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Preface

The main goal of this book is to introduce beginning graduate students
to analytic number theory. In addition, large parts of it are suitable for
advanced undergraduate students with a good grasp of analytic techniques.

Throughout, the emphasis has been put on exposing the main ideas
rather than providing the most general results known. Any student wishing
to do serious research in analytic number theory should broaden and deepen
their knowledge by consulting some of the several excellent research-level
books on the subject. Examples include: the books of Davenport [31] and
of Montgomery-Vaughan [146] for classical multiplicative number theory;
Tenenbaum’s book [172] for probabilistic number theory and the saddle-
point method; the book by Iwaniec-Kowalski [114] for the general theory of
L-functions, of modular forms and of exponential sums; Montgomery’s book
[144] for the harmonic analytic aspects of analytic number theory; and the
book of Friedlander-Iwaniec [59] for sieve methods.

Using the book

The book borrows the structure of Davenport’s masterpiece Multiplicative
Number Theory with several short- to medium-length chapters. Each chap-
ter is accompanied by various exercises. Some of them aim to exemplify
the concepts discussed, while others are used to guide the students to self-
discover certain more advanced topics. A star next to an exercise indicates
that its solution requires total mastery of the material.

The contents of the book are naturally divided into six parts as indicated
in the table of contents. The first two parts study elementary and classical
complex-analytic methods. They could thus serve as the manual for an

vii
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viii Preface

introductory graduate course to analytic number theory. The last three
parts of the book are devoted to the theory of sieves: Part 4 presents the
basic elements of the theory of the small sieve, whereas Part 5 explores the
method of bilinear sums and develops the large sieve. These techniques
are then combined in Part 6 to study the spacing distribution of prime
numbers and prove some of the recent spectacular results about small and
large gaps between primes. Finally, Part 3 studies multiplicative functions
and the anatomy of integers, and serves as a bridge between the complex-
analytic techniques and the more elementary theory of sieves. Topics from
it could be presented either in the end of an introductory course to analytic
number theory (Chapter 13 most appropriately), or in the beginning of a
more advanced course on sieves (the most relevant material is contained in
Chapters 14 and 15, as well as in Theorem 16.1).

Certain portions of the book can be used as a reference for an under-
graduate course. More precisely, Chapters 1–8 can serve as the core of such
a course, followed by a selection of topics from Chapters 14, 15, 17 and 21.

A short guide to the main theorems of the book. Below is a list of
the main results proven and of their prerequisites.

Chebyshev’s and Mertens’ estimates are presented in Chapters 2 and 3,
respectively. Their proofs rest on the material contained in Part 1.

The landmark Prime Number Theorem is proven in Chapter 8. Under-
standing it requires a good grasp of all preceding chapters.

The Siegel-Walfisz theorem, which is a uniform version of the Prime
Number Theorem for arithmetic progressions, is presented in Chapter 12.
Its proof builds on all of the material preceding it.

The Landau-Selberg-Delange method is a key tool in the study of mul-
tiplicative functions. It is presented in Chapter 13. Appreciating its proof
requires a firm understanding of Chapters 1–8 for the main analytic tools,
as well as of Chapter 12 for dealing with uniformity issues.

The foundations of probabilistic number theory are explained in Chapters
15 and 16, where the Erdős-Kac theorem and the Sathe-Selberg theorem are
proven. The main prerequisites can be found in Part 1 and in Chapter 14.
In addition, Chapter 13 is needed for the Sathe-Selberg theorem.

The Fundamental Lemma of Sieve Theory is proven in Chapter 19. Its
proof uses ideas and techniques from Part 1 and Chapters 14–17.

Vinogradov’s method, one of the foundations of modern analytic number
theory, is presented in Chapter 23. It builds on the material of Chapters
1–12 and 19.
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The Hardy-Littlewood circle method is presented in Chapter 24. It is
used to detect additive patterns among the primes and, more specifically, to
count ternary arithmetic progressions all of whose members are primes.

The Bombieri-Vinogradov theorem, often called the “Generalized Rie-
mann Hypothesis on average”, is established in Chapter 26. Understanding
its proof requires mastery of Vinogradov’s method (Chapter 23) and of the
large sieve (Chapter 25).

Linnik’s theorem provides a very strong bound on the least prime in an
arithmetic progression. It is proven in Chapter 27 and its prerequisites are
Chapters 1–12, 17–20, 22–23 and 25.

The breakthrough of Zhang-Maynard-Tao about the existence of infin-
itely many bounded gaps between primes is presented in Chapter 28. Its
proof requires a firm understanding of the Fundamental Lemma of Sieve
Theory (Chapter 19), of Selberg’s sieve (Chapter 21) and of the Bombieri-
Vinogradov theorem (Chapter 26).

The recent developments about large gaps between primes of Ford-Green-
Konyagin-Tao and Maynard are presented in Chapter 29. Understanding
them necessitates knowledge of the same concepts as the proof of the exis-
tence of bounded gaps between primes, with the addition of the results on
smooth numbers presented in Chapters 14 and 16.

Maier discovered in 1985 that the distribution of prime numbers has
certain unexpected irregularities. His results are presented in Chapter 30
and they assume knowledge of Linnik’s theorem (and of its prerequisites), as
well as of Buchstab’s function (see Chapter 14 and, more precisely, Theorem
14.4).
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Notation

Throughout the book, we make use of some standard and some less
standard notation. We list here the most important conventions.

The symbols N, Z, Q, R and C denote the sets of natural numbers (we
do not include zero in N), integers, rational numbers, real numbers and
complex numbers, respectively. Furthermore, given an integer n � 1, we
write Z/nZ for the set of residues mod n, as well as (Z/nZ)∗ for the set of
reduced residues mod n.

We write P to indicate a probability measure, and E[X] and V[X] for
the expectation and the variance, respectively, of a random variable X.

Given a set of real numbers A and a parameter y, we write A�y for the
set of numbers a ∈ A that are � y; similarly for A>y, A�y, A<y. We also
write |A| or #A for the cardinality of A, whichever is more convenient.

The letter p always denotes a prime, and the letter n always denotes an
integer (usually, a natural number). We write d|n to mean that d divides n,
and that pk‖n to mean that pk is the exact power of p dividing n. Lastly,
d|n∞ means that all prime factors of d appear in the factorization of n too.

When we write (a, b), we might mean the open interval with endpoints
a and b, the pair of a and b, or the greatest common divisor of the integers
a and b. The meaning will always be clear from the context. Similarly, the
symbol [a, b] will sometimes denote the closed interval with endpoints a and
b, and some other times the least common multiple of the integers a and b.

We write P+(n) and P−(n) to denote the largest and smallest prime
factors of n, respectively, with the convention that P+(1) = 1 and P−(1) =
∞. Given a parameter y and an integer n � 1, we say that n is y-smooth
if all its prime factors are � y (i.e., if P+(n) � y). The set of y-smooth

xi
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xii Notation

numbers is denoted by S(y). Lastly, we say that n is y-rough if all its prime
factors are > y (i.e., if P−(n) > y). Equivalently, (n, P (y)) = 1, where
P (y) :=

∏
p�y p.

The symbol log denotes the natural logarithm (base e). We also let
li(x) =

∫ x
2 dt/ log t denote the logarithmic integral .

Given x ∈ R, we write �x� for its integer part (defined to equal maxZ�x,
and also called the “floor” of x), �x	 for the “ceiling” of x (defined to equal
minZ�x) and {x} for the fractional part of x (defined to equal x− �x�).

Given α ∈ R, we write ‖α‖ to denote its distance from the nearest
integer. On the other hand, if ψ is a bilinear form, then ‖ψ‖ denotes its
norm (see Chapter 25). Finally, if �v ∈ Cn or f : N → C is an arithmetic
function, we write ‖�v‖2 and ‖f‖2 for their �2-norm.

The symbol Ck(X), where X ⊆ R and k ∈ Z�0 ∪ {∞}, denotes the set
of functions f : X → C whose first k derivatives exist and are continuous.

We write 1E to denote the indicator function of a set or of an event E.
For example, 1[0,1] denotes the indicator function of the interval [0, 1] and
1(n,10)=1 denotes the indicator function of the event that n is coprime to 10.
In particular, 1P will denote the indicator function of the set of primes.

The letter s will usually denote a complex number, in which case we
denote its real part by σ and its imaginary part by t following Riemann’s
original notation that has now become standard. In addition, non-trivial
zeroes of the Riemann zeta function and of Dirichlet L-functions will be
denoted by ρ = β + iγ. Notice that we also use the letter γ for the Euler-
Mascheroni constant, whereas ρ(u) will also refer to the Dickman-de Bruijn
function. The precise meaning of each letter will be clear from the context.

We employ frequently the usual asymptotic notation f = O(g), f 
 g,
f � g, f ∼ g and f = o(g), whose precise definition is given in Chapter 1.

Finally, we list below some other symbols and the page of their definition:

1P (n) xii
B(u) 150
e(x) 102
G(χ) 103
li(x) 1
L(s, χ) 97
P (y) xii
P±(n) xi
S(A,P) 182
S(y) xii
Γ(s) 17

ζ(s) 2
θ(x) 13
Λ(n) 37
Λ�(n) 237

Λ�(n) 237

Λ�
sieve(n) 239

Λ�
sieve(n) 239

μ(n) 35
π(x) 1
π(x; q, a) 4
ρ(u) 152

τ(n) 33
τk(n) (k ∈ N) 33
τκ(n) (κ ∈ C) 131
ϕ(n) 4
χ0(n) 97, 100
χ(n) 96, 100
ψ(x) 22
ψ(x; q, a) 98
ψ(x, χ) 98
Ψ(x, y) 152
ω(n), Ω(n) 29
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And then there were
infinitely many

Ever since Euclid’s proof of the infinitude of prime numbers, the distri-
bution of these fundamental objects has fascinated mathematicians. Unlike
other special sets of integers that have a very regular structure, such as
the set of perfect squares, the primes do not follow any apparent pattern.
Consequently, guessing the exact location of the nth smallest prime number
seems to be an impossible challenge as n grows to be larger and larger.1

Since the sequence of primes appears to be so chaotic, we can set the
more modest goal of understanding what is the approximate location of the
nth smallest prime, which we denote by pn. Equivalently, we seek a good
approximation for the counting function of prime numbers

π(x) := #{p � x}.

Indeed, we have that π(pn) = n, so that any approximation of π(x) can be
immediately translated to an approximation of pn, and vice versa.

The study of the distribution of primes preoccupied the young Gauss.
After examining tables of large primes, he observed that their density around
x is about 1/ log x. Translated into the language of Calculus, this means that
a good approximation for π(x) is given by the logarithmic integral

li(x) :=

∫ x

2

dt

log t
.

1Even the simpler question of deciding whether a given large integer is prime was proven to

be a very hard challenge. It was only in 2004 that Agrawal, Kayal and Saxena [1] constructed
a deterministic algorithm that solves this problem in polynomial time without relying on any
unproven conjectures.

1
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2 And then there were infinitely many

Using L’Hôpital’s rule, we find that

lim
x→∞

li(x)

x/ log x
= 1,

so that Gauss’s guess implies that π(x) is approximately equal to x/ log x
for large x. Symbolically, we write

(0.1) π(x) ∼ x

log x
(x →∞)

meaning that the ratio of these two functions tends to 1 as x → ∞. This
notation will be discussed in greater length in Chapter 1. Equivalently,
Gauss’s guess (0.1) says that pn ∼ n log n as n → ∞.

It took more than a century to prove Gauss’s conjecture for π(x). The
path to the proof was outlined by his student Riemann in his epoque mak-
ing mémoire Über die Anzahl der Primzahlen unter einer gegebenen Grösse
published in 1859. In this work, Riemann explained how π(x) is intimately
connected to analytic properties of the function

ζ(s) :=
∞∑
n=1

1

ns
,

now called the Riemann zeta function. He then proposed a program whose
completion would lead to a profound understanding of the distribution of
prime numbers. In particular, it would establish the existence of a constant
c > 0 such that

(0.2) |π(x)− li(x)| � c
√
x log x for all x � 2,

a very strong form of confirmation of Gauss’s guess. By 1895, Hadamard [81]
and von Mangoldt [136] had proved rigorously all but one steps in Riemann’s
master plan. The last step however remains elusive to this date. It is the
famous Riemann Hypothesis that we will discuss in Chapter 8. Nevertheless,
in 1896, Hadamard [83] and de la Vallée Poussin [175] proved a weak form
of the Riemann Hypothesis that was strong enough to lead to a proof of
Gauss’s conjecture, now called the Prime Number Theorem.

Prime Number Theorem. As x →∞, we have that π(x) ∼ x/ log x.

We will give the proof of this fundamental result in Chapter 8.

Except for the size of π(x), there are many other interesting questions
about prime numbers that concern the existence of various patterns among
them. To understand such patterns, we assume a probabilistic point of view.

Indeed, the absence of structure in the sequence of primes might lead one
to expect that they behave as if they were random objects. Specifically, in
1936 Cramér proposed to model the statistical properties of prime numbers
as follows: we consider a sequence of random variables (X1, X2, X3, . . . ) that
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And then there were infinitely many 3

we think of as a model of the indicator function of the primes. That is to say,
Xn models the event that a “randomly chosen” integer n is prime. Hence
Xn must be a Bernoulli random variable (i.e., it only takes the values 0 and
1). In addition, Gauss’s guess that the density of primes around x is 1/ log x
can be interpreted to mean that the chances of a random integer n being
prime are about 1/ logn. We thus take

(0.3) P(Xn = 1) = 1/ logn (n � 3),

so that P(Xn = 0) = 1 − 1/ logn, and we set for completion X1 = 0 and
X2 = 1. Finally, since knowledge of the primality of some integer n does
not seem to offer much information about the primality of another integer
n′, we assume that the random variables Xn are independent of each other.

The sequence (Xn)
∞
n=1 is called Cramér’s model . It naturally gives rise

to the set of “random primes” {n ∈ N : Xn = 1 }. We denote its elements
by P1 < P2 < · · · . By construction, it easily follows that Pn ∼ n log n with
probability 1 as n → ∞, that is to say, if we fix ε > 0 and take n large in
terms of ε, then |Pn − n log n| � εn logn with probability 1. Actually, more
is true: the analogue of π(x) is the random variable

Π(x) = #{Pn � x} =
∑
n�x

Xn.

We have that

E[Π(x)] = 1 +
∑

3�n�x

1

logn
,

which is essentially a Riemann sum of the logarithmic integral li(x). In
fact, a consequence of Theorem 1.10 below is that |E[Π(x)] − li(x)| � 10.
Similarly, the independence of the random variables Xn implies that

V[Π(x)] =
∑
n�x

V[Xn] ∼
x

log x

as x → ∞. Applying the law of the iterated logarithm [117], we find that

(0.4)
|Π(x)− li(x)| �

√
(2 + ε)V[Π(x)] log log(V[Π(x)])

∼
√

(2 + ε)x(log log x)/ log x

almost surely as x →∞, where ε is any fixed positive real number. Compar-
ing this inequality with (0.2), we see that Π(x), which is the random model
of π(x), satisfies the Riemann Hypothesis with probability 1.

If primes really do behave like a sequence of random variables such as
(Xn)

∞
n=1, then we should be able to find all sorts of patterns among them.

For example, there should be many primes of the form 4n+1, or of the form
n2 + 1. Moreover, the mutual independence of the variables Xn suggests
that we should be able to make several integers prime simultaneously. For
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4 And then there were infinitely many

example, there should be infinitely many n such that the integers n and
n + 2 are both primes, in which case they are called a pair of twin primes.
Similarly, the triplet (n, 2n + 1, n2 + 6) should have prime coordinates in-
finitely often. One should be careful not to take such arguments too far:
the integers n and n + 1 can be simultaneously prime only when n = 2,
because at least one of them is even. More subtly, if n > 3, then we cannot
make n and n2 +2 simultaneously prime, because n ≡ ±1 (mod 3) and thus
n2 + 2 ≡ 0 (mod 3). In Chapter 17, we will see a way to modify Cramér’s
model so that it takes into account such “local” (i.e., involving congruences)
obstructions to primality.

Despite the limitations of Cramér’s model, all indications we have so far
support the hypothesis that primes behave as if they were random. Through-
out this book, we will present various results that are in accordance with
this hypothesis. Specifically, in Chapter 12, we will prove that there are
infinitely many primes of the form 4n + 1. More generally, we will prove
that every arithmetic progression qn+a contains infinitely many primes, as
long as the obvious necessary condition that a and q are coprime holds. As
a matter of fact, we will show that primes are equidistributed among these
reduced arithmetic progressions.

