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We introduce a family of leptokurtic symmetric distributions represented by the difference of two gamma
variates. Properties of this family are discussed. The Laplace, sums of Laplace and normal distributions all
arise as special cases of this family. We propose a two-step method for fitting data to this family. First, we
perform a test of symmetry, and second, we estimate the parameters by minimizing the quadratic distance
between the real parts of the empirical and theoretical characteristic functions. The quadratic distance
estimator obtained is consistent, robust and asymptotically normally distributed. We develop a statistical
test for goodness of fit and introduce a test of normality of the data. A simulation study is provided to
illustrate the theory.

Keywords: double gamma difference; gamma distribution; leptokurtic distribution; symmetric distri-
bution; Laplace distribution; empirical characteristic function; quadratic distance; parameter estimation;
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1. Introduction

We introduce a family of leptokurtic symmetric distributions by presenting its characteristic
function. Consider X and Y to be independent and identically distributed random variables from
a gamma distribution with parameters of shape 1/λ and scale

√
λθ (i.e. X, Y ∼ �(1/λ,

√
λθ)),

where λ and θ are defined on the positive real line. The new family is represented by the random
variable Z , where Z = X − Y with characteristic function

φZ(t) = φX(t)φ−Y (t) =
(

1

1 − it
√

λθ

)1/λ (
1

1 + it
√

λθ

)1/λ

=
(

1

1 + t2λθ

)1/λ

.

In the limit, as λ → 0, we have φZ(t) → e−t2θ , which is the characteristic function of a normal
random variable centred at 0 and with variance 2θ . Hence, we define this family of symmetric
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1622 M. Augustyniak and L.G. Doray

distributions by its characteristic function

φ(t) =

⎧⎪⎨
⎪⎩

(
1

1 + t2λθ

)1/λ

for λ > 0, θ ≥ 0,

e−t2θ for λ = 0, θ ≥ 0.

(1)

We will use the notation DGD(λ, θ) for the double gamma difference distribution with param-
eters (λ, θ) and characteristic function given by Equation (1). For λ < 0 or θ < 0, φ(t) is not a
characteristic function, because |φ(t)| is not bounded by 1. Refer to Lukacs [1] for more details
on the properties of characteristic functions.

When λ = 1, the family becomes the difference of two independent exponentially distributed
variates with mean

√
θ . Kotz et al. [2] proved that a Laplace random variable centred at the origin

can be represented as the difference between two independent exponentially distributed variates;
the characteristic function of a classical Laplace random variable centred at 0 with scale parameter
s is

1

1 + t2s2
.

Hence, the classical Laplace distribution is a special case of the DGD family with parameters
(λ = 1, θ = s2). When λ = 1/n, n ∈ N, the difference of two independent gamma variates can
be seen as the sum of n differences of two independent exponential variates, which is simply
the sum of n independent Laplace variates. In the limit, when n → ∞ (i.e. λ → 0), our result is
consistent with the central limit theorem, as the sum of n independent Laplace variates converges
to the normal distribution. We now list some properties of this family.

Property 1: Odd and even moments The moment-generating function (mgf) of the DGD family
can be easily computed by using the mgf of a gamma distribution. Since this mgf always exists in
a neighbourhood of 0, all the moments of the DGD family are finite. Moreover, the characteristic
function of the DGD family is real and even and, consequently, it is a family of symmetric density
functions centred at 0. Thus, the odd moments are 0; the positive even moments can be calculated
from the formula in Proposition 1, the proof of which is given in the appendix.

Proposition 1 Let Z be a DGD(λ, θ) random variable with characteristic function φ(t) as
defined by Equation (1). Then,

E[Z2k] = θ k(2k)!
k!

k−1∏
j=0

(1 + jλ), k = 1, 2, . . . .

Property 2: Kurtosis From Proposition 1, we obtain the variance and the kurtosis of a DGD(λ, θ)

random variable, which are 2θ and (3 + 3λ), respectively. Kurtosis is defined as the fourth central
moment divided by the square of the variance and it is a measure of peakedness of the probability
distribution and of heaviness of the tails. Since λ ≥ 0, the kurtosis is always greater or equal
to 3. Thus, the family is leptokurtic, because the kurtosis is always at least that of the normal
distribution.

Property 3: Closure under transformations Let Z1, . . . , Zn be independent and identically
distributed DGD(nλ, θ/n) variates and consider Z = Z1 + . . . + Zn, then

φZ(t) = φZ1(t) · · · φZn(t) = [φZ1(t)]n =
(

1

1 + t2λθ

)1/λ

. (2)
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Journal of Statistical Computation and Simulation 1623

Clearly, Z is a DGD(λ, θ) random variable. Also, if a ∈ R, then the characteristic function of aZ
is φaZ(t), where

φaZ(t) = φZ(at) =
(

1

1 + t2a2λθ

)1/λ

.

