Primes at a (somewhat lengthy) glance
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One can tell that

17 = 2% + 3
19=2"+3
37=5+22.3
47=2-52-3

53=32.7-2-5
97=3.5.7—23

are all prime, at a glance, since we have written each n = A + B where each prime < \/n
divides exactly one of A and B (and thus n is coprime with every prime < /n). This
strange procedure is thoroughly investigated in [1]; in general, it is quite a challenge to so
write a given prime n since the product of the primes < /n is around ellto(W}vn,

A similar but more complicated method to establish the primality of n goes as follows:
let py =2 < pp =3 < --- < pr be the sequence of primes < /n. Write n in the form

where the set of prime divisors of NV; is precisely the set of all the primes up to py, other
than p;. Then, for each j =1,2,...,k, we have (n,p;) = (N;,p;) = 1 (since p; divides N;
whenever j # i), and thus n is prime. This way of determining whether n is prime leads
to our title. It turns out to be fairly easy to prove that there always is a representation as
in (1):

Theorem. Given py =2 < py =3 < --- < pi the first k primes and a positive integer
n < <Hf:1 pi> (Z§:1 p%.): free of prime factors < py, there exist integers Ny, No, ..., Ny
with

n=N;+ Na+--++ Ny, (1)

where each |N;| < Hle pi and the prime divisors of N; are precisely {p1,p2, ..., pr}\{p;}-

In fact we shall determine all such solutions to (1) in our proof.



Proof. Let m = Hle pi, and let mj; = m/p; for each j. Assume that n is an integer in the
range 0 < n < Z?Zl m;, which is coprime to m. Define a; to be the least positive integer
for which
n=mja; (mod p;)
for each j (such an «; exists since (m;,p;) = 1). Moreover 0 < a; < p; since (n,p;) =1
(because (n,m) =1 and p; divides m).
Define N = mjaq + maag + - -+ + myay. Since each a; > 1, we deduce that

N > Z§:1 m; > n. Also, since p; divides m; whenever j # i, we deduce that
N =mja; =n (mod p;)

for each j, and so N =n (mod m) by the Chinese Remainder Theorem. Thus we may
write N = n + Am for some integer A > 0. We also note that since each a; < p; thus
Am < N < mipy + maops + - -+ + mgpr = km, so that A < k.

Now in any solution to (1), m; divides N; for each j, by the hypothesis, so we can

write N; = mja; for some integer a;. Since p; divides m;, which divides N;, whenever
J # i, we deduce from (1) that

mja; =n = N; =mja; (mod p;).

Therefore a; = a; (mod p;) since (m;,p;) = 1.

The condition |N;| < m is equivalent to the condition |a;| < m/m; = p;. The only
integers that are < p; in absolute value, and = «a; (mod p;), are «a; itself and o; — p;.
Therefore a; = o; — d;p; where d; = 0 or 1. Conversely if a; = o; — d;p; where J; = 0
or 1, then |a;| < p; so that |N;| < m. Moreover, all of the prime divisors of a; are then
< p; and thus the prime divisors of N; = mja; are a subset of {p1,p2,...,px} \ {pj}, as
required by the hypothesis. Also, since mja; = mja; — d;m, we have

Ni+ No+ -+ N =myiay; +maag + -+ - +myay
= (miay — d1m) + (maag — dom) + - - - + (mpayg — opm)
=N—(51+2+ -+ d)m.
Therefore (1) holds if and only if §; + 02 + -+ + 6 = A, where each §; = 0 or 1. Since

0 < A < k, it is evident that there are solutions to this, and that they are given when
exactly A of the §; equal 1, and the rest of the J; equal 0.



Example. To clarify the notation in the proof above we show how to find all solutions to
(1) for the example with n = 101 and k = 4:

We have
p1:27 p2:37 p3:57 andp4:77

so that m=2-3-5-7= 210 and
mq = 105, mo = 70, mg = 42, and my = 30.
From some simple modular arithmetic we determine that
a1 =1, ay =2, ag=3, and ay =5,

which leads to N = 105-1+ 702+ 42-3 4 30 -5 = 521. Therefore A = (N —n)/m =
(521 — 101)/210 = 2; and thus if a; = a; — §;m; for j = 1,2,3,4, then exactly two of the
d; = 1, the other two of the §; = 0. This leads to (;‘) = 6 representations of 101 as in (1),

namely:

101 = —105 + 140 + 126 — 60 = 105 — 70 + 126 — 60 = —105 — 70 + 126 + 150
= —105+4 140 — 84 4+ 150 = 105 + 140 — 84 — 60 = 105 — 70 — 84 + 150

Corollary. Every prime n > 11 may be ‘proved’ to be prime by expressing it in the form
(1), where p1 = 2 < py = 3 < -+ < py, are precisely the primes up to \/n, and N; is the
product of all of those primes other than p;.

Proof. For each prime 11 < n < 47 we verify the result by computing an appropriate
expression of the form (1):

11=3+2% 13=32+2% 17=324+2% 19=3+4+2% 23=3%—-2%
29=32.5-2.5-2.3; 31=3-54+2-54+2-3; 37=3-5+2-5+2%.3;
41=3-5+4+22.54+2.3; 43=3-54+2-54+2-3% 47=3-5+22.5+22.3.

That such expressions exist for each prime n > 53 may be deduced directly from our
Theorem, by using the following Lemma to ensure that the hypothesis of the Theorem
holds when we take p; =2 < py =3 < --- < pi to be the primes up to /n.



Lemma. Ifn > 49 then (Hpg\/ﬁp> (Zpg\/ﬁ %) > n.
Proof. Bertrand’s postulate asserts that there is a prime in the interval (z,2x] whenever
x > 1. In particular, there are primes ¢ € (/n/2,v/n| and r € (\/n/4,/n/2].

Therefore, if n > 400, then 2,3, 5, ¢, r are distinct primes < /n, so that

1 1 1 1 Vn/n
” E_ >9.3.5.0-r-[Z2+ -1+ -)=31 1YV )

p = 35q7’<2+3+5) 3lgr > 3 5 4>n
p<v/n p<v/n

If 121 < n < 400, then 2,3,5,7,11 are distinct primes < y/n, so that

1 1 1 1 1 1
2] >2:3.5.7-11- (24 -+ +-+— ) =2927T>n.
II > Zp > <2+3+5+7+11) >n
p<v/n p<v/n

If 49 < n < 120, then 2,3,5,7 are distinct primes < /n, so that

1 1 1 1 1

— >92.3.5.7.| = — — -1 =24 .
II > §jp > 357(2+3+5+7) T>n
p<vn p<vn

In many ways, this proof of primality seems to be entirely without merit—one needs
to know all of the primes < /n for it to be useful—moreover, the expression in (1) is, in
practice, ridiculously long. However, it does express a proof of primality in a single, albeit
unwieldy, expression.

Dedicatory: Paul Erdés passed away on 20th September, 1996, just a few weeks after
this paper was accepted for publication.
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