

ity
@7 S s and i S

n<zx

differ by only o(x). We improve this as follows.

COROLLARY 2.7.1. Suppose that |Af(n)| < A(n) for all n and select t1 € R

with |t1] < logx for which |F(co + it1)| is mazimized.. Then

_ah f(n) (log log z)*+2*
ng;f(ﬂ) T 1+t T;c nity , +0 (x(logfﬂ)/\ )

If0 < f(n) <1 for all n then we can replace \ with A>g.

We will show that these results are best possible (in that the exponents A and A>
cannot be improved).
This leads to an improved hybrid bound:

THEOREM 2.7.2. Suppose that f(n) is a multiplicative function with |f(n)] <1
for alln. Let t; =ty(x,logz) and My = My(x,logz). Then

. 1 (1+ My)e=Mr  (loglog )
212 ol 270« T g

n<z

2.7.2. Multiplicative functions in short intervals

We are interested in the mean value of a multiplicative function in a short
interval [z, + z) with z as small as possible.

THEOREM 2.7.3 (Haldsz’s Theorem for intervals). Let f be a multiplicative func-

tion with [Ag(n)| < kA(n) for all n. Given x and 0 < § < 1, we have

r1=o ! ) do
Z fln) < / ( max F(l4+o0+ zt)D? + (0logz)" +loglogz | .
1

pnampins logz \ J1/10ga \ [t1<a? (log )~

95



96 2.7. CONSEQUENCES OF THE PROOF OF HALASZ’S THEOREM

This leads us to the following consequence

COROLLARY 2.7.4. Let f be a multiplicative function with |Af(n)| < kA(n) for

allm. Givenxz and 0 < § < i, we have

1-06

Z fln) < i)gw (1 + Ms)e ™ (log )" + (§log )" + loglog z) .

r<n<x+xl-9

where

max F(co + it ‘:: e Ms (log x)".
ooy | (0 + ) (log )

Later we will deduce a weak form of Hoheisel’s theorem on primes in short
intervals:

(2.7.3) > An) = (1+0(5(log(1/8))%)z' .
r<n<x+xl-9
In other words there exists a constant A > 0 such that every interval (z,z + x!72]
contains the expected number primes, up to a (multiplicative) constant.

2.7.3. Lipschitz estimates

We are also interested in bounding how much the mean value of a multiplicative

function cgn vary in short (multiplicative) intervals. The example f(n) = n' in
ecenterin, .
Corollary g.?.l shows that the mean value tends to rotate with z, by a factor of
2 which suggests renormalizing by dividing out by this. Therefore we consider
the behaviour of
1
sf(x) = Zltits Z f(n).
n<z

We are interested in the finding the Lipschitz constant A(f), which is the maximum
constant ¢ such that if 0 < 8 <1 then

{+o0(1)
sp(z) —sp(a'?) < <9+10gw) .

THEOREM 2.7.5. If |Af(n)| < A(n) for all n then A(f) > 1— 2; that is

_ 1 (loglog)?
1-0 A

— 0" log — + —————.

sp(z) —sp(z ™) < gy + (log 2"

Moreover there exists such an f, real-valued, for which A(f) = A.

If 0 < f(n) <1 for all n then A(f) > Aso. Moreover there exists such an f for

which A(f) = )\20.

If t; # 0 then the mean value of f at « and at z/w may point in different
directions, so we cannot, in general, hope for a non-trivial Lipsc itz estimate in-
volving only the mean value. However, one deduces from Theorem 2.7.5 a Lipschitz
estimate for the absolute values of the mean values:

142X

010 S| | X s]| <o+ R

z/w

where w = 2.
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EXERCISE 2.7.1. Deduce that if f(n) € R for all n, and w = 2, then

)1+2)\

1 1 log 1
;Zf(n) x/w Z f(n <<0A10g5+—(0g0g3:>\

n<z n<z/w (IOg (E)

(The difficulty herein stems from the fact that ¢;(z,logz) is not necessarily 0.)
Improve this if f(n) > 0 for all n.s

2.7.4. The structure of mean values (revisited)

In section %@%o’ced that mean values of multiplicative functions are either
given by

e Fuler products, for example the integers up to & coprime to a given integer
m. In this case f(p) =1 on the large primes p; or

e Solutions to integral delay equations, for example the number of y-smooth
integers up to z. In this case f(p) = 1 on the small primes p.

tructurel

In Theorem moted that if the mean value of f is large then we can write
f as the product of two multiplicative functions, one supported on small primes,
the other on the large primes, and the me 1 va%ue 9f f is the product of the other
two mean values. We now prove Theorem : 5.1 with a much better error term. We
let f_, f+ be multiplicative functions such that

N/ M) itp <z
f_(pk)_{l ifp>z

By (pF)tr ifp<z
v )_{f(p’“) ifp>2
so that f = f_f..

THEOREM 2.7.6 (Structure Theorem). Let f be a multiplicative function with
|Af(n)] < A(n) for all n. Given z=2% 1<z <z we have

1 1 1 1 (loglogxz)+2
x;f(n)=xﬂ;ﬁf—(n%x;f+(n)+0<9”0g9+cm-)

EXERCISE 2.7.1. Show that, in the structure theorem, we might have written

1+2X
L= ;Zf )33 1)+ 0 (610g g+ LEED )

n<x n<x (log ;E)

where f.(pF) = 1if p < z, and = f(p*)/(p*)"* if p > 2.