This entails that aZ is a DGD(λ, a2θ) random variable. Thus, the family is closed under scale and
convolution operations but not under the translation operation as the centre of symmetry is fixed
at the origin. Moreover, from Equation (2), we can recognize that its characteristic function is
infinitely divisible.

When the family reduces to Laplace or normal random variables, the density function can be
expressed in a closed form. For example, when λ = 1, we obtain the classical Laplace random
variable centred at 0 with density function equal to

f (z; λ = 1, θ = s2) = 1

2s
e−|z|/s.

When λ = 1/n, n ∈ N, and θ = n, Kotz et al. [2] obtained the density function of this sum of n
standard classical Laplace variates. However, in the general case, the density function does not
have a closed-form expression.

Since the family consists of symmetric leptokurtic distributions, this suggests that data exhibit-
ing the properties of being symmetric around the origin and of having excess kurtosis can be
fitted to this family. In the following section, we develop a two-step method for fitting data to the
DGD family. The first step comprises model validation and the second step comprises parameter
estimation. In Section 3, goodness of fit tests for the simple and composite hypotheses are pre-
sented. The test statistics are shown to follow a chi-square distribution asymptotically. In addition,
we explain how the parameter λ can be employed to test for distributional assumptions. More
precisely, a test of normality of the data is presented. In Section 4, we provide simulation results
for the methods developed.

2. Fitting to the DGD family

2.1. Introduction

We suggest a two-step method for fitting data to the DGD family. The first step consists of
assessing the compatibility between the data and the family. Since the distributions in the
family are symmetric and leptokurtic, the data have to exhibit those characteristics. Devia-
tions from symmetry can be evaluated by performing a test of symmetry, while leptokurtosis
implies that the model is only suitable for data with tails that are at least as heavy as
the normal distribution (i.e. the sample kurtosis should be greater than 3). Once we have
confirmed that the family is well suited for the data, we proceed with parameter estima-
tion, which is the second step. Parameter estimation is achieved through a minimum-distance
method based on the characteristic function. We choose the parameters which minimize the
distance between the real parts of the theoretical characteristic function and the empiri-
cal characteristic function. The estimators obtained are consistent, robust and asymptotically
normal.
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1624 M. Augustyniak and L.G. Doray

2.2. Testing symmetry

2.2.1. Introduction

Let x1, . . . , xn be n independent observations from a continuous random variable X with
distribution function F, density f and known centre μ0. We consider the problem of testing

H0 : F(μ0 − x) = 1 − F(μ0 + x) against

Ha : F(μ0 − x) �= 1 − F(μ0 + x).

Thus, we are interested in testing whether the density f is symmetric about the known median μ0

or skewed.
Many tests of symmetry have been described in the literature [3,4]. McWilliams [5] and

Modarres and Gastwirth [6] used tests based on a runs statistic. Tajuddin [7] and Thas et al. [8]
used tests based on the Wilcoxon signed-rank statistic.Also, Cheng and Balakrishnan [9] proposed
a modified sign test for symmetry.

We suggest using the hybrid test proposed by Modarres and Gastwirth [10] to test the hypothesis
of symmetry around a known median. We favour this test due to its high power and simplicity. Thas
et al. [8] performed extensive simulations comparing the power of different tests of symmetry,
which revealed that the hybrid test is more powerful than most alternatives considered.

2.2.2. Hybrid test

The hybrid test is defined in two stages. Stage I consists of the sign test at level α1 < α. If H0 is
accepted in stage I, then the percentile-modified two-sample Wilcoxon test is performed in stage
II at level α2 < α. The hybrid procedure is an α-level test, where α = α1 + (1 − α1)α2. Modarres
and Gastwirth [10] suggested that α1 should be small relative to α2 and proposed that α1 = 0.01
and α2 = 0.0404 yielding an overall level of α = 0.05. Refer to Modarres and Gastwirth [10] for
a detailed description of the hybrid procedure.

The first step of our method involves validating the compatibility between the data and the
DGD family. It consists of two elements: the sample kurtosis should be greater than 3 and the
hybrid test must not reject the hypothesis of symmetry around μ0. If the data qualify, then we
can carry on with the second step, parameter estimation. For the DGD family, μ0 is conveniently
set to 0. However, in the particular case where μ0 is known and μ0 �= 0, μ0 must be subtracted
from the data and the shifted data can be fitted. If μ0 is unknown, our model must be extended
by adding a third parameter for location. This will be discussed in Section 5.

2.3. Parameter estimation

2.3.1. Introduction

We will estimate the parameters through a minimum-distance method based on the characteristic
function. There is an extensive literature involving the characteristic function in parameter estima-
tion. For example, it is a widely used method with stable distributions. References include [11–16].
Moreover, Yu [17] showed how techniques relying on the characteristic function are used in mix-
tures of normal distributions, in the variance gamma distribution, in stable autoregressive moving
average (ARMA) processes and in a diffusion model.

