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1. Introduction

One of the themes of the summer school is the distribution of “special points”
on varieties. In Heath-Brown’s lectures we study rational points on projective
hyper-surfaces; in Ullmo’s course we study Galois orbits and Duke’s lectures deal
with CM-points on the modular curve. This lecture concerns one of the earliest
examples, namely torsion points on group varieties.

DEFINITION 1.1. For a groupA, the torsion points are

Tor(A) = {x ∈ A : xn = 1 for somen ≥ 1}
(we write the group law as multiplication).

If A is abelian then Tor(A) is a subgroup ofA.

EXAMPLES.

(i) The multiplicative groupA = Gm is the algebraic group whose points over a
field are the nonzero elements of the field. Then for any fieldK, TorGm(K)
are the roots of unity contained inK.

(ii) A = Gm×Gm then Tor(A) = Tor(Gm)×Tor(Gm) = {(x, y) : x, y ∈ K are roots
of unity}.

(iii) Let A be an elliptic curve. Over the complex numbers we can uniformizeA
asA = C/L whereL is a lattice. Then Tor(A(C)) = Q ⊗ L/L.

More generally we can studydivision points:

DEFINITION 1.2. If Γ ⊂ A is a finitely generated group, let

Tor(A,Γ) = {x ∈ A : xn ∈ Γ for somen , 0}
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Thus Tor(A, {1}) = Tor(A) are the torsion points ofA.
Motivated by Mordell’s conjecture, Lang (Lang, 1965) made the following

CONJECTURE A. If V is irreducible curve on an abelian group variety(e.g.,
A = (Gm)n or an abelian variety) andΓ ⊂ A is a finitely generated subgroup such
thatTor(A,Γ)∩V is infinite, thenV is a translate of a subgroup ofA by a division
point.

See Ullmo’s lectures (Ullmo, 2006) for the statement of the Manin–Mumford
conjecture, which generalizes this statement, and the survey (Tzermias, 2000) for
more background.

The first instance of Lang’s conjecture is for torsion points on (Gm)r , which
turns out to be quite elementary. We will present two proofs of Lang’s conjecture
for that case.

2. A Proof Using Galois Theory

The first proof is that which appears in the original paper by Lang (Lang, 1965)
where it is attributed to Ihara, Serre and Tate. The result is

THEOREM 2.1. LetV/C be an irreducible curve inA = Gm×Gm. If V contains
infinitely many torsion points thenV is a translate of a subgroup ofA = Gm×Gm

by a torsion point, i.e.,
V = {(x, y) : xr = ζys}

for some root of unityζ.

To highlight the ideas we will only consider a special case:V ⊂ Gm×Gm is a
rational curve of the forms

{(
f (t),g(t)

)}
where f andg are polynomials, which for

added simplicity we assume to have rational coefficients: f , g ∈ Q[t]. Then

V ∩ Tor(A) =
{(

f (t),g(t)
)

are both roots of unity
}

The subgroups ofGm×Gm are{(x, y) : xr = ys} for some integersr, s. So we need
to show

THEOREM 2.2. Let f ,g ∈ Q[t] be polynomials. If there are infinitely many
values oft for which bothf (t) andg(t) are roots of unity then there are nonzero
integersr, s, 0 so that f r = gs.

Proof.We assume there are infinitely manyt so that bothf (t), g(t) are roots of
unity and want to force the relationf r = gs.

Taken� 1 so that there is somez1 with

f (z1) = ζαn , g(z1) = ζ
β
n
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whereζn denotes a primitiventh root of unity and that this is the minimal way of
writing such an expression, that is gcd(n, α, β) = 1 (exercise). Note thatz1 ∈ Q is
algebraic. Then we have a relation

f (z1)β = g(z1)α

(and both sides equalζαβn ), but this relation holds for onlyonepoint z1 and we
want it to hold forall pointsz.

Now apply the Galois group Gal(Q/Q), which actstransitivelyon the prim-
itive n-th roots of unity (see Ullmo’s lectures (Ullmo, 2006)). Hence ifσ j is a
Galois automorphism so thatσ j(ζn) = ζ

j
n, gcd(j, n) = 1 andzj := σ j(z1) then

because we assumef , g have rational coefficients we get

σ j
(
f (z1)

)
= f

(
σ j(z1)

)
= f (zj), σ j

(
g(z1)

)
= g(zj)

and so
f (zj)

β = σ j
(
f (z1)

)
= ζ

jαβ
n = g(zj)

α.

