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1

THE SMALL SIEVE

1.1 List of sieving results used

FLS Lemma 1.1 (The Fundamental Lemma of Sieve Theory) If (am, q) = 1
and all of the prime factors of m are ≤ z then

∑
x<n≤x+qy
(n,m)=1

n≡a (mod q)

1 =
{
1 +O(u−u−2)

} ϕ(m)

m
y +O(

√
y),

where y = zu.

FLS1 Corollary 1.2 If (am, q) = 1 and all of the prime factors of m are ≤ x1/u then

∑
n≤x

(n,m)=1
n≡a (mod q)

logn =
{
1 +O(u−u−2)

} ϕ(m)

m

x

q
(log x− 1) +O(

√
x log x).

The proof of this and the subsequent corollaries are left as exercises. One
approach here is to begin by writing logn =

∫ n

1
dt
t and then swap the order of

the summation and the integral.

FLS2 Corollary 1.3 If χ is a character mod q and all of the prime factors of m are
≤ z = y1/u and coprime with q, then

∑
x<n≤x+qy
(n,m)=1

χ(n) ≪ 1

uu
ϕ(mq)

mq
qy + q

√
y.

Let p(n), P (n) be the smallest and largest prime factors of n, respectively.

FLS3 Corollary 1.4 If (a, q) = 1 and z is chosen so that q = zO(1) and z ≤ y then∣∣∣∣∣∣∣∣∣∣∣
∑

x<n≤x+qy
n≡a (mod q)

p(n)>z

1

∣∣∣∣∣∣∣∣∣∣∣
≪ q

ϕ(q)

y

log z
.



2 The Small Sieve

1.2 Shiu’s Theorem

Suppose that 0 ≤ f(n) ≤ 1. Corollary
cor2.3
?? states that the mean value of f up to

x is ≪ P(f ;x). Shiu’s Theorem states that an analogous result is true for the
mean value of f in short intervals, in arithmetic progressions, and even in both:

Shiu Theorem 1.5 If (a, q) = 1 then∣∣∣∣∣∣∣∣
1

y

∑
x<n≤x+qy

n≡a (mod q)

f(n)

∣∣∣∣∣∣∣∣≪
∏
p≤y
p-q

(
1− 1

p

)(
1 +

|f(p)|
p

)
.

This is ≍ P(|f |χ0; y) ≍ exp
(
−
∑

p≤y, p-q
1−f(p)

p

)
.

Proof Let g(p) = |f(p)| where p ≤ y, and g(pk) = 1 otherwise. Then |
∑

n f(n)| ≤∑
n |f(n)| ≤

∑
n g(n), and proving the result for g implies it for f .

Write n = pk1
1 p

k2
2 . . . with p1 < p2 < . . ., and let d = pk1

1 p
k2
2 . . . pkr

r where

d ≤ y1/2 < dp
kr+1

r+1 . Therefore n = dm with p(m) > zd := max{P (d), y1/2/d},
(d, q) = 1 and g(n) ≤ g(d). Now, if we fix d then m is in an interval (x/d, x/d+
qy/d] of an arithmetic progression a/d (mod q) containing y/d+O(1) integers.
Note that zd ≤ max{d, y1/2/d} ≤ y1/2 ≤ y/d, and so we may apply Corollary
FLS3
1.4 to show that there are ≪ qy/dϕ(q) log(P (d) + y1/2/d) such m. This implies
that ∑

x<n≤x+qy
n≡a (mod q)

g(n) ≤ qy

ϕ(q)

∑
d≤y1/2

(d,q)=1

g(d)

d log(P (d) + y1/2/d)
.

For those terms with d ≤ y1/2−ϵ or P (d) > yϵ, we have log(P (d) + y1/2/d) ≥
ϵ log y, and so they contribute

≪ qy

ϕ(q)

∏
p≤y

(
1− 1

p

) ∑
d≤y1/2

(d,q)=1

g(d)

d
≪ y

∏
p≤y
p-q

(
1− 1

p

)(
1 +

g(p)

p

)
,

the upper bound claimed above. We are left with the d > y1/2−ϵ for which
P (d) ≍ 2r for some r, 1 ≤ r ≤ k = [ϵ log y]. Hence we obtain an upper bound:

qy

ϕ(q)

k∑
r=1

1

r

∑
d>y1/2−ϵ

(d,q)=1
P (d)≍2r

g(d)

d
≪ qy

ϕ(q)


1

k

∑
d>y1/2−ϵ

(d,q)=1

P (d)≤2k

g(d)

d
+

k∑
r=1

1

r2

∑
d>y1/2−ϵ

(d,q)=1
P (d)≤2r

g(d)

d

 .

For the first term we proceed as above. For the remaining terms we use Corollary
3.4.2, with ur := (1/2− ϵ) log y/(r log 2), to obtain
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≪ qy

ϕ(q)

k∑
r=1

1

r2

∏
p≤2r

p-q

(
1 +

g(p)

p

)
1

uur+1
r

≪ y
k∑

r=1

1

ruur
r

∏
p≤y
p-q

(
1− 1

p

)(
1 +

g(p)

p

)
.

Finally note that ur is decreasing, so that
∑

R/2<r≤R 1/(ruur
r ) ≪ 1/uuR

R ; more-

over u2R = uR/2 and so
∑

1≤r≤k 1/(ru
ur
r ) ≪ 1/uuk

k ≪ 1, and the result follows.
2

1.3 Consequences

Define

ρq(f) :=
∏
p≤q
p-q

(
1− 1

p

)(
1 +

|f(p)|
p

)
and ρ′q(f) =

ϕ(q)

q
ρq(f).

(Note that ρq(f) is an upper bound in Theorem
Shiu
1.5 provided y ≥ q.) We also

define
logS(n) :=

∑
d∈S
d|n

Λ(d),

where S might be an interval [a, b], and we might write “≤ Q” in place of “‘[2, Q]”,
or “≥ R” in place of “‘[R,∞)”. Note that log n = log[2,n] n.

Small.1 Lemma 1.6 Suppose that x ≥ Q2+ϵ and Q ≥ q. Then, for any character χ
(mod q), ∣∣∣∣∣∣∣∣

∑
n∈N

n≡a (mod q)

f(n)χ(n)L(n)

∣∣∣∣∣∣∣∣≪ ρq(f)
x

q
= ρ′q(f)

x

ϕ(q)
,

where L(n) = 1, log(x/n),
log≤Q n

logQ or
log≥x/Q n

logQ , and N = {n : Y < n ≤ Y + x}
for Y = 0 in the second and fourth cases, and for any Y in the other two cases.

Proof The first estimate follows from Shiu’s Theorem for x ≥ q1+ϵ. One can
deduce the second since

∑
n≤x an log(x/n) =

∫
1≤T≤x

1
T

∑
n≤T an dT for any an.

If d is a power of the prime p then let fd(n) denote f(n/p
a) where pa∥n, so

that if n = dm then |f(n)| ≤ |fd(m)|. Therefore if x > Qq1+ϵ then, for the third
estimate, times logQ, we have, again using Shiu’s Theorem,

≤
∑

Y <md≤Y+x
md≡a (mod q)

d≤Q

|f(md)|Λ(d) ≤
∑
d≤Q

(d,q)=1

Λ(d)
∑

Y/d<m≤(Y+x)/d
m≡a/d (mod q)

|fd(m)|

≪
∑
d≤Q

(d,q)=1

Λ(d)

d
ρq(fd)

x

q
≪ ρq(f)

x

q
logQ.