Traditionally, the maximum-likelihood approach is widely favoured due to its generality and
asymptotic efficiency (see [18,19] or [20] for examples of application of the method to the beta
generalized exponential distribution, the three-parameter gamma distribution and the Weibull
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Journal of Statistical Computation and Simulation 1625

regression). However, the likelihood function is not always tractable, as is the case with stable laws.
When this occurs, the characteristic function might be used. Since the empirical characteristic
function retains all the information in the sample, estimation and inference via the empirical
characteristic function should work as efficiently as the likelihood-based approaches. Feuerverger
and McDunnough [12] showed that the asymptotic variance–covariance matrix of the parameters
estimated using a minimum-distance method based on the characteristic function can be made
arbitrarily close to the Cramér–Rao bound so that the method can attain arbitrarily high asymptotic
efficiency. Moreover, the estimators obtained are consistent, robust and asymptotically normally
distributed. Feuerverger and McDunnough [21] noted that the robustness properties for procedures
associated with the empirical characteristic function are the result of a bounded influence curve
for the estimators. For more details on the influence curve, see [22].

2.3.2. The empirical characteristic function

Consider Z1, . . . , Zn to be independent and identically distributed observations from the
DGD(λ, θ). Let us define the empirical and theoretical characteristic functions at a specific point
t0 as φn(t0) and φ(t0), respectively, where

φn(t0) = 1

n

n∑
j=1

eit0Zj = 1

n

n∑
j=1

[cos(t0Zj) + i sin(t0Zj)]

and

φ(t0) =
(

1

1 + t2
0λθ

)1/λ

.

Thus, φ(t0) only has a real part, and let us denote the real part of φn(t0) as φRe
n (t0), where

φRe
n (t0) = 1

n

n∑
j=1

cos(t0Zj). (3)

For any fixed t0, φn(t0) is an average of bounded independent and identically distributed random
variables having mean φ(t0) and finite variance. Therefore, it follows by the strong law of large
numbers that φn(t0) converges almost surely to φ(t0). Furthermore, Feuerverger and Mureika [23]
proved, for fixed T < ∞, the convergence of

sup
|t|≤T

|φn(t) − φ(t)| → 0

almost surely as n → ∞ and asserted that φRe
n (t) will become uniformly close to φ(t) when the

underlying distribution is symmetric. This implies that the imaginary part of φn(t), denoted by
φIm

n (t), is approximately 0 for large n. Thus, any discrepancies observed between φIm
n (t) and 0

will be due to sampling error and consequently φIm
n (t) will not hold any information about the

parameters λ and θ . Since we are only fitting data that are symmetric around the origin, we will
only consider the real parts of φn(t) and φ(t) to estimate the parameters, as the imaginary parts
will be uninformative.

2.3.3. Quadratic distance

The method used is a form of non-linear weighted least-squares (WLS) estimation. It is similar to
the k − L procedure introduced by Feuerverger and McDunnough [12], and it is a special distance
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1626 M. Augustyniak and L.G. Doray

within the class of quadratic distances introduced by Luong and Thompson [24], where a unified
theory for estimation and goodness of fit was developed. More precisely, the technique consists
in choosing the parameters which minimize the quadratic distance between the real parts of the
theoretical characteristic function and the empirical characteristic function. We note that it is
not necessary to include the quadratic distance between the imaginary parts in the minimization
process, as this expression does not depend on the parameters since the imaginary part of the
theoretical characteristic function is equal to 0 for the DGD family.

Let us choose the points t1, . . . , tk > 0 and let us define the column vectors

Zn = [φRe
n (t1), . . . , φRe

n (tk)]′
Z(λ, θ) = [φ(t1), . . . , φ(tk)]′.

The quadratic distance estimator (QDE) based on the characteristic function, denoted by (λ̂, θ̂ ),
is defined as the value of (λ, θ) which minimizes the distance

d(λ, θ) = [Zn − Z(λ, θ)]′Q(λ, θ)[Zn − Z(λ, θ)], (4)

where Q(λ, θ) is a positive definite matrix which may depend on (λ, θ). Luong and Thomp-
son [24] showed that an optimal choice of Q(λ, θ) in the sense of minimizing the norm of the
variance–covariance matrix of the estimated parameters is Q(λ, θ) = �−1(λ, θ), where �(λ, θ)

is the variance–covariance matrix of Yn(λ, θ) = √
n[Zn − Z(λ, θ)]. With this choice of matrix

Q(λ, θ), the QDE will be denoted by (λ̂∗, θ̂∗).
Let Yn(t) = √

n[φRe
n (t) − φ(t)], then �(λ, θ) = (σij) is the k × k symmetric matrix with

elements

σij = Cov[Yn(ti), Yn(tj)] = 1

2
[φ(ti + tj) + φ(ti − tj)] − φ(ti)φ(tj).

This result follows because E[cos(tZ)] = φ(t) and

E[cos(tZ) cos(sZ)] = E

[
1

2
(cos((t + s)Z) + cos((t − s)Z))

]
= 1

2
[φ(t + s) + φ(t − s)].

