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Abstract

A Steiner quadruple system of order v, denoted SQS(v), is a pair
(X, B) where X is a set of cardinality v, and B is a set of 4-subsets of
X (called blocks), with the property that any 3-subset of X is contained
in a unique block. If (X,B) is an SQS(v) and (Y,C) is an SQS(w)
with Y € X and C C B, we say that (Y,C) is a subdesign of (X, B).
Hanani has shown that an SQS(v) exists for all v = 2 or 4 (mod 6) and
when v € {0, 1}; such integers v are said to be admissible. A necessary
condition for the existence of an SQS(v) with a subdesign of order w
is that v = w or v > 2w. In this paper we show the existence of an
explicitly computable constant k (independent of w) such that for all
admissible v and all admissible w with v > kw there exists an SQ.S(v)
containing a subdesign of order w. We also show that for any sufficiently
large w we can take k = 12.54. To establish these results we introduce
several new constructions for SQ.S, and we also consider the subdesign
problem for related classes of designs.

* On leave from IBM-Israel



1. Introduction

This paper is concerned with the existence problem for SQS(v) with a subdesign of
order w. Let Ag = {0,1} U{v >2: v = 2 or 4(mod6)} denote the set of admissible
integers. For w € Ag, we define S, to be the set of all orders v for which there exists
an SQS(v) with a subdesign of order w. Define s,, to be the least admissible integer
vy, such that for all v € Ag, v > vy we have v € S,,, if such a vy exists; otherwise
Sy = 0o. In section 3 we shall show that s, is finite for all w € Ag, and then in section
4 we shall show that s,, < kw for some absolute constant k. In section 5 we improve
the constant k. To do this we need constructions for SQS(v) with subdesigns. These
constructions are described in section 2, including a review of existing constructions as
applied to the subsystem problem. Several new constructions are also described in section
2, and the details of these new results are given in section 6. In section 7 we give some
generalizations of our results and, in section 8, pose some problems.

To put our question into a more general context, we define a t — (v, K, \) design, for
integers t > 0, v > 0, A > 1, and K a set of non-negative integers, to be a pair (X, B)
where X is a set of cardinality v, and B is a set of subsets of X called blocks with the
properties that

(i) BeB = |B| € K. i.e. K is the set of block sizes,
(ii) every t-subset of X is contained in precisely A\ blocks.

An SQS(v) is just a 3 — (v,{4},1) design, and a Steiner triple system (ST'S(v)) is a
2 — (v,{3},1) design.

A three-wise balanced design is a 3 — (v, K, 1)design. In his second paper on 3 —
(v, {4}, \) designs Hanani [7] showed the importance of 3 — (v, {4,6},1) designs for the
construction of SQS, and we denote such a design by T'(v) (T for three-wise balanced).
These systems have been studied by many authors (e.g. [2] and [3]), usually under the
name of generalized Steiner systems. Hanani showed that a T'(v) exists if and only if
v = 0(mod 2) or v = 1, and this set of integers is denoted by Ar. Our bounds on s,, follow
directly from our study of the subdesign problem for 7'(v) designs. Accordingly we define
T, to be the set of all orders v for which there exist a T'(v) with a subdesign of order w;
and t,, to be the smallest integer vy such that for all v € A, v > vy we have v € T}, if
such an integer exists; otherwise t,, = co.

A special kind of design T'(v) can be constructed when v = 0(mod6) - these are

3 —(v,{4,6},1) designs with precisely ¢ blocks of size 6 (which form a parallel class), and
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all the remaining blocks of size 4. Such designs will be denoted by G(v). The existence of
designs G(v) for all v = 0(mod 6) was first shown by Mills [17] in his studies of packing
and covering problems.

As the cases of SQS(v) and T'(v), we define Ag, G, and g, for designs G(v) with
subdesigns G(w). The subdesign problem for G(v) has been studied in the special case
w = 498, by Hartman, Mills and Mullin [12]. Their results easily generalize to give a
quadratic upper bound on g,, - and this is outlined in section 3.

Our main result is that s, < kv for some fixed constant k. We also give linear bounds
on t, and g,. It has been conjectured by many authors that s, = 2v, and this conjecture
has been proved for v < 8. Finite bounds on s, for v < 40 were given by Hartman [9], but
to this date no proof of the finiteness of s, has appeared. We believe the old conjecture
to be true, and further conjecture that ¢, = 2v and g, = 2v; these conjectures are true for
v < 6. (Note that a very easy counting argument gives s, > 2v, and similarly for ¢, and
Gu-)

The study of the subdesign problem for SQS(v) is a natural generalization of the
Doyen-Wilson theorem [5] for Steiner triple systems. Doyen and Wilson showed that for
all v =1 or 3(mod6) and w =1 or 3 (mod 6) with v = w or v > 2w + 1, there exists an

STS(v) with a subdesign of order w.



2. Constructions with subdesigns

In this section we state the constructive results which enable us to show the existence
of designs with subdesigns. Several of these constructions have appeared in the literature
before, and we restate these results in a form which highlights the subdesign properties.
The new constructions are described here and a detailed account of them appears in Section
6.

When the subdesign is trivial (has 0 or 1 blocks) then Hanani’s and Mills’ existence

theorems have the following corollaries:

Theorem 2.0
(a) S1 = As\{0}
SQ — AS\{Oal}

Sy = As\{0,1,2}
Ss = Ags\{0,1,2,4,10,14} = {8} U{v € Ag: v > 16} [Hartman, 10]

(b) T = Ar\{0}
1> = Ar\{0, 1}
T, = Ar\{0,1,2,6}
(¢) G¢ = Ac\{0} [Mills, 17]

A basic result in the construction of designs is the replacement property for subdesigns.
That is, given a design (X, B) with a subdesign (Y, C) and another design (Y, P) on the
same points, then (X, (B— C)UP) is a design which contains the second subdesign. More
formally
Theorem 2.1

(a) fv e S, and w € S, then v € S,. (w € S, implies S, C S,)

(b) If v € T, and w € Ty, then v € T,.

(¢) If ve Gy and w € G, then v € G,.

Other constructions for designs are recursive in nature and this naturally induces

subsystems in the constructed design. We discuss five families of recursive constructions

below.

2.1 Doubling Constructions
The well known doubling construction for SQS described in Hanani [6], Lindner and

Rosa [16] and Hartman [8] has the following implications for the subdesign problems.
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Theorem 2.2
(a) Forallv e Ap, 2veT,
(b) Forallve Ag, 2veS,
(¢c) Forallve Ag, 2veaG,
(d) If v € T, then 2v € Ty,
(e) If v € Sy, then 2v € Sy,
(f) If v € Gy, then 2v € Gy,
There is also another doubling construction for T'(v) due to Hanani [7]. His con-
struction uses a T'(v) to construct a T'(2v — 2) for any even v. Close inspection of this
construction gives

Theorem 2.3 If v € T}, then (2v — 2) € Th,, o.

2.2 Tripling Constructions

The constructions described in this section are for designs of order 3v — 2w, given an
input design of order v with a subsystem of order w. The cases where w = 0,1 are rather
special, and we discuss these cases first.
Theorem 2.4

(a) If v € T} then 3v — 2 € T), [Proved in §6]

(b) If v € Sy then 3v — 2 € S, [Hanani]
Corollary 2.5

For all even v we have 3v € T,.
Proof By induction on the power of 2 dividing v: If v = 2(mod4) then let x = § + 1 =
0(mod 2). Therefore 3z —2 € T, by Theorem 2.4(a), and so 3v = 2(3x —2) —2 € Thy_o_y,
by Theorem 2.3.

Otherwise let # = § = 0(mod 2). Then 3z € T, by the induction hypothesis, and so
3v = 6z € Tp,—, by Theorem 2.2(d).

The next result is the key to our use of T'(v) for the study of SQS(v).
Theorem 2.6 (Hanani [7]) If v € T}, then 3v — 2 € S3,,_2 C T3yy—2.

When w is even then the tripling constructions due to Hanani [6] and Hartman [8]
[11] (see also Lenz [14] ) have the following form
Theorem 2.7 For all even w > 2,

(a) If v € T, and v = +w(mod 3) then 3v — 2w € T,,.

(b) If v € Sy, then 3v — 2w € S,,.

(¢) If v € Gy then 3v — 2w € G,,.



2.3 Quadrupling Constructions

In his original paper, Hanani [6] proved that 4v—6 € S, for all v € Sy. His construction
also gives 4v—6 € T, for all v € T . In section 5 we give a generalization of his construction
which proves the following result.
Theorem 2.8 For all even w we have

(a) If v € Ty, then 4v — 3w € T,

(b) If v € Sy, then 4v — 3w € S,

(c¢) If v € Gy then 4v — 3w € G,

Our construction also shows that if there exists a design (X, B) of order v with two
subdesigns (Y1,C) and (Y3, P) with Y1 NY, =0, |[Vi|=w, |[Y3] =2 and 2 = v — w or

x < “5%, then there exists a design of order 4v — 3w containing a subdesign of order 2z.

