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ABSTRACT

Quadratic distance (QD) methods for inference and hypothesis testing
are developed for discrete distributions definable recursively. The methods
are general and applicable to many families of discrete distributions including
those with complicated probability mass functions (pmf’s). Even if no explicit
expression for the pmf of some distributions exists, QD methods are relatively
simple to implement: the QD estimator can be computed numerically using a
nonlinear least squares method. The asymptotic properties of the QD estima-
tor are studied. Test statistics for goodness-of-fit are formulated and shown
to follow asymtotically a chi-square distribution under the null hypothesis.
Estimation and model testing are treated in a unified way. Simulation results
presented indicate that the QDE protects against a certain form of misspec-
ification of the distribution, which makes the maximum likelihood estimator
(MLE) biased, while keeping the QDE unbiased.

1 INTRODUCTION

Discrete distributions for modelling count data have been used in many
fields of research, which include biometry, actuarial science and economics.
In addition to useful existing discrete distributions, many new parametric
families have been formed by procedures of mixture and procedures of gener-
alized stopped sum. We refer to Johnson et al. (1992) for the details of these
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procedures. They also give an extensive review of discrete parametric distri-
butions and their applications in various fields. Furthermore, the weighted
procedure as formulated by Patil and Rao (1978) or Rao (1989), leads to
weighted distributions; the truncated procedure with many applications can
be seen as a special case of the weighted procedure.

As a result, many useful discrete distributions have a complicated pmf.
In many situations, they involve various forms of series expansion, as in the
cases of the Hermite, Pélya-Aeppli or Poisson-generalized inverse Gaussian
distribution (see Johnson et al. (1992)).

For these pmt’s, the recursive relationship between successive probabilities
has been found useful in computing probabilities recursively; see Johnson et
al. (1992), Willmot (1993), Feller (1968) and section 2 for some examples.

In this paper, we will consider parametric families where the relationship
between successive probabilities of the pmf can be written in the form

pi = 01(0,1)picy + ...+ & (0,)pi—y,  (1.1)

where
a)pi=P[X =i, i=a+ra+r+1,....,m<co
b) 6 = [6.,...,60,] is the vector of parameters, § € © C RP

¢) ¢1,..., ¢, are functions determined by the parametric family.
This is a recurrence equation of order r, i.e. the probability p; can be
expressed in terms of the r previous probabilities p;_1, pi—_2,...,pi—,. For

many discrete distributions, the recurrence relationship has a simple form
with a small value of r.

In this paper, inference techniques which can be viewed as quadratic dis-
tance (QD) methods are developed for parametric families which allow re-
cursive relationship (1.1). QD methods are fairly versatile, tractable and
suitable for complicated pmf’s, since they are not based on the pmf directly.
Furthermore, estimation and model testing are treated in a unified way.

For estimation, the quadratic distance estimator (QDE) is flexible, offering
a trade-off between efficiency and robustness, if desired (see section 3). For
model testing, the test statistics based on quadratic distance follow a unique
chi-square distribution across the composite null hypothesis, which makes the
test statistics easy to use. QD methods are similar to the minimum chi-square
methods and have the advantage of being numerically simple for complicated
pmf’s (see section 3.4). Therefore, QD methods can be viewed as alternative
methods to classical ones such as the method of moments, the maximum
likelihood and the minimum chi-square methods. See Moore (1977, 1978) for
discussions on the minimum chi-square methods.

The paper is organized as follows. Section 2 illustrates by means of ex-
amples many parametric families which allow a recursive representation. In



section 3, we introduce the quadratic distance and derive the asymptotic prop-
erties of the QDE. Section 4 gives test statistics based on quadratic distance
for testing the goodness-of-fit of parametric families for simple and composite
hypothesis. Test statistics similar to the Pearson’s chi-square statistics are
shown to follow a chi-square distribution asymptotically. Section 5 discusses
some advantages of the QDE over the MLE when the parametric families are
misspecified due to bias sampling and the sampling scheme is not taken into
account; finally, section 6 discusses the numerical procedures for implementing
the method.