4 The Small Sieve

In the final case, writing n = mp where p is a prime > x/Q (and note that p2 - n
as p > x/Q >

√
x), we have

≤
∑
m≤Q

(m,q)=1

|f(m)|
∑

x/Q<p≤x/m
p≡a/m (mod q)

log p≪
∑
m≤Q

(m,q)=1

|f(m)| x/m
ϕ(q)

≪ ρq(f)
x

q
logQ.

by the Brun-Titchmarsh theorem, and then applying partial summation to Shiu’s
Theorem. 2

By (
SumSqs
??) we immediately deduce

Small.2 Corollary 1.7 With the hypotheses of Lemma
Small.1
1.6 we have

∑
χ (mod q)

∣∣∣∣∣∣
∑
n≤x

f(n)χ(n)L(n)

∣∣∣∣∣∣
2

≪ (ρ′q(f)x)
2.

Small.3 Lemma 1.8 If ∆ > q1+ϵ then for any D ≥ 0 we have

∑
χ (mod q)

∣∣∣∣∣∣
∑

D≤d≤D+∆

f(d)χ(d)Λ(d)

∣∣∣∣∣∣
2

≪ ∆2.

Proof We expand the left side using (
SumSqs
??) to obtain

ϕ(q)
∑

(b,q)=1

∣∣∣∣∣∣∣∣
∑

d≡b (mod q)
D≤d≤D+∆

f(d)Λ(d)

∣∣∣∣∣∣∣∣
2

≤ ϕ(q)
∑

(b,q)=1

∣∣∣∣∣∣∣∣
∑

d≡b (mod q)
D≤d≤D+∆

Λ(d)

∣∣∣∣∣∣∣∣
2

≪ ∆2,

by the Brun-Titchmarsh theorem. 2
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THE PRETENTIOUS LARGE SIEVE

2.1 Mean values of multiplicative functions, on average

Define
Sχ(x) :=

∑
n≤x

f(n)χ(n),

and order the characters χ1, χ2, . . . (mod q) so that the |Sχj (x)| are in descend-
ing order. Our main result is an averaged version of (

HalExplic2
??) for f twisted by all the

characters χ (mod q), but with a better error term:

PLSk Corollary 2.1 Suppose that x ≥ Q2+ϵ and Q ≥ q2+ϵ log x. Then

∑
χ (mod q)

χ ̸=χ1,χ2,...,χk−1

∣∣∣∣ 1xSχ(x)

∣∣∣∣2 ≪

(
eO(

√
k)ρ′q(f)

(
logQ

log x

)1− 1√
k

log

(
log x

logQ

))2

,

where the implicit constants are independent of f . If k = 1, f is real and ψ1 is
not, then we can replace the exponent 0 with 1− 1√

2
.

Let Cq be any subset of the set of characters (mod q), and define

L = L(Cq) :=
1

log x
max
χ∈Cq

max
|t|≤log2 x

|Fχ(1 + it)|,

where

Fχ(s) :=
∏
p≤x

(
1 +

f(p)χ(p)

ps
+
f(p2)χ(p2)

p2s
+ . . .

)
.

Our main result is the following:

PLSG Theorem 2.2 Suppose that x ≥ Q2+ϵ and Q ≥ q2+ϵ log x. Then

∑
χ∈Cq

∣∣∣∣ 1xSχ(x)

∣∣∣∣2 ≪
((

L(Cq) + ρ′q(f)
logQ

log x

)
log

(
log x

logQ

))2

.

Corollary
PLSk
2.1 follows immediately from Theorem

PLSG
2.2 and Proposition

kRepulsion
??.

To prove Theorem
PLSG
2.2 we begin with an averaged version of (

MeanAveraged
??), which was

used in the proof of Halasz’s Theorem. Notice that if we simply sum up the
square of (

MeanAveraged
??) for S = Sχ, for each χ (mod q), then we would get the next

lemma but with the much weaker error term ϕ(q).



6 The Pretentious Large Sieve

AvLogWt Lemma 2.3 Suppose that x ≥ Q2+ϵ and Q ≥ q. Then

log2 x
∑
χ∈Cq

∣∣∣∣ 1xSχ(x)

∣∣∣∣2 ≪
∑
χ∈Cq

(∫ x/Q

Q

∣∣∣∣1t Sχ(t)

∣∣∣∣ dtt
)2

+
(
ρ′q(f) logQ

)2
.

Proof Let z = x/Q. We follow the proof in section
MeanF(n)
?? for the main terms, but

deal with the error terms differently. By Corollary
Small.2
1.7 we have

∑
χ (mod q)

∣∣∣∣∣∣
∑
n≤x

f(n)χ(n) log(x/n)

∣∣∣∣∣∣
2

≪ (ρ′q(f)x)
2,

and
∑
χ

∣∣∣∣∣∣
∑
n≤x

f(n)χ(n)(log≤Q n+ log>x/Q n)

∣∣∣∣∣∣
2

≪ (ρ′q(f)x logQ)2,

so that, using the identity log x = log(x/n)+ log≤Q n+log>x/Q n+log(Q,x/Q) n,

∑
χ∈Cq

|Sχ(x) log x|2 ≪
∑
χ∈Cq

∣∣∣∣∣∣
∑
n≤x

f(n)χ(n) log(Q,x/Q) n

∣∣∣∣∣∣
2

+ (ρ′q(f)x logQ)2.

Now for g = fχ we have∑
n≤x

g(n) log(Q,x/Q) n−
∑

Q<p<x/Q

g(p) log p
∑

m≤x/p

g(m)

=
∑

Q<pk<x/Q
k≥2

log p
∑

m≤x/pk

g(mpk) +
∑

Q<p<x/Q

log p
∑

m≤x/p

(g(mp)− g(p)g(m)).

The last term is 0 unless p2|m, so this last bound is, in absolute value,

≤ x
∑

Q<pk<x/Q
k≥2

log p

pk
+ 2x

∑
Q<p<x/Q

log p

p2
≪ x

Q1/2
.

We now bound our main term as in section
MeanF(n)
??; though now we let z = y+

√
y so

we obtain the error term x/
√
y in the equation before (

MeanAveraged
??). Summing over such

dyadic intervals this yields∣∣∣∣∣∣
∑

Q<p<x/Q

g(p) log p
∑

m≤x/p

g(m)

∣∣∣∣∣∣≪
∫ x/Q

Q

|Sχ(x/t)|dt+
x

Q1/2
.

The result follows from the change of variable t → x/t since Q ≥ q and
ρ′q(f) logQ≫ 1.

2
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In the next Lemma we create a convolution to work with, as well as removing
the small primes.

AvConvol Lemma 2.4 Suppose that x ≥ Q2+ϵ and Q ≥ q2+ϵ log x. Then

∑
χ∈Cq

(∫ x

Q

∣∣∣∣1t Sχ(t)

∣∣∣∣ dtt
)2

≪
∑
χ∈Cq

∫ x

Q

∣∣∣∣∣∣
∑
n≤t

f(n)χ(n) log>Q n

∣∣∣∣∣∣ dt

t2 log t

2

+

(
ρ′q(f) logQ · log

(
log x

logQ

))2

.

