Primes at a (somewhat lengthy) glance Takashi Agoh, Paul Erdős, and Andrew Granville

One can tell that

$$17 = 2^{3} + 3^{2}$$

$$19 = 2^{4} + 3$$

$$37 = 5^{2} + 2^{2} \cdot 3$$

$$47 = 2 \cdot 5^{2} - 3$$

$$53 = 3^{2} \cdot 7 - 2 \cdot 5$$

$$97 = 3 \cdot 5 \cdot 7 - 2^{3}$$

are all prime, at a glance, since we have written each $n = A \pm B$ where each prime $\leq \sqrt{n}$ divides exactly one of A and B (and thus n is coprime with every prime $\leq \sqrt{n}$). This strange procedure is thoroughly investigated in [1]; in general, it is quite a challenge to so write a given prime n since the product of the primes $\leq \sqrt{n}$ is around $e^{\{1+o(1)\}\sqrt{n}}$.

A similar but more complicated method to establish the primality of n goes as follows: let $p_1 = 2 < p_2 = 3 < \cdots < p_k$ be the sequence of primes $\leq \sqrt{n}$. Write n in the form

$$n = N_1 \pm N_2 \pm \dots \pm N_k, \tag{1}$$

where the set of prime divisors of N_j is precisely the set of all the primes up to p_k , other than p_j . Then, for each j = 1, 2, ..., k, we have $(n, p_j) = (N_j, p_j) = 1$ (since p_j divides N_i whenever $j \neq i$), and thus n is prime. This way of determining whether n is prime leads to our title. It turns out to be fairly easy to prove that there always is a representation as in (1):

Theorem. Given $p_1 = 2 < p_2 = 3 < \cdots < p_k$ the first k primes and a positive integer $n \le \left(\prod_{i=1}^k p_i\right) \left(\sum_{j=1}^k \frac{1}{p_j}\right)$, free of prime factors $\le p_k$, there exist integers N_1, N_2, \ldots, N_k with

$$n = N_1 + N_2 + \dots + N_k, \tag{1}$$

where each $|N_j| < \prod_{i=1}^k p_i$ and the prime divisors of N_j are precisely $\{p_1, p_2, \dots, p_k\} \setminus \{p_j\}$.

In fact we shall determine all such solutions to (1) in our proof.

Proof. Let $m = \prod_{i=1}^k p_i$, and let $m_j = m/p_j$ for each j. Assume that n is an integer in the range $0 < n \le \sum_{j=1}^k m_j$, which is coprime to m. Define α_j to be the least positive integer for which

$$n \equiv m_j \alpha_j \pmod{p_j}$$

for each j (such an α_j exists since $(m_j, p_j) = 1$). Moreover $0 < \alpha_j < p_j$ since $(n, p_j) = 1$ (because (n, m) = 1 and p_j divides m).

Define $N = m_1\alpha_1 + m_2\alpha_2 + \cdots + m_k\alpha_k$. Since each $\alpha_j \geq 1$, we deduce that $N \geq \sum_{j=1}^k m_j \geq n$. Also, since p_j divides m_i whenever $j \neq i$, we deduce that

$$N \equiv m_j \alpha_j \equiv n \pmod{p_j}$$

for each j, and so $N \equiv n \pmod{m}$ by the Chinese Remainder Theorem. Thus we may write $N = n + \Delta m$ for some integer $\Delta \geq 0$. We also note that since each $\alpha_j < p_j$ thus $\Delta m < N < m_1 p_1 + m_2 p_2 + \cdots + m_k p_k = km$, so that $\Delta < k$.

Now in any solution to (1), m_j divides N_j for each j, by the hypothesis, so we can write $N_j = m_j a_j$ for some integer a_j . Since p_j divides m_i , which divides N_i , whenever $j \neq i$, we deduce from (1) that

$$m_j \alpha_j \equiv n \equiv N_j = m_j a_j \pmod{p_j}$$
.

Therefore $a_j \equiv \alpha_j \pmod{p_j}$ since $(m_j, p_j) = 1$.

The condition $|N_j| < m$ is equivalent to the condition $|a_j| < m/m_j = p_j$. The only integers that are $< p_j$ in absolute value, and $\equiv \alpha_j \pmod{p_j}$, are α_j itself and $\alpha_j - p_j$. Therefore $a_j = \alpha_j - \delta_j p_j$ where $\delta_j = 0$ or 1. Conversely if $a_j = \alpha_j - \delta_j p_j$ where $\delta_j = 0$ or 1, then $|a_j| < p_j$ so that $|N_j| < m$. Moreover, all of the prime divisors of a_j are then $< p_j$ and thus the prime divisors of $N_j = m_j a_j$ are a subset of $\{p_1, p_2, \ldots, p_k\} \setminus \{p_j\}$, as required by the hypothesis. Also, since $m_j a_j = m_j \alpha_j - \delta_j m$, we have

$$N_1 + N_2 + \dots + N_k = m_1 a_1 + m_2 a_2 + \dots + m_k a_k$$

= $(m_1 \alpha_1 - \delta_1 m) + (m_2 \alpha_2 - \delta_2 m) + \dots + (m_k \alpha_k - \delta_k m)$
= $N - (\delta_1 + \delta_2 + \dots + \delta_k) m$.

Therefore (1) holds if and only if $\delta_1 + \delta_2 + \cdots + \delta_k = \Delta$, where each $\delta_j = 0$ or 1. Since $0 \le \Delta < k$, it is evident that there are solutions to this, and that they are given when exactly Δ of the δ_j equal 1, and the rest of the δ_j equal 0.