It is not clear what is the best possible error term. In the example for which
flp) =0if 212 < p < zor 2/2"/? < p < 2, and f(p) = 1 otherwise, we have
0 < f(n) <1 for all n: In this case the mean of f_ is a fairly straightforward sieve
problem (see exercise below), and equals 1/2+ O(6?). On the other hand the mean
of fy can be obtained as

iZfAn)zl—% Z [jj =1+1log(l—6/2)+0(1) =1-0/2+0(6?).

n<z z/21/2<p<z

Finally f = f_ 4+ f+ — 1 since no integer up to « is divisible by primes from the two
classes with f(p) = —1, and so f has mean value 1/2 — /2 + O(6?). In this case,
t;1 = 0 and so we have

mean(f) — mean(f_) - mean(fy) = —0/4 + O(6?),
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so the exponent in the structure theorem must be < 1.

A more extreme example is given by f(p) = —1if 20 <p<zorz/zf <p <z,
and f(p) = 1 otherwise. By analogous arguments we find that the mean values of
f, f— and fi are therefore —62 + O(6*),6% + O(6*) and 1 + O(#?), respectively, so
that

mean(f) = —mean(f_) - mean(fy)(1 + O(6%)).

Finally the mean-value of the two f_’s are proved using inclusion-exclusion as
follows.

EXERCISE 2.7.2. (a) Prove that if m > 1 then

(275) Z (_m)w(d) > (]_ _ m)w(n) < Z (_m)w(d)

dn dn
w(d)<2k w(d)<2k+1
for all integers k > 0, where w(r) =3, 1.

(b) Apply this with m = 1 and 2 in our examples, to estimate (1/x)>_, ., f-(n)
with an error term O(e~1/?).

Let f = d, where éﬁn%uIQ&LEnl"“ and u = 1/6. Certainly, if Re(x) > 0 then

t1(f) = 0. Proposition [4.7 tells us that
1
— D f-(n)~ Pldy;2).

n<z

SD
and Selberg’s estimate (from section WQ) implies that

1 eY(1—K)
- Zf(n) ~ () P(dy; x).

n<z

Combining these two estimates with the Structure theorem implies that, in a certain
range for # and x, we have

67(17’%)

1 K
o Z f(n) ~ W‘g

n<zx

2.7.5. Two repulsion results

Halasz’s Theorem gives an upper bound for the mean value of f in terms of an
integral of |F'(co + it)| as ¢ varies over the real numbers ¢ € [-T,T]. The Corollary
showed that this can be bounded in terms of the largest value that |F(co + it)]
takes in the range, say at t1. It turns out that in other results we also use the
second largest value of |F(co + it)|, at least when, say, |t — t1] > 1. We explore
this spectrum of large values in this subsection. Upper bounds for F(cy + ity) are
equivalent to lower bounds on D(f(n),n"*,x) for each k, and we discuss the “best
possible” such results.

PROPOSITION 2.7.7. For any multiplicative function f with values inside the
unit circle, let t1,to,.. .ty € [=To,To] be values with each |t; —t;| > 1, and the
D(f(n),n* x) placed in increasing order. Then

D(f(n),n't, x)* > <1 — \%) loglog z + Oy (1).
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This is equivalent to

1 o
’F (1 +— +itk>‘ < (logx)lf
log x

Proor. We begin, by Cauchying the sum,
2

p<z p<z p<x 1<77£j<k p<lz

1(t —t; )

< (loglogx + O(1)) (]1 loglogx + O (1))

uivUpperBounds 9 )
taking o = t; — t; by (Egﬁ’)%mng that 1 < |o| < (logz)®. Now, since
ko it
Re(f(p )%Zj:lp Zt]) < |% Zj:lp J|u we have

Zl—Re(f() Ly p)

k
D(f(n), n*, 2)? > ;;Dwm),n“j,xf - ‘

p<z

> loglogx + O(1) Z an

p<a: j 1
> (1 L )lo logz + O(1)
- —= x
= N g log

by the first bound in this proof. |

cor:repulsive it 9 . .
Corollary 2.T.7 gives a lower bound on D(f, n*%; x)#, which we now improve to

the “best possible” general lower bound:

LEMMA 2.7.8. For any multiplicative function f with values inside the unit
circle, and any real numbers t1,ty with |t; — to| < logx we have
. 2 1 t1 — ta] 1 f [t1 —to| <1

max D(f’nztj;$)2 > (1 _ > . Og(‘ 1 2| ogx) Zf‘ 1 2| = +O(1)

j=1,2 T loglog x if [t1 —t2] > 1
This is equivalent to
. 1 . . 2
oin, F (1 + ez + ztj> ’ < (min{1, [t; — t2|}logx)=

If0 < f(n) <1 for all n then we can replace 2 here by +.

PrROOF. We may assume § := [t; — t2|/2 > 1/logx, else the result is trivial.
Then

" 1 1 —Re f(p)(p~" +p~"*2)/2
zt], 2 - tj.
max D(f,n'; 2ZJD>f, )’ = ;
Jj=1 p<z
> Z 1- |COS(6Ing)| + 0(1)
p<lzx

since Re f(p)(p~"* +p~"2)/2 < |f()||(p~" +p~"*2)/2| < 1-|cos(Blogp)|.

