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1. Introduction

One of the themes of the summer school is the distribution of “special points”
on varieties. In Heath-Brown’s lectures we study rational points on projective
hyper-surfaces; in Ullmo’s course we study Galois orbits and Duke’s lectures deal
with CM-points on the modular curve. This lecture concerns one of the earliest
examples, namely torsion points on group varieties.

DEFINITION 1.1. For a groug, the torsion points are
Tor(A) = {xe€ A: X" = 1 for somen > 1}
(we write the group law as multiplication).
If Ais abelian then ToK) is a subgroup oA.

EXAMPLES.

(i) The multiplicative groupA = G, is the algebraic group whose points over a
field are the nonzero elements of the field. Then for any #eldor G,(K)
are the roots of unity contained i

(i) A=GmnxGnpthen Tor@) = Tor(Gy) x Tor(Gr) = {(X.Y) : X,y € K are roots
of unity}.

(iii) Let A be an elliptic curve. Over the complex numbers we can uniforriize
asA = C/L whereL is a lattice. Then To&(C)) = Q ® L/L.

More generally we can studjivision points

DEFINITION 1.2. IfI" c Ais afinitely generated group, let

Tor(A,T) = {x € A: X" €T for somen # 0}
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Thus Tor@, {1}) = Tor(A) are the torsion points G
Motivated by Mordell’s conjecture, Lang (Lang, 1965) made the following

CONJECTURE A. If V is irreducible curve on an abelian group variefg.g.,

A = (Gy)" or an abelian varietyandI’ c Ais a finitely generated subgroup such
that Tor(A,I') NV is infinite, therV is a translate of a subgroup @& by a division
point.

See Ulimo’s lectures (Ulimo, 2006) for the statement of the Manin—Mumford
conjecture, which generalizes this statement, and the survey (Tzermias, 2000) for
more background.

The first instance of Lang’s conjecture is for torsion points @p)(, which
turns out to be quite elementary. We will present two proofs of Lang’s conjecture
for that case.

2. A Proof Using Galois Theory

The first proof is that which appears in the original paper by Lang (Lang, 1965)
where it is attributed to Ihara, Serre and Tate. The result is

THEOREM 2.1. LetV/C be an irreducible curve il = Gy, x Gp,. If V contains
infinitely many torsion points thevi is a translate of a subgroup &= G, x Gy,
by a torsion point, i.e.,

V={xy): X =¢y%

for some root of unity'.

To highlight the ideas we will only consider a special case: G, X G is a
rational curve of the formg f(t), g(t))} wheref andg are polynomials, which for
added simplicity we assume to have rationalfioents:f, g € Q[t]. Then

V N Tor(A) = {(f(t), g(t)) are both roots of unity

The subgroups db,, x G are{(x,y) : X' = y%} for some integers, s. So we need
to show

THEOREM 2.2. Let f,g € Q[t] be polynomials. If there are infinitely many
values oft for which bothf(t) andg(t) are roots of unity then there are nonzero
integersr, s # 0 so thatf" = ¢°.

Proof. We assume there are infinitely matngo that bothf (t), g(t) are roots of
unity and want to force the relatioif = g°.

Taken > 1 so that there is som®g with

f(z) = ¢, o@)=2a
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wheref, denotes a primitivaith root of unity and that this is the minimal way of
writing such an expression, that is gogd¢, 8) = 1 (exercise). Note that € @) is
algebraic. Then we have a relation

f(z) = 9(z)”

(and both sides equgﬁﬁ), but this relation holds for onlpne point z; and we
want it to hold forall pointsz.

Now apply the Galois group G4&l{/Q), which actstransitivelyon the prim-
itive n-th roots of unity (see Ullmo’s lectures (Ullmo, 2006)). Hencerifis a
Galois automorphism so thatj({n) = 2, ged(n) = 1 andz; := oj(z) then
because we assunigg have rational ca@cients we get

oi(f(z) = f(oj(z) = 1(z). oj(9(z)) = 9(z)

and so _
f@) = oi(f@) = 4% = 9@)"
Now we have the relatiof® = g* holding for¢(n) distinct points rather than
just one point (exercise: why are the poingslistinct?). However we still need it

to hold forall z
Consider the polynomial

F(t) = f(t - o).

It hasg(n) distinct roots so if de§ < ¢(n) then we would hav& = 0 as required.
Now if F # O then
degF = max{3 degf, a degg)
can be as large as comstwhich is still (slightly) too big relative t@(n).
The remedy is to raise the relatid(z;)® = g(z;)* = {ﬁﬂ to anmth power:

f(z)™ = g(z;)™

(both sides equaj,'f”ﬁ). We get a new polynomial™ — g™ with ¢(n) distinct
roots; it looks like we raised the degree which is certainly useless! However, since
f(zj), 9(z;) arenth roots of unity, we havé(z;)" = 1 = g(z)" and if we substitute

mB = rmodn, ma = smodn

with |r], |8 < n/2 then we findf(z;)" = g(z;)® for all j coprime ton. This is still
not useful as we have just showed that Beg max(degf, degg)n/2 instead of
showing that de§ < #(n). However we will be done if we can show that there is
somem > 1 so that the residues)B, ma) modn are both small! This is given by
the following

1 ¢(n) is the number of residues coprimerto
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EXERCISE. Given a primitive vector(g) € (Z/nZ)?, that is gcdg, 8,n) = 1,
there is some ¥ m < nso that both residugsr modn andms modn are at most
n%3 (and are dferent than (00) modn).