Since minimization of d(λ, θ) involves the inverse of the matrix �(λ, θ), which depends on the
parameters, a simpler procedure would be to replace �(λ, θ) by a consistent estimate �̂ and
minimize

d ′(λ, θ) = [Zn − Z(λ, θ)]′�̂−1[Zn − Z(λ, θ)]. (5)

Let (λ0, θ0) be the true value of (λ, θ) and �(λ0, θ0) = �, then, if �̂
P−→ � (i.e. �̂ is a consis-

tent estimate of �), Luong and Doray [25,26] asserted that minimization of Equation (4) with
Q(λ, θ) = �−1(λ, θ) and Equation (5) yields asymptotically equivalent estimators. For example,
�Re

n defined analogously to � in terms of φRe
n (t) is a consistent estimate of �. More precisely,

�Re
n = (aij) is the k × k matrix with elements

aij = 1

2
[φRe

n (ti + tj) + φRe
n (ti − tj)] − φRe

n (ti)φ
Re
n (tj).

Luong and Doray [25] suggested an iterative procedure to estimate (λ̂∗, θ̂∗). First, we obtain
(λ̃, θ̃ ) by choosing Q(λ, θ) = I, the identity matrix. Despite the fact that (λ̃, θ̃ ) is less efficient, it
can be used to estimate �, by letting �̂ = �(λ̃, θ̃ ). We can then use �̂ to obtain the first iteration for
(λ̂∗, θ̂∗), and this procedure can be repeated with � re-estimated at each step; (λ̂∗, θ̂∗) is defined
as the convergent vector value of the procedure.
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2.3.4. Asymptotic properties of the QDE

From Equation (3), we observe that φRe
n (t) is an average of bounded processes and it follows,

by means of the multivariate central limit theorem, that Yn(λ0, θ0) = Yn converges in law to a
multivariate normal distribution with zero mean and covariance structure �. Thus, we have

Yn = √
n[Zn − Z(λ0, θ0)] D−→ N(0, �). (6)

Let (λ̂∗, θ̂∗) be the estimator obtained by minimizing Equation (4) with Q(λ, θ) = �−1(λ, θ).
Under the conditions that d(λ, θ) attains its minimum at an interior point of � = {λ, θ ∈ R; λ ≥
0, θ ≥ 0} and that Z(λ, θ) and Q(λ, θ) are differentiable, the estimator (λ̂∗, θ̂∗) may also be defined
implicitly as a root of the two-dimensional system of estimating equations

∂

∂(λ, θ)
{[Zn − Z(λ, θ)]′�−1(λ, θ)[Zn − Z(λ, θ)]} = 0.

Using Lemmas (2.4.2) and (3.4.1) proposed in Luong and Thompson [24], we can conclude that

(i) (λ̂∗, θ̂∗) P−→(λ0, θ0), that is, (λ̂∗, θ̂∗) is a consistent estimator of (λ0, θ0),
(ii) (λ̂∗, θ̂∗) satisfies (∂Z′(λ̂∗, θ̂∗)/∂(λ, θ)){�−1(λ̂∗, θ̂∗)Yn(λ̂

∗, θ̂∗)} + op(1) = 0,
(iii)

√
n[(λ̂∗, θ̂∗) − (λ0, θ0)] = (S′�−1S)−1S′�−1Yn + op(1),

(iv) Yn(λ̂
∗, θ̂∗) = Yn − {S + op(1)}√n[(λ̂∗, θ̂∗) − (λ0, θ0)],

(v)
√

n[(λ̂∗, θ̂∗) − (λ0, θ0)] D−→ N(0, (S′�−1S)−1).

The symbol op(1) denotes an expression converging to 0 in probability (i.e. op(1)
P−→ 0), and

S is a matrix of dimension k × 2 defined as

S =

⎛
⎜⎜⎜⎜⎝

∂Z1(λ, θ)

∂λ

∂Z1(λ, θ)

∂θ
...

...
∂Zk(λ, θ)

∂λ

∂Zkλ, θ)

∂θ

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

∂φ(t1)

∂λ

∂φ(t1)

∂θ
...

...
∂φ(tk)

∂λ

∂φ(tk)

∂θ

⎞
⎟⎟⎟⎟⎠ ,

where

∂φ(t)

∂λ
= (1 + λθ t2) ln(1 + λθ t2) − λθ t2

λ2(1 + λθ t2)1+1/λ
and

∂φ(t)

∂θ
= − t2

(1 + λθ t2)1+1/λ
,

with all quantities being evaluated at (λ0, θ0). Thus, the estimator (λ̂∗, θ̂∗) is consistent and asymp-
totically normally distributed with variance–covariance matrix (S′�−1S)−1. The same results hold
for the estimator obtained by minimizing Equation (5).