In particular, when w = 2, we have the following Corollary to Hanani’s construction.
Theorem 2.9 If v, w are even, with v > w then

(a) If v € T}, then 4v — 6 € Ty,

(b) If v € S, then 4v — 6 € So,,

Note that w < ”52 is no real condition since if w = § then 4v — 6 € T, = Ty, (by
Theorem 2.8).

2.4 Hextupling Constructions
The constructions described here generalize the constructions of Hanani [7] and Hart-
man, Mills and Mullin [12]. The result stated below is proved in section 5.
Theorem 2.10 For all w > 2, if v € S,, UG, then
(a) 6(v—2)+k € Sg(w—2)4k for k=2,4,8 or 10 and
(b) 6(v —2) +k € Ggu—2)1 for k=6 or 12.
This clearly implies
Corollary 2.11 For w > 2, if v € S, UGy, then

6(v —2) +k € Tos(w—2)+ for k=2,4,6,8,10 or 12.

2.5 The Singular Direct Product

This contruction, due to Hanani [6], [7], has been rediscovered many times; see for
example Aliev [1], Lindner and Rosa [16], and others. The result is a consequence of
Theorems 2.4 and 2.7, although it appears to contain these results as a special case.
Theorem 2.12 If n € S}, then

(a) If v € Ty and v = Fw(mod 3) then (n — 1)(v —w) +w € Tk 1)(v—w)+w-
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(b) If v € Sy then (n —1)(v — w) +w € S—1)(v—w)+w-

(c) If v € Gy then (n —1)(v —w) +w € Gr—1)(v—w)+w-

Setting n = 4, k = 2 almost gives a restatement of Theorems 2.4 and 2.7; however
Theorem 2.4 (a) is stronger, since the restriction v = £1(mod3) is not needed in that
result.

We have a number of results that combine the above theorems. We shall concentrate

just on S:

Theorem 2.13.
(a) If n € Sy and v € Sy, then (3n —2)(v —w) + w € S3k—2)(v—w)+w-
(b) Suppose A is a positive integer with A =0 or 2 (mod 6) or A = 3 or 9 (mod 18).
For any integer B and w € Ag, ifv=Aw+ B € S, then Av+ B € 5,,.

Proof:

(a) We have 4v — 3w € S, by 2.8(b) and so the result follows from substituting this
into 2.12(b).

(b) For A = 0 or 2 (mod 6) take n = A+ 2,k = 2 in 2.12(b) to get Av + B =
Av+(v—Aw) = (A+1)(v—w)+w € S,. For A=3o0r9 (mod 18) taken = A/3+1, k=1
in (a) toget Av+ B=(A+1)(v—w)+w € Y,.

Theorem 2.14
(a) If v =4 (mod 6) then 20 +2 € S,
(b) If v =2 (mod 6) then 4v + 2 € §,

Proof:

(a) Let w = (v + 2)/3 so that w € Ar. Then 2w € T, by 2.2(a) and so 2v + 2 =
6w — 2 € Su_o—y by 2.6.

(b) By (a), 4v + 2 € Sy, and as Sa,, C S, by 2.2(b) and 2.1(a), we get the result.



3. Finite embedding bounds

In this section we use the constructions given in section 2 to show that s,, and t,, are
bounded above by a polynomial in w. We shall also refer to the techniques of Hartman,
Mills and Mullin [12] to give a quadratic bound on g,,. We begin by showing the existence
of certain classes of designs in T, for w = 6, 8, 10, 18, 20 and 30.

Lemma 3.1 If v =2 (mod 8) and v > 26 then v € Tg.

Proof: Asw = (v+6)/4 €Ty by 2.0(b), so v =4w — 6 € Tg by 2.9.

Lemma 3.2 If v =0 (mod 2) and v > 12 then v € T.

Proof: By induction on the power of 2 dividing v: If v = 2 (mod 4) then w = (v+2)/2 €
Ty by 2.0 (b); and so v = 2w — 2 € T by 2.3. Now 12 € T by 2.2(a). Chouinard et al [4]
have shown that 16 € Ts. Kreher [13] has shown that 20 € Ts. For any other v = 0 (mod
4) we have v € T,/ C T by the induction hypothesis.

Lemma 3.3 If v =2 (mod 6) and v > 20 then v € T}, except possibly v = 32.

Proof: For a given value of v let m be the largest odd number dividing v. If m =1 let
w = 64; if m = 7 let w = 28; otherwise let w = 2m. By definition, if w divides v then
v = w2* for some value of k, so that v € T}, by k applications of 2.2(a).

Now as 10,22 € T by 2.0(a) we have 28 = 3.10 — 2 and 64 = 3.22 — 2 € T34 by 2.6.
The other values of w satisfy w = 2 (mod 4) and w = 10 or w > 22. Let z = w/2 + 1, so
that 2 = 0 (mod 2) and z = 6 or z > 12. Then z € T by 3.2 and so w = 2z — 2 € Ty by
2.3. Therefore v € T,, C T1¢ by 2.1(b).

Lemma 3.4 If v =2 (mod 24) and v > 50 then v € Th.

Proof: For v > 74, v # 122 we let w = (v + 6)/4. Then w € Tip by 3.3 and so
v=4w — 6 € Ty by 2.9(a). As 20 € Ty by 2.2(a) thus 50 = 4.20 — 3.10 € Ty, by 2.8(a).
Similarly 50 = 4.14 — 3.2 € T14 by 2.8(a) and so 122 = 3.50 — 2.14 € T5y C Tpg by 2.7(a).
Lemma 3.5 If v =12 ( mod 24) and v > 36 then v € Tg.

Proof: If v > 84 then let w = ¢ so that w = 6(mod12) and w > 42. Now let z = %2

2 7

so that # = 4(mod6) and z > 22; finally let z = 22, so that z = 0(mod2) and z > 8.

Now z € Ty and so x = 32 —2 € Ty (by Theorem 2.6), w = 2z —2 € Ti5 (by Theorem
2.3), and v = 2w € T,, C T1g (by Theorem 2.2).

Finally 36 € Tig by 2.2(a) and 60 =4-18 —3 -4 € Tig by 2.8, as 18 € Ty.
Lemma 3.6 If v =12 ( mod 24) and v > 60 then v € Tj.
Proof: If v > 132 then let w = § so that w = 6 (mod 12) and w > 66. Let x = “’TJFQ, SO
that z = 4 (mod 6) and = > 34; finally let z = 22 so that 2 = 0 (mod 2) and z > 12.
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Now z € Ty (by Lemma 3.2) and so 3z — 2 = = € Ty (by Theorem 2.6), 22 — 2 =
w € T3g (by Theorem 2.3), and 2w = v € T, C T3 (by Theorem 2.2).

For v € {60,84,108} we note that 60 =2-30 € T3y and 84 =4-30—-3-12 € T3
since 30=4-12—-3-6 € Tjp as 12 € Tg. Also 108 =4-30—-3-4 € T3g as 30 € Ty.

We can now establish the finiteness of t,, for all even w.

Theorem 3.7 For all even w > 2 we have

max{12t= — 18,110}  if w = 0(mod4)

tw <
max{12tws2 — 16,120} if w = 2(mod4).
2

Proof: The proof is by induction; the case w = 2 is trivial. Assume that the theorem
holds for all z < w. (Throughout we shall use Theorem 2.1 without explicitly mentioning
it.)
Case 1 w =0(mod4): Let x = § and vy = 1.

(a) If v = 0(mod 4) and v > 2vy then § € T, and so v € T}, by 2.2(d).

(b) If v = 2(mod 8) and v > 4vy — 6 then “t¢ € T}, and so v € T3, by 2.9(a).

(c) If v = 10(mod 12) and v > 6vy — 2 then y = “£2 € T, by (a), and so v € T}y C T,
by 2.4(a).

(d) If v = 6(mod 24) and v > 12y — 18 then y = 5 € T, by (b), and so v € T, C Ty,
by 2.5.

(e) If v = 14 or 62(mod 72) and v > max{12vy — 34,62} then let y = 2110 so that
y =2 or 10(mod 24) and y > max{4vy — 6,26}. Therefore y € T, NTg by (b) and 3.1 and
sov=3y—2-8¢T1, CT, by 2.7(a).

(f) If v = 38(mod72) and v > max{12vy — 58,110} then let y = 210 so that
y = 2(mod 24) and y > max{4vy — 6,50}. Therefore y € Ty, N Tog by (b) and 3.4, and so
v=3y—220€1, CT, by 2.7(a).