See Venkatesh’'slecture (Venkatesh, 2006) and (Strombergsson and Venkatesh,
2005) where it is shown that typically the size of both residues is aklout
Consequently we find a relatioi(z;)" = g(z;)° with [r|,|S < n?* and hence
degF < n%3. Since¢(n) > n'¢ for all ¢ > 0, the assumption that there are
infinitely many torsion points (that is we can takearbitrarily large) implies the
identity f" = g° as required.

3. Polynomials Vanishing at Roots of Unity

In this section we present a proof of the following strong version of Lang’s con-
jecture for torsion points on a varietyin C™. We denote bylos be the set of
roots of unity.

COROLLARY 3.1. LetV be an algebraic variety embedded@". There exists
an explicitly computable, finite lisB of £g-by-m integer matricesB, with each
g > 1, such that ifZ € V(Urors) then? € Upes Wa(Utors) WhereWg = ﬂfil{{ :
4G = 1),

It is not difficult to give an explicit description &/(Uyors)—see at the end.

To prove this result we shall develop a simple understanding of vanishing sums
of roots of unity— see (Conway and Jones, 1976) and (Lenstra, 1979) for far more.
We begin by considering a linear formX; + axXs + - - - + axXx Where eacly;
is an integer. We are interested in finding all s&i{s&>, ..., &) € U{‘ors such that
a1 + aéo + ...+ adk = 0. We call such a summinimalif no proper vanishing
sums of roots of unity subsum equals zero (that is, there does not exist a proper
subsetl of {1,...,k} for which i, && = 0); it occurs no loss of generality in
our calculations to partition any such sum into minimal subsums. Given any such
minimal solution there arequivalentsolutions ££1, £&», . . ., ££k) for any root of
unity £. Two solutions arequivalentf they can be partitioned (in the same way)
into minimal subsums, where the the corresponding subsums are equivalent.

For any set;,&,...,&) € U{‘OFS there is a minimah = n(&£1, &, ..., &)
for which & /&;)" = 1 for each pair 1< i, j < k. Note that any minimal sum
YK, a& = 0is thus equivalent to a minimal solutigi ; a¢/ = 0 where each
()" =1, withn = n(&, &, ..., &). Our key result is the following:

PROPOSITION 3.2.Suppose thati1&1 + axéo + ... + aék = 0is minimal. Then
n(é1, &, ..., &) is squarefree, and if prime dividesn thenp < k. Thereforen
dividesNk := []p<k P
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Given non-zero integei®, ay, . . ., a, let X = X(ay, . . ., a) be the set

{1, &) : £ = 1for eachj, andaés + ... + &k = 0},

which is finite and computable, simply by trying all possible values for &ach
One consequence of Proposition 3.2 is the following result:

COROLLARY 3.3. Supposey,...,a € Z*. For given(&,éo,...,&) € U{‘ors
we havemér + axés + ... + aék = Oif and only if(£1, &2, . . ., &) IS equivalent to
an element oK.

Proof. Given ayé; + apéa + ... + aék = 0, split the sum up into minimal
subsums, each one of which (according to the remarks above) is equivalent to
one where eackj is annth root of unity. Moreoven dividesN; = [],< p by
Proposition 3.2, wheré s the length of the subsum, and the result follows since
¢ < k. On the other hand if&, &, . . ., &) is equivalent to an element &f then
a1é1 + aés + - - - + aék = 0 by the definition ofX.

With that preparation we can prove Corollary 3.1:

Proof of Corollary 3.1 An algebraic variety can be described as the set of
points inC™ satisfying certain equations with algebraic ftaents; and this is a
subset of the algebraic variety given by the set of poin@Stsatisfying the norms
of these equations, which are equations with integefficients. So without loss
of generality we will assume the ciieients of the polynomials defining are
integers.

Now suppose that

Sj,i,m

i
fi(X1, ..., Xm) = Z G X ™ € Z[ X4, -, X

i=1
for 1 < j < J. We are interested iti € UJ for which () = 0 for eachj;
evidently these induce solutions to

aj1éj1+aj2éj2+ - +ajkéjk =0
. Sii1.Sij Sii .
with eachéj; = "M o™ Now each of these vanishing sums can be
partitioned into minimal vanishing subsums; let us relabel one of these minimal
vanishing subsums to bm&; + axés + ... + akék = 0. As we saw in Proposi-

tion 3.2, each¥; /&1 = (G - ™™ must be arNith root unity, so

»f“lgg“z e ,?{'m = 1 wherebj = N(s,j — s1,j) for eachj. We get sets of such

vectorsb, for each minimal vanishing subsum (and from edghand we can
concatenate these all together to form one large mBt(ixith, say,¢ rows), and
s0Z € Wa(Utors).
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Finally, since there are only finitely many possible partitions into minimal
subsums, the s& of such matrice®, is finite and computable.