2 RECURRENCE RELATIONSHIP

2.1 Introduction

Let Xy, ..., X, be a random sample from a common pmf P[X = i] = p;,
which belongs to a discrete parametric family defined on {a,a + 1,...,m},
and let 6 = [0y, ...,0,] be the vector of parameters to estimate.

Assume p; satisfies the homogeneous recurrence equation of order r

pi=¢1(0,9)p; 1+...+0.(0,0)p;, fori=a+ra+r+1,....m<oco (2.1)

where
i) ¢1,..., ¢, the functions determined by the parametric family, are assumed
to be differentiable, and
ii) 0 € © C R,
The recursive relationship between p; and p;_1, ..., p;—, as given by (2.1)

with the functions ¢1, ..., ¢,, together with the values p,, ..., pairr—1, implic-
itly define the parametric family. For some distributions, when a = 0, we can
define p_; to be 0 and then assume that (2.1) holds, to calculate p,_;. This
has the advantage of decreasing the number of initial values which need to be
calculated. The Delaporte distribution with » = 2 is an example where the
probability p_; can be defined as 0 and this value used with pg to obtain pq,
even though the domain of definition of this distribution is non-negative (see
Willmot (1993)). Only py needs to be calculated in this case; the other values
are obtained from (2.1).

We call relationship (2.1), a recursive relationship of order r. With a
relationship of order 2 or less, we will be able to represent most parametric
families found in Johnson et al. (1992).



2.2 Examples of order 1

Example 1: Panjer’s family

The pmf of many useful discrete distributions such as the Poisson, negative
binomial, binomial, logarithmic and ETNB distributions can be represented
as a recurrence relationship of order 1,

b
pi = (a + —,> Di_1, starting at © =1 or ¢ = 2.
i

For the possible values of the coefficients a and b of members of Panjer’s
classes of distributions [a, b, 0] and [a, b, 1], see Klugman et al. (1998).
Example 2: Good family

The pmf of the Good family (see Doray and Luong (1997)) satisfies the re-
currence formula

; B
p; = e (z ! 1> pic1, a<0, BeR, =273, ....
The special case o = 0,5 < —1 gives the zeta distribution (see Doray and
Luong (1995)).

Other examples of order 1 include the generalized Yule family (see Prasad
(1957)), a form of discrete Pareto family, with ¢1(0,7) = (A+i—2)/(A+i+1),
or the exponential family (see Lehmann (1983)). The generalized Poisson

family (see Johnson et al. (1992)) with ¢1(0,7) = (e /i) (M> is

at (i—1)A=2
also an example of a recursive relationship of order 1; note that the Poisson

distribution is a special case of this family with A = 0.

2.3 Examples of order 2

Example 3: Hermite family
The pmf of the Hermite family satisfies the recurrence formula

2
pi:<cy2—,ﬁ)pi_1+<a7>pi_g, 0<Oé<\/§, 6 >0, 1=2,3,....

Example 4: Pélya-Aeppli distribution

The pmf of the Pélya-Aeppli distribution satisfies the recurrence relationship

0(1 — 2p(i —1 2(1—2
pz:< ( p)—: p(Z )>pi—1_<L.)>pi—27 0>07 OSPSL 222737

]

Example 5: Sichel distribution
The pmf of the Sichel distribution satisfies the recurrence relationship

:%<7+i—1

(e ]

4

2
>pzl+<57)p12> Oé>0, 6207 —00 <7y <00, 2:2*3
i(i—1)



The Poisson-inverse gaussian distribution is a special case of the Sichel dis-
tribution with v = —1/2.

Willmot (1993) gives other examples of distributions whose pmf satisfies
the recurrence relationship (2.1) of order 2, for example, the Poisson-Pareto,
Poisson-beta or Poisson-inverse gamma distributions.

2.4 Examples of order greater than 2

Certain mixed Poisson distributions, such as the Poisson-Weibull, the
Poisson-transformed gamma and the Poisson-transformed beta will yield a
recurrence relationship of order r greater than 2 with certain values of one
of the parameters. The Poisson-Burr and the Poisson-loglogistic distibutions
are special cases of the the Poisson-transformed beta. See Willmot (1993) for
the values of the functions ¢1(0,1),...,¢.(0,17).