Proof We expand using the fact that log t = log(t/n)+ log≤Q n+log>Q n; and
the Cauchy-Schwarz inequality so that, for any function cχ(t),

∑
χ

(∫ x

Q

cχ(t)
dt

t2 log t

)2

≤
∫ x

Q

dt

t log t
·
∫ x

Q

∑
χ

cχ(t)
2 dt

t3 log t

By Corollary
Small.2
1.7 we then have

∫ x

Q

∑
χ

∣∣∣∣∣∣
∑
m≤t

f(m)χ(m) log(t/m)

∣∣∣∣∣∣
2

dt

t3 log t
≪ ρ′q(f)

2

∫ x

Q

dt

t log t
≪ ρ′q(f)

2 log

(
log x

logQ

)

and

∫ x

Q

∑
χ

∣∣∣∣∣∣
∑
m≤t

f(m)χ(m) log≤Qm

∣∣∣∣∣∣
2

dt

t3 log t
≪
∫ x

Q

(
ρ′q(f)t logQ

)2 dt

t3 log t
,

and the result follows. 2

Now we prove the mean square version of Halasz’s Theorem, which is at the
heart of the pretentious large sieve.

AvParsev Proposition 2.5 If x > Q1+ϵ and Q ≥ q1+ϵ then

∑
χ∈Cq

∫ x

Q

∣∣∣∣∣∣
∑

Q≤n≤t

f(n)χ(n) log>Q n

∣∣∣∣∣∣ dt

t2 log t

2

≪ log

(
log x

logQ

)(
M2 log

(
log x

logQ

)
+
ϕ(q)

T

logQ

Q
+

log3 x

T 2

)
where M := maxχ∈Cq max|u|≤2T |Fχ(1 + iu)|.
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Proof (Revisiting the proof of Halasz’s Theorem (particularly Proposition
keyProp
??)).

For a given g = fχ and Q we define

h(n) =
∑

md=n
d>Q

g(m)g(d)Λ(d),

so that G(s)(G′
>Q(s)/G>Q(s)) = −

∑
n≥1 h(n)/n

s for Re(s) > 1. Now∣∣∣∣∣∣
∑
n≤t

g(n) log>Q n−
∑
n≤t

h(n)

∣∣∣∣∣∣ ≤ 2
∑
pb>Q

log p
∑
n≤t

pb+1|n

1 ≤ 2t
∑
b≥1

∑
pb>Q

pb+1≤t

log p

pb+1
≪ t log t

Q
,

by the prime number theorem. This substitution leads to a total error, in our
estimate, of

≪ |Cq|
(∫ x

Qq

t log t

Q

dt

t2 log t

)2

≪ q

Q2
log2

(
log x

logQ

)
≪ 1

q
log2

(
log x

logQ

)
,

which is smaller than the first term in the given upper bound, sinceM ≫ 1/ log q.
Now we use the fact that

1

log t
≪
∫ 1/ logQ

1/ log x

dα

t2α

whenever x ≥ t ≥ Q, as x > Q1+ϵ, so that∫ x

2

∣∣∣∣∣∣
∑
n≤t

h(n)

∣∣∣∣∣∣ dt

t2 log t
≪
∫ 1/ logQ

1/ log x

∫ x

2

∣∣∣∑
n≤t

h(n)
∣∣∣ dt

t2+2α

 dα.

Now, Cauchying, but otherwise proceeding as in the proof of Proposition
keyProp
??

(with f(n) log n there replaced by h(n) here), the square of the left side is

≪
∫ 1/ logQ

1/ log x

dα

α
·
∫ 1/ logQ

1/ log x

α · 1

2πα

∫ ∞

−∞

∣∣∣G(G′
>Q/G>Q)(1 + α+ it)

1 + α+ it

∣∣∣2dtdα.
The integral in the region with |t| ≤ T is now

≤ max
|t|≤T

|G(1 + α+ it)|2
∫ ∞

1

∣∣∣ ∑
Q<n≤t

g(n)Λ(n)
∣∣∣2 dt

t3+2α
.

If we take g = fχ and sum this over all characters χ ∈ Cq then we obtain an
error

≤ max
|t|≤T
χ∈Cq

|Fχ(1 + α+ it)|2
∫ ∞

Q

∑
χ (mod q)

∣∣∣ ∑
Q<n≤t

f(n)χ(n)Λ(n)
∣∣∣2 dt

t3+2α

≪ max
|t|≤T
χ∈Cq

|Fχ(1 + α+ it)|2
∫ ∞

Q

dt

t1+2α
≪ 1

α
max
|t|≤T
χ∈Cq

|Fχ(1 + α+ it)|2,

by Lemma
Small.3
1.8 as t ≥ Q ≥ q1+ϵ.
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For that part of the integral with |t| > T , summed over all twists of f by
characters χ (mod q), we now proceed as in the proof of Proposition

keyProp
??. We

obtain ϕ(q) times (
Int>T
??), with f(ℓ) log ℓ replaced by h(ℓ) for ℓ = m and n, but now

with the sum over m ≡ n (mod q) with m,n ≥ Q. Observing that |h(ℓ)| ≤ log ℓ,
we proceed analogously to obtain, in total

≪ ϕ(q)

T

(logQ)2

Q
+
ϕ(q)

q
· 1

α4T 2
.

The result follows by collecting the above. 2

Proof of Theorem
PLSG
2.2: The result follows by taking T = 1

2 log
2 x in Proposi-

tion
AvParsev
2.5, and then combining this with Lemmas

AvLogWt
2.3 and

AvConvol
2.4, since ρ′q(f) log q ≫ 1.

2

PLSRange Corollary 2.6 Fix ϵ > 0. There exists an integer k ≪ 1/ϵ2 such that if x ≥
q4+5ϵ then

∑
χ (mod q)

χ ̸=χ1,χ2,...,χk

∣∣∣∣1ySχj (y)

∣∣∣∣2 ≪ eO(1/ϵ)

(
ρ′q(f)

(
logQ

log y

)1−ϵ
)2

,

where Q = (q log x)2, for any y in the range

log x ≥ log y ≥ log x

/
2

(
log x

logQ

)ϵ/2

,

where the implicit constants are independent of f .

Proof Select k to be the smallest integer for which 1/
√
k < 3ϵ. Let Cq be the

set of all characters mod q except χ1, χ2, . . . , χk. Write x = QB , so that y = QC ,
where B ≥ C ≥ 1

2B
1−ϵ/2, and apply Theorem

PLSG
2.2 with x = y. Then, by (

M-Bds1
??)

and Proposition
kRepulsion
?? we have

Ly ≪ Lx

(
log x

log y

)2

≪ eO(1/ϵ)ρ′q(f)
1

B1−3ϵ
Bϵ ≪ eO(1/ϵ)ρ′q(f)

1

C1−4ϵ
,

and the result follows. Note that by bounding Ly in terms of Lx, we can have
the same exceptional characters χ1, χ2, . . . , χk for each y in our range. 2
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MULTIPLICATIVE FUNCTIONS IN ARITHMETIC
PROGRESSIONS

It is usual to estimate the mean value of a multiplicative function in an arithmetic
progression in terms of the mean value of the multiplicative function on all the
integers. This approximation is the summand corresponding to the principal
character when we decompose our sum in terms of the Dirichlet characters mod
q. In what follows we will instead compare our mean value with the summands
for the k characters which best correlate with f . So define

E
(k)
f (x; q, a) :=

∑
n≤x

n≡a (mod q)

f(n)− 1

ϕ(q)

k∑
j=1

χj(a)
∑
n≤x

f(n)χj(n).