Example. To clarify the notation in the proof above we show how to find all solutions to (1) for the example with n = 101 and k = 4:

We have

$$p_1 = 2$$
, $p_2 = 3$, $p_3 = 5$, and $p_4 = 7$,

so that $m = 2 \cdot 3 \cdot 5 \cdot 7 = 210$ and

$$m_1 = 105$$
, $m_2 = 70$, $m_3 = 42$, and $m_4 = 30$.

From some simple modular arithmetic we determine that

$$\alpha_1 = 1$$
, $\alpha_2 = 2$, $\alpha_3 = 3$, and $\alpha_4 = 5$,

which leads to $N = 105 \cdot 1 + 70 \cdot 2 + 42 \cdot 3 + 30 \cdot 5 = 521$. Therefore $\Delta = (N - n)/m = (521 - 101)/210 = 2$; and thus if $a_j = \alpha_j - \delta_j m_j$ for j = 1, 2, 3, 4, then exactly two of the $\delta_j = 1$, the other two of the $\delta_j = 0$. This leads to $\binom{4}{2} = 6$ representations of 101 as in (1), namely:

$$101 = -105 + 140 + 126 - 60 = 105 - 70 + 126 - 60 = -105 - 70 + 126 + 150$$
$$= -105 + 140 - 84 + 150 = 105 + 140 - 84 - 60 = 105 - 70 - 84 + 150$$

Corollary. Every prime $n \ge 11$ may be 'proved' to be prime by expressing it in the form (1), where $p_1 = 2 < p_2 = 3 < \cdots < p_k$ are precisely the primes up to \sqrt{n} , and N_j is the product of all of those primes other than p_j .

Proof. For each prime $11 \le n \le 47$ we verify the result by computing an appropriate expression of the form (1):

$$11 = 3 + 2^{3}; \quad 13 = 3^{2} + 2^{2}; \quad 17 = 3^{2} + 2^{3}; \quad 19 = 3 + 2^{4}; \quad 23 = 3^{3} - 2^{2};$$
$$29 = 3^{2} \cdot 5 - 2 \cdot 5 - 2 \cdot 3; \quad 31 = 3 \cdot 5 + 2 \cdot 5 + 2 \cdot 3; \quad 37 = 3 \cdot 5 + 2 \cdot 5 + 2^{2} \cdot 3;$$
$$41 = 3 \cdot 5 + 2^{2} \cdot 5 + 2 \cdot 3; \quad 43 = 3 \cdot 5 + 2 \cdot 5 + 2 \cdot 3^{2}; \quad 47 = 3 \cdot 5 + 2^{2} \cdot 5 + 2^{2} \cdot 3.$$

That such expressions exist for each prime $n \geq 53$ may be deduced directly from our Theorem, by using the following Lemma to ensure that the hypothesis of the Theorem holds when we take $p_1 = 2 < p_2 = 3 < \cdots < p_k$ to be the primes up to \sqrt{n} .

Lemma. If
$$n \ge 49$$
 then $\left(\prod_{p \le \sqrt{n}} p\right) \left(\sum_{p \le \sqrt{n}} \frac{1}{p}\right) \ge n$.

Proof. Bertrand's postulate asserts that there is a prime in the interval (x, 2x] whenever $x \ge 1$. In particular, there are primes $q \in (\sqrt{n}/2, \sqrt{n}]$ and $r \in (\sqrt{n}/4, \sqrt{n}/2]$.

Therefore, if n > 400, then 2, 3, 5, q, r are distinct primes $\leq \sqrt{n}$, so that

$$\left(\prod_{p<\sqrt{n}}p\right)\left(\sum_{p<\sqrt{n}}\frac{1}{p}\right)\geq 2\cdot 3\cdot 5\cdot q\cdot r\cdot \left(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}\right)=31qr>31\frac{\sqrt{n}}{2}\frac{\sqrt{n}}{4}>n.$$

If $121 \le n \le 400$, then 2, 3, 5, 7, 11 are distinct primes $\le \sqrt{n}$, so that

$$\left(\prod_{p \le \sqrt{n}} p\right) \left(\sum_{p \le \sqrt{n}} \frac{1}{p}\right) \ge 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11}\right) = 2927 > n.$$

If $49 \le n \le 120$, then 2, 3, 5, 7 are distinct primes $\le \sqrt{n}$, so that

$$\left(\prod_{p \le \sqrt{n}} p\right) \left(\sum_{p \le \sqrt{n}} \frac{1}{p}\right) \ge 2 \cdot 3 \cdot 5 \cdot 7 \cdot \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7}\right) = 247 > n.$$

In many ways, this proof of primality seems to be entirely without merit—one needs to know all of the primes $\leq \sqrt{n}$ for it to be useful—moreover, the expression in (1) is, in practice, ridiculously long. However, it does express a proof of primality in a single, albeit unwieldy, expression.

Dedicatory: Paul Erdős passed away on 20th September, 1996, just a few weeks after this paper was accepted for publication.

Acknowledgement: Thanks to Carl Pomerance and John Selfridge for some useful comments. The third author is a Presidential Faculty Fellow and is supported, in part, by the National Science Foundation.

[1] R.K. Guy, C.B. Lacampagne, J.L. Selfridge, Primes at a glance, Math. Comp. 48 (1987), 183–202.

Takashi Agoh Dept. of Math. Science U. of Tokyo Noda, Chiba 278, Japan (agoh@ma.noda.sut.ac.jp) Paul Erdős Mathematical Institute Hungarian Academy of Sciences Reáltanoda u. 13-15, Budapest, Hungary Andrew Granville
Dept. of Math.
U. of Georgia
Athens, Georgia 30602, USA
(andrew@math.uga.edu)