The choice of points t1, . . . , tk affects (S′�−1S)−1, and thus, we must choose them with care.
Feuerverger and McDunnough [12] showed that by using a sufficiently extensive grid {ti}k

i=1,
(S′�−1S)−1 can be made arbitrarily close to the Cramér–Rao bound. However, by choosing more
points, the k × k matrix � can become near singular and computational problems may arise. For
our simulation study, we will consider sets of points having the general form

{ti}k
i=1 =

{
Mi

k

}k

i=1

=
{

M

k
,

2M

k
, . . . , M

}
, (7)

where M is an arbitrary number. More precisely, we will use values of M = 0.01, 0.1, 1, 2 and 3
and examine the effect on our estimation when k = 5, 10, 20 or 30. We will determine the choices
of points for which the variances of the estimated parameters are a minimum.
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1628 M. Augustyniak and L.G. Doray

3. Hypothesis testing

3.1. Goodness of fit

3.1.1. Introduction

Since we built statistics based on a minimum distance between empirical and theoretical parts,
it is natural to use them for testing goodness of fit. Luong and Thompson [24] developed a
unified theory for estimation and goodness of fit when quadratic distances are employed. They
showed that test statistics for goodness of fit follow a chi-square distribution asymptotically. Their
results generalize the tests based on the characteristic function proposed by Koutrouvelis [27] and
Koutrouvelis and Kellermeir [28]. We now present the test statistics for the simple and composite
hypotheses, respectively. The following theorem appearing in Luong and Doray [25] is needed;
its proof can be found in Rao [29].

Theorem 1 Suppose that the random vector Yn of dimension k is N(0, �) and Q is any k × k
symmetric positive semi-definite matrix, then the quadratic form Y′

nQYn is chi-square distributed
with ν degrees of freedom if �Q is idempotent and trace(�Q) = ν. (The same result holds

asymptotically if Q is replaced by a consistent estimate Q̂ and Yn
D−→ N(0, �)).

3.1.2. Simple hypothesis

To test the simple hypothesis H0 : Z1, . . . , Zn come from a specified DGD distribution with
parameters (λ0, θ0), the following test statistic can be used:

nd(λ0, θ0) = n[Zn − Z(λ0, θ0)]′�−1
0 [Zn − Z(λ0, θ0)]

= Y′
n�

−1
0 Yn,

where �0 equals � evaluated at (λ0, θ0). It follows from Equation (6) and Theorem 1 that

nd(λ0, θ0)
D−→ χ2

ν , where

ν = trace(��−1) = trace(Ik) = k,

and Ik is the k × k identity matrix. Thus, the test statistic follows a limiting chi-square distribution
with ν = k degrees of freedom under H0. To test the hypothesis H0 at significance level α, compute
the value of the test statistic nd(λ0, θ0) from the sample. The null hypothesis H0 should be rejected
if nd(λ0, θ0) > χ2

k,1−α , where χ2
k,1−α is the 100(1 − α)th quantile of a chi-square distribution with

k degrees of freedom.

3.1.3. Composite hypothesis

To test the composite hypothesis H0 : Z1, . . . , Zn come from a DGD distribution where the values
of the parameters are not specified, we first calculate the QDE (λ̂∗, θ̂∗) by minimizing Equation (4)
with Q(λ, θ) = �−1(λ, θ). Luong and Thompson [24] showed that the test statistic

nd(λ̂∗, θ̂∗) = n[Zn − Z(λ̂∗, θ̂∗)]′�−1(λ̂∗, θ̂∗)[Zn − Z(λ̂∗, θ̂∗)]
= Y′

n(λ̂
∗, θ̂∗)�−1(λ̂∗, θ̂∗)Yn(λ̂

∗, θ̂∗)

follows an asymptotic chi-square distribution with ν = k − 2 degrees of freedom under H0.Again,
�(λ̂∗, θ̂∗) can be replaced by a consistent estimate �̂. Analogous to the case for the simple null
hypothesis, a significance level α test can be performed to test H0.
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3.2. Test of normality

In Section 2.3.4, we showed that the estimator (λ̂∗, θ̂∗) is asymptotically normally distributed
with variance–covariance matrix (S′�−1S)−1. Thus, we can easily construct individual and joint
(1 − α)% confidence intervals for the parameters λ and θ .

Of more practical interest is testing for the parameter λ. In Section 1, we saw that particular
values of λ define specific distributions within the DGD distribution family. For example, when
λ = 0 or λ = 1, we obtain the normal and the Laplace distributions, respectively. This suggests
using the parameter λ to test distributional assumptions. A test of normality of the data can be
constructed by testing

H0 : λ = 0 versus Ha : λ > 0. (8)

In Section 1, we noted that the kurtosis of a DGD(λ, θ) random variable Z is (3 + 3λ). Thus,
if we have a sample from Z , β̂2 = (3 + 3λ̂∗) is a consistent estimate of the population kurtosis
β2. Moreover, since β2 is a linear function of λ, the hypotheses identified in Equation (8) are
equivalent to

H0 : β2 = 3 versus Ha : β2 > 3.