The trivial upper bound |E(k−1)
f (x; q, a)| ≪ kρ′q(f)x/ϕ(q) can be obtained by

bounding each sum in the definition using the small sieve. We now improve this:

FnsInAPs Theorem 3.1 For any given k ≥ 2 and sufficiently large x, if x ≥ X ≥
max{x1/2, q6+7ϵ} then

|E(k−1)
f (X; q, a)| ≪ eC

√
k
ρ′q(f)X

ϕ(q)

(
logQ

log x

)1− 1√
k

log

(
log x

logQ

)
,

where Q = (q log x)5 and the implicit constants are independent of f and k. If f
is real and χ1 is not then we can extend this to k = 1 with exponent 1− 1√

2
.

To prove this we need the following technical tool, deduced from Corollary
PLSRange
2.6.

LinearPLS Proposition 3.2 Fix ε > 0. For given x = qA there exists K ≪ ϵ−3 log logA
such that if x ≥ X ≥ x1/2 and Q = (q log x)5 then

1

log x

∑
χ (mod q)

χ ̸=χj , j=1,...,K

∣∣∣∣∣∣ 1X
∑
n≤X

f(n)χ(n) log[Q,x/Q] n

∣∣∣∣∣∣≪ eO(1/ϵ)ρ′q(f)

(
logQ

log x

)1−ϵ

.

Proof Let log xi = 2(1+ϵ/3)i+1 log q for 0 ≤ i ≤ IA, with I chosen to be the
smallest integer for which xI > x/Q, so that I ≪ (1/ϵ) log logA. In order to
apply Corollary

PLSRange
2.6 with x = xi we must exclude the characters χj,i, 1 ≤ j ≤ k,
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for 1 ≤ i ≤ I. Let χ1, χ2, . . . , χK be the union of these sets of characters, so that
K ≤ k(I + 1) ≪ ϵ−3 log logA. Therefore, for all y ∈ [Q, x/Q], we have

∑
χ (mod q)

χ ̸=χ1,χ2,...,χK

∣∣∣∣1ySχj (y)

∣∣∣∣2 ≪ eO(1/ϵ)

(
ρ′q(f)

(
logQ

log y

)1−ϵ
)2

. (3.1) PLSuniform

We rewrite the sum in the Proposition as

∑
χ (mod q)

χ̸=χj , j=1,...,K

∣∣∣∣∣∣∣∣
∑

dm≤X
Q≤d≤x/Q

f(m)χ(m)f(d)χ(d)Λ(d)

∣∣∣∣∣∣∣∣ ,
and split this into subsums, depending on the size of d. This is bounded by a
sum of sums of the form

∑
χ (mod q)

χ ̸=χj , j=1,...,K

∣∣∣∣∣∣
∑

D≤d≤D+∆

f(d)χ(d)Λ(d)
∑

m≤X/d

f(m)χ(m)

∣∣∣∣∣∣ .
where Q ≤ D ≤ x/Q with ∆ ≈ D log(q log(X/D))

q log(X/D) . If we approximate the last sum

here with the range m ≤ X/D, then we can Cauchy to obtain ∑
χ (mod q)

χ ̸=χj , j=1,...,K

∣∣∣∣∣∣
∑

D≤d≤D+∆

f(d)χ(d)Λ(d)
∑

m≤X/D

f(m)χ(m)

∣∣∣∣∣∣


2

(3.2)

≤
∑

χ (mod q)

∣∣∣∣∣∣
∑

D≤d≤D+∆

f(d)χ(d)Λ(d)

∣∣∣∣∣∣
2 ∑

χ (mod q)
χ ̸=χj , j=1,...,k−1

∣∣∣∣∣∣
∑

m≤X/D

f(m)χ(m)

∣∣∣∣∣∣
2

(3.3)

≪ eO(1/ϵ)

(
∆ · ρ′q(f)

X

D

(
logQ

log(X/D)

)1−ϵ
)2

, (3.4) OneTermBound

by Lemma
Small.3
1.8 and (

PLSuniform
3.1). Summing the square root of this over the D/∆ such

intervals for d in [D, 2D) yields an upper bound

≪ eO(1/ϵ)ρ′q(f)X

(
logQ

log(X/D)

)1−ϵ

;

and then summing this over D = X/Q2j for 0 ≤ j ≤ J ≍ logX we obtain the
claimed upper bound.
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Finally the error in replacing the range m ≤ X/d by m ≤ X/D is

≤
∑

X/d<m≤x/D
(m,q)=1

|f(m)|χ0(m) ≤
∑

X/(D+∆)<m≤x/D
(m,q)=1

|f(m)|χ0(m) ≪ ρ′q(f)
X∆

D2
,

so an upper bound for the contribution in [D, 2D) is

≪ ρ′q(f)
X∆ϕ(q)

D

∑
D≤d<2D

Λ(d)

d
≪ ρ′q(f)X

logQ

log(X/D)
,

which is smaller than the other error term. 2

Proof of Theorem
FnsInAPs
3.1 : Fix ϵ > 0 sufficiently small with 1/

√
k > ϵ. By

applying Lemma
Small.1
1.6 , with χ = χ0 we have

log x
∑
n≤x

n≡a (mod q)

f(n) =
∑
n≤x

n≡a (mod q)

f(n) log[Q,x/Q] n+O

(
ρ′q(f)

x

ϕ(q)
logQ

)
.

Multiplying this by χ(a), and summing over a we obtain

log x
∑
n≤x

f(n)χ(n) =
∑
n≤x

f(n)χ(n) log[Q,x/Q] n+O
(
ρ′q(f)x logQ

)
;

so that

E
(K)
f (x; q, a) =

1

ϕ(q)

ϕ(q)∑
j=K+1

χj(a)
∑
n≤x

f(n)χj(n)
log[Q,x/Q] n

log x
+O

(
Kρ′q(f)

x

ϕ(q)

logQ

log x

)

≪ eO(1/ϵ)
ρ′q(f)x

ϕ(q)

(
logQ

log x

)1−ϵ

,

by Proposition
LinearPLS
3.2 , where K ≪ ϵ−3 log logA. By Cauchying and then Corollary

PLSk
2.1, we obtain

|E(k)
f (x; q, a)− E

(K)
f (x; q, a)| ≤ 1

ϕ(q)

K∑
j=k+1

∣∣Sχj (x)
∣∣

≤ 1

ϕ(q)

K K∑
j=k+1

∣∣Sχj (x)
∣∣21/2

≪ eO(
√
k)ρ′q(f)

x

ϕ(q)

(
logQ

log x

)1− 1√
k

,

since K ≪ log logA, and 1− 1√
k+1

> 1− 1√
k
. Applying the same argument again,

we also obtain

|E(k−1)
f (x; q, a)− E

(k)
f (x; q, a)| ≪ eC

√
k
ρ′q(f)x

ϕ(q)

(
logQ

log x

)1− 1√
k

log

(
log x

logQ

)
.

