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1. Introduction

In Entry 2 of Chapter 14 in his second notebook [4], Ramanujan states a beautiful reciprocity
theorem (with no hypotheses or proof) for certain hypergeometric series. In his notebooks [4], Ra-
manujan recorded many “reciprocity theorems” or “modular relations” for infinite series, but we are
unaware of any other reciprocity theorem for hypergeometric series, either in Ramanujan’s notebooks
or elsewhere in the literature, other than the theorem below.

Theorem 1.1. Let x, y, m, and n be complex numbers such that Re(m+n) > 0 and xy 6= 0. Suppose
that Γ(1 + xz) and Γ(1 + yz), as functions of z, have no coincident poles, and also suppose that z = 1
is not a pole of either function. Let

S(m,n;x, y) :=
∞∑

k=1

(−1)k−1Γ(1− ky/x)
Γ(m− k + 1)Γ(n + 1− ky/x)Γ(k)(x + k)

.

Then

S(m,n;x, y) + S(n, m; y, x) =
Γ(x + 1)Γ(y + 1)

Γ(x + m + 1)Γ(y + n + 1)
. (1.1)

The proof of Theorem 1.1 given by the first author in [2] and [3, pp. 245–246] should have provided
readers with more details in the application of Stirling’s formula [1, p. 21]

Γ(z) ∼
√

2πzz−1/2e−z, (1.2)

as |z| → ∞ in {z : |arg z| ≤ π − δ}, where δ > 0 is fixed.
The purpose of this paper is to not only provide a more complete proof of Theorem 1.1 but to

also establish a considerable generalization of (1.1). Observe that the left-hand side of (1.1) may
be regarded as a quasi-partial fraction decomposition of the right-hand side, where we regard the
right-hand side as a function of two complex variables x and y. After proving our generalization in
Section 2, we conclude our paper with a couple corollaries and remarks in Section 3.

2. A Generalization of Theorem 1.1

Theorem 2.1. Let x1, . . . , xr and m1, . . . ,mr be complex numbers such that Re(m1 + · · ·+ mr) > 0
and x1 · · ·xr 6= 0, where r is a positive integer at least equal to 2. Suppose that Γ(1 + x1z), . . . ,
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Γ(1 + xrz), as functions of z, have no coincident poles and also suppose that z = 1 is not a pole of
any of these r functions. Let

Gj,k(x1, . . . , xr) :=
r∏

µ=1
µ6=j

Γ(1− kxµ/xj)
Γ(mµ + 1− kxµ/xj)

and

Sj(m1, . . . ,mr;x1, . . . , xr) :=
∞∑

k=1

(−1)k−1Gj,k(x1, . . . , xr)
Γ(mj − k + 1)Γ(k)(xj + k)

.

Then
r∑

j=1

Sj(m1, . . . ,mr;x1, . . . , xr) =
Γ(x1 + 1) · · ·Γ(xr + 1)

Γ(x1 + m1 + 1) · · ·Γ(xr + mr + 1)
. (2.1)

Proof. Throughout the proof, all implied constants in our upper bound estimates depend upon xj

and mj , 1 ≤ j ≤ r. Define

f(z) :=
Γ(1 + x1z) · · ·Γ(1 + xrz)

Γ(m1 + 1 + x1z) · · ·Γ(mr + 1 + xrz)
1

z − 1
. (2.2)

Let Cn, n > 0, denote a square centered at the origin with vertical sides through ±Nn and horizontal
sides through ±iNn. We assume that the sequence {Nn}, tending to ∞ as n →∞, is chosen so that
the squares Cn remain at a bounded distance away from the poles of f(z). We apply the residue
theorem to

1
2πi

∫
Cn

f(z)dz =
1

2πi

∫
γn

(f(z)− f(−z)) dz, (2.3)

where γn is that portion of Cn lying in the right half-plane. Let Rz0 denote the residue of f(z) at a
pole z0.

First, f(z) has a pole at z = 1, which is simple by hypothesis, and it is easy to see that

R1 =
Γ(1 + x1) · · ·Γ(1 + xr)

Γ(m1 + 1 + x1) · · ·Γ(mr + 1 + xr)
. (2.4)

Second, since Γ(z) has a simple pole at z = −k with residue (−1)k/k!, for each nonnegative integer k
[1, p. 7], we see that, for 1 ≤ j ≤ r, Γ(1 + xjz) has a simple pole at z = −k/xj , k ≥ 1, with residue

(−1)k−1

xj(k − 1)!
. (2.5)

By a simple calculation with the use of (2.5), it follows that

R−k/xj
=

(−1)kGj,k(x1, . . . , xr)
(k − 1)!Γ(mj + 1− k)(xj + k)

. (2.6)

We next examine f(z) on the contour γn. If Re xj > 0, we apply Stirling’s formula (1.2) to both
Γ(1 + xjz) and Γ(mj + 1 + xjz). However, If Re xj < 0, we first apply the reflection formula for the
gamma function to each of these gamma functions before applying Stirling’s formula. To that end,