EXERCISE 2.7.3. Complete the proof of the Lemma, using partial summation
and the prime number theorem.
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To prove the second result, for f with 0 < f(n) <1 for all n, we simply replace
| cos(B log p)| by max{0, cos(8logp)} in the proof above. O

2.7.6. Exercises: Applications of the Lipschitz result

EXERCISE 2.7.2 (Sieving f by the primes < z). Let x = 1. For given z = 9,
let m =[], p. Prove that for ¢, :=ts(z,log ) we have

1 f /
T Z f(n) = H (1 + plgfl + 2(1(fz)tl) > Z fln

n<z p<z n<x
(n,m)=1

1 (loglogx)i*+2*
Mog = =22
+0 (0 gy + (log 2)*

EXERCISE 2.7.4. Given f, let g to be the totally multiplicative function with
g(p) = f(p) for all primes p Prove that

n)/n", o) loglog
21 = >wme¥W+OGmww>
where t = ty(z,logz) = tg(x,log x). (Hint: Write f = g x h and bound the size of
h(P*).)
ex:ConvolutionId\ EXERCISE 2.7.5. Use (%g_f%re;—ﬁil?eTheorem L.i trhmo prove that

s(u) 1 " 1
T+it; E/O stu = x(B)dt + 0 ((l%“x)”(”)

EXERCISE 2.7.6. Suppose that 2 < w = xe < /z then

1 f(n) log(1/6)
log w Z =@+t tlogw 7Zf (Hl—klogx>’

n
z/wn<z n<z

EXERCISE 2.7.7. In this exercise we determine weighted means of f(n):
(i) Show that if o > 1 and (o0 — 1) logz — oo then

SIS I () (R ),

n<z p prime

(ii) Show that if o = 14 A/logz with A bounded then

1 ! ! A+1
3 f(”)/z = :/ eAts(t)dt// eAtdt+O( + ) .
= ne = ne 0 0 log x
(iii) Show that if 0 < o < 1 and (1 — o) logx — oo then
S(x) 1
W Eae o) S0 (g )

n<:v

n<x

(1+it)(1—0)

i~ (in particular ¢(o,0) = 1).

where ¢(o,t) :=
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MaxModLeft

CHAPTER 2.8

Proofs of consequences of the proof of Halasz’s
theorem

ch:Usingt_f
In this chapter we prove the results stated in section b( [0 begin with we
need to clarify the use of the maximum modulus principle.

2.8.1. The maximum modulus principle

We will be considering quantities like max |F(1+o +it)| for o > op and [¢| < T
for some o¢ > 0, and T' > 1. By the maximum modulus principle we know that the
maximum occurs on a boundary. We wish to show that the maximum more-or-less
occurs on the boundary with o = 0. What about the other possibilities?

If the maximum occurs with o > 1 then |F(1+o0+it)| < {(140)" < {(2)" <, 1.

Now suppose that the maximum occurs with ¢t = T (the analogous proof works
if t = =T), that is |F(1 + o + ¢T)|, with 09 < 0 < 1. We consider F(s,) at
$r:=1400+ (T —7) where 0 < 7 < g, so that |s, — (1 4+ o +4T)| < 20 and note
that

F(sr) As(n) 1 As(n)
1 —_—— | = 1- — | — —_——
08 (F(l +o0+ ZT)) Z nsr IOgTL no—oo+iT Z plto+iT logn

n<el/o n>el/o
Y Ag(n)
n1+ao+i(T77) IOg n !
n>el/e

The first and second sums are, in absolute value,

A(n) A(n)
— —_ 1.
<o ) w T > w17 log 1 <
n<el/e n>el/o

The average of the third sum, averaged over 0 < 7 < g, is, in absolute value,
1 /7 . 1 A

—/ n”dr<<fzﬂ<<1.

0 Jr=0 o n(

logn)?
Combining these estimates implies that there exists s, on the line Re(s) = 1+ o9
for which

n>el/o

|F(s:)] > |F(1+0+iT)|.

The same averaging argument with ¢ = 1 implies that there exists t € [—1,1] for
which |F(1 4 o¢ +it)| > 1. Combining all this, we deduce that

(2.8.1) max |F(1+ o +it)| < max |F(1 + o¢ + it)|,
o>00 [t<T
[tI<T

where the implicit constant depends only on k.

101
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2.8.2. Repulsion revisited

. . sec:TwoSimpleRepuls 5
We revisit the results of section b 7.0, puf%mg thern into a slightly more com-
plicated context, showing that F'(co + it) can only be large in a few rare intervals.

PROPOSITION 2.8.1. Fiz 0,0 < e <1 and 0 < p < 62/2. There are at most
1/p disjoint intervals [t; — 6,t; + 8] C [—(logx)*, (log x)*] with 6 > 1/(logx)” and
‘F(CO + itj)| > (10gl‘)6'€.

PROPOSITION 2.8.2. If t1,...,t, € R satisfy [t;] < (logx)®, and |t; — ti| >
1/(logz)?, with 0 < p <1, for all j # k then

¢
Zlog |F(1+1/logx 4 it;)| < k(€ + £(¢ — 1)p)/? loglog = 4+ Oy (logloglog ).
j=1
If, in addition, we have o1,...,00 > 1+ 1/logz then we also have
¢
Z log |[F(a; +it;)] < k(€ + £(£ — 1)p)*/? loglog x + O, (loglog log ).
j=1

PRrROOF. We began by observing that since each |[Af(n)| < kA(n), we have

0 4
. 1 a
ZlOglF(1+1/10g$+2t])|—ZWRG Af(n)Zn J

j=1 n>2 j=1
4
A(n) —it;
SKZ n1+1/logzlogn’zn g,
n>2 j=1

By Cauchy-Schwarz the square of this sum is

14
A(n) A(n) —it;]?
< Z>:2 nltl/logz logn ’ Z>:2 nltl/logz logn ’ Z;n
n nz J=

The first factor above is loglog  + O(1). Expanding out the sum over j, the second
factor on the right hand side is

¢
Z log [¢(1+1/ log z+i(t;—tx))| < £loglog z+£(¢—1)ploglog x+O(¢* log loglog z),
Gok=1
where the first term comes from the j = k terms, and the second term from the
bound

log|¢(1+1/logx 4 i(t; —tx))| < ploglogx 4+ O(logloglog x)

whenever j # k, since 2(logx)® > |t; — tx] > 1/(logz)?. The first part of the
Proposition follows.

