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Abstract

In this paper, we first find an expression for the mean and the variance of
the IBNR claims in a lognormal linear regression model, of which the chain ladder
model is considered as a special case. We then derive the unique uniformly minimum
variance unbiased estimator (UMVUE) and the maximum likelihood estimator (MLE)
of those quantities and calculate the variance of the UMVUE of the mean of the IBNR,
claims; we also find an estimator not involving an infinite series, which provides an
excellent approximation to the UMVUE of the mean of the IBNR claims. Finally, the
claims experience of an insurance company is used to compare the various estimators
of the IBNR reserve developed in the paper. Several tests and graphs are used to
verify model assumptions.
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1 Introduction

In their comprehensive survey of loss reserving models, Van Eeghen (1981) and
Taylor (1986) present many models useful in practice. However, the statistical prop-
erties of the estimators derived from some of those models have not been fully investi-
gated, in particular their bias and mean square error. It is our intention to study those
quantities for various estimators of the IBNR (incurred but not reported) reserve in
a lognormal linear regression model.

Accurate estimation of the level of IBNR reserve for an insurance company is
required because of its impact on multiple aspects of the operation of the company:
investment policy, dividend declaration (Taylor (1986, p.211)) and tax payments.
In addition, a systematic overestimation of the loss reserve would eventually lead
to premiums too high and a bleak prospect for future new business, while an un-
derestimation represents a serious threat to the solvency of the insurer. Moreover,
accounting regulations require that financial statements provide a true and fair repre-
sentation of the financial situation of the insurer. It is clear therefore that we should
attempt to find an estimator of the IBNR reserve which is unbiased.

Taylor (1986, p.4) wrote ”the problem of first moments will never be solved, except
perhaps in the sense of producing estimates of outstanding claims which resemble
minimum-variance estimators.” The estimator of the first moment can be judged
to be a good estimator or not only after finding its variance. In this paper, we

develop an estimator of the IBNR reserve which possesses those desirable properties



of unbiasedness and minimum variance. Other estimators can then be compared to
this optimal one.

The paper is organized as follows. Section 2 presents the lognormal linear regres-
sion model; the stochastic chain ladder model can be obtained as a special case of
this model with a proper choice of the design matrix. Section 3 gives the MLE’s
of the parameters and their properties. We then find expressions for the mean and
variance of IBNR claims (section 4) and derive the UMVUE’s of those quantities in
terms of the hypergeometric function. It is shown how to find an approximation to
this function, which does not require an infinite series (section 5). We then calcu-
late the variance of the UMVUE of the mean of the IBNR claims (section 6). This
quantity will provide a lower bound for the variance of all unbiased estimators of the
IBNR reserve for this model. In section 7, we consider the MLE of the mean and the
variance of IBNR claims. We compare the various estimators of the IBNR reserve
presented in the paper, using the actual claims experience of an insurance company
and we check model assumptions using several plots and tests (section 8). Finally,

we present some concluding remarks.

2 A general model

The initial model presented in this section is similar to that of Kremer (1982).
Let S;;, ¢ and j = 1,...,m be non-negative random variables which represent the

cumulative amount of claims paid by development year j, for claims which occurred in



accident year 7. The S;;’s could also denote the total claims incurred by development
year j, for accident year 7, which equal the total claims paid up to that date plus an
estimate of the outstanding liability.
A subset of the upper triangle (S;;,i =1,...,m,j =1,...,m—i+1) is observed,
the trapezium of data. We define Y;; as the incremental claim amount
Yijr1=Sij+1—5; j=1
Yii = Sia.
We will assume that all Y;;’s are positive. Starting with the multiplicative model used
by De Vylder (1978), to which we add a multiplicative lognormal random error, we
get

Yij =R;- Cj : Eij (2.1)

where R; is a row effect for accident year i and Cj is a column effect for develop-
ment year j, whose product will correspond to the amount of claims for accident
year ¢ incurred (or paid) by development year j, and Ej;; are independent, identi-
cally distributed (i.i.d.) lognormal random errors with parameters 0 and o2, denoted
LN(0,0?), and density

1 nt
f(t;0%) = em2(5)?, t>0.

V2ot

N

This implies that FE;; has mode e, median 1, and mean e /2. There is equal
probability that Y;; be overstated or understated.

