THE LEAST COMMON MULTIPLE AND
LATTICE POINTS ON HYPERBOLAS

ANDREW GRANVILLE AND JORGE JIMENEZ-URROZ

ABSTRACT. We bound, from below, the least common multiple of k integers from a
short interval. This is used to bound the length of an arc I" of the hyperbola, zy = N,
containing k£ integer lattice points.

1. INTRODUCTION

The problem of finding lattice points on curves has been studied by many au-
thors, most famously Gauss’s investigation on lattice points inside the circle. If we
restrict our attention to lattice points on short arcs, then there are several bounds
known; for example, for conics see [1, 2, 3, 4]. We consider the hyperbola zy = N
so that each lattice point is a divisor of N. Therefore counting lattice points on a
small arc of the hyperbola, is the same as counting divisors of N in a short interval.
We prove the following result:

Theorem 1. Given k integers X < a1 < --- < ar < X + L, we have

Xk:
(1) LCM[ala"' aak] > Ck—kv
L(2)

where Cy is positive and
k 2k—1 _p_
2k 2k—2 k—2
<m) (G I D S
k-1 /2m\2

Using Stirling’s formula (see section 5) one can show that

(2) Cip =

>k2/2—3k/2

k/2
(3) Cr = (46_3/2k (167re—5/2> 7/24 a+0(1/k)

where

Y

_log4 logm 53 5y 5 C(y)—1
e 24+12+4JZ j+2

7 is the Euler constant, and ((j) := ., -, 1/n’ is the Riemann zeta function.
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We give the first few values of C} in the following table.

k Ch
2 1
3 22
4 2.52\/5
. 26.73/3.7
3
6 27.36.73/3.7
216.37.11°.v/3-5-11
7 =
. 212.36.115.136.4/3.5-11-13
5
224.37.5%.115.136./7-11-13
9 =
223.39.5%.115.136.178 . /7-11-13- 17
10 =

If p is a prime in the interval (k,2k — 1) then p divides CZ but p? does not, as may
be seen by examining (2). Thus, by Bertrand’s postulate, C} is irrational for all
k> 4.
Write N := LCM]ay, -+ ,ax] and A; = N/a; for each i. Then Theorem 1 gives,
k
2

since N/(X + L) < Aj < -+ < Ax < N/X that N(*2") > ¢, X*(*-2) /1,(2) | Thus

Corollary 1. Given k > 3 integers X < ay < ---<ar < X + L, we have

k—1
(4) LCMlay,- -+, ax] > C’;/( 2 )XQIc/(kfl)/Lk/(ka).

Notice that the bound in (1) is sharper than that of (4) exactly when Cyx X*~2 >

L) for k> 4 (the bounds are identical for k = 3).
To prove Theorem 1 we write a; = X + §;L for each i, so that 0 < §;1 < o <
-+ < 0, < 1. Note that

A:=LCMlay, -, ap] = (araz---ax/L)) - (Ao/Ay)

(4a) > (x*/1G)) - (Ao/Ay)

where
(a; — ai)
A =M(ar, - ai L) = H —— = H (05 = d),
1<i<i<k 1<i<j<k

LCM
and AQ :Ag(al,--- ,ak) L= [alkb ’ak] H (aj—ai),
[Tizy ai 1<i<j<k
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In Proposition 1 we give a sharp upper bound on A; by analytic methods, and in
Proposition 2 we give a sharp lower bound on As by elementary methods. Com-
bining these two results implies Theorem 1, using (4a).

Hilbert [10], Stieltjes [16], and others [14,15], have all shown how to maximize
(A1 =) [T1<;<j<r(d; — ;) when 0 < 61 < dg < --- < < 1. We present our own
proof in section 2, though like most previous proofs, it involves computing discrim-
inants of certain classical polynomials from the theory of orthogonal polynomials.

Proposition 1. We have

I 0] =26 DRI G

o\ 2k—1
1<i<j<k (2k)% (%/.c 2)

max
0<61<da<- <0 <1

We bound As from below, by more elementary methods, in section 3.

Proposition 2. Given integers a1 < ay < --- < ag, the number As(ay, -, ar),

defined above, is an integer and is divisible by anfl m!.

Remark. In section 4a we exhibit many examples with As(ay, - - ,ar) = an_jl ml,
so Proposition 2 cannot be improved.

The lower bounds (1) and (4) are trivial for sufficiently large L, so we want to
find the largest L for which these inequalities are sharp.
Theorem 2. Given integer k > 2 and sufficiently large L, there exists X < L(g),
such that

M ?\ﬂ 1 Xk
T X<ar<as< Cay <X 4L a1, Ay ( * (ﬁ)) 76

Remark 1. Our proof gives many such k-tuples of integers with X > L), With a
better understanding of the distribution of congruence classes we could give such a

result in a wider range.