To prove the second part we follow the analogous proof, and writing u; =
oj —1—1/logz, we have to bound |Z§=1 n~(4+)|2  ayveraged suitable over n.
The bounds on ¢, used to bound this, only get stronger as the u; get larger. (I

LargeF
Re ,DEDUCTION OF PROPOSITION 2.8.1. If this is false then we apply Proposition
bﬁ for some £ > 1/p so that

¢ . 1/2
1 log |F(1+1/logx +it;)| 1—p log log log = 9\1/2
<= < =—f Op [ 28808 L ) (9, 2124 4(1) < e,
€= EZ kloglog x =Pt l O loglog x (2p=p7) "oll) <€

Jj=1
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if x is sufficiently large, a contradiction. O
. " E@g&Z . .
We are more precise than Proposition 2.8.2 in the special case £ = 2:

PROPOSITION 2.8.3. Let f be a multiplicative function with |As(n)| < kA(n)
for all n. Select t; € R with |t1| < (logz)" which mazimizes |F (1 + 1/logx + it1)].
Ift € R satisfies |t| < (logx)" then

1 : _ .
PO+ 1 loga+ i) _ [ riaiegnrn 3 T HISE

K _ r(1-2)
(log x) ((logl\sg;ﬂ)z) if |t . t1| > 1.

If f(n) > 0 for all n then we obtain the analogous result with % in place of %
There are such multiplicative functions f for which these bounds are attained.

. . - B_eg_lz
PROOF. Proceeding as in the proof of Proposition 2.8.2, we have

. A(n
10g|F(1+1/10g$+'Lt2)‘ S KZZ M
n>2

| cos(Tlogn)|,
where 7 = |t — t1|/2. Using the prime number theorem in the form (z) = = +
O(z/log z), this sum is loglogz + O(1) if 7 < 1/logx and

=log(1/7) + %log(T logz) + O(1)

for 1/logx < 7 < 1, since fol | cos(2nt)|dt = 2/m. If 7 > 1 then the result follows
from a strong form of the prime number theorem. Notice that we get equality for
the multiplicative function f; if t2 = —t; and f1(n) = & sign(cos(¢1 log p)) whenever
n is a prime power.

If f(n) > 0 for all n, then t; = 0. At any other ¢, we have F(co+it) = F(co — it)
so each of their logs

<k Z A(n) maX{O, cos(tlog n)}

141/ logx
e n logn

and we get the same results, with fo max{0, cos(2mt)}dt = L replacing 2. Here we
get equality for the multiplicative function fs if fa(n) := (1 i fi(n))/2 Whenever n
is a prime power. (Il

2.8.3. Short interval results for multiplicative functions in the unit
circle

The multiplicative function n® has mean value 2% /(1+it) up to z, so to study
the change in the mean value we should look at

ﬁzﬂn)

where t; is chosen with |t1] < (logz)”® to maximize |F(cy + it1)|. For any z, 1 <
z < y/x we wish to bound

I1+1t1 Zf I’/Z 1+2t1 Z f
n<z n<z/z

Note that ¢; depends on z, so there is no guarantee that ¢;(x) = t1(x/z). How-
ever if they are very different then one can show that the mean values are <
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1c
1/(log }ﬁge’”"(ildfl/ ™ by Corollary B85 To evaluate this difference let’s apply Propo-
sition bzer for z and z/z.
xkeyidr2

LipThm ) .
PROOF OF THEOREM B.7.5. (i) The main term, from (2.4:10), becomes, di-
viding through by x0Tt and (z/z)%*1 respectively,

nonoq Ll L i(t—t1)—a—p ,
/O /0 — /_ TStSTS(s—a—ﬂ)E(S-i-ﬁ)Z(5—5)Z(S-l-ﬁ)xs_ﬁ(1—z“+ﬁ_"(t_t1))dsdﬁda.

GenHal
We now follow the proof of Theorem 5.1 with y = max{z,T?}, and obtain three
terms from

|1 — 2070 0) | < |1 — 21 070) | 41 — 208 « min{1, |t — t1]log 2} + (o + 3) log 2.

s=co+1it

For the first term we need to bound
F it
ax [Fleo +it)] min{1, [t — #1]log z}.
tI<T  (logz)”

Henceforlti let kK = 1 Iflltz/;itﬂ § 1 then, as min{l, |t — ¢;|logz} < (|t —
t1|log 2)*=2/™ Proposition b.8.3 implies that
|F(co + it)]
log x

1-2/Pi
If |t — t1] > 1 then, by Proposition b.S.B,l

10g2>12/ﬂ'

in{l, |t —t;1]|1 <
min{1, | 1|logz} < (logx

F . 1 1 2 1-2/m
Mmin{17\t—t1|logz} < (loglog z)* _
log x logz
Let A := max{log z, (loglog x)?}. Combini 4l this, and using fhe maximum
modulus principle as in the proof of Corollary 2.5.2; the bound in (2.5.3) is replaced
by

1 1 1-2/m
A 1 d
(2.8.2) <</ pl-o 10g3;/ min ( ) , 9 1o
a=0 o=1/loga log z clogz | o

<z A\ o log x
log = 8\a )¢

For both the alogz and Blog z terms we use only that |[F'(1 + o +it)| < 1/0.
Hence the bound in (2:5.3) is replaced by

1 1
d 1
(2.8.3) <</ xl_“alogz/ —gda <Lz ng,
a=0 1/logz O Ing
for the alog z term, and by
1 2/ logy d 1 1
(2.8.4) < / :Elfa/ olog z—gda < 2282 log ( ogm)
a=0 1/logx a IOg.’IJ IOgy

for the Blog z ter.m. Lais vields the proof of the bound in (i). The example is
example 2 of section [77.