Prime Number Theorem for arithmetic progressions. Let q � 3, and
let ϕ(q) = #(Z/qZ)∗ be Euler’s totient function. If (a, q) = 1, then

π(x; q, a) := #{ p � x : p ≡ a (mod q) } ∼ x

ϕ(q) log x
(x →∞).

On the other hand, it is not known to this day whether there are infinitely
many pairs of twin primes. We do have two partial substitutes of this
conjecture: Chen [24, 25] proved that there are infinitely many primes p
such that p+2 is the product of at most two primes. We will prove a weaker
version of Chen’s theorem in Chapter 18. In addition, Zhang [188] proved
that there is some h ∈ N such that the tuple (n, n+1, . . . , n+h) contains at
least two primes for infinitely many integers n. Maynard [138] and Tao [171]
improved this result by showing that for each m there is some h = h(m) such
that the tuple (n, n+ 1, . . . , n+ h) contains at least m primes for infinitely
many n. We will present the results of Zhang-Maynard-Tao in Chapter 28.

Substantial progress has also been made on the existence of arbitrarily
long arithmetic progressions among primes: in 2008, Green and Tao [77]
proved that for each k � 2, there are infinitely many integers n and d such
that the numbers n, n + d, . . . , n + kd are all primes. We will prove the
case k = 2 of this result in Chapter 24 (that essentially goes back to work
of I. M. Vinogradov).

On the contrary, prime values of non-linear polynomials remain a mys-
tery: there is not a single example of a univariate polynomial of degree
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And then there were infinitely many 5

at least 2 that provably takes prime values infinitely often. However, we
have robust methods of bounding from above the frequency with which a
given polynomial takes prime values, as we will see in Chapter 19. In ad-
dition, there has been significant progress in multivariate polynomials in
recent years, starting with the work of Friedlander and Iwaniec [58] and of
Heath-Brown [98], and continuing with its extensions due to Heath-Brown,
Li, Maynard and Moroz [99–101, 141].

As the above discussion shows, our knowledge about primes is rather
sporadic, and the deeper and more complex properties of these fundamental
objects seem to escape us despite the collective efforts of mathematicians
since the time of Euclid. Proving that prime numbers behave pseudoran-
domly and can be located inside interesting arithmetic sequences is one of
the holy grails of analytic number theory. The purpose of this book is to
present some of our best tools towards this grand goal.

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.
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First principles
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Chapter 1

Asymptotic estimates

The functions we encounter in number theory are often irregular. It is
then desirable to approximate them by simpler functions that are easier to
analyze. As an example, consider the function f(x) that counts the number
of integers in the interval [1, x] with x � 1. We can easily see that f is a step
function with jumps of length 1 at all integers. This function may be written
in terms of a more familiar function: the integer part of x, denoted by �x�.
This is the unique integer satisfying the inequalities �x� � x < �x� + 1. It
is then clear that f(x) = �x�, whence f(x) = x + E(x) for some function
E(x) that is bounded by 1 in absolute value. We have thus approximated
the step function f(x) = �x� by the smooth function x, and the remainder
term in this approximation is a bounded function. We express this via the
asymptotic formula

(1.1) �x� = x+O(1).

In general, given complex-valued functions f, g and h, and a subset I of
their domain of definition, we write

(1.2) f(x) = g(x) +O(h(x)) (x ∈ I)

and read “f(x) equals g(x) plus big-Oh of h(x)” if there is a constant c =
c(f, g, I) such that

|f(x)− g(x)| � c · h(x) for each x ∈ I.

We will often refer to g(x) as the main term of (1.2), and to O(h(x)) as the
remainder term or error term. In addition, we will often call the constant c
absolute to mean that it does not depend on the argument of the functions
f, g and h, nor on various other parameters that might be present.

8

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



1. Asymptotic estimates 9

Notice that in (1.1) the difference x − �x� is the fractional part of x,
denoted by {x}. However, it turns out that it is often simpler to ignore the
exact value of the remainder term and to only keep track of the fact that it
is a bounded function. Suppose, for example, that we want to approximate
the expression

∑
n�x�n

√
2�. Applying (1.1) to each of the �x� summands,

we find that

(1.3)
∑
n�x

⌊
n
√
2
⌋
=

∑
n�x

(
n
√
2 +O(1)

)
=
√
2
∑
n�x

n+O(x),

since the total error is the sum of �x� functions of size O(1). On the other
hand, we know that 1 + 2 + · · · + N = N(N + 1)/2. Applying this with
N = �x� = x+O(1), we conclude that∑

n�x

�n
√
2� =

√
2 · (x+O(1)) · (x+O(1))

2
+O(x) =

√
2

2
x2 +O(x)

for x � 1, since O(x) + O(x) + O(1) = O(x) when x � 1. Indeed, the
notation O(x) +O(x) +O(1) denotes a sum f1(x) + f2(x) + f3(x) for which
there are absolute constants c1, c2, c3 � 0 such that |fj(x)| � cjx for j = 1, 2
and |f3(x)| � c3. Hence, |f1(x) + f2(x) + f3(x)| � (c1 + c2 + c3)x for x � 1.

Remark 1.1. As we see in the above example, the power of the asymptotic
notation is that it allows us to turn inequalities into equalities and it is
thus amenable to algebraic manipulations. Beware though that the rules of
addition and multiplication change when we use asymptotic notation. For
example, O(1)+O(1) = O(1), since the sum of two bounded functions is also
bounded. Similarly, we have O(1)·O(1) = O(1) and O(1)−O(1) = O(1). On
the other hand, if we sum an unbounded number of bounded functions (as
in (1.3)), the error term must reflect this by growing linearly in the number
of summands. �

The asymptotic notation also allows us to compare the order of magni-
tude of different functions: if

(1.4) f(x) = O(g(x)) (x ∈ I),

we say that “f has smaller or equal order of magnitude than g in I”. Often,
we express this relation using Vinogradov’s notation

f(x) 
 g(x) (x ∈ I),

which has the exact same meaning as (1.4).

If f(x) 
 g(x) and g(x) 
 f(x) for x ∈ I, we write

f(x) � g(x) (x ∈ I)

and we say that “f and g have the same order of magnitude in I”.

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



10 1. Asymptotic estimates

Remark 1.2. The range I in which we compare the functions is important.
For instance,

√
x 
 x when x � 1, but x 
 √

x when x ∈ [0, 1]. �

Remark 1.3. Sometimes, the functions f and g we are comparing depend
on various parameters. It is then possible that the implied constant in the
estimate f(x) 
 g(x) depends on these parameters. If so, we will indicate
this dependence by a subscript. For instance, for each fixed ε > 0, we have

log x 
ε x
ε (x � 1). �

There are two more related definitions of asymptotic notation that will
be important throughout this book and they concern the limiting behavior
of functions. We write

f(x) ∼ g(x) (x → x0) ⇐⇒ lim
x→x0

f(x)

g(x)
= 1,

where x0 ∈ R̂ = R∪ {−∞,+∞} and g is non-zero in an open neighborhood
of x0. Under the same assumptions, we also introduce the notation

f(x) = o(g(x)) (x → x0) ⇐⇒ lim
x→x0

f(x)

g(x)
= 0

or, for brevity,

f(x) = ox→x0(g(x)) ⇐⇒ lim
x→x0

f(x)

g(x)
= 0.

Notice that if f(x) = o(g(x)) as x → x0, then f(x) has genuinely smaller
order of magnitude than g(x) in the vicinity of x0.

We give below some examples to illustrate the use of the above asymp-
totic notation.

Example 1.4. Often we have a composite expression that we want to eval-
uate asymptotically, such as log�x�. Since �x� = x+O(1), the Mean Value
Theorem implies that

log �x� = log x+O(1) · 1
c

for some c between �x� and x. Thus

log �x� = log x+O(1/x) (x � 1). �

Example 1.5. A simple application of the Mean Value Theorem is some-
times not sufficient because we need more precision in our approximation.
We may then employ Taylor’s theorem. For example, we have√

x+ log x =
√
x+

log x

2
√
x
− log2 x

8x3/2
+O

( log3 x
x5/2

)
(x � 1). �
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Summation by parts 11

Example 1.6. The asymptotic notation can also be used to obtain as-
ymptotic expansions of integrals that cannot be computed in terms of el-
ementary functions. As an example, we analyze the logarithmic integral
li(x) =

∫ x
2 dy/ log y. We integrate by parts repeatedly to find that

li(x) =
y

log y

∣∣∣x
y=2

−
∫ x

2
y d

( 1

log y

)
=

x

log x
+O(1) +

∫ x

2

1

log2 y
dy

=
x

log x
+

x

log2 x
+O(1) + 2

∫ x

2

dy

log3 y
...

=
x

log x
+

x

log2 x
+ · · ·+ (N − 1)!x

logN x
+ON (1) +N !

∫ x

2

dy

logN+1 y
.

The last integral is ∼ x/ logN+1 x as x →∞ by L’Hôpital’s rule, so we arrive
at the asymptotic formula

li(x) =
x

log x
+

x

log2 x
+

2!x

log3 x
+ · · ·+ (N − 1)!x

logN x
+ON

( x

(log x)N+1

)
for x � 2. �

Summation by parts

Many theorems of analytic number theory can be phrased as asymptotic
estimates for the summatory function of a sequence (an)

∞
n=1 of complex

numbers. This is the function

A(x) =
∑
n�x

an,

where x ∈ R�1. For instance, if an = 1P (n) (the indicator function of prime
numbers), then its summatory function A(x) is the counting function of
prime numbers π(x).

The simplest case is when an = f(n), with f ∈ C1([0,+∞)). If f does
not vary too rapidly, it is reasonable to expect that

f(n) ≈
∫ n

n−1
f(t)dt, whence

∑
n�x

f(n) ≈
∫ x

0
f(t)dt.

To make the above heuristic rigorous, we examine how close f(n) is to∫ n
n−1 f(t)dt. We begin by writing

f(n)−
∫ n

n−1
f(t)dt =

∫ n

n−1
(f(n)− f(t))dt.
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12 1. Asymptotic estimates

For any constant c, we have dt = d(t− c). Integrating by parts yields that

f(n)−
∫ n

n−1
f(t)dt = −(n− 1− c)(f(n)− f(n− 1)) +

∫ n

n−1
(t− c)f ′(t)dt.

If we take c = n− 1, the “side term” (n− 1− c)(f(n− 1)− f(n)) vanishes.
Since we also have that t− (n− 1) = {t} for t ∈ [n− 1, n), we conclude that

f(n) =

∫ n

n−1
f(t)dt+

∫ n

n−1
f ′(t){t}dt.

Summing the above identity formula over n = M + 1,M + 2, . . . , N , where
M < N are two integers, we arrive at the Euler-Maclaurin summation
formula:

(1.5)
∑

M<n�N

f(n) =

∫ N

M
f(t)dt+

∫ N

M
f ′(t){t}dt.

The first integral is the expected main term and the second term will be
smaller if f ′ is of smaller order of magnitude than f , which is a quantitative
way of saying that f does not vary too rapidly.

We demonstrate the versatility of the Euler-Mclaurin summation for-
mula with a few examples. When f(t) = t2, we have∣∣∣∣ ∫ N

0
f ′(t){t}dt

∣∣∣∣ = ∣∣∣∣ ∫ N

0
2t{t}dt

∣∣∣∣ �
∫ N

0
2t dt = N2.

Consequently,

N∑
n=1

n =

∫ N

0
t2dt+

∫ N

0
2t{t}dt = N3

3
+O(N2).

This should be compared with the well-known exact formula
∑N

n=1 n
2 =

N(N+1)(2N+1)/6. However, it would be rather hard to guess such an exact

formula for the sum
∑N

n=1 n
100 (though, see Exercise 1.3). Nevertheless,

adapting the above argument implies readily that

N∑
n=1

n100 =
N101

101
+O(N100).

A good exercise on the Euler-Maclaurin summation formula is to check that

(1.6)
N∑

n=1

1

n
= logN +O(1) ∼ logN (N → ∞),

which is an estimate on the rate of divergence of the harmonic series. A
more precise formula will be proven in Theorem 1.11 below.

The Euler-Maclaurin summation formula is a special case of a general
identity. To prove this generalization, we introduce a tool called summation
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Summation by parts 13

by parts or partial summation, which is a discrete analogue of integration
by parts. As it will become clear throughout this book, partial summation
is one of the main workhorses of analytic number theory. It allows us to
pass from estimates on A(x) =

∑
n�x an to estimates for general sums of

the form
∑

y<n�z anf(n) with f a continuously differentiable function. The

case when an = 1 for all n, for which A(x) = �x� = x + O(1), corresponds
to the Euler-Maclaurin formula.

To make the passage from A(x) to
∑

y<n�z anf(n), we use the theory

of Riemann-Stieltjes integration (see Appendix A): note that A(x) is a step
function that is continuous from the right and that has jumps of length an
at each integer n. For any continuous f , Theorem A.1(f) implies that

(1.7)
∑

y<n�z

anf(n) =

∫ z

y
f(t)dA(t),

where the right-hand side is a Riemann-Stieltjes integral. If we further as-
sume that f is continuously differentiable and integrate by parts (see The-
orem A.1(d)), we arrive at the formula

(1.8)
∑

y<n�z

anf(n) = A(t)f(t)
∣∣∣z
t=y

−
∫ z

y
A(t)f ′(t)dt.

Remark 1.7. A more elementary way to prove (1.8) that avoids the use of
Riemann-Stieltjes integrals is to use Abel’s summation formula: if (an)

∞
n=1

and (bn)
∞
n=1 are two sequences of complex numbers, then

(1.9)
N∑

n=M+1

anbn = Anbn+1

∣∣∣N
n=M

−
N∑

n=M+1

An(bn+1 − bn)

for all integers M � N � 1, where An = A(n) =
∑n

j=1 aj . Indeed, this can
be proven by noticing that

N∑
n=M+1

anbn =
N∑

n=M+1

(An −An−1)bn =
N∑

n=M+1

Anbn −
N−1∑
n=M

Anbn+1.

In the special case when bn = f(n), we have that

An(bn+1 − bn) =

∫ n+1

n
A(x)f ′(x)dx

because A(x) = An when x ∈ [n, n + 1). Together with (1.9), this leads us
to (1.8). We leave the details as an exercise. �
Example 1.8. For reasons we will explain later, we often count primes with
a logarithmic weight. To this end, we define Chebyshev’s theta function

θ(x) :=
∑
p�x

log p.
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14 1. Asymptotic estimates

We may use relation (1.8) to go back and forth between π(x) and θ(x): we
have

θ(x) =

∫ x

1
(log y)dπ(y) = π(x) log x−

∫ x

1

π(y)

y
dy.

Similarly, using that π(x) =
∑

2−ε<p�x 1 for each ε > 0, we have

π(x) =

∫ x

2−

1

log y
dθ(y) =

θ(x)

log x
+

∫ x

2

θ(y)

y log2 y
dy.

Note that we replaced 2− by 2 in the rightmost integral, which is justified

by the fact
∫ b
a− f =

∫ b
a f for any function f that is Riemann-integrable on

the interval [a, b]. �

Often, we have at our disposal an asymptotic formula of the form

(1.10) A(x) = M(x) +R(x) for all x � x0,

where M(x) is a continuously differentiable main term that approximates
A(x), and R(x) is the remainder term to this approximation. For instance,
when an = 1 for all n, we have A(x) = �x� = x − {x}. Another important
example is when an is the indicator function of the primes for which A(x) =
π(x). We then write

(1.11) π(x) = li(x) +R(x),

with the Prime Number Theorem being equivalent to the estimate R(x) =
o(x/ log x) as x → ∞, and with the Riemann Hypothesis yielding the much
stronger estimate R(x) = O(

√
x log x) (see (0.2)).

For z � y � x0, relations (1.7) and (1.10) imply that∑
y<n�z

anf(n) =

∫ z

y
f(t)d(M(t) +R(t))

=

∫ z

y
f(t)M ′(t)dt+

∫ z

y
f(t)dR(t)

=

∫ z

y
f(t)M ′(t)dt+R(t)f(t)

∣∣∣z
t=y

−
∫ z

y
R(t)f ′(t)dt,(1.12)

where we successively applied parts (b), (e) and (d) of Theorem A.1.

Example 1.9. Write π(x) = li(x)+R(x) as in (1.11). Applying (1.12) with
an = 1P (n), f(n) = logn, z = x and y = 1, we find that

θ(x) = x− 1 +R(x) log x−
∫ x

1

R(t)

t
dt.