Proof of Propositior8.2 Write each¢j = e(kj/n) with 0 < kj <n-1.

Suppose that integerdividesn, and lets; = k; (modn/r) with 0 < g <
n/r =1, andyj = (kj —Bj)/(n/r) so that 0< yj < r — 1. Thusé; = €(B/n)e(y;/r).
Now, foreach O<i <r-1and0< ¢ <n/r -1, letA ; be the sum of the; with
Bj = ¢ andy; =i so that

k nir-1/r-1
0=anéy+ats+...+adk= ) aje(j/melyj/r) = (Z Ai,ge(i/r)]e({’/n).
=0

¢=0 \i=0

Letr = r(n) = [Tyn p and recall thafQ(e(1/n)) : Q(e(1/r))] = n/r (by elemen-
tary Galois theory) and sg¢/n), 0 < ¢ < n/r — 1 are linearly independent over
Q(e(1/r)). In particular this implies that each of the subsufiisy A &(i/r) = 0
above, which contradicts our assumption of minimality, uni&gss= 0 for all i
for all £ # (o for someflp; in other wordsgj = o for all j. But then&j/&; =
e(lo/m)ely; /1)/e(to/Me(y;/r) = e((yi — ¥))/r) and son(éy, &, ... &) dividesr.
Thusn = r(n) is squarefree.

Sincen is squarefree we may write = mpwith (m, p) = 1. Then, by the
Chinese Remainder theorem there existsff) < p—1and 0< y; < m-1such
thatk; = mg; (mod p) andk; = py; (modm) and thustj = e(Bj/p)e(y;/m).
Letting A, now be the sum of thaj with 8j = ¢ andy; = i we obtain

k p-1/m-1
0= anéy+apba+-+ &k = ) aje(Bj/pely;/m) = [Z A,fe(i/m)] e(t/p).
=0

=0 \i=0

Recall thaff Q(e(1/n)) : Q(e(1/m))] = p — 1 (by elementary Galois theory), so

that the only linear dependencies betwegtip), 0 < ¢ < p— 1, overQ(e(1/m)),

are multiples 012;’:—3 e(¢/p) = 0. Therefore from the equation above we see that
m LA e(i/m) = A for somed € Q(e(1/m). Evidently 2 # O else, by the

argument from the paragraph above we seernhanh. Therefore for eacli there

existsi with A, # 0 and in particular some = j, with 8j, = ¢; and sop < k as

claimed.

3.1. DETERMININGWg(Utrs)

Suppose that thé-by-minteger matrixB is given and we write eact} = &(vj),
so the points ilVg correspond exactly to thosee (Q/Z)™ satisfyingBv = 0
(mod 1). Note that ify € B+(Q) (mod 1) thenBy = 0 (mod 1), so we call
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two solutionsv, V' equivalentif v—- Vv € B+(Q) (mod 1). We will prove that
there are no more than finitely many inequivalent solutions, whichféeeteely
computable:

We wish to use the tools of linear algebra to solve this equation but there
are many zero divisors i) (mod 1) (indeed ifa/q € ©Q theng- (a/q) = 0
(mod 1)), so we avoid any division! In Gaussian elimination one diagonalizes as
much of the matrix as possible, dividing non-zero elements in a given row by the
“pivot element” (that is ifB1y # O is the pivot element then one replaces the
current rowi by the current row minusB; 1/By 1 times the first row). This can
be reworked to avoid division simply by introducing multiples (that is we replace
the current row by Bj 1 times the current row minus B; 1 times the first row).
Note that any solution of the original linear algebra problem is also a solution
of the new problem; and vice-versa wheneigy is invertible, though if this is
not so (as may be the case here) this process may well introduce several bogus
solutions. Nonetheless at the end of the Gaussian elimination process we have an
I-by-minteger matrixB’ (with | < ¢ after deleting rows of 0s), in which the left-
mostl-by-l submatrix is diagonal with non-zero diagonal entries (if necessary by
swapping various rows and columns), forwhBW =0 (mod 1). Solving thisis
easy: there arm—1 free variables|, 1, Vi42, . .., Vm and, writingB; = Bi’,i, we have
Vi = (U; ‘ZT:|+1 B/ ,vi)/Bi (mod 1), wherey is any integer with &< uj < i - 1.

Forl +1 < j < mlety; be the vector withth entry—Bi’,j/ﬂi forl<i<¢,
andg; j otherwise (wheré is the Dirac delta function). The solutionsBv = 0
(mod 1) all take the fornv = u + Z?llﬂ Vvjyj whereu € U’ a finite computable
set. If we trace through the proof above then we find Byt= 0 for eachj, that
is eachy; € B*. Thus there is a sét of representatives of the equivalence classes
of solutions insiddJ’ which can be determined by testing whether they satisfy
Bu=0 (mod 1).
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