Note that for some of these distributions, the order r of the recurrence
relationship could itself become a parameter of the mixing distribution. In
that case, the parameter should be selected as an integer. We assume in this
paper that r is fixed and known; the quadratic distance method developed in
this paper does not apply to distributions where the order r is unknown.

Sundt (1992) has shown that any distribution on the range {0,1,...,k}
with positive probability at 0, will satisfy a recurrence relationship of order
k; this holds even for k£ = co. However, the recurrence relationship having
the lowest order possible should be used.

2.5 Other examples

If p; allows a representation of the form (2.1), the weighted distributions

with pmf
w w;pP;
" Bwd

where w; > 0 is the weight function without parameters will also satisfy (2.1)
with a recurrence relationship of the same order as the original pmf. Often,
py’ is more complicated than p; due to the denominator term. Those weighted
distributions have many applications in biometry (see Patil and Rao (1978),
Rao (1989) or Johnson et al. (1992)). Truncating a distribution on the left
or the right still preserves the recurrence relationship for the pmf; in fact,
truncating corresponds to have w; = 0 for the domain being truncated and
w; = 1 elsewhere.




3 ASYMPTOTIC PROPERTIES OF QDE

3.1 Quadratic distance

Let n; represent the number of observations which take the value 7 in the
sample Xi,..., X, let p; = n;/n represent the relative frequency and let us
define

D;(0) = $1(0,9)pi—1 + ... + &r(0,7)Dis-

Using relation (2.1) and fixing a value for k£ with & < m (in practice, the choice
of k is made so that n,,...,n; are all positive), we then have the following
representation

pi=®;0)+u;, i=a+ra+r+1,....k (3.1)

where u; is the random error associated with p;. Let N; be the random variable
representing the number of observations equal to 7 in a sample of size n. Using
the fact that V; ~ Bin (n,p;), it is easily seen that F(u;) = 0, for any n.
The variance and the covariance of the u;’s are given in Proposition 3.1, the
proof of which is in appendix A.

Proposition 3.1:

r—I1
(1/n) Zo Gij@ij+pi—; forl=0,....r
J:
0 forl=r+1,...,

Cov(uj, uipy) =

where we define
-1 for j =0

ﬁbm’:{ 6;(0,1) forj=1,...,r

The reader will notice the similarity between the above expression for Cov(u;, u;4;)
and the one for Cov(X;, X;4;) in an M A(r) process in time series.

Using matrix notation, let p = [Patr, .-, ), P(0) = [Posr(0), ..., Pr(0)]
and u = [Ugiy,...,ug. We then have

p=®(0) + u.

The mean and the variance-covariance matrix of u are given by E(u) = 0 and
(), a band matrix. Let X = X(6y), where 6y is the true vector value of
the parameter. Note that ¥(0) can be obtained using the variance-covariance
matrix of a multinomial distribution. Also, let us define ¥*(0) = nX(6) and
¥ = 3¥*"(fp). X* differs from ¥ only by a known constant multiple n.

The quadratic distance estimator (QDE) @ is defined to be the vector value
which minimizes

QO) = [p— 2(O)Z[p — 2(0)]



=u'(0)2* (), (3.2)

where we define u;(0) = p; — ©,(0).

Note that there are some analogies with the nonlinear least squares esti-
mator as given by Amemiya (1985), or Seber and Wild (1989) for example.
However, since ®;(#) involves the random terms p; 1,9; o...,P; ,, results for
standard nonlinear least squares methods are not applicable directly.

We shall see that Q(0) defines a discrepancy measure between the empir-
ical cumulative distribution function (cdf) F), and the parametric family Fj,
d(F,, Fy) which is defined implicity by the recursive relation (2.1). Therefore,
0 is a minimum distance type estimator. For other types of minimum distance
estimator, such as the minimum Cramer-Von Mises distance estimator, see
Boos (1981).

Let h;(z) be the indicator function of the interval I; = (i — 1,4|, define

e:i(F, Fy) = /: hidF — (0, %) /: hdF — ... — 6,.(0,4) /: hidF

and note that with F' = F,, e;(F,, Fp) = u;(0).
Consequently, a discrepancy measure between F,, and Fy is defined by the
quadratic distance d(F,, Fy) = Q(0).
If 31 is a consistent estimate of ¥*71, the estimator defined by minimiz-
ing
W (0)Su(0)  (3.3)

is asymptotically equivalent to é; see subsection 3.3 for more discussions.