To obtain (ii) we follow the same proof replacing 2/m by 1/m throughout. The
example is given as example 3 of section 77 (]
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StrucThm Recenterin,
PrOOF OF THEOREM R2.7.6. By Corollary b 7.1 we can assume, that ds
though this is not necessary. We use the formulas in the proof of Theorem b 5. r ’c

study the difference
> )= Crz Y fr(n)

n<z n<x

0

where y = max{z, T2}, and

_ Sleo+it1) 1 f)/p"  f(p*)/p*h
Cf,z _M_H(l_pcﬂ> <1+ pcO + p2C0 +>7

p<z

which satisfies [C.| < 1. This choice of y ensures that £ = L so the differences
in the formulas occurs in the S terms. Hence in the integrand in (bzl I (); we replace
S(s—a—p) by

(2.8.5) S(s—a—p)—C.Si(s—a—p),

qi tﬁlen on ta 1kes the absolute value of this as one follows the proof of Theorem
as in ( E 5.1). We observe that |lw —wy| < (Jw| + |wy|) min{1, | log(w/w4 )|}
for any w,wy € C, and so we wish to study, for s = ¢q + it,

log( S(co +it1) S+(s—a—,6’)) _ ¥ (As(n) — nit* A(n)) (1_ 1

S(s—a—p8) Si(co+ity)  P< neotitt logn nilt—to)—a—p

&, log(1+ |t — to]log 2) + (e + B) log 2

since
! =1 ! ! 1 ! in{1, |[t—to| 1 1
T —aE T e Tt \ LT pmans ) < mindL li—to logni-(at-f)logn
Start
for n < y. Therefore the absolute value of (2.8.5) is

< (I8(s == B)| + [C,284(s —a = p)|) - (min{1, [t — to|log 2} + (a + ) log 2) .
We are glt%gnllying through by rixctly NQ& sa 3quantity as in in the proof of
s (ﬁ.?)),n(g%

Theorem 2.7.5, so we can quote (2.8.2), .4) from there. Hence we have
proved that

1 oz, 1 (log log x)3=4/™
z E Oy, - E log e Per)
- n<zf(”) Cy, n<x f+(n (9 9 (log x)1—2/7r

where z = 2. We now apply the same estimate with f replaced by f_. To do this
we note that

|[F_(co)| = H(Hf(p)/pitl+f(p;¥f2itl+...> 11 <1+pi0+pzlco+...)

Co
p<z p z<p<lzx

2
> |IT (14 20 + L )| = 1P+ i)

p<z

Hence we obtain

1 2. 1 (loglogz)3=4/7
- _ = 7\'1 —
3 ) =Cpa+0 (9 %8 5+ (o e T )

n<z

)
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and the result follows, by inserting this into the previous estimate. We note that,
by definition,

Cro = P(f-,2) + 0(0).
One o@talpe&a much stronger version of the mean value estimate for f_ in Propo-
sition in which the error term has a dependence on 6 more like e!/?. (I

PROOF OF COROLLARY Bﬁmﬁ;ﬁﬂ > (log )" /2 then the contribution of the
interval around s = co + ity is negligible, since the [s| in the denominator in the
proof of Theorem b??fswamps the F' in the numerator. Hence VS Are left to
consider the contribution in an interval around t5. By Proposition vave know
that |F(co + it2)| < 1/(logx)!=2/7+to(1) and the _(being a bit more precise) the
result follows exactly as in the proof of Theorem
Ligriienceforth we assume that |¢1] < (log )" /2 yVe follow the proof of Theorem

with y = 1?2 roThe main term from (ZZE (l; minus 2 /(1 + it;) times the
main term from (bﬁw1th f(n) replaced by f(n)/n't (and altering the range
of the s-integration to t1 — T <t <t; +7T), equals

L L B 1 1
/ / m/mq (s—a=B)L(s+f)f (s—0) (s+B)x (SW - (1+it1)(8aﬁ_it1)>dsdﬁda,

s=co—+it

where 5o 3 = s — a — 3. Now
1 1
Sa,p (1 + itl)(sa,ﬂ — itl)

NB 3
and the resulf follows from the estimates (b?i>’.2)7 (28.3), (bgél) in the proof of
Theorem % 75. To obtain the result about non-negative f, we follow the same
proof replacing 2/ by 1/7 throughout.

< min{l, [t —t1|} +a+ 8+

logz’

ShortHal

PrOOF OF THEOREM 2.7.3. We may assume § > 0 is small, else the ati
is trivial; and then that § > 1/loga else %he tesult follows from Theorem g 5.1
We apply Perron’s formula, as in Lemma , at z, subtracted from the s me oo
formula at (1 + 27°%). We the Jnoye the contours as described in section 77,
tailor the integrals as in Lemma 77 (and the error term is %%ﬁgfable taking T =
2%(log 2)"*?), and now proceed as in the proof of Theorem 2.5.T, though with the
integral multiplied through by

|(1+27%)*"*7# — 1| < min{|s[z7%,1}.
) . NBO
This leads to the bound (in analogy to (bﬂ?i’)))
1 2/logy 1 do
(2.8.6) <</ x1—5—a/ <max|F(1+J+zt)|m1n{l,|t|_6})da
a=0 T