Now we have the relationf β = gα holding forφ(n) distinct points1 rather than
just one point (exercise: why are the pointszj distinct?). However we still need it
to hold forall z.

Consider the polynomial

F(t) = f (t)β − g(t)α.

It hasφ(n) distinct roots so if degF < φ(n) then we would haveF ≡ 0 as required.
Now if F , 0 then

degF = max(βdeg f , αdegg)

can be as large as const·n. which is still (slightly) too big relative toφ(n).
The remedy is to raise the relationf (zj)β = g(zj)α = ζ

αβ
n to anm-th power:

f (zj)
mβ = g(zj)

mα

(both sides equalζmαβ
n ). We get a new polynomialf mβ − gmα with φ(n) distinct

roots; it looks like we raised the degree which is certainly useless! However, since
f (zj), g(zj) arenth roots of unity, we havef (zj)n = 1 = g(zj)n and if we substitute

mβ ≡ r modn, mα ≡ smodn

with |r |, |s| ≤ n/2 then we findf (zj)r = g(zj)s for all j coprime ton. This is still
not useful as we have just showed that degF ≤ max(degf ,degg)n/2 instead of
showing that degF < φ(n). However we will be done if we can show that there is
somem ≥ 1 so that the residues (mβ,mα) modn are both small! This is given by
the following

1 φ(n) is the number of residues coprime ton
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EXERCISE. Given a primitive vector (α, β) ∈ (Z/nZ)2, that is gcd(α, β, n) = 1,
there is some 1≤ m≤ n so that both residuesmαmodn andmβmodn are at most
n2/3 (and are different than (0,0) modn).

SeeVenkatesh’s lecture (Venkatesh, 2006) and (Strombergsson and Venkatesh,
2005) where it is shown that typically the size of both residues is about

√
n.

Consequently we find a relationf (zj)r = g(zj)s with |r |, |s| < n2/3 and hence
degF � n2/3. Sinceφ(n) � n1−ε for all ε > 0, the assumption that there are
infinitely many torsion points (that is we can taken arbitrarily large) implies the
identity f r = gs as required.

3. Polynomials Vanishing at Roots of Unity

In this section we present a proof of the following strong version of Lang’s con-
jecture for torsion points on a varietyV in Cm. We denote byUtors be the set of
roots of unity.

COROLLARY 3.1. Let V be an algebraic variety embedded inCm. There exists
an explicitly computable, finite listB of `B-by-m integer matricesB, with each
`B ≥ 1, such that ifζ ∈ V(Utors) thenζ ∈ ⋃

B∈BWB(Utors) whereWB =
⋂`B

j=1{ζ :

ζ
b j,1

1 ζ
b j,2

2 · · · ζb j,m
m = 1}.

It is not difficult to give an explicit description ofW(Utors)—see at the end.
To prove this result we shall develop a simple understanding of vanishing sums

of roots of unity– see (Conway and Jones, 1976) and (Lenstra, 1979) for far more.
We begin by considering a linear forma1X1 + a2X2 + · · · + akXk where eachai

is an integer. We are interested in finding all sets (ξ1, ξ2, . . . , ξk) ∈ Uk
tors such that

a1ξ1 + a2ξ2 + . . . + akξk = 0. We call such a summinimal if no proper vanishing
sums of roots of unity subsum equals zero (that is, there does not exist a proper
subsetI of {1, . . . , k} for which

∑
i∈I aiξi = 0); it occurs no loss of generality in

our calculations to partition any such sum into minimal subsums. Given any such
minimal solution there areequivalentsolutions (ξξ1, ξξ2, . . . , ξξk) for any root of
unity ξ. Two solutions areequivalentif they can be partitioned (in the same way)
into minimal subsums, where the the corresponding subsums are equivalent.