This completes Case 1, since all values of v > max{12t= — 18,110} are covered by one
of the subcases (a) to (f).
Case 2 w = 2(mod4), w > 2: Let z = 42 and vy = t,.

(a) If v = 2(mod 4) and v > 2vy — 2 then “}2 € T}, and so v € T}, by 2.3.
(b) If v = 4(mod 8) and v > 4vy — 4 then § € T}, by (a), and so v € T3, by 2.2(a).

)

(c) If v = 4(mod 12) and v > 6vg — 8 then % € T, by (a), and so v € Ty, by 2.4(a).
)
)

(d) If v = 8(mod24) and v > 12vy — 16 then § € T, by (c), and so v € Ty, by 2.2(a).
(e) If v = 24(mod 72) and v > max{12vy — 24} then *£2 € T}, N T by (b) and 3.2,
and so v € Ty, by 2.7(a).



(f) If v = 0(mod 72) and v > max{12v, — 48,72} then *£% € T, N T15 by (b) and
3.5, and so v € T, by 2.7(a).

(g) If v = 48(mod 72) and v > max{12vy — 72,120} then 2£% € T;, NT}, by (b) and
3.6, and so v € Ty, by 2.7(a).
This completes the proof.

Theorem 3.7 gives an explicit bound on t,,, by iterating from to = 2:

Theorem 3.8 For all even w > 2 we have

We now prove that s,, is finite, using a short argument based on Theorem 3.8. In
section 4 we give more intricate arguments and derive linear bounds on both ¢, and s,.
Lemma 3.9 If v =0 (mod 4) and v > 24 then v € Ts.

Proof: Apply the doubling construction (2.2(d)) to the results of Lemma 3.2.

Lemma 3.10 If v =10 (mod 12) and v > 34 then v € S14, except possibly v = 46.
Proof: Forv =34 =3-14—2-4 we have 34 € S14 by 2.7(b). As 20 € Ty and 28 € Sy4 by
2.2, we have 58 = 3.20—2 € Sog—3.10_2 C S14. Forv > 701let y = %2 so that y = 0(mod 4)
and y > 24. Then y € T15 by 3.9 and so v = 3y — 2 € S34-3.12_2 C S14 by 2.6.
Theorem 3.11 For all w = 4(mod 6) we have s,, < max{9th+z — 10, 146}.

Proof: Let z = “f2 = 0(mod2) , and vy = t,.

(a) If v = 4(mod6) and v > 3vg —2 then y = 2£2 € T, and sov =3y —2 € S, by
2.6.

(b) If v = 8(mod 12) and v > 6vg — 4 then § € S, by (a), and so v € Sz, € S, by
2.2(e).

(c) If v = 8(mod18) and v > vy — 10, then y = 24 € S, NS, by (a), and so
v=3y—2-2¢€ 85, CS, by 2.7(b).

(d) If v = 14(mod 18) and v > max{9vy — 22,32} then 118 € S, N S5 by (a) and
2.0(i), and so v € S,, by 2.7(b).

(e) If v = 2(mod 36) and v > max{9vy — 34,146} then let y = 128 5o that y =
10(mod 12) and y > max{3vy — 2,58}. Therefore y € S,, N S14 by (a) and 3.10, and so
v € Sy by 2.7(b).

This completes the proof since all v € Ag are covered by one of the cases (a) to (e).

The previous theorem, together with the doubling construction, now gives us a bound

on 8, for w = 2(mod 6):
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Corollary 3.12 For all w = 2(mod 6) we have So,, C S, and hence
S < SS9 < max{9tzw_;z — 10, 146}.

The last two results together with Theorem 3.8 then yield.
Corollary 3.13 For all w € Ag we have

64
w < — .
sw S gr(wt1)

We turn now to the problem of subdesigns in G-designs, the results here are due to
the methods of Hartman, Mills and Mullin [12] and their results are quoted without proof.

We also need the notion of an H-design H(v), which is a triple (X, B,G) where X
is a set of points of cardinality v = 0(mod6). The group set G = {G1,Ga,...,Gz} is a
partition of X into groups of size 6. The block set B consists of 4-subsets of X with the
properties that

(1) BeB = |[BNG;| <1 forall i

(2) Every 3-subset T" of X with |7'N G;| <1 for all 7 is contained in a unique block.

Hartman, Mills and Mullin showed that there exists an H(v) for all v = 0(mod6)
except v = 18, and possibly v =9-6, v =27-6, or v =81 - 6.

The existence of a design H(v) implies the existence of a design G(v) as follows.
Let F}|F3|---|F¢ be a one-factorization of Kg with vertex set G;. Form the block set
By = {[z,y,21] : [z,y] € F}, [2,1] € Ff, 1<i<k<%,1<5<5}), then (X,GUBUDBs)
is a G(v). Furthermore, if the H-design contains a subdesign on w points (or is missing a
non-existent subdesign on w = 6-3°, i = 1,2, 3, 4 points) then the G(v) can be constructed,
as above, to contain a subdesign G(w). Let H,, be the set of integers v such that there
exists an H(v) with a (possibly non-existent) H(w) subdesign, so that g, < hy. In the
paper [12], several results on the structure of H,, were obtained, the most powerful of these
results is given below.
Theorem 3.14 Suppose that w is a non-negative integer and ¢ is a prime power with

g > max{w — 1,88}. Then 6v € Hg,, for all integers v such that
q— 83

2

¢ —qg+w—(¢g-3)| | <v<¢®—q+w.

This theorem, together with a quantitative form of the prime number theorem gives

us a bound on h,,, and thus on g,.
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Corollary 3.15 For all z = 0(mod 6) we have

1.21
9z < hy < max {8654 + %, ~=

xz

6

T

)2+46(6

( )}

Proof: Let w = § and ¢ be the smallest prime power > max{w — 1,97}. Using the
formulae in [18] it is easy to show that there is a prime in the interval [n,1.1n| for all
n > 117. This result, together with some hand calculations for 97 < ¢; < 121, shows that
for allv > ¢? —q1 +w — (q1 — 3) L@J we have 6v € H,. The first term of the statement

of the result is given by setting ¢; = 97, the second by setting ¢; = 1.1(w — 1).

To finish this section we will construct certain subdesigns that we we will need in

section 6. First define for i =0, 1,2, ..., the following table of values of n; and o;
i 0 1 2 4 5 7 8
o; 34 38 16 4 32 448 8 58 16

n; 158 172 68 14 130 1808 28 218 56

? 9 10 11 12 13 14 15 16 17 18
o; 14 56 2 38 20 14 28 4 26 8
n; 44 176 4 106 52 34 68 8 58 16

Lemma 3.16 Fori=0,1,...,18 we have n; € S,,.

Proof: The result for ¢ = 3,6, 11, 16, 18 comes from 2.0. We know that 28, 34 € Sg by 2.0
and so 56,68 € Sis by 2.2(e), giving i = 2 and 8. As 10 € S2 we have 26 = 2.10+ 6 € Sy
and 58 = 2.26 + 6 € Sog by 2.13(b); therefore 52 = 2.26 € Sg0—2.10 by 2.2(e), giving
1 = 13,17. As 14 € Sy we have 34 = 2.14 +6 € Sy4 and 74 = 234 4+ 6 € S34 by
2.13(b), giving i = 14. Also 68 = 2.34 € Sog by 2.2(e), giving i = 15. Now 28 € Sy4
by 2.2(b) and so 158 = 6(28 — 2) + 2 € Sg14—2)42—74 C S34 by 2.10(a), giving i = 0.
As 38 € S; we have 106 = 3.38 — 2.4 € S35 by 2.7(b), giving i« = 12. Furthermore
130 € S32 and 226 € Ss¢ by 2.14(b), giving ¢ = 4. Applying 2.2(e) to this 3 times gives
1808 € Sy4s, giving i = 5. Now we’ve seen (i = 6) that 28 € Sg and 10 € S and so
218 = (28 — 1)(10 — 2) + 2 € Sg_1)(10—2)+2=58 by 2.12(b), giving i = 7. As 14 € S we
have 38 = 3.14 — 2.2 € S14 and 86 = 3.38 — 2.14 € Ssg by 2.7(b). Then 172 € Sgg C Sag
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by 2.2(b), giving i = 1. As 14 € S, we have 44 = 4.14 — 3.4 € Sy, by 2.8(b), and 176 = 2.
44 € Sgg—92.14 by 2.2(e), thus giving i = 9 and 10.