If for large t the remainder R(t) is much smaller than li(t) ∼ t/ log t, we see
that a good approximation to θ(x) is given by x (see Exercise 1.7). �
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Summation by parts 15

Recall that A(x) = �x� when an = 1 for all n. Writing A(x) = x− {x},
we find that (1.12) implies the following generalization of (1.5).

Theorem 1.10 (Euler-Maclaurin summation formula). If f ∈ C1([y, z]),
then ∑

y<n�z

f(n) =

∫ z

y
f(t)dt− {t}f(t)

∣∣∣z
t=y

+

∫ z

y
{t}f ′(t)dt.

In particular, if f ∈ C1([1,+∞)), then for every x � 1∑
n�x

f(n) = f(1) +

∫ x

1
f(t)dt− {x}f(x) +

∫ x

1
{t}f ′(t)dt.

We give two important applications of the Euler-Maclaurin formula. We
start with an estimate of the growth of the harmonic series that sharpens
the estimate in (1.6). The symbol γ in its statement denotes the Euler-
Mascheroni constant that is defined by

(1.13) γ = 1−
∫ ∞

1

{t}
t2

dt = 0.57721 . . . .

Theorem 1.11. For x � 1, we have∑
n�x

1

n
= log x+ γ +O

(1

x

)
.

Proof. By Theorem 1.10, we have that∑
n�x

1

n
=

∫ x

1

dt

t
+ 1− {x}

x
−

∫ x

1

{t}
t2

dt.

Since 0 � {t}/t2 � 1/t2, the integral
∫∞
1 {t}t−2dt converges absolutely. In

addition,
∫ x
1 dt/t = log x. We may thus write∑
n�x

1

n
= log x+

(
1−

∫ ∞

1

{t}
t2

dt

)
− {x}

x
+

∫ ∞

x

{t}
t2

dt.

Moreover, we have the inequalities

0 � {x}
x

� 1

x
and 0 �

∫ ∞

x

{t}
t2

dt �
∫ ∞

x

dt

t2
=

1

x
,

which complete the proof of the theorem. �

A more involved application of Theorem 1.10 is given in Stirling’s ap-
proximation for the factorial function.

Theorem 1.12 (Stirling’s formula). For n ∈ N, we have

n! =
(n
e

)n√
2πn (1 +O(1/n)).
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16 1. Asymptotic estimates

Proof. Taking logarithms and applying the Euler-Maclaurin formula, we
find that

log(n!) =
n∑

j=1

log j =

∫ n

1
log xdx+ log 1− {n} logn+

∫ n

1

{t}
t
dt

= n log n− n+ 1 +

∫ n

1

{t}
t
dt,

since n ∈ N here and thus {n} = 0. Next, set

F (x) =

∫ x

0
({t} − 1/2)dt.

Since {t} − 1/2 is a 1-periodic function of mean 0 over a complete period,
we find that F is also 1-periodic. In particular, F (n) = 0 for all n ∈ N, and
F (x) = O(1) for all x � 1. Integration by parts implies that∫ n

1

{t}
t
dt =

logn

2
+

∫ n

1

{t} − 1/2

t
dt =

logn

2
+

F (t)

t

∣∣∣n
t=1

+

∫ n

1

F (t)

t2
dt

=
logn

2
+

∫ n

1

F (t)

t2
dt.

(Justify why we can integrate by parts even though F is not differentiable
everywhere.) The integral

∫∞
1 F (t)t−2dt converges absolutely by the esti-

mate F (t) = O(1) and its tails satisfy the bound∣∣∣∣ ∫ ∞

n

F (t)

t2
dt

∣∣∣∣ �
∫ ∞

n

|F (t)|
t2

dt 

∫ ∞

n

dt

t2
=

1

n
.

This proves that

log(n!) = (n+ 1/2) logn− n+ c+O(1/n), where c = 1 +

∫ ∞

1

F (t)

t2
dt.

Since eO(1/n) = 1+O(1/n) by Taylor’s theorem, the proof will be complete
provided that we can show that ec =

√
2π. Establishing this identity requires

different means outlined in Exercise 1.11 below. Alternatively, see Theorem
1.13. �

The saddle-point method

One of the most useful methods for obtaining asymptotic evaluations of in-
tegrals is the saddle-point method .1 In its simplest form that we present here
it is also called Laplace’s method and it is used to evaluate asymptotically

integrals of the form
∫ b
a ef , where f : [a, b] → R is a function. In practice,

f depends on some parameters and our goal is to estimate
∫ b
a ef in terms of

these parameters.

1Other names for it are “method of the steepest descent” and “stationary-phase method”.
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The saddle-point method 17

If f has a unique maximum in [a, b], say at c, then we may expect that

most of the mass of the integral
∫ b
a ef(x)dx comes from values of x around

c. If c ∈ (a, b) and f is a smooth function, then c is a stationary point of f ,
that is to say, f ′(c) = 0. Moreover, if f ′′(c) does not vanish, then it must
be negative by the maximality of f(c). Using quadratic approximation, we
find that

f(x) ≈ f(c)− |f ′′(c)|
2

(x− c)2,

so that we might expect that

(1.14)

∫ b

a
ef(x)dx ≈

∫
x≈c

ef(c)−|f ′′(c)|(x−c)2/2dx.

The integrand on the right-hand side of the above formula decays fast when
x moves away from c. Hence, it seems reasonable to expect that∫ b

a
ef(x)dx ≈

∫ ∞

−∞
ef(c)−|f ′′(c)|(x−c)2/2dx = ef(c)

√
2π/|f ′′(c)|,

where we used the identity
∫
R e−u2/2du =

√
2π.

There are various subtleties and technicalities that we left out of the
above discussion. Rather than trying to prove an abstract and general the-
orem that establishes rigorously the above formula, we demonstrate how to
handle all the necessary details in a concrete example.

Our goal is to study the asymptotic behavior of Euler’s Gamma function
that is defined for Re(s) > 0 by the formula

Γ(s) =

∫ ∞

0
e−xxs−1dx.

This function extends the usual factorial function. Indeed, noticing that
e−x = (−e−x)′ and integrating by parts, we deduce the functional equation
of the Gamma function

(1.15) Γ(s+ 1) = sΓ(s),

valid whenever Re(s) > 0. Iterating this formula implies that Γ(n+1) = n!
for all n ∈ Z�0. Moreover, (1.15) can be used to meromorphically continue
Γ to the entire complex plane: applying it n+ 1 times, we deduce that

(1.16) Γ(s) =
Γ(s+ n+ 1)

s(s+ 1) · · · (s+ n)
,

which can be taken as the definition of Γ for Re(s) > −n − 1. It is clear
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18 1. Asymptotic estimates

from this formula that the only singularities of Γ are simple poles at 0, −1,
−2, . . . with ress=−n Γ(s) = (−1)n/n!.2

Let us now use the saddle-point method to estimate Γ(s) when s � 1.
We note that

(1.17) Γ(s) =
Γ(s+ 1)

s
=

1

s

∫ ∞

0
ef(x)dx, where f(x) = −x+ s log x.

We have f ′(x) = −1 + s/x and f ′′(x) = −s/x2. In particular, the function
f has a unique maximum in the positive reals at x = s. If we can show that
the integral in (1.17) is dominated by values of x very close to s and carry
out the argument leading to (1.14), we will deduce that

Γ(s) ∼ (s/e)s
√

2π/s,

which is a generalization of Stirling’s formula for the factorial function.

In order to establish the above formula rigorously, we begin by showing
that we may truncate the range of integration in (1.17) to values of x that
are very close to s. This is done in two stages.

First, we show we can discard the portion of the integral over [2s,+∞)
at the cost of a small error term. Indeed, for each x � 2s, we have f ′(x) �
−1/2. Hence, the Mean Value Theorem implies that f(x) � f(2s) − (x −
2s)/2. Consequently,∫ ∞

2s
ef(x)dx � 2ef(2s) = 2ef(s)+(log 2−1)s,

and thus

Γ(s) =
1

s

∫ 2s

0
ef(x)dx+O(ef(s)−s/4).

Next, we show we can discard the portion of the integral over E := {x ∈
(0, 2s] : |x−s| � s2/3}. Indeed, for all x ∈ E, Taylor’s theorem implies there
is some c ∈ (0, 2s] such that f(x) = f(s) + (x − s)f ′(s) + (x − s)2f ′′(c)/2.
We have f ′(c) = −s/c2 � −1/(4s) and (x− s)2 � s4/3. Therefore,∫

E
ef(x) �

∫ 2s

0
ef(s)−s1/3/8dx = 2sef(s)−s1/3/8.

In conclusion, we have the asymptotic formula

(1.18) Γ(s) =
1

s

∫
|x−s|�s2/3

ef(x)dx+O(ef(s)−s1/3/10).

2Recall that a function f that is analytic in the punctured disk { z ∈ C : 0 < |z − a| < r }
has a Laurent series expansion f(z) =

∑
n∈Z cn(z − a)n about a. Its residue at a is defined to be

c−1 and is denoted by resz=a f(z). If there is an integer m � 1 such that c−m 	= 0 and cn = 0 for
n < −m, then we say that f has a pole of order m at a. The pole is called simple when m = 1.
A simple way to check whether f has a simple pole at a is to compute limz→a(z − a)f(z). If this
limit exists and is non-zero, then f has a simple pole at z = a of residue c−1 = limz→a(z−a)f(z).
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The saddle-point method 19

Consider now the portion of the integral with |x − s| � s2/3. For such
x, we have f ′′′(x) = 2s/x3 = O(1/s2) and thus

f(x) = s log(s/e)− (x− s)2

2s
+O

(
|x− s|3

s2

)
by Taylor’s theorem. Consequently,

ef(x) = (s/e)se−(x−s)2/2s+O(|x−s|3/s2)

= (s/e)se−(x−s)2/2s(1 +O(|x− s|3/s2)),

where we used the formula eδ = 1 + O(δ) for bounded values of δ, a con-
sequence of the Mean Value Theorem. We make the change of variables
x = s+ y

√
s to find that∫

|x−s|�s2/3
ef(x)dx = (s/e)s

√
s

∫
|y|�s1/6

e−y2/2(1 +O(|y|3/
√
s))dy.

Since
∫
R e−y2/2dy =

√
2π and

∫
R |y|3e−y3/2dy < ∞, we conclude that

(1.19)

∫
|x−s|�s2/3

ef(x)dx = (s/e)s
√
s
(√

2π −R+O(1/
√
s)

)
,

where

R :=

∫
|y|>s1/6

e−y2/2dy �
∫
|y|>s1/6

e−|y|/2dy = 4e−s1/6/2.

Together with (1.18), the above estimates imply that

(1.20) Γ(s) = (s/e)s
√

2π/s
(
1 +O(1/

√
s)

)
(s � 2),

thus generalizing Theorem 1.12, only with a weaker error term.

The above formula can be further extended to complex values of s and
the error term can be improved.

Theorem 1.13 (Stirling’s formula II). Fix δ > 0. Uniformly for s ∈ C with
|s| � 1 and | arg(s)| � π − δ, we have that

Γ(s) = (s/e)s
√

2π/s (1 +O(1/|s|)).

Proof. For general complex values of s, the function f(x) = −x + s log x
does not have a stationary point on the semiline R�0. One approach to
proving the theorem is to employ Cauchy’s residue theorem to write

Γ(s) =
1

s

∫
L
e−zzsdz,

where L is the semiline { z ∈ C : z = λs, λ � 0 } traversed from 0 to ∞. The
new contour contains the stationary point z = s and we could use the ideas
leading to (1.20) to estimate Γ(s). This is rather complicated in practice
(and an excellent exercise). Instead, we use a trick.
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20 1. Asymptotic estimates

We begin by noticing that

(1.21) Γ(s) = lim
n→∞

Γ(s+ n+ 1)

s(s+ 1) · · · (s+ n)
.

We will use the method of proof of (1.20) to show that

(1.22) Γ(s+ n+ 1) ∼ e−nns+n
√
2πn (n → ∞).

For the purposes of proving (1.22), s is considered fixed. We then have

Γ(n+ s+ 1) =

∫
|x−n|�n2/3

e−xxs+ndx+O
(∫

|x−n|�n2/3

e−xxσ+ndx
)

=

∫
|x−n|�n2/3

e−xxs+ndx+ on→∞(nσ(n/e)n
√
n),

where we bounded the error term using a variant of (1.18) with n+σ in place

of s. For the main term, we note that xs ∼ ns when |x− n| � n2/3. On the

other hand, we may estimate the integral of e−xxn over x ∈ [n−n2/3, n+n2/3]
using (1.19) (with n in place of s). This proves (1.22).

Now, combining (1.21) and (1.22), we arrive at the formula

(1.23) log Γ(s) = lim
n→∞

(
(s+ n) logn− n+ log

√
2πn

s
−

n∑
j=1

log(s+ j)

)
.

We employ the Euler-Maclaurin formula to estimate the sum over j:

n∑
j=1

log(s+ j) =

∫ n

0
log(s+ x)dx+

∫ n

0

{x}
s+ x

dx

= (s+ n) log(s+ n)− s log s− n+
log(s+ n)− log s

2

+

∫ n

0

{x} − 1/2

s+ x
dx.

If we set F (x) =
∫ x
0 ({x}−1/2)dx 
 1 and integrate by parts as in the proof

of Theorem 1.12, we find that

n∑
j=1

log(s+ j) = (s+ n) log(s+ n)− s log s− n+
log(s+ n)− log s

2

+

∫ n

0

F (x)

(s+ x)2
dx.

Inserting the above formula into (1.23) yields that

log Γ(s) = s log s− s+
log(2π/s)

2
+

∫ ∞

0

F (x)

(s+ x)2
dx.
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It remains to show that the integral on the right-hand side of the above
equality is 
 1/|s|. Indeed, if s = σ+ it with σ � 0, then |x+ s| � |x|+ |s|,
so that ∫ ∞

0

F (x)

(s+ x)2
dx �

∫ ∞

0

1

(x+ |s|)2dx 
 1

|s| .

Finally, if s = σ + it with σ � 0, then our assumption that | arg(s)| � π − δ
implies that |σ| 
δ |t| and thus |s| � |t|+ |σ| �δ |t|. Hence∫ ∞

0

F (x)

(s+ x)2
dx 


∫ ∞

0

dx

(x− |σ|)2 + t2
�

∫ 2|s|

0

dx

t2
+

∫ ∞

2|s|

dx

(x/2)2

δ

1

|s| ,

which completes the proof. �

We conclude our discussion on the Gamma function by proving that it
can be represented by an infinite product. (See Exercise 1.14 for the rigorous
definition of convergence of infinite products.)

Theorem 1.14. For all s ∈ C, we have that

Γ(s) =
1

s

∞∏
n=1

(1 + 1/n)s

1 + s/n
=

e−γs

s

∞∏
n=1

es/n

1 + s/n
.

In particular, Γ does not have any zeroes.

Proof. By (1.21) and (1.22) with N in place of n, we have that

Γ(s) = lim
N→∞

N !N s

s(s+ 1) · · · (s+N)
=

1

s
lim

N→∞

N∏
n=1

n

s+ n

(
n+ 1

n

)s

,

and the first equality follows. Finally, the second equality follows by noticing
that

∏N
n=1(1 + 1/n) = (N + 1) ∼ e−γ

∏N
n=1 e

1/n by Theorem 1.11. �

Exercises

Exercise 1.1. Consider the following functions:

f1(x) = x1/ log log x, f2(x) = e
√
log x, f3(x) = (log x)A, f4(x) =

√
x,

f5(x) = ex, f6(x) =
x

(log x)A
, f7(x) =

x

e
√
log x

, f8(x) = log log x,

where A is a fixed positive real number. Order the functions in terms of their
order of magnitude as x → ∞, namely find a permutation σ ∈ S8 such that
fσ(1)(x) 
 fσ(2)(x) 
 · · · 
 fσ(8)(x) when x →∞.

Exercise 1.2. Show the following asymptotic estimates:

(a) log(1 + δ) = δ + O(δ2) for δ ∈ [−1/2, 1/2].

(b)
√
x+ 1 =

√
x+O(1/

√
x) for x � 1.

(c) eδ = 1 +O(δ) for |δ| � 1.
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22 1. Asymptotic estimates

(d) If p > 1, then
∑

n>x 1/n
p 
p x1−p for all x � 1.

(e) Let ρ ∈ (0, 1) and consider a sequence (an)
∞
n=1 such that 0 � an+1 � ρan for

all n � 1. Then ∑
n�N

an �ρ aN .

Exercise 1.3. Show that there is a polynomial Pk of degree k + 1 and of leading
coefficient 1/(k + 1) such that

N∑
n=1

nk = Pk(N) for all N ∈ N.

[Hint: Use Abel’s summation formula (1.9) and induction on k.]