3.2 Consistency of the QDE

Note that d(F,, Fp,) —* 0, so if e;(F,, Fy) — 0 only at 0 = 6, this
will imply d(F,, Fp) —? 0 only at 0 = 6,. We assume that the parameter
space has an interior point é, which minimizes d(F,,, Fyp). Therefore 0 is a
consistent estimator of @, i.e. 6 —? @,. Similar results for quadratic distance

estimators in different models are given by Luong and Thompson (1987) and
Luong (1991).

3.3 Asymptotic normality

If we assume that the parameter space is compact, the minimum attained
is not at a boundary point, and under differentiability assumptions conditions
similar to those given in Cox and Hinkley (1974), the 6 which minimizes Q(6)
satisfies the following system of estimating equations

8%/ (0)
a0

S —®(0)] =0 (3.4)



where

90(0) _ (a@i((;)

50 a0, ), i=a+r,....kand 5 =1,...,p,

with

0B;(0) =X 9;_1(0,1) .
00 =2 00, "

=1
Let us define the matrix S = (s;;), where

B 0®;(0)\ T O¢i1(0,1) B
si; =F ( 20, ) = ; 20, P, evaluated at 0 = 6.

We then have, under the hypothesis 6 = 6,

0

with 0,(1) denoting an expression converging to 0 in probability.
A Taylor series” expansion of expression (3.4) around 6 = 6, and use of
(3.5) yield, after simplifications,

VRS'S B — ®(6)] = STTISVR(0 — 0) + 0,(1)  (3.6)
or equivalently,
Vil = 0o) = (S'T718) ISR T /m(p — (b)) + 0,(1). (3.7)

Since \/n(p—®(0y)) —* N(0,X*), using a multivariate central limit theorem,
this implies

A

V(0 — 0y) —* N(0,%,), with ¥; = (S'219)7L  (3.8)

Thus, the asymptotic variance-covariance matrix of 0 is Var(f) = L(S'LLs) T
From previous proofs, we see that (3.2) and (3.3) yield asymptotically equiv-
alent estimators. In practice, (3.3) is used to obtain the QDE.

A class of quadratic distance type estimators obtained by minimizing
u'(0)Uu(f) where U is a symmetric positive definite matrix, produces con-
sistent estimators with asymptotic variance-covariance matrix given by

1

E(S’US)A(S’UE*US)(S’US)A.
The most efficient estimator is é, obtained by choosing U = X*~. The easiest
one to obtain is 6, obtained by choosing U = I, the identity matrix. Despite

the fact that 6 is less efficient, it can be used to estimate Y*~!, by letting

8



3=l = $*=1(f). We then can use ¥*~' to obtain the first iteration for 0
and this procedure can be repeated with ¥*~! reestimated at each step; 0 is
defined as the convergent vector value of the procedure. For discussion on
computational procedures, see section 6.

Admittedly, there is some arbitrariness in fixing a value for k. The QDE
remains consistent for all choices of values for k. For efficiency sake, we should
fix k at a large value or let k& — oo, as the sample size n — oco. For robustness
sake, we might fix & = kg, discarding possible outlier observations at the tail,
or values exceeding k.

3.4 Efficiency

The QDE is known to have high efficiency for certain parametric families
representable with a recurrence equation of order 1 over an infinite range.
For Panjer’s (a,b) family, Luong and Garrido (1993) proved that the QDE
was highly efficient. They also mention that the proof can be generalized to
show that the QDE is highly efficient when the functions ¢, (6, 7) and ¢9(0, 1)
in the second order homogeneous recurrence equation (2.1) are linear in all
the parameters,

pi = (oquy; + ...+ ojuj)pi-1 + (Brur; + .. + Biwgi—1)pie,

where u is a vector of known constants. Members who satisfy this last equation
after a suitable reparametrization, are the generalized Waring and hyper-
Poisson distributions for » = 1, and the Poisson-generalized inverse Gaussian
and Poisson-beta distributions for r = 2 (see Willmot and Panjer (1987)).