The result follows from using the triangle inequality and adding the last three
inequalities. 2



4

PRIMES IN ARITHMETIC PROGRESSION

PNTapsk Theorem 4.1 For any k ≥ 2 and x ≥ q2 there exists an ordering χ1, . . . of the
non-principal characters χ (mod q) such that, for Q = (q log x)2,

∑
n≤y

n≡a (mod q)

Λ(n)− 1

ϕ(q)

∑
n≤y

Λ(n)− 1

ϕ(q)

k−1∑
j=1

χj(a)
∑
n≤y

Λ(n)χj(n)

≪ eC
√
k x

ϕ(q)

(
logQ

log x

)1− 1√
k

log3
(
log x

logQ

)
.

PNTaps1 Corollary 4.2 There exists a character χ (mod q) such that if x ≥ q2 then

∑
n≤x

n≡a (mod q)

Λ(n)− 1

ϕ(q)

∑
n≤x

Λ(n)−χ(a)
ϕ(q)

∑
n≤x

Λ(n)χ(n) ≪ x

ϕ(q)

(
logQ

log x

)1− 1√
2
−ε

.

where Q = (q log x)2. We may remove the χ term unless χ is a real-valued
character.

Remark 4.3 Can we obtain the error in terms of 1/|L(1 + it, χ)|/ log x? And
when χ is real, probably t = 0.

Proof of Theorem
PNTapsk
5.1 We may assume that x ≥ qB for B sufficiently large,

else the result follows from the Brun-Titchmarsh Theorem.
Let g(.) be the totally multiplicative function for which g(p) = 0 for p ≤ Q

and g(p) = 1 for p > Q, and then f = µg, so that we have the following variant
of von Mangoldt’s formula (

Lammu
??),

ΛQ(n) :=
∑

dm=n

f(d)g(m) logm =

{
Λ(n) if p|n =⇒ p > Q,

0 otherwise.

Now ∑
n≤x

n≡b (mod q)

(Λ(n)− ΛQ(n)) ≤
∑
n≤x

p|n =⇒ p≤Q

Λ(d) ≪
∑
p≤Q

log x≪ Q
log x

logQ
.

by the Brun-Titchmarsh theorem. Denote the left side of the equation in the

Theorem as E
(k−1)
Λ,+ (x; q, a), and note that all of these sums can be expressed as

mean-values of
∑

n≤x, n≡b (mod q) Λ(n), as b varies. Hence
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E
(k−1)
Λ,+ (x; q, a)− E

(k−1)
ΛQ,+ (x; q, a) ≪ Q

log x

logQ
.

Now ∑
n≤x

n≡a (mod q)

ΛQ(n) =
∑
d≤x

(d,q)=1

f(d)
∑

m≤x/d
m≡a/d (mod q)

g(m) logm. (4.1) LQexpand

Similar decompositions for the
∑

n ΛQ(n)χj(n) imply that E
(k−1)
ΛQ,+ (x; q, a) equals

the sum of f(d) over d ≤ x with (d, q) = 1, times

∑
m≤x/d

m≡a/d (mod q)

g(m) logm− 1

ϕ(q)

k−1∑
j=0

χj(a/d)
∑

(b,q)=1

χj(b)
∑

m≤x/d
m≡b (mod q)

g(m) logm.

By Corollary
FLS1
1.2 (with m the product of the primes ≤ Q that do not divide q)

this last quantity is

≪
(

k

uu+2

x

dϕ(q) logQ
+ k

√
x

d

)
log x/d

where x/d = Qu. Let R be the product of the primes ≤ Q. We deduce that the
sum over d in a range x/Q2u < d ≤ x/Qu with f(d) ̸= 0, is

≪ k
∑

x/Q2u<d≤x/Qu

(d,R)=1

(
1

uu+2

x

dϕ(q) logQ
+

√
x

d

)
log x/d≪ k

uu
x

ϕ(q)
+

kux

Qu/2

by Corollary
FLS3
1.4 (for the sum over d), provided u ≤ ν := log

(
log x
logQ

)
. Summing

this up over u = 2, 4, 8, . . . , ν, the sum over d in the range Q2 < d ≤ x/Q2ν is

≪ x

ϕ(q)

(
logQ

log x

)2

.

The same argument works to give a much better upper bound for the terms with
d ≤ Q2, though removing the condition (d,R) = 1 in the sum above. Hence we
are left to deal with those d > x/Qν , which implies that m ≤ x/d < Qν .

The remaining sum in (
LQexpand
5.1) is∑

m<Qν

(m,q)=1

g(m) logm
∑

x/Qν<d≤x/m
d≡a/m (mod q)

f(d).

There are analogous sums for the remaining terms in E
(k−1)
ΛQ,+ (x; q, a) and so we

need to bound
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∑
m<Qν

(m,q)=1

g(m) logm (E
(k−1)
f,+ (x/m; q, a/m)− E

(k−1)
f,+ (x/Qν ; q, a/m)).

To do so we need to apply Theorem
PLSG
2.2 with Cq to be the set of all characters

mod q, less χ0, χ1, . . . , χk−1. Then we can deduce Corollary
PLSk
2.1 though now with

χ ̸= χ0, . . . , χk−1 as the condition on the sum (but otherwise the same). We can

then similarly modify Corollary
PLSRange
2.6 and finally obtain Theorem

FnsInAPs
3.1 with E

(k−1)
f

replaced by E
(k−1)
f,+ . Therefore we obtain the bound∑

m<Qν

(m,q)=1

g(m) logm |E(k−1)
f,+ (x/m; q, a/m)− E

(k−1)
f,+ (x/Qν ; q, a/m)|

≪ eC
√
k
ρ′q(f)x

ϕ(q)

(
logQ

log x

)1− 1√
k

ν
∑

m<Qν

(m,q)=1

g(m)
logm

m

≪ eC
√
k
ρ′q(f)x

ϕ(q)

(
logQ

log x

)1− 1√
k

ν
(ν logQ)2

logQ
.

by Corollary
FLS3
1.4, and the result follows since ρ′q(f) ≪ 1/ logQ. (This means we

need to change the sieving to go up to Q throughout rather than q.) 2

Proof of Corollary
PNTaps1
5.2 We let k = 2 in Theorem 11.1 to deduce the first

part. If χ is not real valued, then we know that∣∣∣∣∣∣
∑
n≤x

Λ(n)χ(n)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
n≤x

Λ(n)χ(n)

∣∣∣∣∣∣ ≤ |E(3)
Λ (x; q, a)− E

(2)
Λ (x; q, a)|

and the result follows from Theorem
PNTapsk
5.1. 2



5

PRIMES IN ARITHMETIC PROGRESSION

PNTapsk Theorem 5.1 For any k ≥ 2 and x ≥ q2 there exists an ordering χ1, . . . of the
non-principal characters χ (mod q) such that, for Q = (q log x)2,

∑
n≤y

n≡a (mod q)

Λ(n)− 1

ϕ(q)

∑
n≤y

Λ(n)− 1

ϕ(q)

k−1∑
j=1

χj(a)
∑
n≤y

Λ(n)χj(n)

≪ eC
√
k x

ϕ(q)

(
logQ

log x

)1− 1√
k

log3
(
log x

logQ

)
.