Exercise 1.4.

(a) Prove that ∑
n�x

√
n =

2

3
x3/2 +O(

√
x) (x � 1).

(b) Prove that there is some constant c such that∑
n�x

1√
n
= 2

√
x+ c+O

( 1√
x

)
(x � 1).

Exercise 1.5.

(a) If f : R�1 → R�0 is decreasing, then show that∫ ∞

�x�+1

f(t)dt �
∑
n>x

f(n) �
∫ ∞

�x�
f(t)dt (x � 1).

(b) Prove that

1

δxδ
�

∑
n>x

1

n1+δ
� 1

δ(x− 1)δ
(δ > 0, x � 2)

and

log x �
∑
n�x

1

n
� 1 + log x (x � 1).

Exercise 1.6. A number n is called square-full if p2|n for all primes p|n.
(a) Show that n is square-full if and only if it can be written as n = a2b3 for some

integers a, b.

(b) Prove that #{n � x : n is square-full } �
√
x for x � 1.

Exercise 1.7. Define Chebyshev’s psi function

ψ(x) :=
∑
pk�x

log p.

(a) Prove that |ψ(x)− θ(x)| � √
x log x for all x � 1.

(b) Prove that the asymptotic relations π(x) ∼ x/ log x, θ(x) ∼ x and ψ(x) ∼ x
are equivalent as x →∞.
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(c) Prove that the asymptotic estimates π(x) = li(x) + O(
√
x log x), θ(x) = x +

O(
√
x log2 x) and ψ(x) = x+O(

√
x log2 x) are equivalent in the range x ∈ R�2.

(d) Fix c > 0. Prove that the estimates π(x) = li(x) + O(xe−c
√
log x), θ(x) =

x+O(xe−c
√
log x log x) and ψ(x) = x+O(xe−c

√
log x log x) are equivalent in the

range x ∈ R�2.

Exercise 1.8. Let (an)
∞
n=1 be a sequence of complex numbers, and define

M(x) =
1

x

∑
n�x

an and L(x) =
1

log x

∑
n�x

an
n

to be its mean value and its logarithmic mean value, respectively.

(a) If limx→∞ M(x) = �, then show that limx→∞ L(x) = � as well.

(b∗) Construct a sequence of an ∈ [0, 1] for which L(x) tends to a limit as x →∞,
whereas M(x) does not.

Exercise 1.9. Here we study the asymptotic behavior of a Poisson distribution of
parameter λ →∞. Throughout we fix ε > 0 and c � 2.

(a) Recall Exercise 1.2(e), and let Q(u) = u log u− u+ 1. Show that:

(i)
∑
n�uλ

e−λλn

n!
�ε,c

e−Q(u)λ

√
λ

if 1 + ε � u � c ;

(ii)
∑

0�n�uλ

e−λλn

n!
�ε

e−Q(u)λ

√
λ

if ε � u � 1− ε.

(b) For fixed α < β and λ →∞, show that

∑
λ+α

√
λ<n�λ+β

√
λ

e−λλn

n!
∼ 1√

2π

∫ β

α

e−t2/2dt .

[Hint: First, prove the estimate e−λλn/n! ∼ (2πλ)−1/2e−(n−λ)2/2λ when n =

λ+O(
√
λ) and λ →∞.]

Exercise 1.10. This exercise generalizes the proof of Theorem 1.12.

We define the sequence of the Bernoulli polynomials Bn(x) and of the Bernoulli
numbers Bn as follows: we let B0(x) = B0 = 1, B1 = −1/2 and B1(x) = x + B1.

We then let B2(x) = B2 + 2
∫ x

0
B1(x)dx, where B2 is such that

∫ 1

0
B2(x)dx = 0,

that is to say, B2 = 1/6 and B2(x) = x2 − x + 1/6. In general, assuming we have
defined Bn(x), we let Bn+1(x) = Bn+1 + (n + 1)

∫ x

0
Bn(t)dt, where Bn+1 is such

that
∫ 1

0
Bn+1(x)dx = 0.

(a) For n �= 1, show that Bn(1) = Bn(0) = Bn. Conclude that the function x →
Bn({x}) is 1-periodic and continuous. In addition, show that

∫ x

0
Bn({t})dt =

(Bn+1({x})− Bn+1)/(n+ 1) for all n � 1 and x ∈ R.
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24 1. Asymptotic estimates

(b) Given integers a < b and k � 1, and a smooth function f , prove that

∑
a<n�b

f(n) =

∫ b

a

f(x)dx+

k∑
	=1

(−1)	B	

�!
(f (	−1)(b)− f (	−1)(a))

+ (−1)k+1

∫ b

a

Bk({x})f (k)(x)

k!
dx.

(c) Let m ∈ Z and k ∈ N. Show that∫ 1

0

Bk(x)e
−2πimxdx = −1m �=0

k!

(2πim)k
.

[Hint: Use part (b) when m �= 0.] Conclude that

Bk({x}) = − k!

(2πi)k

∑
m �=0

e2πimx

mk
for k � 2.

(d) For k � 1, show that B2k+1 = 0 and

B2k =
(−1)k−1(2k)!

22k−1π2k

∑
m�1

1

m2k
=

(−1)k−1(2k)!ζ(2k)

22k−1π2k
.

(e) Show that Bn(x) =
∑n

k=0

(
n
k

)
Bn−kx

k for n � 0, and deduce that Bn(x+ 1) =

Bn(x) + nxn−1 for n � 1.

(f) Prove the recursion formula Bn = −(n + 1)−1
∑n+1

k=2

(
n+1
k

)
Bn+1−k for n � 1

and deduce from it that |Bn| � (4/5)nn!.

(g) Consider the generating series F (z, x) =
∑∞

n=0 Bn(x)z
n/n!. Prove that ∂F/∂x

= zF , as well as that F (z, 1)−F (z, 0) = z. Deduce that F (z, x) = ezxz/(ez−1).

(h) Show that F (z, 0) + z/2 = z/(ez − 1) + z/2 is an even function and give a new
proof that B2n+1 = 0 for n � 1.

(i) Noticing that z/(ez − 1) = 1/(1 +
∑∞

n=1 z
n/(n+ 1)!), give an explicit formula

for Bn.

Exercise 1.11.∗ (a) For each n ∈ Z�0, let In :=
∫ π/2

0
(cosx)ndx. Show that

I2k =
π

2
· 1 · 3 · · · (2k − 1)

2 · 4 · · · (2k) and I2k+1 =
2 · 4 · · · (2k)

1 · 3 · · · (2k + 1)
.

(b) Show that In+1 ∼ In as n → ∞. [Hint: Show that most of the mass of the
integral defining In is concentrated around x = 0.]

(c) If c is the constant from the proof of Theorem 1.12, show that ec =
√
2π.

(d) Use the saddle-point method to prove that In ∼
√
π/(2n).

Exercise 1.12. Fix δ > 0, and let s ∈ C with |s| � 1 and | arg(s)| � π − δ.

(a) If s = σ + it, prove that

|Γ(s)| �δ |s|σ−1/2e−σ−|t arg(s)|.

In particular, if |σ| � C and |t| � 1, then |Γ(s)| �C |t|σ−1/2e−π|t|/2.
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(b) Show that

(Γ′/Γ)(s) = log s− 1/(2s) +O(1/|s|2).
[Hint: If f(s) = log

(
Γ(s)(e/s)s(s/2π)1/2

)
and ε is small enough in terms of δ,

then f ′(s) = (2πi)−1
∮
|z|=ε|s| z

−2f(s+ z)dz 
ε,δ 1/|s|2.]

Exercise 1.13. For all s ∈ C, show the reflection and the duplication formula of
the Gamma function:

Γ(s)Γ(1− s) =
π

sin(πs)
and Γ(2s) = π−1/222s−1Γ(s)Γ(s+ 1/2).

[Hint: Show that Γ(s)Γ(1 − s) sin(πs) and 4sΓ(s)Γ(s + 1/2)/Γ(2s) are entire, 1-
periodic and bounded functions.]

Exercise 1.14. Given a sequence (an)
∞
n=1 ⊆ C, consider the infinite product∏∞

n=1(1 + an) and the partial products PM,N =
∏N

n=M (1 + an). We then define
the following notions:

•
∏∞

n=1(1 + an) diverges to zero if limN→∞ PM,N = 0 for all M ∈ Z�1.

•
∏∞

n=1(1 + an) converges (conditionally) if there is some p �= 0 and some
M ∈ Z�1 such that limN→∞ PM,N = p. We then define

∏∞
n=1(1 + an) =

p
∏M−1

n=1 (1+an) and say that
∏∞

n=1(1+an) converges to p
∏M−1

n=1 (1+an).

•
∏∞

n=1(1 + an) converges absolutely if
∏∞

n=1(1 + |an|) converges.
(a) Check that the definition of conditional convergence of

∏∞
n=1(1 + an) does not

depend on the choice of M . [Hint: Verify first that if
∏

n�1(1 + an) converges,

then 1 + an �= 0 for all sufficiently large n.]

(b) Assume that
∏∞

n=1(1+an) converges. Show that
∏∞

n=1(1+an) = 0 if and only
if there is some n such that 1 + an = 0.

(c) Show that if
∏∞

n=1(1 + an) converges, then limn→∞ an = 0.

(d) Show that
∏∞

n=1(1 + an) converges if and only if for each ε > 0 there is an
integer N = N(ε) such that |PN1,N2

− 1| < ε for N2 � N1 � N .
[Hint: Use Cauchy’s criterion for the convergence of sequences.]

(e) Show that if
∏∞

n=1(1+an) converges absolutely, then it also converges condition-

ally. [Hint: Expand
∏N2

n=N1
(1+an)−1 and compare it with

∏N2

n=N1
(1+|an|)−1.]

(f) Show that
∏∞

n=1(1 + an) converges absolutely if and only if so does the series∑∞
n=1 an. [Hint: In both cases limn→∞ an = 0, whence |an|/2 � log(1+ |an|) �

|an| for large n.]

(g) Show that
∏∞

n=1(1 + an) converges if and only if there is some N ∈ Z�1 such
that |an| < 1 for n � N and the series

∑∞
n=N log(1 + an) converges, where log

denotes the principal branch of the logarithm (i.e., log x ∈ R for x > 0), as
follows:
1) Note that if either

∏∞
n=1(1 + an) or

∑∞
n=1 an converges, the sequence

(an)
∞
n=1 converges to 0. Conclude that in either case there is N0 ∈ Z�1

such that Re(1 + an) > 0 and |an| < 1 for n � N0.

2) Set SN1,N2
=

∑N2

n=N1
log(1+an) for N2 � N1 � N0, where N0 is as above.

Show that there are integers kN1,N2
such that logPN1,N2

= SN1,N2
+

2πikN1,N2
for N2 � N1 � N0.
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26 1. Asymptotic estimates

3) Assume that limn→∞ an = 0. Show that there is some N ′
0 ∈ Z�N0

such
that |SN1,N2

− SN1,N2+1| < π and | logPN1,N2
− logPN1,N2+1| < π for

N2 � N1 � N ′
0. Use induction on N2 to conclude that kN1,N2

= 0 for
N2 � N1 � N ′

0.
4) Prove the equivalence stated in part (g).

(h) Show that if
∑∞

n=1 |an|2 < ∞, then the product
∏∞

n=1(1+an) converges if and
only if the series

∑∞
n=1 an converges.

(i) Assume that an �= −1 for all n. Is it possible that
∏∞

n=1(1 + an) diverges and∑∞
n=1 an converges? Is it possible that

∏∞
n=1(1 + an) converges and

∑∞
n=1 an

diverges?
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Chapter 2

Combinatorial ways to
count primes

Perhaps the oldest way of counting primes is the sieve of Eratosthenes.
Named after the ancient Greek mathematician Eratosthenes of Cyrene, it
is an algorithm that determines all primes up to a given threshold x. In
its core lies the fact that any composite integer n > 1 has a prime divisor
p � √

n. The steps of the algorithm are:

(1) List all integers in [2, x].

(2) Circle the number 2 and delete all proper multiples of it.

(3) Find the smallest n ∈ [3,
√
x ] that has not been deleted nor circled yet

and circle it. If such an n does not exist, circle all integers that have not
been deleted yet and terminate the algorithm.

(4) Delete all proper multiples of n and return to step (3).

It is clear that after the termination of the algorithm the circled integers
will be exactly the primes � x. The algorithm of Eratosthenes is called a
“sieve” because the only integers that “do not pass through it”, that is to
say, are not deleted at any stage of the algorithm, are the primes � x.

The idea of Eratosthenes was further developed by Legendre, who used
it to write down a formula for π(x). Indeed, an integer n ∈ (

√
x, x] is prime

if and only if it has no prime factors � √
x. We thus arrive at the formula

(2.1) π(x) = #{n � x : (n, P (
√
x )) = 1 }+O(

√
x ),

where we recall that

P (y) =
∏
p�y

p.

27
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28 2. Combinatorial ways to count primes

Consider the more general problem of estimating the number of integers
� x that are coprime to some integer m. Since (n + m,m) = (n,m), the
condition that n and m are coprime is m-periodic. In particular, every
interval of length m contains the same number of integers n coprime to m.
This number is given by Euler’s totient function

ϕ(m) := #{ 1 � n � m : (n,m) = 1 } = #(Z/mZ)∗,

where (Z/mZ)∗ denotes the group of reduced residues mod m. We will give
a formula for the number of integers � x that are coprime to m in terms
of ϕ(m), but first we establish some fundamental properties of the totient
function.

The Chinese Remainder Theorem implies the group isomorphism

(Z/abZ)∗ ∼= (Z/aZ)∗ × (Z/bZ)∗ whenever (a, b) = 1.

We infer from this relation that ϕ(ab) = ϕ(a)ϕ(b) whenever (a, b) = 1. Any
function f : N → C satisfying the functional equation

(2.2) f(ab) = f(a)f(b) whenever (a, b) = 1

and the condition f(1) = 1 is called multiplicative. If (2.2) holds for all
a, b ∈ N without any restrictions on their greatest common divisor, then f is
called completely multiplicative. Thus we see that ϕ is multiplicative but not
completely multiplicative (for example, ϕ(4) = 2 but ϕ(2) = 1). Iterating
(2.2) with f = ϕ implies that

ϕ(m) =
∏
pk‖m

ϕ(pk).

Hence calculating ϕ(m) is reduced to finding its value on prime powers. The
latter is easier, since the condition (n, pk) = 1 simplifies to the condition
p � n. Consequently,

ϕ(pk) = pk −#{ 1 � n � pk : p|n } = pk − pk−1.

We thus deduce the formula

ϕ(m)

m
=

∏
p|m

(
1− 1

p

)
.

Now, we go back to the problem of estimating the counting function of
integers coprime to m. As we already discussed, periodicity implies that
each interval of length m contains exactly ϕ(m) of such integers. If N is the
unique integer satisfying the inequalities Nm � x < (N + 1)m, then

N · ϕ(m) � #{n � x : (n,m) = 1 } � (N + 1) · ϕ(m).
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2. Combinatorial ways to count primes 29

Noticing that N = �x/m� = x/m+O(1), we find that

(2.3)

#{n � x : (n,m) = 1 } = (x/m+O(1)) · ϕ(m)

= x
∏
p|m

(
1− 1

p

)
+O(ϕ(m)).

The remainder term in the above estimate can be improved significantly.
To do so, we reappraise the sieve of Eratosthenes-Legendre from a purely
combinatorial point of view: we have

(2.4) #{n � x : (n,m) = 1 } = #
⋂
p|m

{n � x : p � n }.

We apply the inclusion-exclusion principle to rewrite the right-hand side as

#
⋂
p|m

{n � x : p � n } = #{n � x} −
∑
p|m

#{n � x : p|n }(2.5)

+
∑
p<p′

p,p′|m

#{n � x : pp′|n } ∓ · · ·

= �x� −
∑
p|m

�x/p�+
∑
p<p′

p,p′|m

�x/(pp′)� ∓ · · · .(2.6)

The above formula has 2#{p|m} summands—one for each choice of a subset
of the distinct prime factors of m. The quantity #{p|m} will reoccur several
times throughout the book, so we give it a name:

(2.7) ω(m) := #{p|m}, as well as Ω(m) :=
∑
pk‖m

k.

Inserting the approximation �y� = y +O(1) into (2.6) and noticing that

1−
∑
p|m

1

p
+

∑
p<p′

p,p′|m

1

pp′
∓ · · · =

∏
p|m

(
1− 1

p

)

yields:

Theorem 2.1. For x � 1 and m ∈ N, we have

#{n � x : (n,m) = 1 } = x
∏
p|m

(
1− 1

p

)
+O

(
2ω(m)

)
.