1/logx [t|<T o

The contribution of those o for which the maximum of |F (1 + o + it)| occurs with
T > |t| > 2% (log x)", is

1 K 1-0
1 d
a / _loga)* do = loglog =

logz Ji/10g2 ¥ (log )~ o log x

since |F(1 4 o +it)| < (logz)", so this establishes the main term.
Finally we need to deal with the error terms

Ae(K) £(n
> ) D S

r<mn<z4xl-9 r<mkn<z4xl-9
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keyidr3
which come from taking the difference in ( 19). We will show that this is

<zt Z d,, (m)d';i(nn) + /077 Z d(m) Ak(f) i';(ﬁ? do

rz<mn<z+xl-9 r<mkn<z4zxl-9

(where m and n are again restricted to those integers at which sf.) and.((.) are
supported, respectively) and then the result follows from Lemma 2.4.5. To prove
this we split each sum by the hyperbola method. In the second sum we might have
m,n < z'/3, in which case the longest sum is over k in the range (X, X + Z] where
X :=x/mn > 2V/3 and Z = X279 < X139 Then

|Ae(K)| A(k) _ A(k) A(k)
> =M« > wa € Y wa < >

ka @ «@ e
z/mn<k<(z+zl=9%)/mn X<k<X(1+4+z!-9) X<k<2X z/mn<k<2z/mn

by the Brun-Titchmarsh theorem. A similar argument works for the n-variable by
similar sieve methods (with the weight A, (n)). For the m-variable we need that

> de(m) <27 > dy(m).
X<m<X+X/z° X<m<2X
P(m)<y P(m)<y
This should be provable directly using some imagination. For now, in the k = 1 case,
this follows if 1 (X + X/VY,Y) — ¥(X,Y) < ¢(X,Y)/VY for X'/2 > Y > X%,
which can be deduced from [7] O

ShortHal2
PrROOF OF COROLLARY b 7.4. We apply the maximum modulus principle to
F(1+o+it)in
{1/logz <o <1, |t| < 2°},
and to F(14+ o0 +it)/(14+ 0o +it) in
{1/logz <o <1, 2° <|t| < 2’(logz)"},

so that the maximum of |F(1 4 o + it)] min{ } occurs on one of the

L, ot
boundaries. On the three boundaries ¢ = 1, and t = +2°(logz)* this quantity
is bounded. So, the maximum either occurs in ¢ = +2% or on the final boundary
o =1/logz. By (2.8.1) we know that this is <« the maximum on the line Re(s) = cy.
Combining this upper bound with |F(1 + o + it)| < {(0)" < 1/0" in appropriate
ranges, we deduce the claimed result. ([l







CHAPTER 2.9

Small mean values

Halasz’s Theorem is a general tool that allows us to bound the mean value of a
multiplicative function up fo,z, but is insensitive to mean values < loglog z/(log z),
as we saw in Exercise 2.3.1. Are there mean values this small and, if so, can we
modify Haldsz’s method to bound them more suitably?

2.9.1. Random totally multiplicative functions

Let’s suppose that each f(p) is an independent random variable on the unit
circle. Now

(| ro] ) = S E(S@P) + Y BT,

n<z n<x m#n<x

which equals [z], if each E(f(p)*) = 0 for each integer k # 0 and prime p (which
happens, for example, if the probability distribution for each f(p) is equi-distributed
on the unit circle). So we “expect” Y. . f(n) < z!/2+°() a massive amount of
cancelation. If the f(p) = —1 or 1 with equal probability, then the right side
becomes #{m,n < x : mn € Z*}; so if g = (m,n) we write m = gr? and n = gs?

to get
<> (Vr/g)P =2 1/g=xzlogz+O(1)

g<z g<z

s0, again we “expect” Y. __ f(n) < x1/2+o),

While “most” mean values are very small (as we have just shown), those associ-
ated with arithmetic tend to be much bigger, and the challenge is to prove that there
is any cancelation at all. Moreover even if we are sure that >~ __ f(n) < gl/2+o()
(like in the case f = p), it may still to be a big challenge to prove a much weaker
bound like >~ _ f(n) < z/(logz)?. Certainly Haldsz’s Theorem will not allow us
to do so directly.

2.9.2. When the mean value, at the primes, is close to 0

The Selberg-Delange Theorem allows us to estimate mean values of multiplica-
tive functions f with |f(n)| < 1, that average x on the primes, for any |k| < 1,
except when Kk = 0 or —1. In this section we explore the case kK = 0. The case when
k = —1 is more difficult since iE includes f = p, which is equivalent to the prime
number theorem (see Theorem 77).

THEOREM 2.9.1. For any k > 1 there exists a constant 8 = B(k) > k such
that for any multiplicative function f(.) satisfying |Af(n)| < kA(n) for alln > 1,

109
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we have that if 3, ., Ag(n) < cz/(log x)k then

Z f(n) < (Bk)*z(logz)< 1k,

n<x

Trivially we have |>" _ f(n)] < >, ., du(n) < z(logz)"~!, so an interpre-
tation of our result states that if the mean value of f on the primes is the trivial
bound times < 1/(logz)¥, then the mean value of f on the integers is the trivial
bound times < 1/(log z)*.