Lemma 3.17 If v =0 (mod 2) and v > 24 then v € T2, except possibly v = 26, 38, 46.
Proof: By imitating the proof of Case I in Theorem 3.7, we see that, as Ty = {v =
0 (mod 2) : v =6 or v > 12}, thus {v =0 (mod 2) : v =12 or v > 24}\A C Ty
where A = {26, 30, 38,46, 54,62, 78,102}. For v € Gg with v > 12, we have a design T'(v)
with two disjoint blocks of size 6; hence by the remarks following Theorem 2.8 we have
12,18,24,30 € Gg which implies 30,54, 78,102 € T35. Finally, 32 € Ti4 by 2.2(a), and so
62 =2.32—2 € T3p—2.16—2 C 112 by 2.3.

Theorem 3.18.

(a) If v =4 (mod 6) and v > 68 then v € S34, except possibly v € A = {76}.

(b) If v =2 (mod 6) and v > 68 then v € S34, except possibly v € B = {80, 92, 104,

110,116, 122,128,146, 152}.

Proof:

(a) By applying Theorem 2.6 to 3.17, we see that all such v lie in S34, with the
possible exceptions of 112 and 136. But 136 € Sgg C S34 by 2.2(b) and, as 34 € Ss, we
have 112 = 4.34 — 3.8 € S34 by 2.8(b).

(b) We now apply to the values in (a), the steps (b) to (e) of the proof of 3.11.
Carefully using this algorithm one gets that for all the values of v in the hypothesis,
except perhaps for 134, 158, 170, 212 and 224 we have v € S34. But 212 € S196 C S34 and
224 € Sy112 C S34 by 2.2(b). 158 € S34 was shown (i = 0) in 3.16. As 68 € S34 we have
170 = 4.68 — 3.34 € Sgs C S34 by 2.8(b). The fact that 134 € S34 is proved in Section 6,
see 6.3.
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4. Linear bounds

In this section we shall find linear upper bounds for s,,t, and g,. The values of
the constants involved will be improved considerably in section 5, where we shall only be
concerned with “large” values of .

Theorem 4.1. There exist constants c,, c¢; and ¢4 such that
(a) If x € Ag then s, < csx
(b) If z € Ag then g, < cyx
(c¢) If z € Ay then t, < ¢iz.

In particular we may take ¢, = 10%°, Cg = 10'5 and ¢; = 3.10%°.

Actually (c) is derived from (a) and (b) by the following:

Lemma 4.2. Suppose that there exists constants ¢ > 0 and x¢ such that if x > x¢ and
(a) if x € Ag then s, < cz; (b) if z € Ag then g, < cx. Then t, < 3cz for all z € Ap
with =z > xg.

Proof: If x € Ag then S, C T, and, as 3z € T}, by 2.5, we have G3, C T3, C T,. Thus

Sy UGs, C T, and so t, < max {s,, g3, } < 3cx.

If x € Ag then G, C T, and, as 3z — 2 € T}, by 2.4(a), we have S3,_o C T5,_o C T},.
Thus G, U S3,_2 C T, and so t, < max {gx, S3z—2} < 3caz.

If we take xp = 0 and ¢ = max {cg, ¢s} in 4.1, then, by 4.2, we see that ¢, < 3c.

In what follows we shall let R stand for G or S and similarly r,, Ar, etc. We define
b = 12 and bg = 9 and we fix o0 € Ag so that ¢ > 6b, + 2.

In order to prove Theorem 4.1 we will need a series of technical lemmas: (Actually
4.3, 4.4 and 4.6 are really two lemmas each, one for R = S the other for R = G).

Let N = N2 =max{(c —1)r, — (0 —2)z: = € Ar, 0 <z < 60 — 6}.

Lemma 4.3  For any x > N there exist integers u and y with v = 0 (mod 6),
u<z/(0c—1)and y =z (mod 2u) such that

—1
{22(80 )ZE: z=y or y+2u (modbu)} C R,.

oc—1
Proof:  Let w be the least non-negative residue of x (mod 60 —6) and u = Z=7 which is
divisible by 6. Let y = u+w = m_l'(;%f)w so that, by the definition of N, we have y > r,,.

Therefore whenever n € S, we get (n — 1)u +w € R, by 2.12. So by taking those
n > s, with n =2 or 4 (mod 6) we get

1 —
{zZ(SU )x—(sa G)w: z=u+wor3u+w (modbu)} C R,.

o—1 o—1
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Now s, > 20 so that 22=Z > 0 and

x=(0c—1u+w=u+wor 3u+w (mod6u)

=utw=y (mod 2u)

Lemma 4.4  Suppose that x,y € Ar and n and d are integers with d divisible by 6,
such that {v >n: v=y or y+ 2d (mod6d)} C R,. If y € Ag and r,, < n for
each w € Ag with w < 6d then {z >3n: z € Ag and z =y (modm,)} C R,, where
mg = 4 and mg = 12.

Proof: Note that 3y = y (modm,) . It is a matter of elementary number theory to

prove that any integer z > 3n with z = y (modm,.) and z € Agr can be written in the

form z = 3v — 2w where v > n, 0 < w < 6d, w € Ag and v =y or y + 2d (mod 6d). But

then v > n > r,, by hypothesis, so that 2 = 3v — 2w € R,(C R,) by 2.7.

Lemma 4.5 If x € Ag then z,3z — 2 € S, and are congruent to 0 and 2 (mod 4).
If x € Ag then 42 and 42 — 18 € G, and are congruent to 0 and 6 (mod 12).
Proof:  The result follows from 2.4(b), 2.2(c) and 2.8(c) with w = 6.

Lemma 4.6  For any z € Ar with z > N let

1 %, S —1
A= Emax{rw rw < %} and ¢ = max{3\, b, (30 — )}
Then r, < lz.
Proof: = By Lemma 4.3 there exist integers u and y, with u < —£5,  u = 0 (mod 6) and

y = x (mod 2u), for which

14
{z > R z=yory+2u (modbu)} C R,.

By Lemma 4.5 we see that

14
B, ={z> ga: : z=y; or y; + 2u; (mod6u;)} C R,

where y; =z, yo = 3x — 2, u; = u, uy = 3u, for x € Ag,
and y3 = 4z, y4 = 4x — 18, ug = ugy = 4u for z € Ag.
If w < 6u; then w < ibT”’ so that r, < Azx. By applying Lemma 4.4 with d = u; and

1

_ Lz
n = 3 we get

Ci={z2>/lx: z€ Ag and z=y; (modm,)} C R,.



Taking the union of the C; in each case gives the result by Lemma 4.5.

We now can proceed to the
Proof of Theorem 4.1:

For R= S or Glet \o = max{"™ : w < N, w € Ar} and ¢, = max{3), b, (f;’:f)}.
We shall prove that r, < ¢,z for all x € Ag, by induction on x. For z < N we have

re < Ao < ¢.x. Suppose that x > N and that the result holds for each y < x. Then, in

4.6 we have

1 T 0_1
)\ngax{cTw: w<§}<% and €§max{cr,bT(i )}gcr

and so r, < ¢ 2.
By taking 0 = 56 and 74 for R = S and G respectively, and by using the bounds in
3.13 and 3.15, we get the upper bounds on ¢s; and c,. The bound for ¢; follows from 4.2.

5. Better Linear bounds

Throughout this section let kK =4 + V10 = 7.1623. Our main result is
Theorem 5.1. For all § > 0 there exists a constant x5 such that if x > x5 then

(a) Ifv € Ag and v > (k+0)z then v € S,, except possibly when v € [122—52, (£r+

§)z], with v # z (mod 6).
(b) If v € Ag and v > (k + 6)x then v € G, except possibly when v € [12z —
144, (2K + 0) ], with v # = (mod 18).
We thus have
Corollary 5.2. For all 9 > 0 there exists a constant x5 such that if x > x5 then
(a) If z € Ag then s, < (£k + 6).
(b) If z € A then g, < (£k +6)z.
(c) If z € Ay then t, < (3k +6)z.
(N.B. (c) follows from (a) and (b) by Lemma 4.2).

We define S, = {v € S, : v=2 (mod 6)} and G, = {v € G, : v =2 (mod 18)}.
Define s, to be the least integer vy such that for all v > vy with v = 2 (mod 6) we have
v € S;; similarly define g,. We again take R = S or G throughout the section.
Corollary 5.3. For all § > 0 there exists x5 such that 7, < (k + )z for each x € Ag

with = > zs.
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The proofs of these results come from the following technical result:

Proposition 5.4. Fix € > 0. Suppose that (a) 7, < kx or (b) r, < kz, for all z € Ap
with > zo, and n € S, where (a) 3/n — o or (b) 9/n — 0. There exists z; such that
for all x € Ag with « > x4, and for all v € [(4 - 3) (21w, (4(2—:%) - 5)1:} with (a)
veE A or (b) v =2 (mod 6) (if R=S), v =z (mod 18) (if R = G), we have v € R,.
We postpone the proof until the end of the section. From Proposition 5.4(a) we

immediately derive

Corollary 5.5. Suppose that 7, < kx for all x € Ar with = > xy, and n € S, where
3/n — o and k < 4(:—:%) Then r, < K'z for all z+ € Ar with x > =z, where
W= (-8 (22 (< a2 - 3).
(From 5.5 together with 4.1 and 3.18(b) we have

Lemma 5.6. We have r, < kx for all x € Ar with x > zy, where

k=4(22) — 3 <18.29.