Remark 2.2. The above theorem has a natural probabilistic interpretation:
for n to be coprime to m, we must have that p � n for each p|m. The chances
that a randomly chosen integer n is a multiple of p are about 1/p: indeed,
we have #{n � x : p|n } = �x/p� ∼ x/p as x → ∞, so we see that a
1/p proportion of integers are divisible by p. But then, the chances that
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30 2. Combinatorial ways to count primes

an integer is not divisible by p are 1 − 1/p. Assuming that divisibility
by different primes are independent events, we are led to expect that the
chances that an integer is coprime to x are about

∏
p|m(1− 1/p), as proven

in Theorem 2.1 when x and m are in appropriate ranges. We will return to
this probabilistic heuristic in Chapter 15. �

In order to appreciate the strength of Theorem 2.1 in the context of the
sieve of Eratosthenes, we need to understand the product

∏
p|m(1 − 1/p)

when m = P (
√
x). The following lemma establishes an upper bound that

is sharp up to a multiplicative constant (cf. Theorem 3.4). The idea of its
proof goes back to Euler and will play a fundamental role in counting primes
throughout the book.

Lemma 2.3. For each x � 2,∏
p�x

(
1− 1

p

)
� 1

log x
.

Proof. Instead of bounding the product from above, we consider its recip-
rocal ∏

p�x

(
1− 1

p

)−1
=

∏
p�x

(
1 +

1

p
+

1

p2
+ · · ·

)
.

Expanding the rightmost product, we see that the summands are in one-
to-one correspondence with products of the form 1/(pa11 · · · parr ), where p1 <
· · · < pr � x and ai � 1 (the empty product with r = 0 is also permitted).
By the Fundamental Theorem of Arithmetic, this means that the summands
can be reindexed as 1/n, where the variable n runs over all integers that
only have prime factors � x, that is to say, the set of x-smooth integers. In
particular, this includes all integers n � x, so that∏

p�x

(
1− 1

p

)−1
�

∑
n�x

1

n
�

∑
n�x

∫ n+1

n

dt

t
� log x,

as claimed. �

Combining relation (2.1), Theorem 2.1 and Lemma 2.3, it seems like we
can prove that π(x) � 2x/ log x. However, this is wishful thinking because
the error term in Theorem 2.1 becomes way too big when m = P (

√
x):

we have ω(m) = π(
√
x), which we expect to be of size � √

x/ log x. The
underlying reason for the failure of Theorem 2.1 in estimating π(x) is that
relation (2.6) has an enormous number of terms. As we will see in Theorem
3.4(c), this is not a mere technicality: the function x

∏
p�√

x(1−1/p), which

is the alleged main term in Theorem 2.1 whenm = P (
√
x ), is not asymptotic

to π(x) as x →∞.
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Even though the above discussion puts a cap on our expectations, the
sieve of Eratosthenes-Legendre can still be used to prove that primes are
sparse. The fundamental observation, made by Legendre, is that since we
are only after an upper bound for π(x), we may use the simple inequality

π(x) � #{n � x : (n, P (y)) = 1 }+ y,

where y is a parameter at our disposal. This inequality follows by noticing
that every prime p > y is coprime to P (y). We then use Theorem 2.1 to
find that

(2.8) π(x) � x
∏
p�y

(
1− 1

p

)
+O(y + 2π(y)).

To bound the right-hand side, we apply Lemma 2.3. Taking y = log x yields

(2.9) π(x) 
 x

log log x
.

Despite the fact that the above estimate is rather weak compared to
what we expect to be the truth, at least it demonstrates that approximately
100% of the integers are composite (see also Exercise 2.3). On the other
hand, taking logarithms in Lemma 2.3 and using Taylor’s expansion for the
function log(1− δ) when |δ| � 1/2, we find that∑

p�x

1

p
� log log x−O(1)

for all x � 3, which shows that primes are not too sparse.

Chebyshev’s estimate

In 1852, Chebyshev discovered a completely different way to count primes
and vastly improve (2.9). His argument was simplified significantly by Erdős.

The key observation is that the central binomial coefficient
(2n
n

)
is an integer

that is divisible by all primes p ∈ (n, 2n]. Indeed,(
2n

n

)
=

2n(2n− 1) · · · (n+ 1)

n!
,

so if p ∈ (n, 2n], then p divides the numerator and is coprime to the denom-

inator. Thus p|
(
2n
n

)
for all p ∈ (n, 2n], as claimed. But then the product of

all such primes divides
(2n
n

)
, and we deduce that

∏
n<p�2n

p �
(
2n

n

)
�

2n∑
j=0

(
2n

j

)
= 4n.
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32 2. Combinatorial ways to count primes

The rightmost inequality is almost sharp, since Stirling’s formula implies
that

(2n
n

)
� 4n/

√
n. Taking logarithms and recalling the definition of θ(x)

in Example 1.8, we find that

θ(2n)− θ(n) =
∑

n<p�2n

log p � n log 4

for all n ∈ N. Applying the above inequality with n = 2j , 0 � j � k, and
summing telescopically implies that

θ(2k) � 2k+1 log 4.

For each x � 1, there is k ∈ N such that 2k−1 � x < 2k, whence

θ(x) � θ(2k) � 2k+1 log 4 � 4x log 4 � 6x.

We may pass from the above inequality to an upper bound for π(x) using
partial summation, as in Example 1.8: for all x � 2, we have

π(x) =
θ(x)

log x
+

∫ x

2

θ(y)

y log2 y
dy � 6x

log x
+

∫ x

2

6y

log2 y
dy 
 x

log x
.

An analogous lower bound can also be established by studying the prime
factorization of

(2n
n

)
. The details of the proof are outlined in Exercise 2.10.

This leads us to:

Theorem 2.4 (Chebyshev’s estimate). For x � 2, we have

π(x) � x

log x
.

Exercises

Exercise 2.1. Let f be an arithmetic function. Show the following:

(a) f is multiplicative if and only if f(n) =
∏

pk‖n f(p
k) for all n ∈ N.

(b) f is completely multiplicative if and only if f(n) =
∏

pk‖n f(p)
k for all n ∈ N.

Exercise 2.2. A function f : N → C is called additive if

f(mn) = f(m) + f(n) whenever (m,n) = 1.

Show that the functions ω and Ω, defined in (2.7), are additive.

Exercise 2.3. For x � y � 3, prove that

#{x < p � x+ y} 
 y

log log y
.

Exercise 2.4 (The square-free sieve).

(a) Modify the sieve of Eratosthenes-Legendre to prove that

#{n � x : n is square-free } = x ·
∏
p

(
1− 1

p2

)
+O(

√
x) (x � 1).
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(b) Prove that
∏

p(1−1/p2) = 6/π2. [Hint: Show
∏

p�y(1−1/p2)−1=
∑

n∈S(y) 1/n
2,

where S(y) = {n ∈ N : p|n ⇒ p � y } is the set of y-smooth numbers, and use
Exercise 1.10(d) with k = 1.]

Exercise 2.5. Let f(n) = #{(n1, n2) ∈ N2 : [n1, n2] = n}, where [n1, n2] is the
least common multiple of n1 and n2. Show that f is multiplicative and evaluate it
at prime powers.

Exercise 2.6. Set f(n) = ϕ(n)/n, and let {nk}∞k=1 be the sequence of values n at
which f attains a “record low”, that is to say, n1 = 1 and, for k � 2, nk is defined
as the smallest integer > nk−1 with f(nk) < f(n) for all n < nk. (For example,
n2 = 2 and n3 = 6.) Find a general formula for nk and f(nk).

Exercise 2.7. Recall the definition of Chebyshev’s psi function from Exercise 1.7.
Show that |ψ(x)− θ(x)| 


√
x for x � 1.

Exercise 2.8. Let p1 < p2 < · · · denote the sequence of primes, and let Pk =
p1p2 · · · pk denote the kth primorial. The validity of the Prime Number Theorem
can be assumed in solving this exercise.

(a) Show that pk ∼ k log k and logPk ∼ k log k as k → ∞.

(b) Show that ω(n) � log n/ log log n as n → ∞. [Hint: What can you say about
ω(n) if n � Pk?]

(c) Show that

ϕ(n)

n
∼

∏
p|n

p�log n

(
1− 1

p

)
�

∏
p�logn

(
1− 1

p

)
(n →∞).

Exercise 2.9. Let τ (n) = #{d|n} be the divisor function and, more generally,
τk(n) = #{(d1, . . . , dk) ∈ Nk : d1 · · · dk = n}.
(a) Show that τk is multiplicative.

(b) For each prime power pa, show that

k � τk(p
a) � min{ka, (a+ 1)k−1}.

Conclude that kω(n) � τk(n) � min{kΩ(n), τ (n)k−1}.
(c) For each prime power pa, show the exact formula

τk(p
a) =

(
a+ k − 1

k − 1

)
.

(d) Assuming the Prime Number Theorem, find a sequence of integers n such that
τk(n) = k(1+o(1)) log n/ log logn. [Hint: How can you create an integer with lots
of divisors?]

(e) For y � 1, let Ω(n; y) =
∑

pa‖n, p>y a. Show that

Ω(n; y) � log n/ log y.

(f) Show that

τk(n) �
∏
pa‖n
p�y

(a+ 1)k−1
∏
pa‖n
p>y

ka � (2 logn+ 1)(k−1)y · klog n/ log y.
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34 2. Combinatorial ways to count primes

Choose y appropriately to conclude that

τk(n) � n(log k+o(1))/ log log n (n →∞).

Exercise 2.10. Prove the lower bound in Theorem 2.4 as follows:

(a) If vp(m) denotes the p-adic valuation of m, that is to say, the highest power of
p that divides m, show that

vp(n!) =
∑
k�1

�n/pk�.

(b) Show that �2x� − 2 �x� is a 1-periodic function taking only the values 0 and 1.
Conclude that (

2n

n

)
� (2n)π(2n).

(c) Prove that π(x) � x/ log x for x � 2.

Exercise 2.11 (Nair [147]). Let

In =

∫ 1

0

xn(1− x)ndx and Mn = lcm[n+ 1, n+ 2, . . . , 2n+ 1].

(a) Prove that In ·Mn is a non-negative integer.

(b) Prove that In � 4−n.

(c) Prove that Mn � (2n+ 1)π(2n+1).

(d) Deduce a new proof of the lower bound π(x) � x/ log x for x � 2.

Exercise 2.12.∗ Find the average value of the greatest common divisor of a and b
asymptotically, as a and b range over all integers up to x.
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Chapter 3

The Dirichlet
convolution

The combinatorics of the sieve of Eratosthenes are naturally encoded in
the Möbius function that is denoted by μ and defined by

μ(n) =

{
(−1)k if n is square-free and has k distinct prime factors,

0 otherwise.

The Möbius function can be easily seen to be multiplicative. Its connection
to the sieve of Eratosthenes is revealed by observing that, since a natural
number n equals 1 if and only if it has no prime factors, the inclusion-
exclusion principle implies that

(3.1) 1n=1 = 1−
∑
p

1p|n +
∑
p<p′

1pp′|n ∓ · · · =
∑
d|n

μ(d).

This formula is known as the Möbius inversion formula. Applying it with
(n,m) in place of n, and noticing that d|(n,m) if and only if d|n and d|m,
leads us to (2.6). The Möbius inversion formula sits naturally inside a general
framework that we develop in this chapter.

The ring of arithmetic functions

We say that f is an arithmetic function if it is of the form f : N → C. We
write A for the set of all arithmetic functions. Given f, g ∈ A, we define
their Dirichlet convolution f ∗ g to be the arithmetic function defined by

(f ∗ g)(n) =
∑
ab=n

f(a)g(b) =
∑
d|n

f(d)g(n/d) =
∑
d|n

f(n/d)g(d).

35
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36 3. The Dirichlet convolution

The triplet (A,+, ∗) is a commutative unitary ring whose unit is the function
δ(n) := 1n=1. In this set-up, the Möbius inversion formula states that μ is
the Dirichlet inverse of the constant function 1, that is to say, its inverse with
respect to the operation of the Dirichlet convolution. In general, a function
f possesses a Dirichlet inverse if and only if f(1) �= 0. In particular, all
multiplicative functions are invertible in this ring.

Note that the Dirichlet convolution preserves multiplicativity: if f and
g are multiplicative, then so is f ∗ g. It can also be shown that if f is
multiplicative, then so is its Dirichlet inverse. In particular, the operation ∗
renders the set of multiplicative functions an abelian group.

Proving the above affirmations about the Dirichlet convolution is a good
exercise.

Convolution identities

As we will see shortly, an important technique for estimating averages of
various arithmetic functions f has as its starting point a decomposition of f
as the Dirichlet convolution of two simpler arithmetic functions. With this
in mind, we study here some important examples of such decompositions.

One of the most classical convolution identities concerns the divisor func-
tion, for which we have

τ(n) = #{d|n} = (1 ∗ 1)(n).

This formula can be generalized to all higher-order divisor functions, which
we defined and studied in Exercise 2.9, by noticing that

τk(n) = #{(d1, . . . , dk) ∈ Nk : d1 · · · dk = n} = (1 ∗ · · · ∗ 1︸ ︷︷ ︸
k times

)(n).

A related identity allows us to rewrite the “sum-of-divisors function”

σ(n) :=
∑
d|n

d = (id ∗ 1)(n),

where “id” denotes here the identity function on N, that is to say, id(n) = n.

A less obvious example of a convolution identity is

(3.2) ϕ = μ ∗ id.

There are two ways to prove (3.2): either we observe that both sides are
multiplicative and compare them at prime powers, or we use that

ϕ(n) =
∑

1�n�m

∑
d|n, d|m

μ(d).

Interchanging the order of summation yields (3.2).
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Dirichlet’s hyperbola method 37

Finally, it is possible to write down a convolution identity for (a close rel-
ative of) the indicator function of primes that encapsulates the Fundamental
Theorem of Arithmetic. We start by expressing n in its prime factors, say
n =

∏
pa‖n p

a, and then take logarithms. This yields the formula

logn =
∑
pa‖n

a log p =
∑
pk|n

log p

because if pa‖n, then pk|n for k ∈ {1, . . . , a}. We have thus proven that

(3.3) log = 1 ∗ Λ,

where

Λ(n) :=

{
log p if n = pk for some prime p and some integer k � 1,

0 otherwise

is von Mangoldt’s function, which is a very convenient weighted variant of
the indicator function of the sequence of primes. As a matter of fact, due
to the identity (3.3), it is often easier to obtain results about primes by
working with the summatory function of Λ, i.e., Chebyshev’s psi function
(see Exercise 1.7), instead of π(x). We may then pass to π(x) using Exercise
2.7 and the discussion in Examples 1.8 and 1.9.

Remark 3.1. Guessing relations (3.2) and (3.3) is far from trivial. In the
next chapter, we will see a more systematic method of obtaining convolution
identities. Using it will explain (3.2) and (3.3) in a more intuitive way. �

Dirichlet’s hyperbola method

When an arithmetic function f is the Dirichlet convolution of two simpler
functions g and h, we can estimate its partial sums using what we already
know about the partial sums of g and h. The starting point is the identity

(3.4)
∑
n�x

f(n) =
∑
n�x

∑
ab=n

g(a)h(b) =
∑
ab�x

g(a)h(b).

There are several ways to rearrange the right-hand side of (3.4). An obvious
one is to fix a and sum over b. This leads us to the formula∑

n�x

f(n) =
∑
a�x

g(a)
∑
b�x/a

h(b).

The above arrangement of the summation is particularly effective when g is
either supported on small integers a, or when g has small partial sums. We
illustrate the details by estimating the partial sums of the totient function.
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38 3. The Dirichlet convolution

Theorem 3.2. For x � 2, we have∑
n�x

ϕ(n) =
3x2

π2
+O(x log x).

Proof. In the identity ϕ = μ ∗ id, we note that the functions ϕ and id are
much bigger in modulus than μ. We thus rearrange the sum as∑

n�x

ϕ(n) =
∑
a�x

μ(a)
∑
b�x/a

b.

We have
∑

b�y b = y2/2 +O(y) by the Euler-Maclaurin summation formula

(Theorem 1.10), whence∑
n�x

ϕ(n) =
∑
a�x

μ(a)
( x2

2a2
+O(x/a)

)
=

x2

2

∑
a�x

μ(a)

a2
+O

(
x
∑
a�x

|μ(a)|
a

)
,

where we used the triangle inequality to bound the error term. The sum
over a in the main term equals c + O(

∑
a>x 1/a

2) = c + O(1/x) with c =∑
a�1 μ(a)/a

2, whereas the sum over a in the error term is �
∑

a�x 1/a 

log x. To complete the proof, it remains to prove that c = 6/π2. This
identity is a special case of relation (4.12) that we will prove in the next
chapter. See also Exercise 3.8. �

Let us now use the above ideas to estimate
∑

n�x τ(n): we have∑
n�x

τ(n) =
∑
n�x

(1 ∗ 1)(n) =
∑
a�x

∑
b�x/a

1.