To know more about the properties of the lognormal distribution, the reader
is referred to the books by Aitchison and Brown (1957), Johnson and Kotz (1970,
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chapter 14) and Crow and Shimizu (1988); these last two authors discuss at length
various estimators for certain functions of the parameters.

Verrall and Li (1993) analyzed a model allowing negative incremental values, which
can occur because of subrogation or salvage. A threshold parameter is introduced in
the lognormal distribution. Cohen (1988) discusses the complications created by the
introduction of this threshold in the estimation of the parameters from the data.
Because the likelihood is infinite along a ridge, he considers moment estimators,
modified moment estimators and local MLE’s.

Taking the logarithm of both sides of equation (2.1), we get the lognormal linear
model

Zij = InY; = a; + B + €5,

where ¢;; are i.i.d. N(0,0?) random variables, o; = InR; and 3; = InC;. We will term
this model, the stochastic chain ladder model. This is the same set-up as Kremer
(1982). A parameter, 31 for example, must be set equal to 0, so the regression matrix

is not singular. In matrix notation, this linear model can be represented as

Z=InY =XpB+e, € ~ MN(0,0%I)

where

/
Y = (}/1,17"'7Yv1,ma}/2,la"'a}/2,m—la"'JYm,l)

1
Z = (Zl,la-"7ZI,m722,17"'7ZZ,m—17-"7Zm,1)

€ = (61717"'ael,m7€2,17"'762,m—17'"7€m,1)



ﬂ/ = (ala"'vamaﬂ%"'aﬂm)a

and X is the design matrix.

The above design assumes that the full upper triangle is available to the analyst.
Should some elements of it not be available, the corresponding elements should be
removed from the vectors Z and e, and the corresponding rows deleted from the
matrix X.

In the next sections, we will develop the theory in terms of a general lognormal

linear model, i.e. a model linear in the parameters, of the form
Z,=InY,=X,0+¢,, (2.2)

where Z,, Y, and ¢, represent the oth element of vectors Z, Y and ¢ and X, represents
the oth row of the matrix X (o for observed). It follows that Y, has a lognormal
distribution LN(X,3,¢?). The stochastic chain ladder model is just a special case of

this general model, with X,8 = a; + ;.

3 Estimation of the parameters
The maximum likelihood estimators of 3 and o2 are
B=(X'X)'X'Z

and

1

52 =~
n

(Z - XB)(Z - XP),
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where n is the dimension of the vector Z. Since 62 is a biased estimator of o2, we

also define the following unbiased estimator of o2,

&= (- xpyz-xp) =2
n—p n—p

where p is the dimension of vector # and S5, is the residual sum of squares.
The above results can be found in any standard book on linear models; see for

example Graybill (1961). It is also well known that:
1- 3 has a multivariate normal distribution MN (8, 02(X'X)™1),
2- (n —p)d?/o? has a x* distribution with (n — p) degrees of freedom,
3- 3 and 52 are independent,

4- (B, SS,) are jointly complete and sufficient statistics for the parameters

(8.07).

These results will be used in section 5 to find the UMVUE’s of the mean and variance

of IBNR claims.

4 Mean and variance of IBNR claims

The problem of estimating IBNR claims consists in forecasting the values of
Yy over all (k,[) in the lower unobserved triangle, i.e. over k = 2,...,m and [ =

m+2—k,...,m. From now on, the index u (u for unobserved) will refer to cell (k,!)



in this lower triangle. Let B be the prediction matrix (defined analogously to the
regression matrix X), with uth row denoted b,.

According to our model, the forecast 7, is given by
Y, = Z, = b, + €u,

In the stochastic chain ladder model, buB =qp+ Bl. The expected value of 7, is b, 3,
which is estimated by buﬁ . From now on, the subscript v will be dropped from b, to
simplify the notation.

To get an expression for the variance of 7, we note that B and €, are independent,
since B is a function of past observations, while €, is a random error in a future

observation.

Therefore, the variance of 7, is

Var(Z,) = Var(bG)+ Var(e,)
= 1+ (X' X)"1].
An unbiased estimate of this variance is 62[1 + b(X'X )~ 1¥/].

Taylor and Ashe (1983) used the terminology estimation error for Var(b3) and
statistical or random error for Var(e,). The estimation error arises in the estimation
of the vector parameter ﬁ from the data, and the statistical error comes from the
stochastic nature of model (2.2). There is a third error always present in the modelling
process, the specification error (see Bartholomew (1975)), which arises as a result of
using an inadequate model. The model may be wrongly specified in the sense that

its assumptions may not hold in practice.