For the zeta and Good family, Doray and Luong (1995, 1997) calculated
the efficiency of the QDE and confirmed it was highly efficient over a wide
range of parameter values. At this point, we cannot provide a statement
in general concerning efficiency, since it depends on the parametric families
considered.

3.5 The special case of r =1

A variation of the above general QD method which can lead to simplifi-
cations in computations exists for parametric families which allow a recursive
relationship of order 1.

With r = 1, the recursive relationship (2.1) is reduced to

pi=¢1(0,0)pi 1, i=a+1,...,m. (3.9)
Let us define ¢; = ¢1(0,1). Relation (3.9) is equivalent to

pi/pii=di i=a+1,....m. (3.10)



Choosing a value for k, let y; = p;/p;i1, i =a+1,...,k. Let us define
the vectors Y = [Yo11,..., k) and ¢(0) = [¢as1, ..., Ox)'; we then have Y =
o(0) + €, where €, = p;/p; 1 — ¢; and € = [egy1, ..., €]

Using an argument based on the variance-covariance matrix of a multi-
nomial distribution, we can show that, asymptotically, E(¢) = 0 and the
variance-covariance matrix of €, X(0), is a tridiagonal matrix equal, with
a=0,to

21 1 —1
¢1(p_0—j— p_l) 2 1p_0 1 —01 - X
. r % +55) 0
E : : —1 2 1" 1 —:1
0 e s TR s
0 0 oy dCrargrd

The QDE 6 can be obtained by minimizing
d(F,, Fp) = [Y = (O 'Y = ¢(0)].  (3.11)

Clearly, ¥*~! can be replaced by a consistent estimate which is quite easy
to obtain in this case, by estimating p; by p; = n;/n and ¢; by b; = Di/Di-1-
Note that ¢; does not contain any random element (it is a function only of
) and 0 is a consistent estimator with asymptotic variance-covariance matrix
given by Var(d) = L(S'2*71S) L, where

0p1(6,1)

S = (Sij); Wlth sij = 89
J

, evaluated at 0 = 0.

For numerical purposes, it might be simpler to consider a recursive rela-
tionship which yields a linear function of the parameters after transformation,
if one exists. For example, for the Yule distribution, the model linear in p,

5 1
Ap :1+i+ei, p>0, i=12,...
Pi+1 2

would be preferred over the non-linear model

i |
Pi 1T e p>0, i=23,....

Pic1 itp

For the Good distribution, a logarithmic transformation of the ratio p;/p;_1
followed by a reparametrization produced the desired linear function in its
two parameters (see Doray and Luong (1997))

In(p;/pi 1) = a+Bm(i/(i —1)), i=2,3,....

10



In this case, Var(e) = 3(0) is asymptotically equal to

(pil + piQ) ;—,j 0 0 0
—1 1 1 —1
= Gtw) w 0 0
—1 1 1 —1
1 0 w o Getw) W
: —1 1 1 —1
Pk—2 (pk—2 j; pk—l) Pk—1 1
0 0 0 DPh_1 (pk—l p_k)

4 GOODNESS-OF-FIT TESTS

In this section, the quadratic distance d(F;,, Fp) is used naturally for con-
structing goodness-of-fit test statistics for the simple hypothesis H, : F' = Fp,
and for the composite hypothesis Hy : F' € {Fp}, where the pmf is defined
implicitly by the recursive relation. These are omnibus tests against all al-
ternatives. Test statistics constructed will be shown to follow a chi-square
distribution asymptotically. The following theorem for quadratic forms will
be used; its proof can be found in Moore (1977, 1978), or Rao (1973).

Theorem. Suppose that the random vector Y of dimension p is N, (0, ¥) and
C'is any px p symmetric positive semi-definite matrix; then the quadratic form
Y'CY is chi-square distributed with v degrees of freedom if ¥C' is idempotent,
and trace (XC) = v. (The same result holds asymptotically if C' is replaced
by a consistent estimate C' and Y —£ N,(0,%)).