Proof: Let m be the smallest element of S34 with m = 2 (mod 6) for which there exists

zo such that r, < (4(’”3—51) — %)x for all x > xy with x € Agr. By 4.1 we know that
such a value of m exists (just choose m so that cp < 4(m3—51) — %
m < 158, which would establish the result. If m > 158 then let n = m — 6 so that n € S34

by 3.18. Therefore, as k:(: 4(’;__11) — %) is less than 4(2—:%), we have r, < k’xz where

k' = 4(2—:1) — %, for x sufficiently large, by 5.5, giving a contradiction.

Lemma 5.7. We have r, < 13.21x for all x € Agr with & > x.

) and we claim that

Proof: Define n; and o; for i = 0,1,2,...,8 as in Lemma 3.16, and let ngy; = 27.56,
os+j = 27.16 for each j > 0. Note that each n; € S,, by 3.16 and by 2.2(d). Define
ko = 4(28—:%) — % and k; = (4 — k;’_l ) (Zz—j) for each ¢ > 1. We shall prove by induction
on ¢ > 0 that, for some z;, we have r, < k;z for all x € Ar with x > x;. Fori =0

this comes from 5.6. If the result is true for ¢ then it follows for ¢ + 1 by an immediate
application of 5.5, with k = k;, ¥’ = k;11, n =n;41, 0 = 0411.
Now lim; .~ k; is seen to be the solution 7 of the equation (4 - %)(1744) = T as

lim; . Zl—} exists and equals 1744. Thus 72 — 147 + 47? = 0 so that 7 = 14% V154 " and the

result follows as 14% V154 - 13.21.

With this preparation we can now give

The Proof of Theorem 5.1. For ¢ =9, ..., 18 define n; and o; as in 3.16. For
all j > 0 let nigy; = 241 and o154 = 2°77 and let kg = 13.21, k; = (4 — kil)(sz)

for all 7« > 9. We claim that for each ¢ > 8, 7, < k;x for sufficiently large x, and that
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Agr N [k;x, (4(22—:1) — 5) x] C R, for each ¢ > 11, which we shall prove by induction on
1. For 7 = 8 this statement is weaker than 5.7 and so follows immediately. Now fix k = kg
in Proposition 5.4 (b) and take n = n;, 0 = o0;. This gives the result for i = 9 and 10.
Taking k = k; 1, n = n;, 0 = o0; in Proposition 5.4(a), for i = 11,12, ... gives the result
for i + 1 immediately. Now x = lim; ., k; exists and is the solution of (4 — %)2 = K, i.e.
k2 — 8k +6 =0, i.e. Kk =4+ +/10. Thus Corollary 5.3 follows immediately.

If we take the union of the intervals above for i = 11,12, ... we see that we have
proved that [(FL +0)x, (12 — e)a:] NAgr C R, for x sufficiently large.

Now we define n; = 56.2%, o; = 16.2° for each i > 0. Taking k = s + §/20 in 5.4(a)
gives us that r, < K’z where k' = lim;_, (4 — %) (Z’—j) = (4 — %) (%) > gn + 6/2. This
completes the proof of 5.2.

To complete the proof of 5.1 we need only show that for some fixed ¢ > 0, [(12 —
e)x, 12z — t.] N Ag C R, for all sufficiently large z, where tg = 53 and tg = 145.
The proof here will give the “flavour” of the difficult proof for 5.4. If R = S let B =
{3z —2,3x —4,3x — 8,3z — 16} and if R = G let B = {3z — 12,3z — 24,3z — 36}. By
2.4(b) and 2.7 we have B C R,, for sufficiently large . By 5.7 we know that if z € Ag
and z < z/14 then z € R,, and so B C R,. Thus by 2.8, 4b — 3z € R, C R, for each such
b € B and z, and by elementary number theory it is easy to show that this gives all the
numbers in the interval required.

The Proof of Proposition 5.4. We choose x > z1 (i.e. sufficiently large, which we
shall specify as we go along).

Let wg be the least residue of  (mod 60 — 6). Define

w; = wo+ 2i(c—1)

u; = o—1 — U0—2i

v, = u;+w; = vy + 2i(o — 2) and
a; = (n—1u; +w; = ag—2i(n — o),
fori=0,1,2, ..., 24.
Now, as each w; < 54(c—1), we have v; € R,,, (as v; increases with x) for = sufficiently
large (i.e. x > x1) by 4.1, provided that v;, w; € Ar. Then a; € R, by 2.12.
We define the the set B as follows:
If R= S and z = o (mod 6) then (a) B = {ag, as, ag, a1, aq,ar}, (b) B = {ap,a1}.
If R=S and = # o (mod 6) then (a) B = {ao, as, ag, as,as,as}, (b) B = {ag,as}.
If R =G then (a) B = {ag,as,aq, ..., aa}, (b) B ={ap}.
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Now suppose, for a given b € B, we have z < b/k with z € Ag (and, in (a), 2 = b (mod
6)if R =5; 2=b (mod 18) if R = G). We choose z sufficiently large so that for any such
2, the hypothesis tells us that (a) b € R,, (b) b € R,. Then, by 2.8, 4b — 32 € Ry C R,.

Now, just as in the proof of 4.7, it is simply a matter of elementary number theory to
show that any v in the range [(4 — 3ao, 4a24] with v € Ag (and, in (b) v =z (mod 6) if
R=S;v=2 (mod 18) if R = () can be written in the form 4b — 3z for some b € B and
such a value of z.

Finally note that as,

ao_(n lx_(n—o)wo (n 1):c
(o0 —1) oc—1 — (o—-1)
and
gy = (Z:i)x_(z:i)wo—éﬁ(n—a) > (Z:i)x—54(n—a)

-1
(n — E)x for r > x1, the result follows.
c—1 4

We finish this section by noting the following
Lemma 5.8. If n € S, where 3f/n — ¢ and

—1 7
16 — 4v/10(~ 3.35) > ”—1 > 14+ VI0)(~ 3.13349)
O' J—
then s, < (k +90)z,9, < (k+ )z and t, < (3k + d)z for each sufficiently large
x € Ag, Ag, A1, respectively.
Proof: By 5.1 and 4.2 we see that it is sufficient to show that if v € [12z — 144, (2x +
6)x] N Ag (where R = G or S) then v € R,. By 5.4(a) this follows immediately for n and

o in the range above, as we may take k = x + 0 by 5.3.

A good example of such an n and o would be n = 64, 0 = 20.
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6. Constructions in Detail

This section consists of detailed proofs of the results quoted in Section 2, which have

not appeared elsewhere. In particular we give proofs of Theorem 2.4(a), 2.8 and 2.10.

6.1 A tripling construction

We wish to show that if there exists a T'(v) then there exists a T'(3v — 2) containing
a subdesign on v points. Let (X U{A},B) be a T'(v). We shall construct a T'(3v — 2)
with point set (X x Z3) U {oco}, containing a subdesign with point set (X x {0}) U {oo},
isomorphic to the input design.

For each block of size 4, [A, z, y, z] € B which contains A we construct an SQS(10) with
point set ({z,y, 2} x Z3)U{oo}, in such a way that [z, 21, 22, 00][yo, Y1, Y2, 20| |20, 21, 22, O]
and [z, Yo, 20, 00| are all blocks of the new design. This is easily achieved, since the unique
S@S(10) has this configuration through any of its points.

For each block of size 6, [A, z,y, z, w,t] € B which contains A we construct the 7°(16)
due to Chouinard et al. [4] on the point set ({x,y, z,t,w} x Z3) U{occ}, in such a way that

[00, 20, T1, Z2][00, Yo, Y1, Y2| - - - [00, wo, w1, w2] and [oo, zg, Yo, 20, to, Wo]

are all blocks of the new design. It is easily verified that the design in question has such
a subconfiguration. (Note that blocks of the form [co, g, 21, 23] are not to be repeated in
the final design).