For any set (ξ1, ξ2, . . . , ξk) ∈ Uk
tors there is a minimaln = n(ξ1, ξ2, . . . , ξk)

for which (ξi/ξ j)n = 1 for each pair 1≤ i, j ≤ k. Note that any minimal sum∑k
i=1 aiξi = 0 is thus equivalent to a minimal solution

∑k
i=1 aiξ

′
i = 0 where each

(ξ′)n = 1, with n = n(ξ1, ξ2, . . . , ξk). Our key result is the following:

PROPOSITION 3.2.Suppose thata1ξ1 + a2ξ2 + . . . + akξk = 0 is minimal. Then
n(ξ1, ξ2, . . . , ξk) is squarefree, and if primep dividesn then p ≤ k. Thereforen
dividesNk :=

∏
p≤k p.
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Given non-zero integersa1,a2, . . . ,ak, letX = X(a1, . . . ,ak) be the set

{(ξ1, . . . , ξk) : ξNk
j = 1 for eachj, anda1ξ1 + . . . + akξk = 0},

which is finite and computable, simply by trying all possible values for eachξ j .
One consequence of Proposition 3.2 is the following result:

COROLLARY 3.3. Supposea1, . . . ,ak ∈ Z∗. For given(ξ1, ξ2, . . . , ξk) ∈ Uk
tors

we havea1ξ1 + a2ξ2 + . . . + akξk = 0 if and only if(ξ1, ξ2, . . . , ξk) is equivalent to
an element ofX.

Proof. Given a1ξ1 + a2ξ2 + . . . + akξk = 0, split the sum up into minimal
subsums, each one of which (according to the remarks above) is equivalent to
one where eachξi is annth root of unity. Moreovern dividesN` =

∏
p≤` p by

Proposition 3.2, wherè is the length of the subsum, and the result follows since
` ≤ k. On the other hand if (ξ1, ξ2, . . . , ξk) is equivalent to an element ofX then
a1ξ1 + a2ξ2 + · · · + akξk = 0 by the definition ofX.

With that preparation we can prove Corollary 3.1:

Proof of Corollary 3.1. An algebraic variety can be described as the set of
points inCm satisfying certain equations with algebraic coefficients; and this is a
subset of the algebraic variety given by the set of points inCm satisfying the norms
of these equations, which are equations with integer coefficients. So without loss
of generality we will assume the coefficients of the polynomials definingV are
integers.

Now suppose that

f j(x1, . . . , xm) =

k j∑

i=1

a j,i x
sj,i,1

1 x
sj,i,2

2 · · · xsj,i,m
m ∈ Z[x1, . . . , xm]

for 1 ≤ j ≤ J. We are interested inζ ∈ Um
tors for which f j(ζ) = 0 for each j;

evidently these induce solutions to

a j,1ξ j,1 + a j,2ξ j,2 + · · · + a j,k jξ j,k j = 0

with eachξ j,i = ζ
sj,i,1

1 ζ
sj,i,2

2 · · · ζsj,i,m
m . Now each of these vanishing sums can be

partitioned into minimal vanishing subsums; let us relabel one of these minimal
vanishing subsums to bea1ξ1 + a2ξ2 + . . . + akξk = 0. As we saw in Proposi-
tion 3.2, eachξr/ξ1 = ζ

sr,1−s1,1

1 ζ
sr,2−s1,2

2 · · · ζsr,m−s1,m
m must be anNkth root unity, so

ζ
br,1

1 ζ
br,2

2 · · · ζbr,m
m = 1 wherebr, j = N(sr, j − s1, j) for each j. We get sets of such

vectorsbr for each minimal vanishing subsum (and from eachf j) and we can
concatenate these all together to form one large matrixB (with, say,` rows), and
soζ ∈WB(Utors).



6 A. GRANVILLE AND Z. RUDNICK

Finally, since there are only finitely many possible partitions into minimal
subsums, the setB of such matricesB, is finite and computable.

Proof of Proposition3.2. Write eachξ j = e(k j/n) with 0 ≤ k j ≤ n− 1.
Suppose that integerr dividesn, and letβ j ≡ k j (mod n/r) with 0 ≤ β j ≤

n/r − 1, andγ j = (k j − β j)/(n/r) so that 0≤ γ j ≤ r − 1. Thusξ j = e(β j/n)e(γ j/r).
Now, for each 0≤ i ≤ r − 1 and 0≤ ` ≤ n/r − 1, letAi,` be the sum of thea j with
β j = ` andγ j = i so that

0 = a1ξ1 + a2ξ2 + . . .+ akξk =

k∑

j=0

a je(β j/n)e(γ j/r) =

n/r−1∑

`=0


r−1∑

i=0

Ai,`e(i/r)

 e(`/n).