4.1 Testing the simple hypothesis H
To test Hy : F' = Fp,, the following test statistic

D?(0y) = nd(F,, Fy,) = nu'(00) X" (00)u(6y)

can be used. Since \/nu/(6y) —* N(0,*), we then have D?(6y) —* X7, 1_,_,-
Doray and Huard (2001) have used this statistic to define an overdispersion
test of the Poisson hypothesis vs the negative binomial.

4.2 Testing the composite hypothesis H|

To test Hy : F' € {Fy},0 € O (the full parameter space), the following
test statistic R R o
D*(0) = nd(F,, Fy) = nu/'(0)S*(0)u(0)

11



can be used where 0 is the QDE obtained by using the same distance. Since
Vnu'(0) = /nu'(6y) — /nS(0 — 0y) + 0,(1) from a Taylor series’ expansion
and using (3.7), we then have

V' (0) = [I — S(S'S*L8) 7 L9's  y/nu(by) + 0p(1).  (4.1)
Since £*71(f) —* ©*~!, we then have v/nu/() —% N(0, ;) with
¥ =[I = S(§'L 1) LSS ST - S(S'ES) TS e

which implies ¥,3* = [[ — (§'2*S)"15'2*7 Y, an indempotent matrix with
trace Xy X =k+1—-r—a—p. Comnsequently, under Hy and using Theorem
17 D2(9) —>£ Xz+1—r—a—p‘

For the special case r = 1, similar test statistics can be constructed based
on quadratic distances of the form [V — ¢(0)]S*71(0)[Y — ¢(6)]. Obviously,
these test statistics follow a chi-square distribution under the null hypothesis.
Analogous results to those of subsections 4.1, 4.2 continue to hold. See Luong
and Doray (1996) for an example with the zeta distribution.

5 QDE AND TRUNCATED FAMILIES

For protection against misspecification of the parametric family as regards
to truncation, the QDE has clear advantages over the MLE, which is strictly
a parametric estimator.

For example, let us assume that the true family, from which the data were
generated, is truncated to the right at ¢, with pmf expressible as

Di
Zigq Di

pi = (5.1)

Then p}” satisfies the recursive relationship

p’liu = Qsl (9’ i)p;ﬂfl +.oo+ ¢T(07 i)pqztufrv

i.e. we obtain the same recursive relationship as the one for the untruncated
family p;, given by (2.1). Even though the family is truncated, the recursive
relationship remains valid, and the QDE, which is based on frequencies from
pi’, remains consistent.

Suppose that the analyst does not know that the data come from the
truncated distribution (5.1), and postulates for the model he will use, the un-
truncated distribution. The MLE, based on the wrong model for p;, would no
longer be a consistent estimator for 6, while the QDE remains consistent, even
though the wrong distribution (the untruncated one) is used for estimation.

12



Therefore, the QDE can be considered as a robust semi-parametric esti-
mator, offering protection against misspecification of the parametric family,
while the MLE, strictly a parametric estimator, is less robust. The above
analysis is also true for truncation on the left, i.e. when only the data greater
than a certain value are observed.

Here is an example that will illustrate the problem of misspecification.
Suppose a contract stipulates that a policyholder can not make more than a
certain number of claims per year (for example, holders of a Canadian Auto-
mobile Association card can not make more than 4 calls a year for boosting
their car during the long and cold Canadian winter). If the person who ana-
lyzes the data is not aware of this clause of the contract, while the true model
should be a distribution truncated to the right, he would wrongly assume that
the number of claims comes from an untruncated distribution.

To compare the bias of the MLE vs that of the QDE for the Poisson fam-
ily truncated on the right at ¢, for different values of ¢, we did a simulation
study. A sample of 100,000 Poisson random variables with parameter A=
1, 2, 3, 4, and 5 were generated in MATHEMATICA (see Table 1 for the
observed frequencies); for each value of A, the observations were successively
truncated at ¢ = 1,2, 3,4, 5 and the parameter \ estimated with the observa-
tions < ¢, using formulas for the the MLE and the QDE for the non-truncated
distribution, a misspecification.