For each block of size 4 [z,y,2,t] € B not containing A, we construct the blocks
[Zi,Yj, 2y tm] = T+ +k+m =0(mod3) i,j,k,me Zz. (This clearly contains the block
[z0, Yo, 20, to]-)

For each block of size 6, [z,y, z,u,t,w] € B, not containing A, we construct the 18
point configuration on {z,y,z,u,t,w} X Z3 given below. A concise description of the
configuration is obtained by using the point set Z;5 U {00g, 001, 002}, then identifying x;
with oo;, y; with 54, z; with 543, ..., w; with 5i+12. Let G be the cyclic group generated
by the permutation a(j) = j+ 1(mod 15), a(00;) = 00;41(mod 3) and consider the G-orbits
of the following blocks:

[000, 0, 3,6,9,12]
[000,0,1,2,4, 8]
[000, 0,7, 13]
(000, 0, 11, 14]
[7,11,13, 14]
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After the identification we see that [zg,yo, 20, U0, to, wo| is indeed in the block set,
and the subdesign on X x {0} has been preserved. To satisfy oneself that the entire
configuration is in fact a T'(3v — 2) requires the reader to verify that every 3-subset has
been included in precisely one block. This construction is a variant of Hanani’s Proposition
8 from [7].

6.2 The quadrupling construction

In this section we shall prove that if there exists a three-wise balanced design on an
even number of points, v, with a block (or subdesign) of even size w, then there exists a
design on 4v — 3w points with blocks of size 4, and the other blocksizes from the original
design. The new design contains four copies of the old design which intersect in a common
block (subdesign).

Let v —w = 2f and let w = 2s. Let X = Zy5 U {000, 001,...,0025_1} = Zof U B
and let B be the block set of a 3-wise balanced design on X containing a subdesign on B..
We shall construct a new design with point set X’ = (Zy5 x {0,1,2,3}) U B, Define the
embeddings \; : X — X', 1=0,1,2,3 by

() {(a:l) if ©e€ Zyy
i(r) =
T if x€ By.

The new block set B’ will contain all the embedded blocks \;(B) for each ¢ € {0,1,2,3}
and each B € B. The other blocks in B are all of size 4, and contain each triple from
X', except those in \;(X), precisely once. Any triple from \;(X) is contained precisely
once in an embedded bock \;(B), by the 3-wise balance of (X, ). Before constructing
the remaining blocks we define a key ingredient of the construction which we have called
a Hanani factorization.
For integers f > s > 1, we define a Hanani factorization HF' (2f,2s) to be a four-tuple
(D, E,G,H) with the following properties
(1) DC{1,3,5,...,2f =1}, |D|=s
(2) £ C{0,2,4,...,2f =2} | |E|=s
(3) G = {Go,G4,...,Gs_1} is a set of partial one-factors of the complete graph with
vertex set Zsy. The number of edges in each factor G; is f — s, and the set of vertices
covered by Gj is precisely Zaf \ (DU E) + 2i), for each i € {0,1,2,..., f —1}.
(4) H={Ho,H1,...,Hf_1,Hy,...,Hpys_o} is a set of one-factors of the complete graph

with vertex set Za;.
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(6) G UH is a partition of the edge set of the complete graph with vertex set Zay.

In his paper [6], Hanani constructed HF(2f,2) for all integers f > 1. Hanani’s con-
struction had D = {1}, F = {0}. We now give the existence theorem for Hanani factor-
izations.

Theorem 6.1. There exists an HF'(2f,2s) for all integers f > s > 1.
Proof: The proof is by direct construction.

If f is odd, consider the one-factor
G=A{[f—-14i f+1+4d:i=0,1,2,---, f—1}

The partial one-factor G is constructed from G as follows.

If s is odd then omit the edge with i = (f — 1)/2, and the edges with ¢ = @ +j

s—1 s
2 ’2°

Now let Gy = Go + 2k for £k = 0,1,2,..., f — 1 The graph I', covered by edges in

G is cyclic, and it is not difficult to verify that its complement satisfies the conditions of

forj=1,2,..., .Ifsisevenomittheedgeswithi:@ijforjzlﬂ,...

Stern and Lenz’s theorem on cyclic graphs [19]. This theorem implies the existence of a
one-factorization H of I'’s complement. The sets D and E are the odd and even vertices,
respectively, of edges omitted from G.

If f is even, consider the partial one-factor

G={[f—14 f+1+1i]: i:0,1,2,...,£—2}U{[j,—1—j]: j:0,1,2,...,£—1}

The partial one-factor Gy is formed from G as follows. If s =1, Gop = G. If s > 1
and s is odd remove pairs of edges from G with i =357 =0,1,2,..., 353.

If s is even remove the edge with j = % — 1, and pairs of edges with i = j =
0,1,..., 852. As in the previous case, let G = Gg + 2k for £k =0,1,2,..., f — 1. When
s is even, the one-factorization H exists by Stern and Lenz’s theorem. When s is odd
construct

Hoz{[g—l-%, 1—%—{—22’]: i=0,1,2,...,f—1}.

The remaining edges (i.e. those not in G or Hy) form a cyclic graph which satisfies the
conditions of Stern and Lenz’s theorem, and thus the remaining one-factors in H may be
constructed.

The sets D and F are the odd and even vertices omitted from G together with the
vertices % and g + 1.

This completes the construction of Hanani factorizations.
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We return now to the quadrupling construction. Let (D, E, G, ’H) be a Hanani factor-
ization HF(2f,2s), and let D = {dy, d;,ds,...,ds—1} and E = {eg,€1,...,€5_1}.
For each i = 0,1,2,...,s — 1, we construct the following 16 sets of blocks in B’.

{
{

002, a0, b1, o]+ @+ b+ e = e;(mod2f), (a,b,c)=(
003, 0, b1, ¢a] © a+ b+ ¢ = d;(mod2f), (a,b,c) = (1,1,1)(mod2)}
)= (1,0,1)(mod2)}
0,1,0)(mod2)}
0,1,1)(mod 2)}
1,0,0)(mod 2)}

[
[
{[o024, ag,b1,¢3] 1 a+b+c=d; + 1(mod2f), (a,b,c
{[o024, a0, b1,c3] 1 a+b+c=e; + 1(mod2f), (a,b,c
{[002i, a0, b2,¢c3] : a+b+c=e;(mod2f), (a,b,c)=
{[o024, ag, b2, c3] : a+b+c=d;(mod2f), (a,b,c)=
{[oo2i,a1,ba,¢c3] 1 a+b+c=d; + 1(mod2f), (a,b,c 1,0,1)(mod 2)}
0,1,0)(mod?2)}

—_~ o~

{[o02i, a1,ba,c3] 1 a+b+c=e; +1(mod2f), (a,b,c)=

a+b+c=e;j(mod2f), (a,b,c)=
a+b+c=d;(mod2f), (a,b,c)=

{[o02i41, a0, b1, ¢2] - (
{[002i41, a0, b1, co] : (
{loo2i11,a0,b1,¢3] 1 a+b+c=d; +1(mod2f), (a,b,c)
{[o02i+1,a0,b1,¢3] 1 a+b+c=e; + 1(mod2f), (a,b,c)
{[o02i+1, a0, b2,c3] 1 a+ b+ c=ei(mod2f), (a,b,c)=(0,0,0)
[ |: a+b+c=d;(mod2f), (a,b,c)=(
[ ] )
[ ] )

a+b+c=d;+ 1(mod2f), (a,b,c

{[o02i41, @0, b2, c3] :
{[o02i41, a1, b2, c3]

{[o02i41,a1,b2,¢3] 1 a+b+c= e+ 1(mod2f), (a,b,c

Note that each of these sets of blocks contains f? distinct blocks. Every 3-subset of X’ of
the form oojx,y,, with k # m, is contained in precisely one block. This can be checked

methodically by considering the six possibilities for {k, m} and the eight possible parities
of (j, z,y).
The other 3-subsets of X’ contained in the above blocks are those of the forms:
apbica with a+b+ce€ DUE, and a = b(mod 2)
apbics with a4+ b+ce€ (DUE)+1 and a # b(mod 2)
apbacs with a4+ b+c€ DUE, and b = ¢(mod 2)
arbocs with a+b+c€ (DUFE)+1 and b # ¢(mod?2)
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We now form the following sets of blocks in 5.

{[ao,b1,92,G5] : a=b(mod?2), {g9,9} € G, a+b+2c=0(mod2f)}
{lao, b1, 93,G5] : a # b(mod2), {g,G} € G., a+b+2c=1(mod2f)}
{[90, 9o b2, cs] + b= c(mod2), {g,9} € Ga, 2a+ b+ c=0(mod2f)}
{l91,G1,b2,¢3] : b# c(mod?2), {g,9} € Ga, 2a+b+c=1(mod2f)}

Each of these sets of blocks contains 2f2(f — s) distinct blocks.