It follows that the distribution of Y, is lognormal (b3, 0%[1 + b(X'X)~'¥']). The

mode, median and mean of Y,, are therefore:

mode (Y,) = M=ot lHb(xX X7
median (Y,) = e
E(Y,) = eftao® It x)7v],

The variance of Y, is: Var(Y,) = 20+ [H0XX) 0] (g0 [+0(X"X) 710 _ 1)

It is now easy to find £(IBNR claims),

E(IBNR claims) = 3" E(Y,) = 3 /#3400 710

u

The variance of the IBNR claims can be expressed as

Var(IBNR claims) = Var(}_ Y,)

= > Var(Y,) + > Y Cov(Y,.Yw).

u utu!
We now just need to find Cov(Y,,Y,s). The vector Y = (Y,,) has a multivariate
lognormal distribution with parameters p = B3 and Y, denoted by M LN (i, ).
Let u and v’ represent two different cells of the lower unobserved triangle such
that Z,, = bB-i—Gu and Z,, = 034—6“/, and let F(Z,) = p1 = bf and E(Z,) = ps = cf,
Var(Z,) = of = o?[1 + b(X'X) 1] and Var(Z,) = o3 = o?[1 + ¢(X'X) ] and
P(Zs, Zr) = p-

The covariance between Y, and Y, is (see Crow and Shimizu (1988), p. 12)

Cov(Y,,Yy) = eu1+uz+%(a§+a§)(6palag — 1)



This can be proved by using the moment generating function of a bivariate normal
distribution with parameters (p1, ji2, 0%, 03, p), which is (see Hogg and Craig (1978),
p.170)

1
M(ty,ty) = expltip + tope + E(U%t% + 05t5 + 2p010at115)]

and evaluating it at t; = 1,t, = 1. The correlation coefficient p(Z,, Z,/) is calculated

from

L(b+e)(X' X)L (b4 ¢) — (X' X)W — ¢(X'X) 72
I+ B(XX) W][1 + c(X'X) 1]

p = , b#c (4.1)

This expression for p is derived from Var(Z, + Z,) = 0% + 02 + 2pc105.

After simplification, we find that the variance of IBNR claims is

Var(IBNI{ Claims) _ Z (eQbﬁ-i—QaQ(l-i—b(X’X)*lb’) . eQbﬁ+a2(1+b(X’X)*1b’))

u

+ Z Ze(b+c)ﬁ+02 [6%02(b+c)(X’X)*1(b+c)’ _ e%a2b(X’X)*1b’+%U%(X’X)*lc’]‘ (4.2)

uFu u’

Equation (4.2) shows that the covariance for each pair of elements in the lower triangle
needs to be evaluated to find the variance of the IBNR claims.

The estimate of IBNR developed by Kremer (1982) is the sum of the medians of
each of the Y,’s. He does not obtain an expression for the variance of predicted IBNR

claims.
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5 UMVUE’s of the mean and variance of IBNR

claims

The uniformly minimum variance unbiased estimators (UMVUE’s) of the mean
and variance of IBNR claims derived in the preceding section, will be constructed,
using the method of Finney (1941), as applied by Shimizu (1988) to lognormal linear
models.

Theorem 5.1: The unique UMVUE of the mean of IBNR claims is

0F — JF(~ Zebﬁ (5.1)

where F1(a; 2) is the hypergeometric function

i ala+1)---(a+j—1) j>1
with (a); =

OFlOéZ

which converges for all values of z.
Proof: Since B and S, are jointly complete and sufficient statistics, it follows from
the vector version of the Lehmann-Scheffé theorem (Mood et al. (1974), p. 356) that
if

E(Y,) = E(eZ“) _ ebﬁ+%02[1+b(x'xr1bq
admits an unbiased estimator, which is a function of (B, SS.), then this estimator is
the UMVUE for E(Y,) and it is unique.

Since the statistics 3 and S, are independent and E(eb?) = et +30°0X X1 o
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just need to find a function of SS,, h(SS.) satisfying

E(Y,) = E("” x h(SS.))