PNTaps1 Corollary 5.2 There exists a character χ (mod q) such that if x ≥ q2 then

∑
n≤x

n≡a (mod q)

Λ(n)− 1

ϕ(q)

∑
n≤x

Λ(n)−χ(a)
ϕ(q)

∑
n≤x

Λ(n)χ(n) ≪ x

ϕ(q)

(
logQ

log x

)1− 1√
2
−ε

.

where Q = (q log x)2. We may remove the χ term unless χ is a real-valued
character.

Remark 5.3 Can we obtain the error in terms of 1/|L(1 + it, χ)|/ log x? And
when χ is real, probably t = 0.

Proof of Theorem
PNTapsk
5.1 We may assume that x ≥ qB for B sufficiently large,

else the result follows from the Brun-Titchmarsh Theorem.
Let g(.) be the totally multiplicative function for which g(p) = 0 for p ≤ Q

and g(p) = 1 for p > Q, and then f = µg, so that we have the following variant
of von Mangoldt’s formula (

Lammu
??),

ΛQ(n) :=
∑

dm=n

f(d)g(m) logm =

{
Λ(n) if p|n =⇒ p > Q,

0 otherwise.

Now ∑
n≤x

n≡b (mod q)

(Λ(n)− ΛQ(n)) ≤
∑
n≤x

p|n =⇒ p≤Q

Λ(d) ≪
∑
p≤Q

log x≪ Q
log x

logQ
.

by the Brun-Titchmarsh theorem. Denote the left side of the equation in the

Theorem as E
(k−1)
Λ,+ (x; q, a), and note that all of these sums can be expressed as

mean-values of
∑

n≤x, n≡b (mod q) Λ(n), as b varies. Hence
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E
(k−1)
Λ,+ (x; q, a)− E

(k−1)
ΛQ,+ (x; q, a) ≪ Q

log x

logQ
.

Now ∑
n≤x

n≡a (mod q)

ΛQ(n) =
∑
d≤x

(d,q)=1

f(d)
∑

m≤x/d
m≡a/d (mod q)

g(m) logm. (5.1) LQexpand

Similar decompositions for the
∑

n ΛQ(n)χj(n) imply that E
(k−1)
ΛQ,+ (x; q, a) equals

the sum of f(d) over d ≤ x with (d, q) = 1, times

∑
m≤x/d

m≡a/d (mod q)

g(m) logm− 1

ϕ(q)

k−1∑
j=0

χj(a/d)
∑

(b,q)=1

χj(b)
∑

m≤x/d
m≡b (mod q)

g(m) logm.

By Corollary
FLS1
1.2 (with m the product of the primes ≤ Q that do not divide q)

this last quantity is

≪
(

k

uu+2

x

dϕ(q) logQ
+ k

√
x

d

)
log x/d

where x/d = Qu. Let R be the product of the primes ≤ Q. We deduce that the
sum over d in a range x/Q2u < d ≤ x/Qu with f(d) ̸= 0, is

≪ k
∑

x/Q2u<d≤x/Qu

(d,R)=1

(
1

uu+2

x

dϕ(q) logQ
+

√
x

d

)
log x/d≪ k

uu
x

ϕ(q)
+

kux

Qu/2

by Corollary
FLS3
1.4 (for the sum over d), provided u ≤ ν := log

(
log x
logQ

)
. Summing

this up over u = 2, 4, 8, . . . , ν, the sum over d in the range Q2 < d ≤ x/Q2ν is

≪ x

ϕ(q)

(
logQ

log x

)2

.

The same argument works to give a much better upper bound for the terms with
d ≤ Q2, though removing the condition (d,R) = 1 in the sum above. Hence we
are left to deal with those d > x/Qν , which implies that m ≤ x/d < Qν .

The remaining sum in (
LQexpand
5.1) is∑

m<Qν

(m,q)=1

g(m) logm
∑

x/Qν<d≤x/m
d≡a/m (mod q)

f(d).

There are analogous sums for the remaining terms in E
(k−1)
ΛQ,+ (x; q, a) and so we

need to bound
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∑
m<Qν

(m,q)=1

g(m) logm (E
(k−1)
f,+ (x/m; q, a/m)− E

(k−1)
f,+ (x/Qν ; q, a/m)).

To do so we need to apply Theorem
PLSG
2.2 with Cq to be the set of all characters

mod q, less χ0, χ1, . . . , χk−1. Then we can deduce Corollary
PLSk
2.1 though now with

χ ̸= χ0, . . . , χk−1 as the condition on the sum (but otherwise the same). We can

then similarly modify Corollary
PLSRange
2.6 and finally obtain Theorem

FnsInAPs
3.1 with E

(k−1)
f

replaced by E
(k−1)
f,+ . Therefore we obtain the bound∑

m<Qν

(m,q)=1

g(m) logm |E(k−1)
f,+ (x/m; q, a/m)− E

(k−1)
f,+ (x/Qν ; q, a/m)|

≪ eC
√
k
ρ′q(f)x

ϕ(q)

(
logQ

log x

)1− 1√
k

ν
∑

m<Qν

(m,q)=1

g(m)
logm

m

≪ eC
√
k
ρ′q(f)x

ϕ(q)

(
logQ

log x

)1− 1√
k

ν
(ν logQ)2

logQ
.

by Corollary
FLS3
1.4, and the result follows since ρ′q(f) ≪ 1/ logQ. (This means we

need to change the sieving to go up to Q throughout rather than q.) 2

Proof of Corollary
PNTaps1
5.2 We let k = 2 in Theorem 11.1 to deduce the first

part. If χ is not real valued, then we know that∣∣∣∣∣∣
∑
n≤x

Λ(n)χ(n)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
n≤x

Λ(n)χ(n)

∣∣∣∣∣∣ ≤ |E(3)
Λ (x; q, a)− E

(2)
Λ (x; q, a)|

and the result follows from Theorem
PNTapsk
5.1. 2



6

LINNIK’S THEOREM

In this section we complete the proof of Linnik’s famous theorem:

Linnik Theorem 6.1 There exist constants c, L > 0 such that for any coprime integers
a and q there is a prime ≡ a (mod q) that is < cqL.

There are several proofs of this in the literature, none easy. Here we present
a new proof as a consequence of the Pretentious Large Sieve, as developed in
the previous few sections. Corollary

PNTaps1
5.2 implies that if there are no primes ≡ a

(mod q) up to x, a large power of Q, then the vast majority of primes satisfy
χ(p) = −χ(a). The difficult part of our current proof is to now show that χ(a) = 1
(which surely should not be difficult! ):

LinkNoSieg Proposition 6.2 Suppose that x ≥ qA where A is chosen sufficiently large. If∣∣∣∣∣∣∣∣
∑
n≤x

n≡a (mod q)

Λ(n)− 1

ϕ(q)

∑
n≤x

Λ(n)

∣∣∣∣∣∣∣∣≫
x

ϕ(q)

then there exists a real character χ (mod q) such that χ(a) = −1, and∑
Q<p≤x
χ(p)=1

1

p
≪ log log

(
log x

logQ

)
.