The innermost sum equals x/a+O(1), whence∑
n�x

τ(n) = x
∑
a�x

1

a
+O(x) = x log x+O(x),

by Theorem 1.11. This is a genuine asymptotic formula, but the error
term is only slightly smaller than the main term and we would like to
do better. Reexamining our argument, we see that the approximation∑

b�x/a 1 = x/a + O(1) is not very good for large values of a. Instead,

for large a, it would have been much better to switch the roles of a and b, by
fixing b and summing first over a instead. More formally, given parameters
A,B � 1 with AB = x, we can rearrange the sum as follows:∑

n�x

τ(n) =
∑
ab�x

1 =
∑
ab�x
a�A

1 +
∑
ab�x
a>A

1 =
∑
a�A

∑
b�x/a

1 +
∑
b�B

∑
A<a�x/b

1.

We write the rightmost sum over a as
∑

a�x/b 1−
∑

a�A 1 to find that

(3.5)
∑
n�x

τ(n) =
∑
a�A

∑
b�x/a

1 +
∑
b�B

∑
a�x/b

1−
( ∑

a�A

1
)(∑

b�B

1
)
.
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The estimate
∑

n�y 1 = y +O(1) implies that∑
n�x

τ(n) =
∑
a�A

(x/a+O(1)) +
∑
b�B

(x/b+O(1))− (A+O(1))(B +O(1)).

Gathering all remainder terms, we rewrite the above formula as∑
n�x

τ(n) =
∑
a�A

x

a
+

∑
b�x

x

b
−AB +O(A+B).

Applying Theorem 1.11 twice and recalling that AB = x, we deduce that∑
n�x

τ(n) = x
(
log(AB) + 2γ +O(1/A+ 1/B)

)
−AB +O(A+B)

= x log x+ (2γ − 1)x+O(A+B).

The optimal choice is A = B =
√
x, which yields Dirichlet’s famous estimate:

Theorem 3.3. For x � 1, we have∑
n�x

τ(n) = x log x+ (2γ − 1)x+O(
√
x).

The method of proof of Theorem 3.3 is called Dirichlet’s hyperbola
method . Its name is justified by a geometric reappraisal of it. The sum∑

ab�x 1 counts the number of lattice points (a, b) ∈ N × N below the hy-
perbola ab = x. The way we rearranged this sum corresponds to writ-
ing the range of (a, b) as X ∪ Y , where X = {(a, b) ∈ N2 : a � A} and
Y = {(a, b) ∈ N2 : b � B}. We then use inclusion-exclusion to infer that∑

n�x

τ(n) = |X ∪ Y | = |X|+ |Y | − |X ∩ Y |,

which is relation (3.5). Dirichlet’s hyperbola method is a key tool in analytic
number theory and we will encounter it several times in this book.

Mertens’ three estimates

We conclude this chapter with an application of the above circle of ideas to
the theory of primes due to Mertens. Using the convolution identity (3.3),
he discovered in 1872, several years before the Prime Number Theorem was
established, a way to estimate various sums over primes.
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Theorem 3.4 (Mertens’ three estimates). For x � 2 we have:

(a)
∑
p�x

log p

p
= log x+O(1);

(b)
∑
p�x

1

p
= log log x+ c+O(1/ log x), where c is a constant;

(c)
∏
p�x

(
1− 1

p

)
=

e−γ

log x

(
1 +O(1/ log x)

)
.

Proof. First, we prove (a). On the one hand, the identity log = Λ∗1 yields∑
n�x

logn =
∑
a�x

Λ(a)
∑
b�x/a

1 =
∑
a�x

Λ(a) · (x/a+O(1)) = x
∑
a�x

Λ(a)

a
+O(x),

where the error term was bounded using Chebyshev’s estimate (Theorem
2.4). Since

∑
a=pk, k�2 Λ(a)/a = O(1), we conclude that

∑
n�x

logn = x
∑
p�x

log p

p
+O(1).

On the other hand, we know that∑
n�x

log n = x log x− x+O(log x)

by partial summation. This completes the proof of Mertens’ first estimate.

To prove (b), we use (a) and partial summation. More precisely, let∑
p�x

log p

p
= log x+R(x),

so that R(x) = O(1). We then have∑
p�x

1

p
=

∫ x

2−

1

log t
d
∑
p�t

log p

p
=

∫ x

2

1

t log t
dt+

∫ x

2−

1

log t
dR(t).

The first integral on the right-hand side equals log log x − log log 2. In the
second integral, we integrate by parts to find that∑

p�x

1

p
= log log x− log log 2 +

R(x)

log x
− R(2−)

log 2
+

∫ x

2

R(t)

t log2 t
dt.
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Since R(2−) = − log 2 and the integral
∫∞
2 R(t)/(t log2 t)dt converges abso-

lutely by the estimate R(t) 
 1, we conclude that∑
p�x

1

p
= log log x+ c+

R(x)

log x
−

∫ ∞

x

R(t)

t log2 t
dt

= log log x+ c+O(1/ log x)

with c = − log log 2 + 1 +
∫∞
2 R(t)/(t log2 t)dt.

Finally, we prove (c). Using Taylor’s theorem, we can write log(1−x) =
−x− f(x), where f(x) = O(x2) when |x| � 1/2. In particular,

log
∏
p�x

(
1− 1

p

)
= −

∑
p�x

1/p−
∑
p�x

f(1/p).

The series
∑

p f(1/p) converges and its tail satisfies the estimate∑
p>x

f(1/p) =
∑
p>x

O(1/p2) = O(1/x).

Together with part (b), this yields the estimate

(3.6) log
∏
p�x

(
1− 1

p

)
= − log log x− κ+O(1/ log x),

where κ := c +
∑

p f(1/p). It remains to show that κ = γ. This is proven
using information about the analytic behavior of the Riemann zeta function
around the point 1 (see Exercise 5.4). �

Remark 3.5. Theorem 3.4(c) implies that the alleged main term in The-
orem 2.1 when m = P (

√
x) is ∼ e−γx/ log

√
x = 2e−γx/ log x as x → ∞.

But 2e−γ = 1.12291 . . . > 1, so we cannot have that π(x) ∼ 2e−γx/ log x,
for this would contradict Theorem 3.4(a) by partial summation. �

Corollary 3.6. As n →∞, we have

ϕ(n) � e−γn/ log logn.

Proof. This follows by Exercise 2.8(c) and Theorem 3.4(c). �

Exercises

Exercise 3.1. Let f be an arithmetic function. Prove that it has a Dirichlet
inverse g if and only if f(1) �= 0, in which case g can be calculated recursively by
the formula g(n) = −f(1)−1

∑
d|n, d>1 f(d)g(n/d).

Exercise 3.2. Let A and M denote the set of arithmetic and multiplicative func-
tions, respectively. Prove that (A,+, ∗) is a unitary commutative ring and that
(M, ∗) is an abelian group.
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42 3. The Dirichlet convolution

Exercise 3.3. Determine which of the following arithmetic functions are multi-
plicative:

f1(n) = n ; f2(n) = log n ; f3(n) = μ2(n) ; f4(n) =
∑
d|n

d ;

f5(n) = τ3(n) ; f6(n) = (−1)n−1 ; f7(n) = 1(n,30)=1 ; f8(n) = ϕ(n)/n .

Exercise 3.4. Let f be a multiplicative function and g its Dirichlet inverse.

(a) For a prime p, calculate g(p) and g(p2) in terms of the values of f .

(b) If f is completely multiplicative, show that g = μf .

Exercise 3.5. Prove the following variants of the Möbius inversion formula:

(a) Show that f = 1 ∗ g if and only if g = μ ∗ f .
(b) If f = 1 ∗ g, then show that g(pk) = f(pk) − f(pk−1) for all primes p and all

integers k � 1.

(c) Let F,G : R�1 → C. Prove that F (x) =
∑

n�x G(x/n) for all x � 1 if and only

if G(x) =
∑

n�x μ(n)F (x/n) for all x � 1.

Exercise 3.6. For x � 1, show that
∑

n�x μ(n)�x/n� = 1, and deduce that∣∣∣ ∑
n�x

μ(n)

n

∣∣∣ � 1.

Exercise 3.7. For each k ∈ N, we define the kth generalized von Mangoldt function
to be Λ(k) = μ ∗ logk. Prove the following statements:

(a) Λ(k+1) = Λ(k) log+Λ(k) ∗ Λ.
(b) Λk is supported on integers n with � k distinct prime factors.

(c) If n = p1 · · · pk for some distinct primes p1, . . . , pk, then

Λ(k)(n) = k!(log p1) · · · (log pk).
(d) 0 � Λ(k)(n) � 2k−1(logn)k for each n ∈ N.

Exercise 3.8. Find f such that μ2 = 1 ∗ f , and deduce that

#{n � x : n is square-free } = cx+O(
√
x) (x � 1),

where c =
∑∞

n=1 μ(n)/n
2. Then, use Exercise 2.4 to prove that c = 6/π2.

Exercise 3.9. Show that there are constants c1, c2 ∈ R such that∑
n�x

ω(n) = x log log x+ c1x+O(x/ logx) (x � 3) ;

∑
n�x

Ω(n) = x log log x+ c2x+O(x/ logx) (x � 3) .

Conclude that, if ξ : N → R>0 is such that limn→∞ ξ(n) = ∞, then #{n � x :
Ω(n) � ω(n) + ξ(n) } = ox→∞(x).

Exercise 3.10. Prove that, for every fixed integer k � 3, there is a polynomial Pk

of degree k − 1 and of leading coefficient 1/(k − 1)! such that∑
n�x

τk(n) = x · Pk(log x) +Ok(x
1−1/k) (x � 1).
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Exercise 3.11. Let S denote the set of square-full integers (see Exercise 1.6 for
their definition).

(a) Show that 1S(n) =
∑

a2b3=n μ
2(b).

(b) Show that there are constants c1, c2 ∈ R such that

#S ∩ [1, x] = c1x
1/2 + c2x

1/3 +O(x1/5).

Exercise 3.12.

(a) Show that 2ω = 1 ∗ μ2 and deduce that there is a constant c such that∑
n�x

2ω(n) = 6π−2x log x+ cx+O(x2/3) (x � 2).

(b∗) Prove that the error term in (a) can be improved to O(
√
x log x).

Exercise 3.13. Estimate the sums
∑

p�x(log p)
k/p and

∑
p>x 1/p

2.

Exercise 3.14.∗ Prove that the Prime Number Theorem is equivalent to the exis-
tence of a constant c such that

(3.7)
∑
p�x

log p

p
= log x+ c+ o(1) (x →∞).

Exercise 3.15∗ (Landau [124]). Recall the notation δ(n) = 1n=1. This exercise
proves that the Prime Number Theorem is equivalent to the estimate

(3.8)
∑
n�x

μ(n) = o(x) (x →∞).

(a) (i) Show that −μ log = μ ∗ (Λ− 1) + δ.
(ii) Assuming the Prime Number Theorem, prove (3.8). [Hint: Prove first

that
∑

n�x μ(n) logn = o(x log x) as x →∞.]

(b) Let f(n) = log n− τ (n) + 2γ.
(i) Show that Λ− 1 = μ ∗ f − 2γδ.
(ii) Show that

∑
n�x f(n) 


√
x for x � 1.

(iii) Assuming (3.8), prove the Prime Number Theorem.

Exercise 3.16.∗

(a) Prove there is a choice of constants c1, c2 for which
∑

n�x(log
2 n − 2τ3(n) −

c1τ (n)− c2) 
 x2/3 uniformly for x � 1.

(b) Recall the function Λ2 = μ ∗ log2 from Exercise 3.7. Prove that it satisfies the
estimate

∑
n�x Λ2(x) = 2x log x+O(x) for x � 1, and conclude that

ψ(x) log x+
∑
p�x

ψ(x/p) log p = 2x log x+O(x) (x � 1).

(c) Show that
lim sup
x→∞

(ψ(x)/x) + lim inf
x→∞

(ψ(x)/x) = 2.

In particular, if limx→∞ ψ(x)/x exists, then it must equal 1.

Exercise 3.17.∗ Show that the Prime Number Theorem is equivalent to the relation∑∞
n=1 μ(n)/n = 0. [Hint: Exercises 3.6 and 3.15.]
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Chapter 4

Dirichlet series

The ubiquity and importance of convolution identities in analytic num-
ber theory calls for a systematic way of discovering them. We can obtain a
very satisfactory answer to this problem by developing the theory of Dirichlet
series: to each arithmetic function f , we associate the generating function

F (s) =
∞∑
n=1

f(n)

ns

called the Dirichlet series of f . We do not concern ourselves with the con-
vergence of this series for now, an issue that we will address in the end of
the chapter. Rather, we treat F (s) as a formal infinite series.

We write D for the set of formal Dirichlet series. If G(s) =
∑∞

n=1 g(n)/n
s

is another element of D, then we define

F (s) +G(s) :=

∞∑
n=1

f(n) + g(n)

ns
and F (s)G(s) :=

∞∑
n=1

(f ∗ g)(n)
ns

,

with the latter definition motivated by the formal calculation

(4.1)

∞∑
a=1

f(a)

as

∞∑
b=1

g(b)

bs
=

∑∑
a,b�1

f(a)g(b)

(ab)s
=

∞∑
n=1

1

ns

∑
ab=n

f(a)g(b).

Evidently, the triplet (D,+, ·) forms a ring that is isomorphic to the ring
of arithmetic functions (A,+, ∗). Hence, the study of the ring of arithmetic
functions is equivalent to that of formal Dirichlet series.

In view of the above discussion, if we are given the functions f and g
with Dirichlet series F and G, respectively, then the function h solving the
identity f = g ∗ h is the unique arithmetic function whose Dirichlet series
is the quotient F/G. Hence, we are faced with the problem of inverting G.

44
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4. Dirichlet series 45

When g is multiplicative, this problem has a particularly elegant solution.
The reason is that in this case G satisfies the formal identity

(4.2)

∞∑
n=1

g(n)

ns
=

∏
p

(
1 +

g(p)

ps
+

g(p2)

p2s
+ · · ·

)
,

called the Euler product of G. Before we discuss the formal proof of (4.2),
note that it allows us to invert G rather easily, since the factors of its Euler
product are Taylor series in z = p−s (see Example 4.3 below). Moreover,
we can estimate the coefficients of 1/G using Cauchy’s residue theorem (see
Exercise 4.10).

To see (4.2), we expand its right-hand side. We then obtain a formal
sum of all products of the form

g(pa11 ) · · · g(parr )

(pa11 · · · parr )s
,

where p1, . . . , pr are distinct prime numbers, a1, . . . , ar ∈ Z�1 and r ∈ Z�0.
By multiplicativity, the numerator can be written as g(pa11 · · · parr ). The
Fundamental Theorem of Arithmetic implies that the products pa11 · · · parr
are in one-to-one correspondence with all natural numbers. This gives a
formal proof of (4.2). A rigorous version will be given in the next section.

Example 4.1. The most important Dirichlet series is arguably the Riemann
zeta function

ζ(s) =
∞∑
n=1

1

ns
.

We will study it in great detail in Part 2. For now, note that

(4.3) ζ(s) =
∏
p

(
1 +

1

ps
+

1

p2s
+ · · ·

)
=

∏
p

(
1− 1

ps

)−1
.

To compute the inverse of ζ(s), we use the sequence of formal identities

(4.4)
1

ζ(s)
=

∏
p

(
1− 1

ps

)
=

∑
n�1

μ(n)

ns
.

This formula can be considered as an analytic version of the Möbius inversion
formula (3.1). �

Example 4.2. An alternative way of proving (3.2) is by noticing that

F (s) =
∑
n�1

ϕ(n)

ns
=

∏
p

(
1 +

p− 1

ps
+

p(p− 1)

p2s
+

p2(p− 1)

p3s
+ · · ·

)
=

∏
p

ps − 1

ps − p
=

∏
p

1− 1/ps

1− 1/ps−1
=

ζ(s− 1)

ζ(s)
. �
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46 4. Dirichlet series

Example 4.3. Let f be a multiplicative function. We will calculate its
Dirichlet inverse g using (4.2). We write F (s) and G(s) for the formal
Dirichlet series of f and g, respectively. Since (f ∗ g)(n) = 1n=1, the factors
in the Euler product of F (s)G(s) must all be equal to 1. Namely, we have∑

k�0

f(pk)

pks

∑
��0

g(p�)

p�s
=

∑
m�0

1

pms

∑
k+�=m

f(pk)g(p�) = 1.