The 3-subsets of X’ contained in these blocks include those of the forms
apb1ga with a+b+g¢ DUE, and a = b(mod 2).
Since G, is a partition of Zs¢ \ ((D U E) + 2¢), we see that g € (DU E) + 2c

and therefore a+b+g¢ (DUE)+2c+a+b=DUE.

apbigs with a+b+g¢& (DUE)+1, and a # b(mod 2)
gobacs with g+b+c¢ (DUFE), and b= c¢(mod 2)
gibacs with g+b+c¢ (DUFE)+ 1, and b # ¢(mod 2)
The other 3-subsets of X’ contained in these blocks are those of the form g;g,a; with

{i,7} € {{0,2}{0,3}{1,2}{1,3}}, and [g, 9] is an edge in one of the partial one factors
G, € G. The next sets of blocks are the following:

{[ao, b1, ha, ho] : a # b(mod?2),[h,h] € He, a+b+2c=1(mod2f), 0 <c< f}
{[ao, b1, h3, h3] : a=b(mod?2),[h,h] € H., a+b+2c=0(mod2f), 0<c< f}
{[ho, ho, b2, c3] = b # c(mod?2), [h,h] € Hy, 2a+b+c=1(mod2f), 0 <a< f}
{[h1,h1,b2,¢c3] : b=c(mod?2),[h,h] € Hy, 2a+b+c=0(mod2f), 0<a< f}

These blocks cover all 3-subsets of X’ of the forms
apbyco with a Z b(mod 2)
agbics with a=
aogbocs with b # c(mod 2)
arbacs with b = ¢(mod 2),

and also those 3-subsets of the form h;, h;,a; with {i,j} € {{0,2}{0,3}{1,2}{1,3}} and
[h, h] an edge in one of the one factors H, € H with 0 < z < f.
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The penultimate group of blocks has the form

{[hiaﬁiaajvaj] : {Za]} € {{0, 2}{()’3}{172}{1’3}}7
[h,h] € Hy,[a,a) € Hy, f<z< f+s5—1}.

To construct the final group of blocks, let Jy, Ji,..., Jay_2, be a one-factorization of the

complete graph with vertex set Zs¢, and the final group of blocks is
{Ihs. a3 < (1,3 € {{0,1142,3)), Tl € Jo s faal € Lo, 0<w<2f—1}.

These last two sets of blocks cover all remaining 3-subsets of X’, and the number of blocks
in each set is 4f%(s — 1) and 2f?(2f — 1). The total number of blocks constructed is thus
16f%s +8f2(f —s) +4-2f3+4f%(s — 1)+ 2f%(2f — 1), and an easy counting argument
shows that each 3-subset of X’ is covered precisely once.

Note that if the one-factorization Jy, Ji,..., Jay_2 contains a sub one-factorization
on 2r points, and the original design contained a block of size 2r on R C Zs¢, then the
new design contains two subdesigns of size 4r on R x {0,1} and R x {2,3}. Lindner et
al [15] have shown that a one-factorization on 2f vertices with a sub one-factorization on
2r vertices exists if and only if r = f or r < % This observation justifies the remarks

preceding Theorem 2.9.

6.3 The Hextupling Constructions.

The constructions described here are all special cases of the general construction given
by Hanani [7, Proposition 9]. The basic idea behind the constructions is to begin with
a threewise balanced design, delete two of its points, and “inflate” each of the remaining
points z into a group of points of size w,, and add n new “infinite” points. The blocks of
the initial design then determine the structure of the new design in a regular fashion, using
a small list of design fragments. Our main contribution here is the construction of some
of these fragments. We have called the constructions hextupling, since in each case we use
the weight function w, = 6 for all points = of the base design, however we also give an
example with w, = 10. Finding a general construction for the fragments remains an open
problem, however the astute reader with some familiarity with the tripling constructions
of [8] and [11] will be able to see how these fragments are constructed in most cases where

w, is even, n is even, and either

25



w, =0(mod 6), 0<n<2w,
or w,; =2(mod 6) 4 <n=4(modb) < 2w,
or w, =4(mod 6) 8<n

2(mod 6) < 2w,.

In the cases where w, = 6, the design fragments are sometimes G-designs or H-designs,
and in general they are somewhere between these two extremes.

We proceed to construct design fragments of types A and B denoted DF A(n) and
DFB(n), for n € {2,4,6,8,10,12} with w, = 6. The point set of each fragment is (Zg X
Z3)U{00g, 001, . ..,00,—1}, and the blocks of size 4 are constructed below. To simplify the
construction we give below a list of some useful one-factors of the graph with vertex set Zg.

Fy :[0,1][2, 3][4, 5]

Fy : [0,5)[1,2][3, 4]
F5 [0, 3][2,4][1, 5]
Fy: [1,4] [0, 2] [3, 5]
Fy : [2,5)[0,4][1,3]
Fy : [0,3)[1,4][2, 5]

DFA(2)(=Design 39 of [7] )
[ai,(a+2);, (a+3b+1)i41,(a+3b+1);49]: a € Zg,i€ Z3, be {0,1}
[ai, (a+2);, (@4 3)ivk, (@+D5)i—k]: a € Zs,i € Z3, k € {1,2}
[ai, (a4 2);,ai+1, (@+2)i41] 0 a € Zg,i € Zs
(00, ap,b1,¢2] 1 a+b+c=3j(mod6),a,b,ce Zg, j€{0,1}
[ai, biy Civ1,div1] 10 € Z3,[a,b] € Fg, [c,d] € Fg.
DFB(2) (=Design 40 of [7] ) = DFB(4)

[a;, (a+1);,bi11,Ciu0] 1 a+b+c=2i(mod6),i € Z3,a,b,c € Zg.

DFA(4) ( = Design 1.B of [12] )
ai, (a+3b)it1, (1 —2a —3b);12,(5—2a —3b);y2] 1 a € Zs,1 € Z3,b € {0,1}
a;, (a+2);, (a+3b)iy1,(a+3b+2)i41] ta € Zs,i € Z3,b € {0,1}

00j, a0, b1,¢2] : a+ b+ ¢ = k(mod6),a,b,c € Zg, (j,k) € {(0,0)(1,2)(2,3)(3,4)}
ai,bi, Civ1,dip1] 1 € Z3, [a,b] € Fg,|c,d] € Fg
DFA(6) (= H(24)) = DFA(8) = DFA(10) = DFA(12)
(004, g, b1,c2] a4+ b+ c= j(mod6),a,b,c,je Zg
DFB(6) (=2 G(18))
[ai, (a+1);,bi41,Cip2] 1 a+ b+ c=2i(mod6),i € Z3,a,b,c € Zg

[
[
[
[
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[ai,biyCit1,div1] 21 € Z3,[a,b] € Fy,[c,d] € Fi, k € {3,4,5}.
DFB(8)

First three classes of blocks in DFA(2), together with

(004, ap, b1, c2] a4+ b+ c=3j(mod6),a,b,ce Zs,j € {6,7}

[ai,bi, Civ1,div1] 11 € Z3,[a,b] € F,[c,d] € Fy,k € {1,2,6}.
DFB(10)

First two classes of blocks in DFA(4), together with

[00j, g, b1,¢2] :a+ b+ c=k(mod6),a,b,ce Zs, (j,k) € {(6,0)(7,2)(8,3)(9,4)}

[ai,bi, Civ1,div1] 11 € Z3,[a,b] € F,[c,d] € Fy,k € {1,2,6}.
DFB(12)

[00j, a9, b1,¢c2] :a+b+c=j(mod6),j €{6,7,...,11}

[a;,bi, civ1,div1] 11 € Z3,[a,b] € Fg,[c,d] € F,k € {1,2,3,4,5}.

The essential observation to make about these design fragments are that:

(1) All triples of the form ag, by, co occur precisely once in both the A fragment
and the B fragment

(2) All triples of the form oo;a;b, with j # k occur precisely once in either the A
fragment or the B fragment, but not both. Specifically A contains all those with ¢ < n, B
contains all those with 7 > n.

(3) All triples of the form a;(a + d);b; with ¢ # j, d € {1,2,3} occur precisely
once in either the A or the B fragment, but not both. Specifically

n=2,4 : A contains d = 2,3 ; B contains d = 1.
n=06,8,10,12 : A contains none ; B contains all.
The other ingredients in the hextupling constructions are H(24), H(36) (see Hanani
[7] or Mills [17] ), and the following designs with subdesigns.
Lemma 6.2. Designs which validate the following assertions exist.
{124 n, 24+ n} C S, for ne€{2,4,8,10}
{12+ n, 24+ n} C G, for ne{6,12}
Proof. The twelve designs are easily constructed using the doubling and tripling construc-
tions.
We now describe the hextupling construction. Let (X U{A, B}, B) be an S(v) if v = 2

or 4(mod6), and let it be a G(v) when v = 0(mod6), with both A and B in the same
block of size 6.
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We shall construct an S(6(v—2)+n), respectively G(6(v—2)+n), when n = 2,4, 8, 10,
respectively n = 6,12. Let I,, = {00g, 001, ...,00,—1}. The point set of the new design will
be (Zg x X) U I,. The blocks are constructed as follows. For each block in B containing
both A and B, say {A, B,z,y} or {A, B, z,y, z,t} construct an S(12 4+ n) or S(24 + n)
or G(12 4+ n) or G(24 + n) with a subdesign on I,, and point set (Zs x {z,y}) U I, or
(Zg x {z,y, z,t}) U IL,.