DAL (X X) Y] (ebm%o%(X’X)*lb') x E(h(SS.)).
This implies that

E[h(SS.)] = €7/

u|,_k

O’
2

The variable SS, /o2 follows a x? distribution with (n — p) degrees of freedom; for

every positive integer 7, we can calculate its jth moment,

SSZ)] _ ootj. (%)T i _1 2JF(T+j)
o2 0 '(%2) ress)

E(

> 1 (%) SS. .
h(SS.) = —— Z =)

= 1 (5 n—p S5
= - n— - F ; bl

e, T

and the UMVUE for E(Y,) to

N 3 n—p S,
ngzebﬂ OFI( Zp, A )

It just remains to sum the preceding expression over all cells (k,l) to obtain the
UMVUE of the mean of IBNR claims. The UMVUE is unique since the statistics B

and SS, are complete. O
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Verrall (1991) also looked at the problem of finding an unbiased estimator for the
expected value of IBNR claims in a lognormal linear regression model, but finds the

estimator

[1 = b(X"X) ™)),

N |

> Mg,

u
where g,.(t) = Y312, %’% and r = n — p. He obtained a different estimator
because he added the estimation error to the predicted amount instead of the log
predicted amount, as we did. But, as can be seen from the equations for Var(Y,,)
and Var(Z,), estimation error and statistical error can not be separated for Y,,, only
for Z,. For the same reason, a different estimator is obtained for Var(IBNR claims).
In section 8, we will compare the numerical estimates obtained by the two methods
on the same data set.

Although the calculation of the hypergeometric function ¢Fi(a;z)in (5.1) involves
an infinite series, the speed of convergence of the summation is extremely rapid. An
example in section 8 will show that adding the first few terms of the series will give
sufficient accuracy.

We will now derive an upper bound for 95 , not involving the hypergeometric

function. Since

. 00 SS:\j
oFi( Qp;sz) - 2(%)E&;j
e (55:)
- jgoj'(n—p)(n—p+2)"'(”_p+2(j_m
< il (%)] _62(‘29,21,)
jzoj'(n_p)]



it follows that
~ SSz 3 3, ~2
0f <e®m-m Yy =% e(b0+3°/2),

We define a new estimator for E(IBNR claims), éf , equal to this last expression.
The estimator 0 will be a close upper bound for 6Z if (n — p) is large and S,
is small. Tt should be noted that exp[b3 + 32/2] is the estimator of the mean of a
lognormal distribution LN (b3, 0?) obtained by replacing the parameters 3 and o2 by
their unbiased estimate.

Proceeding in the same way as for the mean, we can now construct the UMVUE

for the variance of IBNR claims. Since the UMVUE for e is

041 9 ) 92

),

it follows from equation (4.2) that the unique UMVUE for the variance of IBNR

claims is

Oy =S e {0F1<” —£588.) — 0P §Z(1 - b(X’X)—lb'))}

2
(b+c)B p SS,
-l—#zu,%:e {F1 5 9 )
n—p SSZ / —1z/ ! -1 7 ! -1 /
By (B0 ZE 24 b X) T 4 e(XX) I — (b + ) (XX) (b+c)])}

An approximation for 6% can be obtained by removing the first b(X’X)~'% and

replacing the hypergeometric function by the exponential function, giving

2588z SSz

0}/* (en P —en- p)ZeQbﬁ

+ Z Ze (b+e)B <en z 62(" [2+b(xfx) 1b/+c(X/X)1c/(b+c)(X/X)1(b+c)/]> .

uZu’ u'

This approximation will be examined in section 8.
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6 Variance of UMVUE of F(IBNR claims)

To derive the variance of the estimator é{? , the UMVUE of the expected value
of IBNR claims constructed in the preceding section, we will follow the method of
Shimizu (1988).

First, let us define the generalized hypergeometric function

pFQ(ala"'7ap;ﬁ17"'7ﬁq;z)22%%.

In general, this series will converge for all finite z if p < ¢, converge for |z| < 1 if
p=q+ 1 and diverge for all z # 0 if p > g+ 1.

Using equation (2) in Erdélyi (1981), Vol. 1, p. 185, we note that
2 ].
oFi(a; 2)]" = 1F2(5(2a — 1); @, 20 — 15 42).