~ q q ~ ~
In Table 2, the estimator \g is the MLE 3 (in;) / > n;. The QDE’s A1, Ay
=0 i=0

and A3 minimizes the quadratic form v’ (0)Uu(0), with U respectively equal to
>*=1 $*=1and I, while Ay, A5 and \g minimize the distance [Y — ¢(0)]'U[Y —
#(0)], with U respectively equal to X*71, Syx-1 (the consistent estimate dis-
cussed in section (3.5)), and I. To calculate the QDE’s, we minimized directly
the quadratic forms in MATHEMATICA, with the FindMinimum command
and with k£ set at the value q.

From Table 2, we observe, for the MLE, that as ¢ increases, the bias tends
to 0 since less and less values are truncated; also, truncation at a certain
qo produces a larger bias when the true value of A\ is larger, since a larger A
implies larger observations on average and therefore more truncated ones for a
fixed go. The QDE produces an asymptotically unbiased estimator of A, while
the MLE has a negative bias, for all values of ¢ and A. The QDE A5 should
not be used since, out of 25 trials, the algorithm failed to converge 5 times, no
matter what initial value was used. This is due to the fact that the covariance
between ¢; and ¢;,; for 5\5, —1/p;_1, becomes very large as i increases and p;
decreases. This is reflected in Table 2, where no local minimum was found for
As when the truncation point g was equal to 3, 4 or 5. This also occured more
frequently when the parameter A was smaller, implying smaller probabilities.

The estimator \; which minimizes (3.2) is among the best ones, having in

13



Table 1: Observed frequencies of 100,000 Poisson distributions

1| A= 1 2 3 4 5
0 | 36552 13731 4953 1837 679
1| 36762 26718 14777 7383 3325
2| 18638 26798 22255 14619 8624
3 6161 18150 22357 19453 13937
4 1531 9225 17101 19522 17477
5 283 3729 10136 15753 17606
6 66 1207 5122 10442 14688
7 7 332 2061 5944 10418
8 0 93 836 2868 6504
9 0 15 293 1379 3621
10 0 1 77 510 1779
11 0 1 24 194 780
12 0 0 5 68 351
13 0 0 3 22 150
14 0 0 0 ) 44
15 0 0 0 1 13
16 0 0 0 0 3
17 0 0 0 0 1
18 0 0 0 0 0

14



Table 2: Absolute biases of MLE & QDE’s under misspecified distribution

q | Estimator | A= 1 2 3 4 )

1 o 0.4986 1.3395 2.2510 3.1992 4.1696
1 M 0.0057 0.0542 0.0166 0.0191 0.1031
1 Ao 0.0057 0.0542 0.0166 0.0191  0.1031
1 A3 0.0057 0.0542 0.0166 0.0191 0.1031
1 A\ 0.0057 0.0542 0.0166 0.0191  0.1031
1 As 0.0057 0.0542 0.0166 0.0191  0.1031
1 X 0.0057 0.0542 0.0166 0.0191  0.1031
2 o 0.1948 0.8057 1.5879 2.4638 3.3708
2 A 0.0093  0.0201  0.0021 0.0226  0.1123
2 Ao 0.0093  0.0206 0.0020 0.0228  0.1080
2 A 0.0074  0.0249  0.0032 0.0281  0.1458
2 A 0.0094 0.0199  0.0026 0.0240 0.1265
2 A5 0.0094  0.0206 0.0025 0.0244 0.1184
2 PP 0.0074  0.0422 0.0108 0.0073  0.0450
3 Xo 0.0570 0.4219 1.0362 1.8061 2.6517
3 A 0.0068 0.0016 0.0079 0.0172  0.0247
3 Ao 0.0068 0.0206 0.0078 0.0173  0.0308
3 A 0.0071  0.0249 0.0075 0.0164  0.0682
3 A\ 0.2638  0.0199  0.0048 0.0220  0.0849
3 A5 0 0.0206  0.0086  0.0174  0.0428
3 X 0.0061  0.0421  0.0082 0.0060  0.0537
4 o 0.0100 0.1858 0.6086 1.2448  1.9962
4 M 0.0057 0.0069 0.0213  0.0067 0.0212
4 Ao 0.0057 0.0062 0.0210 0.0068  0.0243
4 A3 0.0070  0.0127 0.0174 0.0052  0.0250
4 A 0.0351  0.0036  0.0241 0.0032  0.0353
4 As 0.0233  **  0.0245 0.0051 0.0279
4 X 0.0056  0.0331  0.0058 0.0064 0.0507
5 o 0.0013  0.0650 0.3199 0.7947 1.4261
5 A 0.0046  0.0100 0.0164 0.0037  0.0054
5 Ao 0.0044  0.0094 0.0161 0.0035 0.0074
5 A3 0.0070  0.0124 0.0138  0.0025  0.0039
5 A\ 0.3720  0.1371  0.0156 0.0155 0.0312
5 As Hok *x +k 0.0080  0.0053
5 X 0.0034 0.0316  0.0067 0.0072  0.0483