Thus

(4.5)
∑
��0

g(p�)

p�s
=

1

1 +
∑∞

k=1 f(p
k)/pks

= 1 +
∑
j�1

(−1)j
(∑

k�1

f(pk)

pks

)j

.

Expanding the jth power and regrouping the summands according to the
power of ps in the denominator, we find that

(4.6) g(p�) =
�∑

j=1

(−1)j
∑

· · ·
∑

k1+···+kj=�
k1,...,kj�1

f(pk1) · · · f(pkj ).

Since the above calculations are purely formal, it might be reassuring to
verify them in a more direct way. Indeed, using induction on � and the fact
that

∑
k+�=m f(pk)g(p�) = 0 for m � 1 yields a proof of (4.6), even in the

case when F (s) and G(s) converge nowhere. �

Example 4.4. Taking logarithms formally in (4.3), we find that

log ζ(s) =
∑
p

log
(
1− 1

ps

)−1
=

∑
p

∑
k�1

1

kpks
.

By formal differentiation, we are led to the formal identity

(4.7) −ζ ′

ζ
(s) =

∑
p

∑
k�1

log p

pks
.

The right-hand side is the Dirichlet series of von Mangoldt’s function Λ we
saw in the previous chapter. On the other hand, we have the formal identity

−ζ ′(s) =
∞∑
n=1

logn

ns
.

We thus guess that the left-hand side of (4.7) is the Dirichlet series of μ∗ log.
This leads us to the convolution identity

(4.8) Λ = μ ∗ log .
Möbius inversion thus yields

(4.9) log = 1 ∗ Λ.
This is relation (3.3), which we proved in a more combinatorial way before.
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Notice that we also have the variant of (4.8)

(4.10) Λ = −1 ∗ μ log .

This formula can be proven using Möbius inversion:

Λ(n) =
∑
d|n

μ(d) log(n/d) = −
∑
d|n

μ(d) log d.

Alternatively, we can also see (4.10) by formally differentiating 1/ζ. �

In conclusion, we can use formal manipulations of Dirichlet series to
guess various convolution identities, which we can then also verify in a more
direct way.

Analytic properties of Dirichlet series

We conclude this chapter with a study of the convergence of general Dirichlet
series

∑∞
n=1 f(n)/n

s. Following Riemann’s notation, we always write

s = σ + it.

Note that |ns| = nσ. Thus, if f(n) = O(nθ), then
∑∞

n=1 f(n)/n
s con-

verges absolutely for σ > θ+1. Moreover, for each fixed ε > 0, it converges
uniformly for σ � θ+1+ ε. Hence, it defines a holomorphic function in the
half-plane σ > θ + 1.

This simple argument can be vastly generalized: Dirichlet series converge
in half-planes of the form σ > α and they define holomorphic functions in
their domain of convergence.

Theorem 4.5. Let F (s) =
∑∞

n=1 f(n)/n
s be a Dirichlet series. If F (s0)

converges for some complex number s0 = σ0 + it0, then F (s) converges
uniformly in compact subsets of the half-plane σ > σ0. In particular, it
defines a holomorphic function there.

Proof. The proof is easier when the convergence at s0 is absolute, so we
first give it in this case. Note that |f(n)/ns| = |f(n)|/nσ � |f(n)|/nσ0 if
σ � σ0. Weierstrass’s criterion then implies that the series

∑∞
n=1 f(n)/n

s

converges absolutely and uniformly for σ � σ0.

We now give the proof of the general case that is more delicate. We
set g(n) = f(n)/ns0 and note that it suffices to show that the Dirichlet
series G(s) =

∑
n�1 g(n)n

−s = F (s+ s0) defines an analytic function in the
half-plane σ > 0. For all M � N � 1, partial summation implies that

(4.11)
∑

N<n�M

g(n)

ns
=

1

M s

∑
N<n�M

g(n) + s

∫ M

N

∑
N<n�x

g(n)
dx

xs+1
.
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Since
∑∞

n=1 g(n) converges, for each ε we can find some N0 such that∣∣∣ ∑
N<n�M

g(n)
∣∣∣ < ε (M � N � N0).

As a consequence, we have∣∣∣ ∑
N<n�M

g(n)

ns

∣∣∣ � ε+ |s|
∫ M

N

ε

xσ+1
dx � ε+

ε|s|
σ

(M � N � N0, σ > 0).

This clearly proves that, viewed as a series of functions,
∑∞

n=1 g(n)/n
s

converges uniformly in compact subsets of the half-plane σ > 0. Indeed, if
K is such a compact set, then there are numbers δ > 0 and B � 1 such that
σ � δ and |s| � B for all s ∈ K. The analyticity of G follows readily. �

The above theorem naturally leads us to attach to a Dirichlet series
F (s) =

∑∞
n=1 f(n)/n

s the quantity

σc = σc(F ) := inf{σ ∈ R : ∃t ∈ R such that F (σ + it) converges },
called the abscissa of convergence of F . Theorem 4.5 implies that F defines
a holomorphic function in the half-plane σ > σc. We further define the
abscissa of absolute convergence of F by

σa = σa(F ) := inf{σ ∈ R : F (σ) converges absolutely }.
For example, if F = ζ, then σc = σa = 1. The properties of σc and σa are
studied in the exercises.

A lot of the formal calculations we saw earlier can be rigorously justified
when the involved Dirichlet series converge absolutely. For example, this is
true for relation (4.1). In particular, we may rigorously prove that

(4.12)
∞∑
n=1

μ(n)

ns
=

1

ζ(s)
,

where Re(s) > 1. Taking s = 2 yields a more direct proof of the identity∑∞
n=1 μ(n)/n

2 = 6/π2 that we saw in Exercise 3.8.

Similarly, the Euler product representation of Dirichlet series of mul-
tiplicative functions can be rigorously proven in their domain of absolute
convergence. Firstly, let us consider the case of the Riemann zeta function.
If Re(s) > 1, then the absolute convergence of the series

∑
n�1 n

−s allows
us to sum its terms in any order. In particular, if we let N (y, k) = {n ∈ N :
pν‖n ⇒ p � y and ν � k }, then

ζ(s) = lim
y→∞

lim
k→∞

∑
n∈N (y,k)

n−s = lim
y→∞

lim
k→∞

∏
p�y

(1 + p−s + p−2s + · · ·+ p−ks).

This establishes relation (4.3) when Re(s) > 1.
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The above argument can be easily generalized. We leave the details as
an exercise. (It is highly recommended to first solve Exercise 1.14.)

Theorem 4.6. Let f be a multiplicative function and s ∈ C. The series∑∞
n=1 f(n)/n

s converges absolutely if and only if so does the double series∑
p

∑∞
k=1 f(p

k)/pks. When they both converge absolutely, we have

∞∑
n=1

f(n)

ns
=

∏
p

(
1 +

f(p)

ps
+

f(p2)

p2s
+ · · ·

)
.

Remark 4.7. (a) It is important to emphasize here that the assump-
tion of absolute convergence is crucial to represent a Dirichlet series of
a multiplicative function as an Euler product. For example, the func-
tion f(n) = (−1)n−1 is multiplicative. Its Dirichlet series F (s) converges
absolutely for σ > 1 and conditionally for σ > 0 by (4.11) with g =
f , since

∑
n�x f(n) = O(1) for all x � 1. However, its Euler product

(1 − 1/2s − 1/22s − · · · )
∏

p>2(1 + 1/ps + 1/p2s + · · · ) diverges to ∞ for

s ∈ (0, 1], because
∑

p>2 1/p = ∞ by Theorem 3.4(b).

(b) Knowing that F (s) can be written as an absolutely convergent Euler
product at some point s makes it very easy to check whether F (s) vanishes:
we simply need to check whether one of the factors vanishes (see Exercise
1.14(b)). For example, since ζ(s) =

∏
p(1− 1/ps)−1 for σ > 1, we have that

ζ(s) �= 0 for σ > 1. As we will see in the next chapter, the location of the
zeroes of ζ is intimately related to the distribution of prime numbers. �

Exercises

Exercise 4.1. (a) Find f and g such that σ = ϕ ∗ f and ϕ/id = 1 ∗ g.
(b) Use (4.5) and (4.6) to calculate the Dirichlet inverses of μ2, 2Ω and ϕ.

Exercise 4.2. If f and g are Dirichlet inverses of each other, then find a non-
recursive formula for the values of g in terms of the values of f .

Exercise 4.3. Let F (s) =
∑

n�1 f(n)/n
s be a Dirichlet series, and let σc and σa

be its abscissas of convergence and of absolute convergence, respectively.

(a) Prove that σc � σa � σc + 1.

(b) Prove that σc < +∞ if and only if there is θ ∈ R such that f(n) = O(nθ) for
all n ∈ N.

Exercise 4.4. Compute the Dirichlet series associated to the functions f1, . . . , f8
from Exercise 3.3; your answer could be given in terms of ζ. Then, determine their
abscissas of convergence and of absolute convergence.
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Exercise 4.5. Show that there is a constant θ ∈ (0, 1) and a polynomial P of
degree 3 and of leading coefficient 1/π2 such that∑

n≤x

τ2(n) = xP (log x) +O(xθ).

[Hint: Write τ2 = τ4 ∗ f and use Exercise 3.10.]

Exercise 4.6. Let f be an arithmetic function, and let F (s) be its formal Dirichlet
series. Define f ′(n) := −f(n) logn, and let F ′(s) be its Dirichlet series. Prove that
(f ∗ g)′ = f ′ ∗ g + f ∗ g′ and (FG)′ = F ′G+ FG′.

Exercise 4.7. Let f be a multiplicative function with formal Dirichlet series F ,
and define Λf via the convolution identity

f log = Λf ∗ f.
(a) Prove that the formal Dirichlet series of Λf is −F ′/F .

(b) Prove that Λf is supported on prime powers, and that Λf (p) = f(p) log p for all
primes p. [Hint: If F =

∏
p Ep is the Euler product of F , we have the formal

identity F ′/F =
∑

p E
′
p/Ep.]

(c) Calculate Λf when f is completely multiplicative.

(d) Calculate Λf when F (s) =
∏

p(1− 1/ps)−f(p).

Exercise 4.8. Let F (s) =
∑∞

n=1 f(n)/n
s be a Dirichlet series with abscissa of con-

vergence σc < +∞. Prove that the abscissa of convergence for the series of deriva-
tives −

∑∞
n=1 f(n)(logn)/n

s is also σc. Deduce that F ′(s)=−
∑∞

n=1 f(n)(logn)/n
s

when Re(s) > σc.

Exercise 4.9. If F (s) =
∑

n�1 f(n)/n
s and G(s) =

∑
n�1 g(n)/n

s converge and

are equal in the half-plane Re(s) > α, then prove that f = g.

Exercise 4.10. Let f be a multiplicative function, and let g be its Dirichlet inverse.
Fix a prime p and assume that there is some M > 0 such that |f(pk)| � Mk for all
k ∈ Z�1.

(a) Show that the power series
∑

k�0 f(p
k)zk converges absolutely for |z| < 1/M

and does not vanish for |z| < 1/(2M).

(b) If 0 < r < 1/(2M), then show that

g(pk) =
1

2πi

∮
|z|=r

1

1 + f(p)z + f(p2)z2 + · · · ·
dz

zk+1
.

(c) Let ε > 0. Prove that g(pk) 
ε,M (2M + ε)k for all k ∈ Z�1.

(d) When f(n) = (−1)n−1, compute g(pk) for all primes p. What do you observe
when you compare g(pk) with the estimate of part (c)?

Exercise 4.11.∗ Let F (s) =
∑∞

n=1 f(n)/n
s and G(s) =

∑∞
n=1 g(n)/n

s be two
Dirichlet series with F (s)G(s) = 1. If F has abscissa of convergence < +∞, is it
true that G also has abscissa of convergence < +∞?
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Chapter 5

An explicit formula for
counting primes

So far, we have seen various ways of counting primes using combinatorial
devices. We now introduce a different approach that transforms the problem
of estimating π(x) into a problem in complex analysis. The key idea is to
package the primes all together and form an appropriate generating function.

Given an arithmetic function f , the most common generating function
attached to f is arguably its power series

A(z) =
∑
n�1

f(n)zn.

This series converges to a holomorphic function in a disk |z| < R. Moreover,
f(n) can be recovered from A(z) via Cauchy’s residue formula that implies

(5.1) f(n) =
1

2πi

∮
|z|=r

A(z)

zn+1
dz (n ∈ N, 0 < r < R).

We apply (5.1) when f = 1P , the indicator function of the sequence of
primes. The associated power series is

Q(z) :=
∑
p

zp.

Summing (5.1) for n = 0, 1, . . . , N when f = 1P yields the inversion formula

(5.2)
∑
p�N

1 =
∑

0�n�N

1

2πi

∮
|z|=r

Q(z)

zn+1
dz =

1

2πi

∮
|z|=r

Q(z)(1− zN+1)

zN+1(1− z)
dz

for any r ∈ (0, 1). Hence, a good understanding of the analytic behavior of
Q(z) can lead us to precise estimates for the counting function of the primes.

52
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5. An explicit formula for counting primes 53

The above strategy arrives quickly at a dead end because it is not clear
how to control the function Q(z) without already knowing a lot about
primes. As a matter of fact, the same objection can be raised for any
generating function associated to the sequence of primes: how is it possible
to determine its asymptotic behavior without already having a good grasp
of the distribution of primes?

To break the vicious cycle, we analyze Q(z) more closely. This function
is naturally tied to the additive structure of the sequence of prime numbers.
For example, note that

Q(z)k =
∑

p1,...,pk

zp1+···+pk =
∑
n�0

gk(n)z
n,

where gk(n) is the number of ways to write n as the sum of k primes.
However, primes are multiplicative objects, so it is more natural to study
them from a multiplicative point of view. To this end, we observe that the
logarithmic function is a group isomorphism from (R>0,×) to (R,+). We
are thus naturally led to consider the generating function∑

p

zlog p.

This is no longer a power series because the exponents are not integers.

Note that zlog p = plog z. Working with the complex logarithm causes
technical difficulties. For this reason, we make the change of variables s =
− log z, so that our generating function becomes the Dirichlet series

P(s) :=
∑
p

1

ps
.

In view of Mertens’ second estimate (Theorem 3.4), this Dirichlet series has
abscissa of convergence 1. In particular, Theorem 4.5 tells us that it defines
a holomorphic function in the half-plane Re(s) > 1.

Let us now consider the kth power of P: we have

P(s)k =
∑

p1,...,pk

1

(p1 · · · pk)s
=

∑
n�1

rk(n)

ns
,

where rk(n) is the number of ways to write n as the product of k primes.
In particular, rk is supported on integers with � k prime factors. In com-
parison, before we had no control over the support of gk. We thus see right
away that P(s) has better properties than Q(z).

Taking the above argument one step further, Euler proved that P(s)
can be written in terms of the Riemann zeta function ζ(s) =

∑∞
n=1 1/n

s,
which is for N what P(s) is for the sequence of primes. The key is Euler’s
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product formula

ζ(s) =
∏
p

(
1− 1

ps

)−1
(Re(s) > 1)

that we proved in the previous chapter. Taking logarithms, we infer that

(5.3) log ζ(s) =
∑
p

∑
m�1

1

mpms
=

∑
m�1

P(ms)

m

which provides the link between P and ζ. The above formula is the starting
point of analytic number theory, as it relates the function P, for which we
knew nothing about, to the function ζ. The latter is significantly simpler
because it is defined as a summation over all integers, a very regular set. It
thus seems plausible that we can obtain good estimates for P via this link.

As in the case of the function Q(z) and the inversion formula (5.2), we
want to find a passage from P(s) to π(x) =

∑
p�x 1. We start by writing

(5.4) P(s) =

∫ ∞

1
x−sdπ(x) = s

∫ ∞

0
π(x)x−s−1dx.

Hence, we see that the function P(−s)/(−s) is the Mellin transform of the
function π(x). (A brief introduction to the necessary theory of the Mellin
transform is given in the last section of Appendix B.) Mellin inversion allows
us to go from (5.4) to the formula

(5.5)
∑
p<x

1 +
1x is prime

2
=

1

2πi

∫
(α)

P(s)
xs

s
ds,

where
∫
(α) f(s)ds denotes the principal value of

∫
Re(s)=α f(s), namely

(5.6)

∫
(α)

f(s)ds = lim
T→∞

∫
Re(s)=α
| Im(s)|�T

f(s)ds.