Since

]=0j!(%)j(n_p_1)3 2
—p—1
= 1F1(n 229 ,n—p—l;?ag)
and (see Shimizu (1988), p. 33)
ks 1 22
1F1(Oé,206,2k2):€ 0F1 Q+§,_Z y

it follows that

Var(§Y) = e a7 feotson v (UL, 2oty -1l
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Shimizu (1988, p. 34) has proved that

n—p a n—p b
E{ oFi( 2p;§SSZ)- oF ( p;ﬁssz)}

Therefore,

n—p SS.
2 4
n

C’ov(ebﬁ o1 ( ),€CB oFi( ; T )

—p ot
4

- E(e(b+c)ﬁ) et oFy( 5 :

) — E(Yu) x E(Yw),

by independence of B and SS,. It follows that the variance of 95 is

e M3 (e (X" X) 7 bte)] | oy (np; 2t

+ 0 et . (6.1)

uFu ! _602[1+%b(X’X)”b’+%c(X’X)*]c’]
For sufficiently large m, asymptotic expansion to the order n=! of (F;(252; )

gives

_ 4 4
ST =l g+ 0(n7?),

o 2 4 2(n —p)

leading to an expression for the asymptotic variance of the estimator ég

7 MLE’s of the mean and variance of IBNR claims

The maximum likelihood estimators for F(Y,) and Var(Y,,) are
9EY — P56 [1+b(X X)710]
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and

égY — 621),5’+a-2[1+b(X/X)—1b/] (6&2[1+6(X/X)71b'} _ 1) ‘

From Mood et al. (1974, p.285, theorem 2), the maximum likelihood estimator of

E (IBNR claims), denoted by 07, will be

éf _ Z ebﬁ+%&2[1+b(X’X)*1b’]‘

Verrall (1991) has considered an estimator similar to éf , but with 62 replaced with

72,

é‘ﬁ; _ Zebﬁ—kécﬂ[l—!—b(X’X)*lb’].
u

We can find a lower bound for 6E. Since (X'X)~! is a positive definite matrix,
b(X'X)™' > 0 and we get
0F > S 2,
2
This last expression is just the estimator 91E , introduced in section 5. We can

therefore order three of the four estimators for £ (IBNR claims) mentioned in this

paper,

0F < 0F < BE.
The above inequalities imply that
E(0E) < E(6F) < B( 68).

Hence, both the estimators éf and é5 exhibit a positive bias, which can be evaluated

by calculating the expected value of 0F and 6E.
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Proposition 7.1:

u

Proof:

by independence of B and SS..
Since S5, /o2 follows a x? distribution with (n—p) degrees of freedom and E(e75%)

is its moment generating function evaluated at o2, we obtain

Ss 1 =
E YOOz .
@)~ (=)
Setting v = 1/2(n — p) leads to the desired result.

Proposition 7.2:

n—

0?[1 + b(X'X)—lb']>‘ 7

T

14+b(X' X))~ 1¥

Proof: Proceed similarly as for proposition 7.1, with v = =)

Proposition 7.3:

n

X N 21 4 p(X' X)W\ T
E( 95) _ Zebm%a%(x X)~1b (1 o [ + ( ) ])

14+b(X' X)L

Proof: Same as the proof of proposition 7.2, with v = o

The maximum likelihood estimator for Var (IBNR claims), 9}/, is similarly ob-

tained by replacing 8 by 3 and 02 by 62 in formula (4.2).
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8 Numerical example

Table 1 presents the incurred claims (in thousands of dollars), of a general in-
surance company’s liability line of business, over the accident years 1978-1987. Using
the stochastic chain ladder model

InY; =a; + 5; + €

on the trapezium of incremental data derived from table 1, we will compare the various
estimators for F(IBNR claims) and Var(IBNR claims) proposed in this paper.

Table 2 contains the maximum likelihood estimates of the parameters of the model,
while figure 1 shows a studentized residual plot for the stochastic chain ladder model,
with the residuals appearing in the same order as vector Z.

From the parameters estimates, we easily get the estimates for F(IBNR claims)
appearing in table 3 ( ég is the chain ladder estimator of the reserve). The unbiased

estimate for E(IBNR claims) calculated with Verrall’s formula gives 23,579, while

formula (5.1) gives a value of 24,403.

Convergence for the hypergeometric series oF;(15; sz) = 1.0362525 is obtained

by adding only the first six terms of the series. Using the upper bound e%%/% instead

of oF1(15;22=) introduces a relative error of less than 0.004%. The estimator 0
therefore provides an excellent approximation, in this example, to 95 . The estimated
standard deviation of 0F using formula (6.1) gives 3804,

Table 4 contains the various estimators for the standard deviation of IBNR claims.
The estimator 95 is obtained by taking the square root of ég, but it should be noted
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that it will not be unbiased for the standard deviation of IBNR claims, since the
minimum variance unbiasedness property of an estimator is not preserved, under a
non-linear tansformation. The maximum likelihood estimator is, however, invariant
under transformations.