Γ(1 + xjz)
Γ(mj + 1 + xjz)

=
Γ(−mj − xjz)

Γ(−xjz)
sinπ(−mj − xjz)

sinπ(−xjz)
. (2.7)

Since
sinπ(mj + xjz)

sinπ(xjz)
= cos(πmj) + sin(πmj) cot(πxjz),

and since, by the choice of our contour Cn, | cot(πxjz)| �xj 1, we find that∣∣∣∣ sinπ(mj + xjz)
sinπ(xjz)

∣∣∣∣ � 1.
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Hence, from (2.7) and Stirling’s formula (1.2), we can deduce that

Γ(1 + xjz)
Γ(mj + 1 + xjz)

= O
(
|z|−Re mj

)
, (2.8)

as |z| → ∞ on γn. (In fact, a weaker asymptotic formula than Stirling’s formula could have been
employed in (2.8) and (2.10) below [1, p. 29, eqn. (1.4.3)].) If Re xj > 0, then we also deduce (2.8)
by direct applications of Stirling’s formula.

The examination of f(−z) on γn is similar. However, in this case, if Re xj < 0, we can apply
Stirling’s formula directly to each quotient

Γ(1− xjz)
Γ(mj + 1− xjz)

, (2.9)

while if Re xj > 0, we must first use the reflection formula on each of the gamma functions in (2.9)
before applying Stirling’s formula. In either case, we obtain the upper bound

Γ(1− xjz)
Γ(mj + 1− xjz)

= O
(
|z|−Re mj

)
. (2.10)

Hence, using (2.8) and (2.10), 1 ≤ j ≤ r, as |z| tends to ∞ on γn, we conclude that

f(z) = O
(
|z|−Re(m1+···+mr)−1

)
. (2.11)

Therefore, since Re(m1 + · · ·+ mr) > 0, by (2.2) and (2.3),
1

2πi

∫
Cn

f(z)dz = o(1), (2.12)

as n tends to infinity.
Finally, applying the residue theorem in (2.3), letting n → ∞, and using (2.12), (2.4), and (2.6),

we conclude that
Γ(1 + x1) · · ·Γ(1 + xr)

Γ(m1 + 1 + x1) · · ·Γ(mr + 1 + xr)
+

r∑
j=1

∞∑
k=1

(−1)kGj,k(x1, . . . , xr)
(k − 1)!Γ(mj + 1− k)(xj + k)

= 0,

from which (2.1) is immediate. �

3. Corollaries and Concluding Remarks

Observe that if we let r = 2, x1 = x, x2 = y, m1 = m, and m2 = n in Theorem 2.1, we obtain
Ramanujan’s Theorem 1.1. If we further suppose in Theorem 1.1 that m and n are nonnegative
integers, then (1.1) reduces to the quasi-partial fraction decomposition (in two variables)

m∑
k=1

(−1)k−1

(1− ky/x)n(k − 1)!(m− k)!(x + k)

+
n∑

k=1

(−1)k−1

(1− kx/y)m(k − 1)!(n− k)!(y + k)
=

1
(x + 1)m(y + 1)n

, (3.1)

where
(a)0 := 1, (a)n := a(a + 1) · · · (a + n− 1), n ≥ 1.

Of course, a similar result can be derived from Theorem 2.1 when m1, . . . ,mr are all nonnegative
integers. If m = 0, then (3.1) reduces to the genuine partial fraction expansion

n∑
k=1

(−1)k−1

(k − 1)!(n− k)!(y + k)
=

1
(y + 1)n

.

The function 1/(z − 1) in the definition (2.2) of f(z) can be replaced by

R(z) :=
p(z)
q(z)

,
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where p(z) and q(z) are polynomials such that Re(m1 + · · ·+mr)+deg q(z)−deg p(z) > 1, to obtain
a generalization of Theorem 2.1. In particular, if we set R(z) ≡ 1 and assume that Re(m + n) > 1,
then

1
x

∞∑
k=1

(−1)k−1Γ(1− ky/x)
Γ(m− k + 1)Γ(n + 1− ky/x)Γ(k)

= −1
y

∞∑
k=1

(−1)k−1Γ(1− kx/y)
Γ(n− k + 1)Γ(m + 1− kx/y)Γ(k)

. (3.2)

Thus, if we set m = n, z = −x/y, and

F (z) :=
∞∑

k=1

(−1)k−1Γ(1 + kz)
Γ(n− k + 1)Γ(n + 1 + kz)Γ(k)

,

then we can deduce from (3.2) that

F

(
1
z

)
= zF (z), (3.3)

provided that Re n > 1
2 and z 6= Q∩ (−∞, 0]. In particular, (3.3) holds when Re n > 1

2 and Re z > 0.
Since the proof of the more general theorem is similar to that of Theorem 2.1, we do not give it

here.
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