Remark 2. One can give examples in Theorem 2 described by polynomials. For
example, if k =2 let X =ay =nL and ay = (n + 1)L for a given integer L. Since
(ag,a1) = L = ay — ay, we see that

a1a9 1 X2
— fr 1X: 1 — .
002] = 22— (1) ( +n) s

For k = 3 we take, for any integers n and ¢, with L = 4n,

X=a1=Mn+1+2n+1)t)dn(2n — 1),
az=a1+(2n—1)=(2n+1)+4nt)(2n+1)(2n — 1)
a3 =a; +4n=(n+ (2n — 1)t)dn(2n + 1)
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Again note that (aj, a;) = a; — a; and that (a1, a2, ag) = 1. Therefore

[ ] a1a2as aijasas
ai, az, a3 = -
[licicj<slaj,a)  4n(2n+1)(2n —1)

X3 n 1

In both of these cases we have given polynomial examples which are as good as
possible (in that they give examples with lem~ Cj X%/ L(g)) This is not possible
for k > 4: To see this notice that if it were then every f;(¢t) = a; —a1 (j > 2) would
have the same degree and would have integer coefficients. The ratios of the leading

coefficients of the f;(t) would thus all be rational and so A; would be a rational

number. However if lem~ Cy X%/ L(3) then the value of A? is given in Proposition
1, and this is not the square of a rational for any k > 4.

On the other hand we will show, in section 4c¢, how to construct such polynomials
for each k which lead to examples with lem<;, X%/ (3.

We may re-interpret our results to give results about lattice points on the hy-
perbola xy = N in as small an arc as possible. As a consequence of (1), (4) and

Theorem 2 we have (taking X = ay and L = a; — a1):

Theorem 3. If there are k distinct lattice points (a;,b;) on the hyperbola ab = N
with a1 < as < --- < ay then

2 2
27k71 k—1

ay 1

NT27R ()

(4b) ar — a1 > ¢ max

k
where cj = C’;/(Q). On the other hand one can find integer N, together with k
distinct lattice points (a;,b;) on the hyperbola ab = N with

_ 2
either a; >, N'" %7 and ap—a; < {cr + o(l)}a? =1 N2k
k
2

1 _2
or a1 < N¥71 and ar —a; <{ck +0(1)}af‘1/N1/( ).

Remarks. The first of the bounds in (4b) is larger if and only if X > N'/2, when
k > 4. When k = 3 they are equal. Note that if a = a; < N'/* then we can have
ar — a1 < 1 simply by taking each a; =a+j and N = (a+1)(a+2)---(a + k).

Taking k = 3 in Theorem 3, we find that one always has a3 — a; > 2%/3a;/N1/3.
By making an analagous remark about the b;s, we find that the Euclidean distance
between (ay,b1) and (as,bsz) is always > N'/6 (however one can have two lattice
points on the hyperbola a bounded distance apart, for example (m,m + 1) and
(m+1,m) when N =m(m+1)). We expect that by the methods of [5b] this lower
bound can be improved to > N1/4.
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THE LEAST COMMON MULTIPLE AND LATTICE POINTS ON HYPERBOLAS 5

for his interest. The second author wishes to thank as well Andrew Granville for his
invitation to work with him in the University of Georgia at Athens and University
of Michigan at Ann Arbor, and for his constant encouragement during this period.
Both universities were very kindly in their hospitality. Finally he would like to thank
Trevor Wooley for his attention in the University of Michigan, Henryk Iwaniec for
his invitation to go to Rutgers University, Fernando Chamizo for checking some
calculations concerning the appendix, and Christian Ballot for remembering some
properties of the resultant.

2. THE TRANSFINITE DIAMETER OF [0, 1]

The transfinite diameter of the interval [0, 1] is defined as

D = lim max | | (¢; — 5i)2/k(k—1)

k—oo L& ’
1<]

and it is known that D = 1/4 (see [6] and chapter 11 of [13] and [17]). This also
follows from Proposition 1 and Stirling’s formula.

The proof of Proposition 1. Let us suppose that

P00, 000 =[] (6-6)

1<i<j<k
attains its maximum in this range at ny,n2, - -, Nk. Define
k
H(z):= H(aj — ;).
i=1

so that our maximum equals A(H), the discriminant of H. (H(zx) is a certain
Jacobi polynomial, and its roots are known as the Fekete numbers of order k.)

First note that 7y = 0 and nx = 1, else nx — 1 < 1 and so taking ¢; :=
(i —m)/(nk —m) we have 6; —&; = (n; —m:)/(nk —m) > n; — n; implying that
F(61,---,0k) > F(m,--- ,m), a contradiction.