**. no local minimum
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general, a small bias in absolute value. When n is small, it is preferable to
minimize distance (3.2) instead of (3.11), since the expression for the variance-
covariance matrix 3* is exact for any n in (3.2) but only asymptotic for (3.11);
alternatively, (3.3) could be minimized, since it is natural to replace ¥* with
an estimate. If it is preferred to minimize distance [Y — ¢(0)/'U[Y" — ¢(0)]
instead of (3.2), the estimator A¢ with U = I is better than A, or s in general.

6 DISCUSSION

The quadratic distance methods developed in this paper were applied to
families whose pmf could be expressed as a homogeneous recursive relationship
of order r. Similar results could be obtained for distributions whose pmf
satisfies the non-homogeneous recursive relationship of order 7,

Pi = ¢0(97 Z) + ¢1 (97 i)pi—l + ...+ (;57“(9’ i)pi—r (61)

with the constant term ¢g(6,7) added. Examples of distributions which sat-
isfy (6.1) are the Poisson mixed with a truncated gamma (for » = 1) or with
a truncated normal distribution (for r = 2) (see Willmot(1993)). The result-
ing non-homogeneous recursive equations can alternatively be expressed as
homogeneous recurrence equations of order r 4+ 1. For the Poisson-truncated
normal distribution, the value p_; = 0 can be used with py to calculate py,
as we explained in section (2.1) for the Delaporte distribution (see Willmot
(1993)).

Numerical computations for QD methods can be based on algorithms de-
veloped for nonlinear least squares methods drawing on the analogies of their
quadratic forms. We refer to Seber and Wild (1989) or Bates and Watts (1988)
for Gauss-Newton algorithms with a series of iterated reweighted least squares
computations for nonlinear least squares estimation. Statistical packages such
as SAS or S-plus provide functions and routines for nonlinear least squares
computations. Minimization programs, such as FindMinimum in MATHE-
MATICA, could also be used, which proved to be very quick in our case.

The QD methods developed in this paper can easily be extended to situ-
ations where covariates are present in the model. See Doray and Arsenault
(2001) for an example involving the zeta distribution with one covariate.
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APPENDIX A
Proof of Proposition 3.1 :
Since N; ~ Bin (n,p;) and (N;, N;) ~ Trinomial (n,p;,p;), for ¢ # j, we
know that Var(p;) = pi(1 — p;)/n and Cov(p;,p;) = —pip;/n. 1t # j. For
Var(u;), we find for example,
Var (u;) = Var [p; — ¢j1Di-1 — - — Qinrhiy| =
(1/n)[pi(1 — pi) + &7 1pi1 (1 = pica) + .o 4 &0 (1 — piy)+
20i1piPi—1 + -+ 205DiDir] =
(1/n) 5_o 7 ;pi—j, where we have defined ¢;0 = —1,
since [p} + @7 1071 4+ -+ 67 P — 20i1piDic1 — -+ - — 205,DiDi—y] =
[pi - Qbi,lpifl — ... ¢i,rpifr}2 =0.
Similarly, Cov (u;, u;t,) =
Cov [pi = GinDi—1 = - - = Dizbi—rs Ditr — PitDigr—1 — -+ — i, Pi] =
(=1/n)[Pi(Pisr — PirPitr—1 — . — Gir(1 = pi))]—

(=1/n)[@i1pi1(=Pitr + PiaPivr—1 + o Giypi)] — .. =

(=1/n)(i,rpi)-

Proceed in the same way for the other covariances.
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