This implies that in Equation (8) we are testing the normal distribution against symmetric distri-
butions with heavier tails. Thus, it would be interesting to compare the power of this test to that
of a normality test based on the sample kurtosis. D’Agostino and Pearson [30] described such
a test. Moreover, when the alternative is the Laplace distribution, the power of the test can be
compared to that of the likelihood ratio test. Kotz et al. [2] asserted that the likelihood ratio test is
the most powerful scale-invariant test for testing the normal against the Laplace when the centre
of symmetry is known. In Section 4, we provide a simulation study for estimating parameters and
testing hypotheses with the methods presented previously.

4. Simulation study

4.1. Parameter estimation

While the expressions for QDEs may seem complex, they are relatively simple to implement using
a computer software with built-in statistical functions. The QDE can be computed numerically
using a non-linear least-squares method. All our simulations were completed using Maple 11.0.

We first generated 100 random samples from a DGD(λ = 1, θ = 1) random variable of sizes
100, 500 and 1000. For each sample, we estimated the parameters using the method of moments
(MOM), ordinary least squares (OLS) (i.e. using Equation (4) with Q(λ, θ) = I, the identity
matrix) and WLS (i.e. using Equation (4) with an appropriate choice of Q(λ, θ)). The OLS and
WLS methods were implemented using 20 different sets of points, {ti}k

i=1, in order to determine
which are the best choices. All the sets have the general form defined by Equation (7). Values of
M = 0.01, 0.1, 1, 2 and 3 and values of k = 5, 10, 20 and 30 were used to define {ti}k

i=1.
Tables 1–3 summarize the pertinent results for samples sizes of 100, 500 and 1000, respectively.

Each table provides the mean and the standard error based on 100 random samples of the estimated
values of λ and θ using the MOM, OLS and WLS. The WLS estimates were obtained using the
iterative procedure to estimate � presented in Section 2.3.3. The results for the values of M = 0.01
and 0.1 are not presented as the WLS method rarely found an improved estimate over the OLS
method. Consequently, we do not recommend using those choices of M. All the other values of
M yielded good estimates, but we suggest using M = 3, as the standard errors of the estimates
were generally the lowest for this choice. Moreover, increasing the value of k (i.e. increasing the
number of points in the sets) generally improved the estimates. However, when using k = 30, the
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Table 1. Estimates based on 100 random samples of size 100.

λ θ

True values 1 1

MOM (s.e.) 0.6853 (0.4099) 1.0287 (0.2184)

k M OLS (s.e.) WLS (s.e.) OLS (s.e.) WLS (s.e.)

5 1 1.1111 (0.5926) 1.0877 (0.5026) 1.0714 (0.2388) 1.0465 (0.2221)
5 2 1.0642 (0.4332) 1.0434 (0.3926) 1.0622 (0.2592) 1.0477 (0.2232)
5 3 1.0371 (0.4332) 1.0684 (0.3477) 1.0563 (0.2928) 1.0697 (0.2358)
10 1 1.1038 (0.6062) 1.0642 (0.4280) 1.0698 (0.2388) 1.0446 (0.2204)
10 2 1.0688 (0.4333) 1.0314 (0.3707) 1.0647 (0.2610) 1.0415 (0.2157)
10 3 1.0342 (0.4362) 1.0270 (0.3414) 1.0556 (0.2913) 1.0419 (0.2185)
20 1 1.0990 (0.6142) 1.0298 (0.3974) 1.0688 (0.2389) 1.0418 (0.2203)
20 2 1.0705 (0.4323) 1.0264 (0.3602) 1.0653 (0.2606) 1.0410 (0.2159)
20 3 1.0340 (0.4363) 1.0297 (0.3387) 1.0550 (0.2882) 1.0421 (0.2180)

Table 2. Estimates based on 100 random samples of size 500.

λ θ

True values 1 1

MOM (s.e.) 0.8841 (0.2745) 1.0112 (0.0991)

k M OLS (s.e.) WLS (s.e.) OLS (s.e.) WLS (s.e.)

5 1 1.0441 (0.2449) 1.0161 (0.2194) 1.0232 (0.1064) 1.0151 (0.1007)
5 2 1.0083 (0.2329) 1.0221 (0.2024) 1.0153 (0.1185) 1.0184 (0.1003)
5 3 1.0294 (0.2095) 1.0314 (0.1981) 1.0263 (0.1260) 1.0244 (0.1108)
10 1 1.0439 (0.2470) 1.0030 (0.2051) 1.0231 (0.1058) 1.0140 (0.1003)
10 2 1.0072 (0.2337) 1.0124 (0.1923) 1.0151 (0.1188) 1.0150 (0.0988)
10 3 1.0255 (0.2132) 1.0198 (0.1841) 1.0244 (0.1268) 1.0163 (0.1006)
20 1 1.0437 (0.2485) 1.0025 (0.1997) 1.0230 (0.1054) 1.0139 (0.0994)
20 2 1.0065 (0.2337) 1.0117 (0.1877) 1.0148 (0.1187) 1.0149 (0.0990)
20 3 1.0240 (0.2145) 1.0188 (0.1780) 1.0236 (0.1259) 1.0160 (0.1004)

Table 3. Estimates based on 100 random samples of size 1000.