F' is differentiable function, and so attains its maximum in the closed set 0 <
Jy < -+ < 1 <1 (evidently n; # n; else F' = 0). Therefore the maximum occurs
at a critical point, so for 2 <7 < k — 1 we have

1 0F 1 1 H" (n;)
0:_—”7’"'777— = =35 )
F&ii( 2 k1) ; ni—mn; 2 H'(n)

and thus H"”(n;) = 0. Since H"(z) is a polynomial of degree k — 2, its roots are
exactly m2, 73, -+ ,Mk—1, which are exactly the roots of H(z), other than 0 and 1.
Therefore x(xz—1)H"(x) = CH(z) for some constant C: Since H is monic of degree
k, the leading coefficient of H”(x) is C = k(k — 1), and so

(5) z(x — 1)H"(z) = k(k — 1)H(x).
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(This equation can be used to show that the roots of H are symmetric about 1/2.)
By comparing coefficients of both sides in (5), we find that

R [

j=1 (215 32)

which may be verified by substituting into (5).

Given polynomial f of degree n and polynomial g of degree m < n, define R(f, g)
to be the absolute value of the resultant of f and g. To determine A(H), we will
use the fact that A(H)? = R(H,H’). We need several facts about resultants
(see [11]); for example, R(f,cg) = c¢"R(f,g) for any constant c¢. Also, if g has
leading coefficient b, and h = f (mod g) where h has degree r < n, then R(f, g) =
b"""R(g,h).

We will define a sequence of polynomials Ho, = H(z), Hop—1 = H'(z) and

i

m .-m+j—i 2) =1\
Hop g1 = (—1)F~ i <2k 2 Z ( m—j )( J )xj

Jj=t J

for 0 <2m —i+1<2k—2, where i =0 or 1, and m is an integer. By comparing
coefficients one shows that these polynomials satisfy

Hog o =kHo, — xHop 1,

Hok 3= Hop 1+ 2Hok o,

Hopa = (k — 1) Hap_s — (2k — 3)zHay_3, and
Hopm_i—1 = mHop_ip1 + (=1)274(2m — 1) Hyypy 2

fori =0o0r1,and 1 < m < k — 3. We will write these relationships as H; o =
BiH; + v H; 1 where 3; = [l/2] except for B2 1 = 1. Note also that the degree of
H; is [1/2], and write A; for the leading coefficient of H;. Therefore

R(Hyy1, Hy) = AiBy 5 VA R(H,, Hy_y),

for each | > 1, and since R(Hsy, Hy) = (k — 1)!/(2’“;2), we deduce that

A?(H) = R(Hop, Hop 1) =

(- 2%k—1  k '
(2k 2) H H B25B25- oy
k :2 :

D DT )
(Qk)k 1(2kk 2)2k 1

which gives our result after some re-arrangement.
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3. COMBINATORIAL NUMBER THEORY

Our next objective is to prove Proposition 2. To do this we first prove the
following well-known result, giving a proof which arose in discussion with Konyagin:

Lemma 1. For any set of integers by, ba,- -+ ,b,, we have that [[, ..., ,m! =
H1§i<j§n(j — 1) divides H1§i<j§n(bj —b;).

Proof. Let D be the determinant of the n-by-n matrix with (i, j)th entry (Zb_ﬂl)
Each entry of this matrix is an integer, and so D is an integer (as can be seen from
expanding minors to compute D). The entries of the ith row of the matrix are all
the same polynomial of degree i —1 in b;; thus we can subtract appropriate rational
multiples of rows 1,2,..., 1 — 1 from the Ith row (these rational multiples being
independent of the b;) to get a matrix with the same determinant, but whose (i, j)th
entry is bé-_l/(i — 1)!. Multiplying through the i row by (i — 1)! we are left with a
Vandermonde matrix whose determinant is D[[,, (i — 1)! = [, ;<. (bj — bi).
The result follows from this equation.

Proof of Proposition 2. Define v,(r) to be the exact power of prime p which divides
integer 7, and let v, (r/s) = v, (1) — vp(s).

For a given prime p select { = ¢, so that v,(ae) is maximal. By definition
vp(ar) = v,(LCM]|aq, - - - , ag]). Moreover if i # ¢ then vy,(a; — a;) > vp(a;), and so

LCM]ay, - -, ak] (ap — a;)
. ~— 21 >0
Up ae 1Q11k i a
AL

Taking {by,--- ,bx_1} = {a; : i # ¢} in Lemma 1, we see that

Up H (a; —a;) | > vy H m!

1<i<j<k m<k—2
.57
Adding these two results we find that v,(A2) > vp(]],,<x_om!) for all primes p,
and so the result follows. -

4A. PROPOSITION 2 IS “BEST POSSIBLE”

Given k > 2, let P := LCM]L,--- k] and a3 = 0. We shall select 0 < as <
ag < -+ < ag, then determine a large positive integer z, and finally take each
a; = z+ a;. So, given aq, o, ...,q,._1, let QQ be the set of primes > k which divide
[Ticicj<r_1(@j — i), and define w(p) to be the number of distinct residue classes
of aq,as,...,a,—1 (mod p) for each p € Q.