PrROOF. We will assume that | >, . f(n)| < ¢(Bk)*z(log )" 1=* for all x <
2™ and prove the result by induction on m. Evidently we can select ¢’ so that
the result is true for all m < mg, so now we assume m > mg. Now if 2 < z <
2+ and Af(b) # 0 then z/b < 2/2 < 2™, Therefore, selecting B = 2'/(%%)  as
f(n)logn =34, f(a)As (D)

D fm)logn| < Y (f@]] Yo Ar@)|+ D 1A Y f@

n<ax a<z/B b<:1:/a b<B x/B<a<wz/b
<ca<§Bd lg /) + 2¢ K(Bk)* éA(b)W
< cfil(i‘;gg))k + 4c k(Bk) (logi}?)f“ _ < 2(ﬁk¢) z(log )"~ 1k,

The result then follows by partial summation. (|

For now, let G(s) :=1/F(s) = }_,5, g(n)/n®, so that Ag(n) = —A¢(n).

EXERCISE 2.9.1. Show that if - Ag(n) < cr/(logz)* then Yon<z 9(n) <
k*x/(logz)*. (Hint: Use the relation A,(n) = —Af(n).)

EXERCISE 2.9.2. (i) Show that if 37 _ (Af(n) + g(n)) < cx/(log z)* then
> < f(n) < kFz/(logz)k. (Hint: Use the convolution (A + g) * f.)
(i) Deduce that if ¢(z) — 2 < cx/(log z)* then M(z) < k*z/(log z)*. (Hint: Take
f=pnin ().)

EXERCISE 2.9.3. (i) If > _n|fj(n)] < N(ogN)® and |>, -y fi(n)] <
N(log N)®~™ for j = 1,2, for some m > 0, prove that 3. _ |f(n)| < N(log N)*
and [, o f(n)] < 2™ N(log N)*~™ where f = fi1+ f2 and a = oy + ay + 1.

(i) Assume > p(n) <a z/(log x)4 for all A (which we prove in chapter 177).
Suppose that |Af(n)| < kA(n) and Yon<z Ap(n) = —x—l—O(x/(logx)m). Prove that
> <w f(n) < z(logz)" =™ (Hint: Apply Theorem BT (o f=1)

(iii) Suppose that |As(n)| < kA(n) and 3, .. As(n) = —rz + O(z/(logz)™) for
some integer 7 > 1. Prove that 3. __ f(n) < z(logz)~t2r—1-m

n<x
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2.9.3. A first converse result

By very similar techniques we can get a partial converse to the last result.

THEOREM 2.9.2. Suppose that |Ar(n)| < xA(n) for all n > 1, and define
G(s)=1/F(s). If >_,<, f(n) < cx/(logz)* and D on<z 9(n) < cx/(logz)* then

O R A ——
ngw 1 gl’)k 1-k

If f =d; then g = d_i, so we can take k = 1 in the hypothesis by Selberg’s
result, but then > A¢(n) ~ iz so the exponent cannot be improved to anything
bigger than k£ — 1.

If f is totally multiplicative then g(n) = u(n)f(n). We do not know of any
examples in which it is easy to prove that both f and uf have small mean value,
so it is difficult to apply the last result, in practice.

n<x

Proor. By partial summation we have

x Toodt x
1 <ec—— <2
> f()logn < “llog )1 - C/1 (logt)F = ¢ =1

Z (log 2)

Since —F'/F = (—F')G hence Af(n) =3 ,_, f(a)loga g(b) and so

ZAf(n): Z f(a)loga Z g(b) + Z g(b) Z f(a)loga

n<z a<y/x b<z/a <z vrz<a<z/b

x/b

<cZ|f |10ga —|—4cZ|g o \})

a<Vz b< VT &
T d(a) d,(b) & x
P — — 44 —_— 28
=¢ (logz)k—1 Z a + Z b < (logx)k—1-+x
0<VE b<vz

2.9.4. The converse theorem

In the Selberg-Delange theorem we saw that if a multiplicative function f is
K on average on the primes, where || < 1, then it has mean value > z/(log r)?
unless £ = 0 or 1, | CQOUId this, in some sense, be an “if and only if” condition?
Koukoulopoulos [7] has recently shown somethlng of this nature. We suppose that

(2.9.1) > fn Tlog )

n<zx

uniformly for all x > 1, and ask what this implies about f. We begin with a result
in the case that f is real-valued:

THEOREM 2.9.3 (Koukoulopoulos converse theorem, I). [et f.be a real, multi-
plicative function with |f(n)] < 1 for all n. Suppose that (é 9. %i holds for some
giwen A > 1. Then either,

(i) f(p) is close to 0 on average, in the sense that

Z fp is bounded below;

p<z

or, if not,
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(ii) f(p) is close to —1 on average, in the very strong sense that

S 1+ £(p) logp <

p<z

x
(logz)A=2"

The exponent “A —2” is more-or-less best possible, as is shown by the example
f=d_11¢: The Selberg—Delange theorem implies that >, . f(n) < z/(log r)?7e,

yet neither ( l norb; g ))logp = o(x) is satisfied.
Exercise [T.T.15, f =L, is an example of case (ii). The generic example for case

(i) is a real, non-principal, Dirichlet character f = x; we develop this theory in the
next part of the book. In so doing we will be able to establish strong upper bounds
on > ., f(p)logp under the hypothesis of (i).

BoundinA
EXERCISE 2.9.4. (i) Show that F'(s) converges for all s with Re(s) > 1 if (boguni N
holds with A > 1.

(ii) Show that if liminf,_, e Re< > e Iﬂfp)) = —oo then F(1 + it) = 0.
Liit
PRrROOF. If (i) does not hold then F(1) = 0 by exercise bTZl Define g = 1 % f

so that
gy = Y > o+ > ) D, 1

n<x a<y/zb<z/a b<\/x Vz<a<z/b

"o E ) F )

S T x
b>2\:f ((log x)Afl) < (log x)A—1

BoundinA
using that F/(1) =37, f(b)/b =0, and partial summation with (boguni N Now, by
definition, g(n) > 0 for all n, and g(p) = 1+ f(p), so that 3° _ (1 + f(p))logp =
> <z 9(p)logp < 37 -, g(n)logx and the result follows. O

It is slightly more complicated to prove such a result in the case that f can take
complex values, since instead of considering 1 x f, we now consider (1% h) * (1% h)
where h(n) = f(n)/n.