LinkSiegCond Corollary 6.3 If there are no primes p ≡ a (mod q) with Q < p ≤ x then there
exists a real character χ (mod q) such that χ(a) = −1, and∑

Q<p≤x
χ(p)=1

1

p
≪ 1.

HalRevisited Lemma 6.4 (Halasz’s Theorem for sieved functions) Let f be a multiplicative
function with the property that f(pk) = 0 whenever p ≤ Q. If x ≥ Q then∣∣∣ 1

x

∑
n≤x

f(n)
∣∣∣≪ 1

logQ
(1 +M)e−M +

1

T
+

1

log x

(
1 +

1

logQ
log

(
log x

logQ

))
.

where M := min|t|≤T

∑
Q<p≤x

1−Re(f(p)p−it)
p .
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Proof (sketch) We suitably modify the proof of Halasz’s Theorem (
HalExplic1
??). We

begin by following the proof of Proposition
keyProp
??. First note that S(N) = 1 for all

N ≤ Q, so we can reduce the range in the integral for α, throughout the proof of
Proposition

keyProp
??, to 1

log x ≤ α ≤ 1
logQ . Moreover in the first displayed equation we

can change the error term from ≪ N
logN to ≪ 1

logQ
N

logN for N ≥ Q by sieving.
This allows us to replace the error term in the second displayed equation from

≪ log log x to ≪ 1+ 1
logQ log

(
log x
logQ

)
. Hence we can restate Proposition

keyProp
?? with

the range for α, and the log log x in the error term, changed in this way.

Now we use the bound |F (1+α+ it)| ≤ |F (1+ iu)|+O
(

α
T

log x
logQ

)
throughout

this range, as in Lemma
OffLineOn
??; and we also note that, in our range for α, |F (1+α+

it)| ≪ 1/(α logQ). We then proceed as in the proof of (
HalExplic2
??), but now splitting

the integral at 1/L logQ log x to obtain the result, since L logQ ≍ e−M . 2

Proof of Proposition
LinkNoSieg
6.2 Write ν := log

(
log x
logQ

)
. We return to the proof

of Theorem
PNTapsk
5.1, and show, under our hypothesis here, that there exists y in the

range x1/2 < y ≤ x for which∣∣∣∣∣∣
∑
n≤y

f(n)χ(n)

∣∣∣∣∣∣≫ y

ν2 logQ
.

For, if not, the proof there implies that∣∣∣∣∣∣
∑
n≤x

Λ(n)χ(n)

∣∣∣∣∣∣ = o

(
x

ϕ(q)

)
,

which, by Corollary
PNTaps1
5.2, contradicts our hypothesis.

Taking f = fχ in Lemma
HalRevisited
6.4, and comparing our upper and lower bounds

for Sχ(y) we deduce that

∑
Q<p≤x

1 + Re (χ(p)pit)

p
≪ log ν.

Let T := {z : |z| = 1, and π
3 < arg(z) < 2π

3 or 4π
3 < arg(z) < 5π

3 }. We must
have |t| ≪ ν/ log x else pit ∈ T (and hence χ(p)pit ∈ T ) for enough of the primes
in (xc/ν , x] that the previous estimate cannot hold. Therefore

∑
Q<p≤x
χ(p)=1

1

p
=

1

2

∑
Q<p≤x

1 + Re(χ(p))

p
≪

∑
Q<p≤x

1 + Re(χ(p)pit) + |pit − 1|
p

≪ log ν.

2
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Proof of Corollary
LinkSiegCond
6.3 By Corollary

PNTaps1
5.2 we know that for all y in the range

Q ≤ y ≤ x we have

∑
p≤y

Λ(n)(χ(p) + χ(a)) ≪ y

(
logQ

log y

)1/5

.

By partial summation, we deduce that∑
Q<p≤x

χ(a) + χ(p)

p
≪ 1.

Comparing this to the conclusion of Proposition
LinkNoSieg
6.2, we deduce that χ(a) = −1

and we obtain the result. 2

Proposition 6.5 If the hypotheses of Corollary
LinkSiegCond
6.3 hold for x = qA where A

is sufficiently large, and if χ(a) = 1 then there are primes ≤ x that are ≡ a
(mod q).

6.1 Binary Quadratic Forms

Let us suppose that χ is induced from the quadratic character (./D) so that D
must be squarefree. We re-write this as (d/.) = (./D) where d = (−1)(D−1)/4D,
so that d ≡ 1 (mod 4). Suppose that a, b, c are integers for which b2 − 4ac = d
and define the binary quadratic form ax2 + bxy+ cy2, which has discriminant d.
Now (a, b, c)2|d, which is squarefree, and so (a, b, c) = 1. We will study the values
am2+bmn+cn2 whenm and n are integers, and in particular the prime values. To
begin with we look at divisibility. First note that (m,n)2 divides am2+bmn+cn2,
so we proceed by replacing m by m/(m,n), and n by n/(m,n), and hence we
may assume that m and n are coprime.

We now show that if odd prime p divides am2 + bmn + cn2 then (d/p) = 0
or 1. If p divides n then 0 ≡ am2 + bmn+ cn2 ≡ am2 (mod p) and so p divides
a as (m,n) = 1. Therefore d = b2 − 4ac ≡ b2 (mod p) and hence (d/p) = 0 or 1.
If m - n then 4ap divides 4a(am2 + bmn+ cn2) = (2am+ bn)2 − dn2, and so(

2am+ bn

p

)2

=

(
(2am+ bn)2

p

)
=

(
dn2

p

)
=

(
d

p

)(
n

p

)2

=

(
d

p

)
,

implying that (d/p) = 0 or 1.

Exercise 6.1 Show that if p is an odd prime then

1− 1

p2
#{m,n (mod p) : am2+ bmn+ cn2 ≡ 0 (mod p)} =

(
1− 1

p

)(
1− (d/p)

p

)
.

We wish to show that am2 + bmn + cn2 takes on many prime values, that
is not many composite values. If am2 + bmn + cn2 ≤ x is composite then it
certainly has a prime factor ≤

√
x so we will count the number of such values
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with no small prime factor. To explain our method in an intuitive fashion we
will proceed assuming that d < 0 < a (so that am2 + bmn + cn2 only takes
non-negative values); when we give the actual proof we will use sieve weights
that are easier to work with but more difficult to understand.

The small sieve shows us that if x = yu then for M =
∏

p≤y p

#{m,n ∈ Z : N := am2 + bmn+ cn2 ≤ x, (N,M) = 1} =

= {1 +O(u−u)}
∏
p≤y

(
1− 1

p

)(
1− (d/p)

p

)
X +O(

√
X),

where X := #{m,n ∈ Z : N := am2 + bmn+ cn2 ≤ x} = πx/
√
d+O(

√
x).

We will use this estimate when y is a small power of x, and then obtain a
lower bound by subtracting the number of such integers divisible by a prime in
(y, x1/2].