The sieve of Eratosthenes-Legendre gives that for any y and N, the number of
integers « in the range y < a < y + NP? for which a = r — 1 (mod P?), and

aZ oy, 09,...,0, 1 (mod p) for any prime p € @ is

(p)> Q] QI
6 N | | 1 + O(r > — + O(r'™h).
(©) ( p ( ) log" |Q)| ( )

PER



8 ANDREW GRANVILLE AND JORGE JIMENEZ-URROZ

We take y = a,-—1 here, and see that for sufficiently large NV, there must exist such
an integer «, which we denote a,..

After we have determined aq, as, ..., ar we let z be a positive integer for which
z=0 (mod P?), and 2 = —a; (mod p*) for any prime power p°® dividing a;; — ;
with p > k, for any 1 < i < j < k. We claim that such an integer exists, by
the Chinese Remainder Theorem, since any common prime divisors of o; — o; and
ay — ag, with {i,5} # {I, J}, must be < k, by construction.

Since each a; =i — 1 (mod P?), it is easy to show that for any prime p < k we
have v,(A2) = vp([],,<1_om!). On the other hand if prime p > k divides some
difference a; — a; = a; — «; then this pair is unique by our construction. Also
a; =a; = z+ a; =0 (mod p®), where p® is the exact power of p dividing a; — a;.
Thus

vp(A2) = vp(LCM]as, a5]) + vp(ai — a;) — vp(ai) — vp(a;) = 0.

Therefore, this construction gives examples with Ag(aq,--- ,ax) = [1,,<x_o m!

4B. PROOF OF THEOREM 2

We proceed, more-or-less, with the construction above, though we change the
range in which we look for our «;. In particular, given L, we select «;, for each
i > 2 to be the largest number < ;I — 2y/L which satisfies the given congruences.

Each aij—av; is < L, and so has < log L/ loglog L prime factors. Taking N = VL,
we find that (6) is > N/(loglog L)* — LO(1/loglog L) ~ () and so we can find «; in
the interval [n; L —2v/L,n; L—+/L]. Therefore A1, and thus A, is within 1+O(1/v/'L)
of the maximum possible (since the above construction gives Ay =[], ., m!).

Finally we take z iatisfying all the given congruences. The modulus for these

k
congruences is <y, L(2), so guarantee finding such an X (= ay), with X < L(2).

4Cc. A CONSTRUCTION WITH POLYNOMIALS

Consider the integers b; = 2kj3+j2 for j < k which verify that (b; —b;)/(j—1i) are
all different. We will take a; = a3+ (j—1)+ P?b;t (where P is as above). Thus each
aj—a; equals j—i+P?%(b;—b;)t, and these polynomials are all distinct by our choices
of the b;. Select polynomial a; of minimal degree satisfying a; = —((j — 1) + P?b;t)

(mod j —i+ P%(bj —b;)t) in Z[t] for all 1 <i < j < k. Ast — oo running through
integer values, one finds that lem~ 7a}/ #(3) for some constant Tk, justifying the
remarks made shortly before the statement of Theorem 3.

5. ASYMPTOTICS FOR C}.

The estimate (3) for the asymptotic behaviour of the constant C}, defined in (2)
is easily deduced from the estimate

(7) ﬁ m! = n'/? (m)l (e—S/Ql)

where 7 1= V2mexp(—23/12 + /3 + >_;5,(C(4) — 1)/(j + 2)), by noting that
Hlmzl(Qm)!2 = 21! Hiizl m! (since (2m)! = 2m(2m —1)!), and using Stirling’s for-

mula, m! = v2rm(m/e)mel/12m+01/m*) and the estimate (k—1)F = kke—1+01/k),

12/2—-1/12
60(1/1)7
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To establish (7) take f(x) = 22/2 in the identity

f0 T som—seminy _ 17 ()™
yO ] m -1 ()

so that f(m) — f(m+1) = —m — 1/2, to obtain

l m m?/2 , =1
- _ql7/2 —-m—1/2
I(-2) - IIm

m=2 m=1
ll2/2 -1 . l(l+l)2/2 -1
(8) = (I — D)I+1/2 H m = L2 ml!
m=1 m=1
Now

m=2

1
zlogl—}—”)/—l—%—O(j),

m=2

and 3504 D 5001 1/jm?=2 <y, 1/m? < 1. Thus exponentiating gives

l

11 <L)m2 = [Y/3exp 12/2+l—11/6+7/3+§M+0(%)

m=2

m—1 J+2

Combining this with (8) gives (7), using Stirling’s formula.

—_
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