EXERCISE 2.9.5. Suppose that |Ap(n)| < A(n) for all n > 1. Prove that
(i) If h(n) € R and f = 1% h then each 0 < Af(n) < 2A(n), and each
f(n) = 0.

(ii) If f = (1% h)* (1% h) then each 0 < Ay(n) < 4A(n), and each f(n) >0

KoukouConverse \ THEOREM 2.9.4 (Koukoulopoulos converse theorem, II). et f;bg a multiplica-
tive function with |Af(n)| < A(n) for alln > 1. Suppose that (é 9.1) holds for some
given A > 4. Then either,

(i) f(p) is close to 0 on average, in the sense that

is bounded below

Re —it
Z: (f (2)17 )

for every real number t (where the bound may depend on t); or, if not,
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(ii) f(p) is close to —p® on average, in the very strong sense that

—it z

Z(l + Re(f(p)p™))logp <y (log ) A2

p<z

PrOOF If (i) does not hold let 2(n) = f(n)n~", so that H(1) = F(1+1t) =0
by exercise 2 9 4 By partial summation we have
_ it ,1,# x
Y ohm) =27 f(n +zt/ > fn) dy < (Lt 1) o
n<x n<zx n<y

KoukouConverseReal

Now applying the proof in Theorem 2.9.3 to g = [ * h we obtain

x
14+ t) ———
3 ol) < (4 ) e
and the analogous result with g replaced by g. If we define G = ¢ * g then, since
lg(n)| < d(n)

d Gy =D gl > gb)+ > gb) > gla)

n<wz a<z b<z/a b<f vz<a<z/b
(L+1¢)
1) 3 lof)l gl
a</x

<<(1+\t|)(bg;ﬁexp( 3 'gg’)').

p<VT
Now G(n) > 0 for all n by exercise B?QI?SO,Sand G(p) = 2(1 + Re(h(p))), so that
1+ h(p
23 (14+Re(h(p) = Y Gp) < Y Gn) < 1+|t\)(7 ( 3 1+ )
p<lx p<lx n<x p<vVzT

Now each |h(p)| < 1, so the right hand side is <; 2/(log x)A~3. By Cauchy-Schwarz
we deduce, since |1 + h(p)|> = 1 + |h(p)|? + 2Re(h(p)) < 2(1 + Re(h(p))), that

2

x
p<z p<w p<;v
and therefore, by partial summation, if A > 4 then
1+ h(p
SRy
p<z
Substituting this in two equations above, the result follows. O

oukoul . . .
In [7], Koukoulopoulos proves the result for any A > 2, which is essentially
best possible, by extending this proof a little further.

EXERCISE 2.9.6. Show that if >° _ f(n) = o(z/(log x)*) then the bound in
(i) is o(z/(log x)?).
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2.9.5. Siegel’s Theorem when we have a small mean value

EXERGISE 2.9.7. Suppose that 7,0 < n < 1 and v, := ((1 —n) + 1/5n. Use
exercise [[.1.6 to show that

1 " —1 < 1
D R R L

m<z

Also show that 1 > > L —%ZOSothat0§7n§1<l/n.

m<x ml-n

PROPOSITION 2.9.5. Let f be a real-valued completely multiplicative function
with —1 < f(n) < 1 for all n. Assume that for some 0 < 6 < 1 there exists a
constant q¢ > 2 such that

(2.9.2) Z f(n) < qaz'=?.

n<zx
(i) If F(s) # 0 for real s, 1 — @ < s <1 then F(1) > 1/loggq.
(i) If F(1 —n) =0 for some n € (0,1/logq) then F(1) > n.

PowerWi
PrOOF. By partial summation we have, by (}Z?QW.GBZI ,mthat for any fixed 7 €
(1-6,1],

Z f;g?:’) < (].171_0_7-.

n>x
This implies that F'(s) converges for all real s > 1 — 6. Let g = 1 * f, so that
1> g(n) > 0 for all n. Assume 0 < 5 < 6. Hence, for DM = z,

n d 1 1 d
YT X et X Lo

n<z m<z/d m<M D<d<z/m
f(d) ((x/d)" =1 =" 1 _
:Zdl—n( - n +’Y"+O(gﬂ7—n))+o( 2 ml—an77 0)
d<D m<M
" f(d) N~ F@ (D a
] KZD ) oot O + 5" D"")

n 1
= %F(l) + (vn - %)F(l —n)+ O((%) l”x"—%)
choosing D = (qa/n)'/(1+9),
Now since F'(s) = [[,(1 - f(p)p=%)~! for Re(s) > 1 we see that F(s) > 0 for
real s > 1. If F'(s) #0 for all 5,1 —n < s <1 then F(1 —n) > 0, by continuity,
and thus ('Yn — %)F(l —n) <0 as vy, <1/n. Therefore

F(1) > na™" + O(q/ (qz /)" O+9)
If F(s) # 0 for real s, 1 — @ < s < 1, select & = (qlogq)/? for a large
constant C, and n = 1/loggq, so that F(1) > 1/logg.

If F(1—n) =0 for some 5 € (0,1/logq) then select = = (Cq/n)*/? for a large
constant C, so that F'(1) > 7. O