λ θ

True values 1 1

MOM (s.e.) 0.9428 (0.2606) 1.0106 (0.0771)

k M OLS (s.e.) WLS (s.e.) OLS (s.e.) WLS (s.e.)

5 1 1.0197 (0.1816) 1.0058 (0.1662) 1.0143 (0.0791) 1.0116 (0.0769)
5 2 1.0180 (0.1664) 1.0173 (0.1395) 1.0162 (0.0979) 1.0144 (0.0779)
5 3 1.0017 (0.1635) 1.0053 (0.1379) 1.0088 (0.0974) 1.0121 (0.0801)
10 1 1.0205 (0.1835) 1.0094 (0.1544) 1.0144 (0.0788) 1.0119 (0.0773)
10 2 1.0190 (0.1655) 1.0087 (0.1367) 1.0166 (0.0966) 1.0118 (0.0771)
10 3 1.0037 (0.1680) 1.0032 (0.1297) 1.0099 (0.1016) 1.0111 (0.0763)
20 1 1.0209 (0.1848) 1.0176 (0.1458) 1.0145 (0.0786) 1.0128 (0.0773)
20 2 1.0192 (0.1652) 1.0106 (0.1335) 1.0166 (0.0958) 1.0120 (0.0768)
20 3 1.0051 (0.1686) 1.0021 (0.1284) 1.0107 (0.1019) 1.0108 (0.0762)

estimation process was slow and the improvement over k = 10 or 20 was not substantial and not
worthy of the additional computation time. Thus, we suggest using values of k = 10 or 20 for a
fast and efficient estimation. Moreover, the asymptotic standard deviations of the estimators that
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can be calculated from the results given in Section 2.3.4 are very close to the standard errors that
were observed in our samples.

We also performed WLS estimation with choices of Q(λ, θ) = (�Re
n )−1 and �−1

0 . With (�Re
n )−1,

we obtained poor estimates, and they often did not converge to a solution. The choice of �−1
0

produced estimates that were comparable to the ones obtained in the tables under the WLS
columns. However, the choice of �−1

0 is not a viable selection in practice as the true parameters
(λ0, θ0) are unknown.

4.2. Goodness of fit testing

We performed goodness of fit testing for the simple hypothesis as presented in Section 3.1.2.
First, we wish to determine if the test has a correct size when using critical values (CVs) from
the chi-square distribution for sample sizes of n = 100, 500 and 1000. For each sample size n,
we generated 5000 samples from a DGD(λ = 1, θ = 1) random variable and calculated the test
statistics nd(λ0 = 1, θ0 = 1). We repeated the procedure for samples from a DGD(λ = 2, θ = 1).
We were thus able to obtain simulated CVs for a level α test by taking the 100(1 − α)th quantiles
from the empirical distributions of the test statistics. All the test statistics were obtained using the
set of points defined by Equation (7) with values of M = 3 and k = 10. We present our results in
Tables 4 and 5.

The results given in Table 4 indicate that the goodness of fit test has an incorrect size that is
severe enough to warrant a recommendation that the test should not be used without appropriately
sized CVs. Based on Table 5, we remark that the test statistic nd(λ0, θ0) converges very slowly to a
chi-square random variable. Even for sample sizes of 1000, the approximation is not satisfactory.
The real distribution of the test statistic will generally have a heavier right tail than the chi-square

Table 4. Actual sizes of the test using χ2
10,1−α with 5000 simulation runs.

Actual sizes of the test

α (λ0, θ0) n = 100 n = 500 n = 1000

0.100 (1,1) 0.1250 0.1242 0.1168
(2,1) 0.1420 0.1350 0.1194

0.050 (1,1) 0.0966 0.0834 0.0764
(2,1) 0.1138 0.0898 0.0738

0.025 (1,1) 0.0798 0.0594 0.0544
(2,1) 0.0930 0.0628 0.0448

0.010 (1,1) 0.0658 0.0406 0.0310
(2,1) 0.0756 0.0412 0.0264

Table 5. CVs obtained for various sample sizes.

CVs

α (λ0, θ0) n = 100 n = 500 n = 1000 χ2
10,1−α

0.100 (1,1) 17.9453 17.1660 16.8809 15.9872
(2,1) 19.6814 17.5147 16.9050 15.9872

0.050 (1,1) 27.2592 21.5835 20.9238 18.3070
(2,1) 27.6104 21.9962 20.0182 18.3070

0.025 (1,1) 37.0803 27.4926 24.4911 20.4832
(2,1) 37.6163 25.9949 23.5219 20.4832

0.010 (1,1) 68.5516 39.5960 29.3234 23.2093
(2,1) 58.1972 32.5478 28.3944 23.2093
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Table 6. Power of the test (α = 0.05) with 5000 simulation runs.