For each block in B containing A but not B, say {A, x,y, z}, construct DFA(n) on the
point set (Zg x {z,y, z}) U I,,, and similarly use DFB(n) for blocks {B, z,y, z} containing
B but not A. (Here we use the fact that none of these blocks has size 6). Finally for
each block Y in B containing neither A nor B construct an H(24) or H(36) on Zg x Y,
depending on whether |Y'| =4 or 6.

Note that a subdesign of order w in the input design, will give rise to a subdesign of
order 6(w — 2) + n in the output design. This completes the proof of Theorem 2.10.

Before closing this section we give a further application of Hanani’s construction, using
a weighting factor w, = 10.

Let Fi, Fs,..., F; be a one-factorization of the cyclic graph with vertex set Z;o and
edges between vertices of distances 2,3,4 and 5 (such a factorization exists by Stern and
Lenz’s theorem).

Consider now the following design fragments with point set (Z19 X Z3) U I14
DFA(10,14)

[00i, a0, b1,¢2] 1 a4+ b+ c=i(mod10), a,b,c,i € Zy
DFB(10,14)

[a;, (a4 1), bi11,Ciao] a4+ b+ c =44 2i(mod 10), a,b,c € Z1g, i € Z3

[00i, ag, b1,¢2] 1 a4+ b+ c=i(mod10), a,b,c € Zy, i € {10,11,12,13}

[a;,bi, civ1,divq] 11 € Zs,[a,b] € Fy,[e,d] € Fy,k € {1,2,...,7}.

There exists an S(34) with a subsystem of order 14 (since 34 = 3 -14 — 2 - 4), and
DFA(10,14) is a generalized H-design with four groups of size 10.

So using the construction given above we obtain the following
Theorem 6.3. If v € S, then 10(v —2) 4 14 € Sip(w—2)+14-

Since 14 € S4, we deduce that 134 € S34, and we know of no other method to construct
an S(134) with a subdesign of order 34. (N.B. See Theorem 3.18(b))
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7. Sets of Subdesigns

Suppose that M is a finite subset of Ag (with some elements perhaps repeated) and
let Sp; be the set of integers v € Ag for which there exist a 3 — (v, M U {4},1) design,
which actually contains at least one block of size m, for each m € M. We define G, (for
M C Ag) and Ty (for M C Ar) in the obvious analogous way. We define sy, to be the
least integer vy such that if v > vy with v € Ag then v € Sy similarly define gp; and ¢5;.
Note that sps(tpyr or gar) > 2mq where my is the largest element of M. In fact if v € Ry
(for M € Ag) then we can get the following lower bound:

If by, ..., by are blocks, the sizes being the elements of M, then, as no two blocks

meet in more than two points, we have
t
v U bl =) (bl - ) [binby
1 1<i<j<t
t
> —2 .
> Y m-2(y)

In fact we shall be considering constructions where the blocks are disjoint and so we
have the trivial lower bound v > >, m.
We shall prove
Theorem 7.1. Let R=G,S or T. There exist constants cy, c;, ¢; such that if M is any
finite subset of Ar then
T < c; Z m .

meM
In particular we may take c. < 4t for any t € Ag such that t > ¢, where ¢, is as in
4.1.

Proof: First note that in the construction in 2.1 we actually have
2w € Ry .y forany we Ag (%)

Select t > ¢,,t € Ar with ¢, as in 4.1; for each i > 0 define M; = {m € M : 211 <
m < 2} and p; = |M;|. As 2% > 2'c, > mc, we see that 2t € R,, for any m € M; by 4.1.
If m and m' € My then 2t € Ry ¢} C Ry my by (). Thus the blocks with size in M
can be fit into pg = [”OTH] blocks of size 2t. Now, together with the elements of M, these
can be fit into pog + p1 blocks of size 2t; and so, by (x), we fit these into p; = [%‘“H}
blocks of size 22t. We continue this process, with each successive M, until we have that

2"t € Ry where 2" > 37 ;2.
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Now, if z > 2™tc,, where x € Ai then x € Rony C Rps by 4.1; and so, as we can

choose n so that

M <2y w2 =4y Y 27t <d Y om,

>0 1>0 meM; meM

we therefore have 2"te, < 4t2 Yoment M-

8. Open Problems

We complete the paper with a set of open problems:

(1) Prove that r, = 2z for all x € Agr where R =G, S or T
Evidently (1) is the object of the paper and we list below a number of questions, the
answers to which will lead us nearer to proving (1) for R = S (the case that we are most
interested in).

(2) Show that 2z + 6 € S, for all x € Ag.

Note that if (2) holds and [2z,42 + 4] N Ag C S, then s, = 2z, which is easily proved by
induction on v > 4z + 6: If v = 0 (mod 4) then v/2 € S; and so v € S, /5 C Sz by 2.2(b).
If v =2 (mod 4) then (v —6)/2 € S; and so v € S(,_g)/2 C Sz by (2).

Note that if x € S, for all w € Ag with w < x/2 then 4z — 3w € S, by 2.8(b) and
3z — 2w € S, by 2.7(b). Thus {v = = (mod 6) : 4z > v > 5z/2} C S, and {v =
x (mod 4) : v #Z 0 (mod 6) and 3z > v > 2z} C S,; so that we don’t yet know whether
2z, 42 + 4] N A; C Sz; but we do have a significant subset.

One could also get a similar, strong result if one had 2x + k € S, for all z € Ag for any
k=6 (mod 12).

(3) More generally one needs, for each v € Ag, a subdesign of order w where w is
within a constant distance from v/2, to get a good result. For v = 0 (mod 4) we have,
from 2.2(b), v € S,/2; and for v = 10 (mod 12) we have, from 2.14(a), v € S, /1. Thus
we need only concentrate on v € Ag with v = 2 (mod 12).

(4) In Lemma 5.8 we showed that a strong consequence would follow from finding

n € S, with 3fn — o and 16 — 4V/10(~ 3.35) > 2=1 > L(4 4+ V10)(~ 3.13). Good
examples of such n and o are 50 € S14, 64 € S, 68 € Sa9, 82 € S9¢ etc. Despite all our
constructions, we have been unable to find values of n and ¢ with n € S,, 3/n — o and

1 n
3L>1n 53
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In a sense this highlights the problem with all our constructions: In the resulting
design we always seem to have a damaging congruence condition. For example, look at
212: Ife=(n—1)(v—w)+wand z = (k—1)(v—w)+w we have x — z = (n — k) (v — w)
and so, unless k or w = 1, we get a design that has x = z (mod 4). Similarly in 2.2(d),
(e), (f), 2.3, 2.5, 2.7. In 2.6 and 2.8 we have x = z (mod 6), in 2.10 and 2.11 = z (mod
12) in the resulting designs. In 2.2 and 2.4 the constructions only have one parameter
which certainly limits their applicability. 2.9 is really the only construction that avoids
this problem.

(5) From the comments above we should like to have more constructions that give
v € R, with v = w + 2 (mod 4). A good example of this is 3v — 6 € T,,.

(6) Other “small” subdesign problems that we are unable to determine include 18 €
Ty; 32,38 € S1p; and the exceptional values in the lemmata of section 3.

(7) We should like to “cross out” the condition v = +w (mod 3) in the statement of
2.7(a) (and consequently 2.12(a)). This shall be done for 2 of the 4 cases in a future paper.

Moving on to the more general question considered in the previous section we ask:

(8) Can one state a similar theorem to 7.1, with arbitrary block sizes, rather than just
with elements of Ag? (Obviously satisfying certain trivial necessary conditions).

(9) For an arbitrary subset M of Ag, give a better lower bound for r,; than
max{2my, Xm — 2(})}.

Two interesting examples in this context are when M, consists of 7 sixes, where we are
able to show that 14 € T}, , and we conjecture that 14 < ¢y, < 28; and when M5 consists
of 30 tens where we can show that 50 € Sy, and we conjecture that 50 < sps, < 100. It
is easy to show that ¢5s, > 12, but we have no proof that sz, > 48.
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