Let r = r(n) =
∏

p|n p and recall that
[
Q

(
e(1/n)

)
: Q

(
e(1/r)

)]
= n/r (by elemen-

tary Galois theory) and soe(`/n), 0 ≤ ` ≤ n/r − 1 are linearly independent over
Q

(
e(1/r)

)
. In particular this implies that each of the subsums

∑r−1
i=0 Ai,` e(i/r) = 0

above, which contradicts our assumption of minimality, unlessAi,` = 0 for all i
for all ` , `0 for some`0; in other wordsβ j = `0 for all j. But thenξi/ξ j =

e(`0/n)e(γ j/r)/e(`0/n)e(γ j/r) = e
(
(γi − γ j)/r

)
and son(ξ1, ξ2, . . . , ξk) dividesr.

Thusn = r(n) is squarefree.
Sincen is squarefree we may writen = mp with (m, p) = 1. Then, by the

Chinese Remainder theorem there exists 0≤ β j ≤ p− 1 and 0≤ γ j ≤ m− 1 such
thatk j ≡ mβ j (mod p) andk j ≡ pγ j (mod m) and thusξ j = e(β j/p)e(γ j/m).
Letting Ai,` now be the sum of thea j with β j = ` andγ j = i we obtain

0 = a1ξ1 + a2ξ2 + · · ·+ akξk =

k∑

j=0

a je(β j/p)e(γ j/m) =

p−1∑

`=0


m−1∑

i=0

Ai,`e(i/m)

 e(`/p).

Recall that
[
Q

(
e(1/n)

)
: Q

(
e(1/m)

)]
= p − 1 (by elementary Galois theory), so

that the only linear dependencies betweene(`/p), 0 ≤ ` ≤ p− 1, overQ
(
e(1/m)

)
,

are multiples of
∑p−1
`=0 e(`/p) = 0. Therefore from the equation above we see that∑m−1

i=0 Ai,`e(i/m) = λ for someλ ∈ Q(
e(1/m)

)
. Evidently λ , 0 else, by the

argument from the paragraph above we see thatn | m. Therefore for each̀ there
existsi with Ai,` , 0 and in particular somej = j` with β j` = `; and sop ≤ k as
claimed.

3.1. DETERMININGWB(Utors)

Suppose that thè-by-m integer matrixB is given and we write eachζ j = e(v j),
so the points inWB correspond exactly to thosev ∈ (Q/Z)m satisfyingBv ≡ 0
(mod 1). Note that ify ∈ B⊥(Q) (mod 1) thenBy ≡ 0 (mod 1), so we call
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two solutionsv, v′ equivalentif v − v′ ∈ B⊥(Q) (mod 1). We will prove that
there are no more than finitely many inequivalent solutions, which are effectively
computable:

We wish to use the tools of linear algebra to solve this equation but there
are many zero divisors inQ (mod 1) (indeed ifa/q ∈ Q thenq · (a/q) ≡ 0
(mod 1)), so we avoid any division! In Gaussian elimination one diagonalizes as
much of the matrix as possible, dividing non-zero elements in a given row by the
“pivot element” (that is ifB1,1 , 0 is the pivot element then one replaces the
current rowi by the current rowi minusBi,1/B1,1 times the first row). This can
be reworked to avoid division simply by introducing multiples (that is we replace
the current rowi by B1,1 times the current rowi minusBi,1 times the first row).
Note that any solution of the original linear algebra problem is also a solution
of the new problem; and vice-versa wheneverB1,1 is invertible, though if this is
not so (as may be the case here) this process may well introduce several bogus
solutions. Nonetheless at the end of the Gaussian elimination process we have an
l-by-m integer matrixB′ (with l ≤ ` after deleting rows of 0s), in which the left-
mostl-by-l submatrix is diagonal with non-zero diagonal entries (if necessary by
swapping various rows and columns), for whichB′v ≡ 0 (mod 1). Solving this is
easy: there arem− l free variablesvl+1, vl+2, . . . , vm and, writingβi = B′i,i , we have
vi ≡ (ui −∑m

j=l+1 B′i, jv j)/βi (mod 1), whereui is any integer with 0≤ ui ≤ βi −1.
For l + 1 ≤ j ≤ m let y j be the vector withith entry−B′i, j/βi for 1 ≤ i ≤ `,

andδi, j otherwise (whereδ is the Dirac delta function). The solutions toB′v ≡ 0
(mod 1) all take the formv = u +

∑m
j=l+1 v jy j whereu ∈ U′ a finite computable

set. If we trace through the proof above then we find thatByj = 0 for eachj, that
is eachy j ∈ B⊥. Thus there is a setU of representatives of the equivalence classes
of solutions insideU′ which can be determined by testing whether they satisfy
Bu≡ 0 (mod 1).
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