Alternatives (λa, θa)

n CV (0, 1) (0.5, 1) (1, 1) (1.5, 1) (2, 1)

100 27.4348 0.0626 0.0164 0.0518 0.1070 0.1852
500 21.7899 0.9986 0.2692 0.0516 0.3656 0.9394
1000 20.4710 1.0000 0.8000 0.0572 0.7524 1.0000

distribution, even for large sample sizes, and thus the test will always be oversized when using
the CV χ2

k,1−α .
Next, we assessed the power of the goodness of fit test for the simple hypothesis H0 : (λ0 =

1, θ0 = 1) against alternatives Ha : (λa, θa = 1), where λa = 0, 0.5, 1, 1.5 and 2. A level α = 0.05
and sample sizes of 100, 500 and 1000 were employed. We determined the power of the test by
generating 5000 samples for each of the alternatives considered. Appropriately sized CVs were
calculated by taking the average of the two CVs obtained in Table 5 for each sample size. The
results are given in Table 6.

The goodness of fit test performed poorly in rejecting the selected alternatives for a sample size
of 100. When n = 500, the test did very well for alternatives of λa one unit away of λ0 = 1 but not
so well when λa was half a unit away. For a large sample size of 1000, the test was powerful for
all alternatives considered. For sample sizes of 500 and 1000, the recorded powers for alternatives
(0, 1) and (2, 1) were close to or equal to 100%. This suggests that the test is well suited for
discriminating between the fits of normal, Laplace and heavier tailed symmetric distributions for
a large enough sample size. Moreover, by using adjusted CVs instead of χ2

k,1−α , the tests had an
adequate size. The discrepancies between the actual sizes and α = 0.05 are due to the precision
of the simulated CVs and to the large variability of the test statistic.

5. Conclusion

We have introduced the double gamma difference family, which is a family of leptokurtic symmet-
ric distributions. The Laplace, the sums of Laplace and the normal distributions all arise as special
cases of this family. While there is no general closed-form expression for the density function, the
characteristic function is simple to work with. Parameters can be estimated through a minimum
quadratic distance method based on the characteristic function. The estimators obtained were
shown to be consistent, robust and asymptotically normally distributed. Goodness of fit tests for
the simple and composite hypotheses were presented and the test statistics were shown to follow
a chi-square distribution asymptotically. Moreover, we suggested employing the parameter λ to
test for distributional assumptions. Simulations revealed that large sample sizes are required to
get a reasonable amount of precision for estimating the parameters. Also, the goodness of fit tests
must be carried out with appropriate simulated CVs for the tests to have a correct size because
the convergence to the chi-square distribution is slow.

The family can be extended by adding a third parameter for location μ. The characteristic
function φ∗(t) would then both have real and imaginary parts, where

φ∗(t) =

⎧⎪⎨
⎪⎩

eitμ ·
(

1

1 + t2λθ

)1/λ

for λ > 0, θ ≥ 0,

eitμ−t2θ for λ = 0, θ ≥ 0.
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Parameter estimation could still be achieved through a minimum-distance method based on the
characteristic function. However, both real and imaginary parts would have to be taken into
account. For more details on the minimum-distance method when the real and imaginary parts
are involved, see [21]. Before fitting data to this family, it is still necessary to verify symmetry.
For testing symmetry around the unknown median μ, we suggest using the triples test introduced
by Randles et al. [31].
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Appendix

Proof of Proposition 1 From the generalized binomial theorem, we obtain the binomial series for φ(t), where

φ(t) = (1 + t2λθ)−1/λ =
∞∑

k=0

(−1/λ

k

)
(t2λθ)k .

From the relationship between moments of a random variable and the derivatives of its characteristic function, we have

E[Z2k] = i2k d2k

dt2k
φ(t)

∣∣∣∣
t=0

= (−1)kφ(2k)(0).

φ(2k)(0) corresponds to the (k + 1)th term from the binomial series for φ(t) differentiated 2k times. Thus,

E[Z2k] = (−1)k
(−1/λ

k

)
(2k)!λkθ k .

Since the binomial coefficients admit the representation

(−1/λ

k

)
= 1

k!
k−1∏
j=0

(
− 1

λ
− j

)
= (−1)k

k!λk

k−1∏
j=0

(1 + jλ),

we get the following expression:

E[Z2k] = (−1)k(2k)!λkθ k

⎡
⎣ (−1)k

k!λk

k−1∏
j=0

(1 + jλ)

⎤
⎦ = θ k(2k)!

k!
k−1∏
j=0

(1 + jλ).

We note here that the proof only applies for values of λ > 0. However, the same result holds for λ = 0. The expression
for λ = 0 can be derived similarly by using the series expansion for e−t2θ . �
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