Besides a residual plot, model assumptions can be checked with a normal quantile-
quantile plot of the ordered studentized residuals versus the normal density quantiles.
This Q-Q plot (see figure 2) shows an excellent fit. The Shapiro-Francia (1972) test
statistic measuring the correlation between the points and the straight line, gives
0.985; the critical value at the 5% level for a sample of size of 45, is 0.950, also
indicating a good fit.

Table 5 gives the studentized residuals; Cook and Weisberg (1982) show that
they are identically distributed random variables with mean 0 and variance 1. They
are correlated, with Cov(r;, ;) = —v;;/[(1 — v)(1 — v;)]>°, where V is the hat
matrix V = X (X’X)~'X’. With this particular design of the stochastic chain ladder
model, calculations of the covariances among the residuals of a given accident or
development year showed that they were all negatively correlated, making difficult

their interpretation.

9 Conclusion

In this paper, we have developed new estimators for the IBNR reserve in a log-

normal linear model, among them the minimum variance unbiased estimator, and we
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have proposed several tests and plots to verify model assumptions. Other lognormal
linear models, besides the stochastic chain ladder model, for which the minimum vari-
ance unbiased estimator can be calculated include the model proposed by Zehnwirth
(1990),

Yy =a+fng+vyj+ui+j—2)+e,

which takes into account superimposed inflation.

Those models all assume the homoskedasticity of the errors. Further work should
look at models with unequal variances. The parameters would be estimated by
weighted regression, with the weights determined empirically. Models where the er-
rors could be correlated from year to year should also be investigated. We have only
looked at the information contained in the aggregate payments; models which can

use other information (case estimates, number of claims) deserve further research.
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Table 1: Claims Incurred

Development year

Accident year 1 2 3 4 ) 6
1978 8489 | 9785 | 10709 | 11289 | 11535 | 11661
1979 12970 | 14766 | 16201 | 17060 | 17714 | 17979
1980 17522 | 20305 | 21774 | 22797 | 23220 | 23872
1981 21754 | 24338 | 25501 | 26284 | 27171 | 27526
1982 19208 | 21549 | 22769 | 23388 | 24229 | 24932
1983 19604 | 22073 | 23296 | 24543 | 25155
1984 21922 | 24233 | 25374 | 26882
1985 25038 | 28401 | 30545
1986 32532 | 37006
1987 39862
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Table 2: MLE’s for the stochastic chain ladder model

Parameter | Estimate | Standard Error
oy 9.0654 0.1387
Qo 9.6161 0.1387
Qs 9.8497 0.1387
oy 9.8120 0.1387
Qs 9.8486 0.1387
g 9.8442 0.1454
ay 9.9079 0.1553
oy 10.1798 0.1709
Qg 10.4119 0.1990
o0 10.5932 0.2670
o5 -2.0277 0.1259
03 -2.5926 0.1316
on -2.9081 0.1379
Os -3.3435 0.1454
B -3.7737 0.1549
o? 0.0475

Table 3: Estimates of the mean of IBNR claims

Estimator | Estimate
0E | 24,403
0F | 24,404
0F | 24,677
0E | 25,262
0E | 23,919

Table 4: Estimate of the standard deviation of IBNR claims

Estimator | Estimate
0 4667
03 4786
05 3984
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Table 5: Studentized Residuals for stochastic chain ladder model

development year

accident year 1 2 3 4 5 6
1978 -0.083 | 0.567 | 1.567 | 0.913 |-0.974 | -2.089
1979 -0.639 | -0.417 | 1.081 | 0.212 | 0.947 | -1.205
1980 -0.344 | 0.479 | 0.155 | -0.0495 | -2.064 | 1.853
1981 0.769 | 0.319 | -0.708 | -1.069 | 1.436 | -0.762
1982 0.0635 | -0.274 | -0.658 | -2.276 | 1.032 | 2.204
1983 0.175 | -0.0222 | -0.640 | 0.871 | -0.385
1984 0.402 | -0.640 | -1.235 | 1.489
1985 -0.252 | -0.154 | 0.408
1986 -0.123 | -0.123
1987 0
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