The trick is that if prime ℓ is in this range with (d/ℓ) = 1 then ℓ can be
written as the value of a binary quadratic form of discriminant d in one of two
(essentially different) ways, and then N/ℓ similarly. Hence to count the number
of such N/ℓ we can use use the same estimate, though in this case we use the
above simply as an upper bound, particularly as N/ℓ ≥

√
x. Hence

#{m,n ∈ Z : N := am2 + bmn+ cn2 ≤ x, (N,M) = 1, ℓ|N}

≪
∏
p≤y

(
1− 1

p

)(
1− (d/p)

p

)
X

ℓ
.

Hence in total, we have

#{m,n ∈ Z : N := am2 + bmn+ cn2 ≤ x, N is prime}

≫

1−
∑

y<ℓ≤x1/2

(d/ℓ)=1

2

ℓ
− ϵ


∏
p≤y

(
1− 1

p

)(
1− (d/p)

p

)
X,

where say u≫ 1/ϵ.
From the first equation in the proof of Corollary

LinkSiegCond
6.3 we deduce that that if

there are no primes ≡ a (mod q) up to x then

∑
y<ℓ≤x1/2

(d/ℓ)=1

1

ℓ
≪
(
logQ

log y

)1/5

;

hence if x = qL where L/u is sufficiently large then
∑

y≤p≤x1/2(1 + (d/p))/p ≤
1/2; and so, from the above, we know that there are many prime values of our
binary quadratic form.
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6.2 Finishing the proof of Linnik’s Theorem

To obtain a complete proof without proving all sorts of results about binary
quadratic forms (and of positive and negative discriminant), we can proceed
working (more-or-less) only with the character χ, though based on what we
know about binary quadratic forms. The extra observation to add to the analysis
of the previous section is that we should work with the values of all binary
quadratic forms of discriminant d, simultaneously, since Gauss showed that the
total number of “inequivalent” representations of n is then

∑
m|n χ(m). Hence

let w(n) =
∑

m|n χ(m), so that w(p) = 1 + χ(p). We define

A(x; q, a) =
∑
n≤x

n≡a (mod q)

w(n).

Exercise 6.2 Show that if f is totally multiplicative and g = 1 ∗ f then

g(mn) =
∑

d|(m,n)

µ(d)f(d)g(m/d)g(n/d).

As usual Am(x; q, a) :=
∑

n w(n) where the sum is over n ≤ x with M |n and
n ≡ a (mod q). Hence, using the exercise with f = χ, if (m, q) = 1 then

Am(x; q, a) =
∑

N≤x/m
N≡a/m (mod q)

w(mN) =
∑

N≤x/m
N≡a/m (mod q)

∑
d|(m,N)

µ(d)χ(d)w(m/d)w(N/d)

=
∑
d|m

µ(d)χ(d)w(m/d)
∑

N≤x/m
N≡a/m (mod q)

d|N

w(N/d)

=
∑
d|m

µ(d)χ(d)w(m/d)A(x/md; q, a/md).

Now w(n) =
∑

m|n, m≤
√
n χ(m) +

∑
m|n, m<

√
n χ(n/m). Therefore

A(x; q, a) =
∑
n≤x

n≡a (mod q)

 ∑
m|n, m≤

√
n

χ(m) +
∑

m|n, m≤
√
n

χ(n/m)


=

∑
m≤x

(m,q)=1

χ(m)
∑

m2≤n≤x
n≡a (mod q)

m|n

1 + χ(a)
∑
m≤x

(m,q)=1

χ(m)
∑

m2<n≤x
n≡a (mod q)

m|n

1

=
1

q

∑
m≤

√
x

(m,q)=1

(χ(m) + χ(a)χ(m))
( x
m

−m+O(1)
)
.
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Now
∑

m (mod q)(kq+m)χ(m) =
∑

m (mod q)mχ(m) ≪ q3/2. Moreover
∑

m≤M χ(m)/m =

L(1, χ) +O(q/M), and so A(x; q, a) = (1 + χ(a))L(1, χ)x/q+O(q
√
x) since χ is

real. Hence, if m is squarefree and coprime to q, and χ(a) = 1 then

Am(x; q, a) = L(1, χ)
x

mq

∑
d|m

µ(d)χ(d)

d
w(m/d)(1 + χ(a/md)) +O

 q

m

∑
d|m

w(m/d)
√
mx/d


= 2L(1, χ)

x

mq

∏
p|m

(
1 + χ(p)

(
1− 1

p

))
+O

 q

m

√
x
∏
p|m

(1 + (1 + χ(p))
√
p)

 .

Hence if we write Am(x; q, a) = (g(m)/m)A(x; q, a) + rm(x; q, a) then g is a

multiplicative function with g(p) = 1 + χ(p)
(
1− 1

p

)
and∑

m≤M

|rm(x; q, a)| ≪ q
√
Mx

∑
m≤M

1

m

∏
p|m

(1 + χ(p) + 1/
√
p) ≪ q

√
Mx log2M.

Sieving Lemma Lemma 6.6 (Standard sieving lemma) Suppose that an are a set of real weights
supported on a finite set of integers n. Let A(x) =

∑
n an and suppose that there

exists a non-negative multiplicative function g(.) such that

Am(x) =
∑

n: m|n

an =
g(m)

m
A(x) + rm(x)

for all squarefree m, for which there exists K,κ > 0 such that∏
y<p≤z

(
1− g(p)

p

)−1

≤ K

(
log z

log y

)κ

,

for all 2 ≤ y < z ≤ x. Let P be a given set of primes, and P (z) be the product
of the elements of P that are ≤ z. Then

∑
n≤x

(n,P (z))=1

an =
{
1 +OK,κ(e

−u)
} ∏

p∈P
p≤z

(
1− g(p)

p

)∑
n≤x

an +O

 ∑
m|P (z)
m≤zu

|rm(x)|


Above we let x ≫ q5/L(1, χ)2 and z = xϵ, with u large and ϵu small, and

then apply Lemma
Sieving Lemma
6.6 with κ = 2 to obtain∑

n≤x
n≡a (mod q)
(n,P (z))=1

w(n) =
{
1 +O(e−u)

}∏
p≤z

(
1− 1

p

)(
1− χ(p)

p

)
A(x; q, a).

Now for each primes p, z < p ≤
√
x we must remove from the left side those n

divisible by p. For each prime p write n = Np and so we get an upper bound from
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w(p) times the sum of w(N) overN ≤ x/p, N ≡ a/p (mod q) and (N,P (z)) = 1.
Since x/p ≥

√
x, we can get an upper bound from the same estimate, of the right

side with x/p in place of x; that is divided by p. Hence we deduce that

∑
p≤x

p≡a (mod q)
p prime

w(p) =

1 +O

e−u +
∑

z<p≤
√
x

1 + χ(p)

p

∏
p≤z

(
1− 1

p

)(
1− χ(p)

p

)
A(x; q, a).

In the last section we explained that
∑

z<p≤
√
x

1+χ(p)
p ≪

(
logQ
log z

)1/5
, and hence

we have proved that

π(x; q, a) = {1 + oL→∞(1)}
∏
p≤z

(
1− 1

p

)(
1− χ(p)

p

)
L(1, χ)

x

q
,

where x = qL and z = q
√
L.