Indeed, to see (5.5), we apply Theorem B.4 (whose hypotheses are met here
with α1 = −∞ and α2 = −1) and then make the change of variables s → −s.

Jumping into the void

The inversion formula (5.5) expresses π(x) in terms of the Riemann zeta
function. However, it is not that useful as it stands for the estimation of
π(x). Indeed, we expect that there are about x/ log x primes � x. On the
other hand, we have |xs| = xα on the right side of (5.5). Since α > 1, the size
of xs is bigger than the expected main term. This means that if we are to
extract an asymptotic estimate for π(x) from (5.5), we must understand the
integrand in a way that is precise enough to establish significant cancellation
among the different parts of the range of integration. Obtaining such sharp
estimates on P without already controlling π(x) seems impossible.
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The meromorphic continuation of ζ 55

It thus seems that we have again reached an impasse. Riemann though
had a brilliant idea to circumvent it. He realized that ζ(s) can be extended
in a canonical way to values of s outside its domain of convergence using
the theory of analytic and meromorphic continuation of complex analysis.1

We do not need to delve too deeply into this theory; as we will see shortly,
the special structure of ζ allows us to meromorphically continue it2 to C
relatively easily. The extension we obtain has only one singularity: a simple
pole of residue 1 at s = 1. Such an extension must be unique by the identity
principle. Thus ζ really is well-defined over C. Using this fact and Cauchy’s
residue theorem, we can then replace the line of integration in (5.5) by a
new contour that reaches to the left of the vertical line Re(s) = 1, where xs

becomes of smaller magnitude than x. Hence, we can hope to obtain bounds
for this new integral that are of genuinely smaller order than x/ log x. The
main term to the approximation of π(x) will arise from the singularities in
the region encircled by the old and the new contour of integration. The
end result of this calculation will be a formula for π(x) in terms of the
singularities of P.

We devote the rest of this chapter to making the above discussion more
precise and to laying Riemann’s idea on rigorous mathematical grounds.

The meromorphic continuation of ζ

Perhaps the simplest way of meromorphically continuing ζ is to use the
Euler-Maclaurin formula. Indeed, when Re(s) > 1, ζ(s) is defined as the
sum of the smooth function 1/ns over n � 1, so Theorem 1.10 implies that

(5.7) ζ(s) =
s

s− 1
− s

∫ ∞

1

{y}
ys+1

dy.

The integral on the right side converges absolutely for Re(s) > 0 because
{y} is bounded. Thus, the right side of (5.7) supplies a meromorphic con-
tinuation of ζ to the half-plane Re(s) > 0. The only singularity of ζ in this
half-plane is a simple pole at s = 1 of residue 1 (a reflection of the divergence
of the harmonic series

∑∞
n=1 1/n).

More generally, Exercise 1.10(b) implies that

(5.8) ζ(s) =
s

s− 1
+

k∑
�=1

B�

�!

�−2∏
j=0

(s+ j)−
∏k−1

j=0(s+ j)

k!

∫ ∞

1

Bk({x})
xs+k

dx

1In fact, this theory was partly pioneered by Riemann himself.
2The YouTube channel 3Blue1Brown has an excellent video about the meromorphic contin-

uation of ζ that is called “Visualizing the Riemann hypothesis and analytic continuation”. The
video is located at the web address https://www.youtube.com/watch?v=sD0NjbwqlYw.
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56 5. An explicit formula for counting primes

for Re(s) > 1. Since the right side is meromorphic for Re(s) > −k + 1 with
only a simple pole at s = 1 of residue 1, so is ζ. Letting k → ∞ establishes
the alleged meromorphic continuation of ζ to the entire complex plane.

Let us now examine what the above discussion tells us about the analytic
character of P. We start from relation (5.3). Since

∑
m�2 P(ms)/m =∑

m�2, p 1/(mpms) = O(1) for Re(s) � 1, we find that P(s) = log ζ(s)+O(1)

for Re(s) > 1. In particular, P(s) ∼ − log(s − 1) as s → 1, that is to
say, P(s) has a logarithmic singularity at s = 1. This type of singularity
prohibits us from extending P to an analytic function around s = 1. In
particular, we cannot apply Cauchy’s residue theorem to an integral of the
form

∫
C(P(s)xs/s)ds, where C is a closed contour going around 1. For this

reason, extracting the main term for π(x) from (5.5) is a bit hard (though
certainly possible as Riemann himself explained in his 1859 manuscript).

The above obstacle is merely of a technical nature. To overcome it,
recall that the asymptotic behavior of π(x) can be extracted from that of
Chebyshev’s theta and psi functions

θ(x) =
∑
p�x

log p and ψ(x) =
∑
n�x

Λ(n).

Indeed, we saw in Examples 1.8 and 1.9 how to go back and forth between
π(x) and θ(x). In addition, Chebyshev’s functions are very close to each
other in virtue of Exercise 2.7 which implies that

|θ(x)− ψ(x)| 

√
x (x � 2).

Therefore, instead of estimating π(x), we may work with ψ(x). We need an
analogue of formula (5.5) for this function.

In general, a straightforward adaptation of the proof of (5.5) implies the
following generalization: if f is an arithmetic function whose Dirichlet series
F converges absolutely in the half-plane Re(s) > 1, then

(5.9)
∑
n<x

f(n) +
1x∈Nf(x)

2
=

1

2πi

∫
(α)

F (s)
xs

s
ds (x > 1, α > 1).

This general identity is called the Perron inversion formula.

We apply (5.9) with f = Λ whose summatory function is Chebyshev’s psi
function. The associated Dirichlet series is −ζ ′/ζ. Since ζ is meromorphic
over C, so is −ζ ′/ζ. They both have a simple pole of residue 1 at s = 1.
Moreover, if z is a zero of ζ multiplicity m, then ζ ′/ζ has a simple pole of
residuem at s = z. Indeed, we may write ζ(s) = (s−z)mg(s) with g analytic
and non-zero in a neighborhood of z. Hence, (ζ ′/ζ)(s) = m/(s−z)+(g′/g)(s)
and g′/g is analytic around z. This implies that

(5.10) ress=z(ζ
′/ζ)(s) = m.
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As we will see in the next chapter, the zeroes of ζ fall under two cat-
egories: the trivial zeroes, which are located at −2,−4,−6, . . . , and the
non-trivial zeroes, which are located in the strip 0 � Re(s) � 1. We denote
a generic non-trivial zero by3 ρ = β + iγ.

Remarkably, there is an explicit formula for ψ(x) in terms of the non-
trivial zeroes of the Riemann zeta function.4

Theorem 5.1. For all x, T � 2, we have

(5.11) ψ(x) = x−
∑
|γ|�T

xρ

ρ
+O

(
x log2(xT )

T
+ log x

)
,

where the sum runs over the non-trivial zeroes of ζ with each zero repeated
as many times as its multiplicity.

Before we explain why Theorem 5.1 is true, let us momentarily pause
and make a few comments about it. This astonishing result reveals that
primes, an elementary arithmetic object, have a “dual” complex-analytic
object associated to them: the zeroes of ζ. These two objects of seemingly
unrelated nature are interconnected in a fundamental way: the main term
on the right-hand side of (5.11) approximates ψ(x) better and better as
T → ∞, similarly to the Fourier expansion of a periodic function. Hence,
the zeroes of ζ encode in principle everything we need to know about the
distribution of primes (and vice versa). We may think of the zeroes as
“frequencies” with which the counting function of prime numbers resonates.
For this reason, they are of fundamental importance in mathematics.

Theorem 5.1 will play a key role in the proof of the Prime Number
Theorem. Indeed, to establish the asymptotic formula ψ(x) ∼ x, it suffices
to bound

∑
|γ|�T xρ/ρ and prove that it is of negligible size compared to

x. Since |xρ| = xβ, this essentially reduces the Prime Number Theorem to
showing that β is a bit less than 1 for all zeroes of ζ.

Cauchy’s residue theorem and the explicit formula

Let us now give a rough sketch of the proof of Theorem 5.1. The complete
details will be given in Chapter 8, after having developed the necessary tools.

We present the argument in a more general context. Recall the Perron
inversion formula (5.9), valid for any arithmetic function f whose Dirichlet
series F converges absolutely to the right of the line Re(s) = 1. Similarly to

3The letter γ here is not to be confused with Euler-Mascheroni’s constant defined by (1.13).
This ambiguous notation is customary in the literature.

4The contribution of the trivial zeroes has been absorbed into the error term. There is an
even more precise version of the explicit formula that takes into account trivial zeroes (see Exercise
8.2(a) and [31, Chapter 17]). The version stated in Theorem 5.1 is sufficient for most applications.
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58 5. An explicit formula for counting primes

ζ and ζ ′/ζ, the Dirichlet series F of many interesting arithmetic functions
can be meromorphically continued to a half-plane Re(s) > α0 with α0 < 1.
In this case, the integral on the right-hand side of (5.9) can be studied using
complex analysis as we explain below.

Fix α′ ∈ (α0, 1)\{0} such that F (s) has no poles when Re(s) = α′. Such
an α′ always exists because F has at most countably many singularities in
any given open region. Moreover, let T = T (x) be large enough so that

(5.12)
∑
n�x

f(n) =
1

2πi

∫
Re(s)=α
| Im(s)|�T

F (s)
xs

s
ds+ E,

with E = o(
∑

n�x |f(n)|). The existence of such a T is guaranteed by (5.6).

Furthermore, similarly to α′, the parameter T can be chosen in such a way
that F has no singularities on the lines Im(s) = ±T .

Let C1 denote the contour of integration in (5.12), that is to say, the line
segment from α− iT to α+ iT . We write symbolically C1 = [α− iT, α+ iT ].
We deform C1 to a new contour of integration consisting of the line segments
C2 = [α− iT, α′− iT ], C3 = [α′− iT, α′+ iT ] and C4 = [α′+ iT, α+ iT ] (see
Figure 5.1). We denote this new contour by C2 + C3 + C4.

5 We claim that

(5.13)
1

2πi

∫
C1

F (s)
xs

s
ds=

∑
2�j�4

1

2πi

∫
Cj

F (s)
xs

s
ds+

∑
w

ress=w
F (s)xs

s
,

where the rightmost sum runs over all singularities of F (s)/s in Ω := { s ∈
C : α′ < σ < α, |t| < T }. Indeed, the integrand F (s)xs/s is meromorphic
in Ω and analytic in an open neighborhood of the boundary ∂Ω. Since
∂Ω = C1−C2−C3−C4 when traversed counterclockwise, Cauchy’s residue
theorem implies that

1

2πi

∮
∂Ω

F (s)
xs

s
ds =

∑
w

ress=w
F (s)xs

s
.

This proves our claim that (5.13) holds.

Combining (5.12) and (5.13), we infer that∑
n�x

f(n) =
∑
w

ress=w
F (s)xs

s
+ E +R,

where

R =
∑

2�j�4

1

2πi

∫
Cj

F (s)
xs

s
ds.

We think of R as an error term because |xs/s| � xσ/|t|, so that the integrand
F (s)xs/s is small on C2 ∪C4 because |t| = T is large, and it is also small on

5In general, if C, C′ are two contours with a given orientation, then C + C′ denotes the
contour that first traces C and then C′ in their respective orientation. Furthermore, −C is the
contour C traced in the opposite orientation.
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2 + iT−2 + iT

2− iT−2− iT

C1C3

C4

C2

2−2
1

1
2 − 2i

1 + i

0

Figure 5.1. The poles of ζ(s)ζ(s−i)ζ(s+1/2+2i)/s inside the rectangle
defined by the points ±2± iT .

C3 because σ = α′ < 1. In reality, we also need bounds on F (s) to estimate
R. Such estimates can be a bit tricky to obtain outside the region of absolute
convergence. We will see methods of establishing them in Chapters 6, 8 and
11.

Assuming that R is indeed negligible, we are led to the guesstimate

(5.14)
∑
n�x

f(n) ≈
∑

w is a pole of F (s)/s
α′<Re(w)<α, | Im(w)|<T

ress=w
F (s)xs

s
.

Combining this heuristic with (5.10) explains why ψ(x) should be closely
approximated by the sum x−

∑
|γ|�T xρ/ρ from Theorem 5.1. The rigorous

proof of Theorem 5.1 will be given in Chapter 8, after having developed
further the theory of the Riemann zeta function (in Chapter 6) and of the
Perron inversion formula (in Chapter 7). We will then use the explicit
formula for ψ(x) together with a bound on the zeroes of ζ to establish the
Prime Number Theorem in Chapter 8.

We conclude this chapter with some examples that showcase the utility
and versatility of the ideas presented above.

Example 5.2. As a toy example, consider the function f = 1. We then
have that F = ζ, whose only singularity is a simple pole of residue 1 at
s = 1. Thus, the only singularity of ζ(s)xs/s in the half-plane Re(s) > 0
is a simple pole of residue x at s = 1. This leads us to the prediction that
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∑
n�x 1 ≈ x. This is of course true, since we know by elementary methods

that
∑

n�x 1 = x+O(1). �

Remark 5.3. In general, if F has a simple pole of residue rw at a point w
that is different than the origin, then

ress=w
F (s)xs

s
=

rwx
w

w
.

We can generalize this calculation further: if F has a pole of order m at
w �= 0, then there are coefficients cw,0, cw,1, . . . , cw,m−1 ∈ C such that

ress=w
F (s)xs

s
= xw

(
cw,m−1(log x)

m−1 + cw,m−2(log x)
m−2 + · · ·+ cw,0

)
.

Indeed, let F (s)/s = aw,m/(s−w)m+ · · ·+aw,1/(s−w)+
∑

j�0 bw,j(s−w)j

be the Laurent expansion of F (s)/s about s = w. In addition, we have
the Taylor series expansion xs = xw

∑
j�0(s − w)j(log x)j/j!. Hence, the

claimed formula for ress=w(F (s)xs/s) holds with cw,j = aw,j+1/j!. �

Example 5.4. Consider the divisor function τ , for which we have the con-
volution identity τ = 1 ∗ 1. Thus, its Dirichlet series is ζ(s)2, which has a
meromorphic continuation to C with its only pole being a double pole of
order 2 at s = 1. In view of relation (5.14) and Remark 5.3, we are led to
predict that there are coefficients c0, c1 ∈ C such that∑

n�x

τ(n) ≈ c1x log x+ c0x.

To calculate c0 and c1, note that ζ(s) = 1/(s − 1) + γ + O(|s − 1|) for
|s− 1| � 1/2 by Exercise 5.2, whereas 1/s = 1− (s− 1)+O(|s− 1|2). Hence

ζ(s)2

s
=

1

(s− 1)2
+

2γ − 1

s− 1
+O(1),

which implies that c1 = 1 and c0 = 2γ − 1. This agrees with Theorem
3.3. �

Example 5.5. Let f be the indicator function of square-full integers (see
Exercise 1.6). In Exercise 3.11, we saw that the partial sums of f up to x

have an asymptotic expansion with two main terms, of size x1/2 and x1/3,
respectively. These terms can be guessed using (5.14): the multiplicativity
of f implies that its Dirichlet series equals

(5.15) F (s) =
∏
p

(
1 +

1

p2s
+

1

p3s
+ · · ·

)
=

ζ(2s)ζ(3s)

ζ(6s)

for Re(s) > 1. Since ζ has a meromorphic continuation to C, so does F . In
addition, the only singularities of F in the half-plane Re(s) > 1/6 are simple
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poles at the points s = 1/2 and s = 1/3. They both arise from the simple
pole of ζ at s = 1. Relation (5.14) then leads us to the prediction that

#{n � x : n square-full } ≈ ζ(3/2)

ζ(3)
x1/2 +

ζ(2/3)

ζ(2)
x1/3. �

Exercises

Exercise 5.1. Prove that

ζ(s) =
1

1− 2−s+1

∞∑
n=1

(−1)n−1

ns
(Re(s) > 0).

Exercise 5.2. When 0 < |s− 1| � 1, show the following estimates:

ζ(s) =
1

s− 1
+ γ +O(|s− 1|) ;

log ζ(s) = − log(s− 1) + γ · (s− 1) +O(|s− 1|2) (s /∈ [−1, 0]) ;

ζ ′

ζ
(s) = − 1

s− 1
+ γ +O(|s− 1|) .

Exercise 5.3. Use (5.14) to predict the main term in the asymptotic formulas for∑
n�x log n,

∑
n�x ϕ(n),

∑
n�x μ

2(n),
∑

n�x τ3(n) and
∑

n�x τ (n)
2. Compare your

prediction with Theorems 1.12 and 3.2, and Exercises 3.8, 3.10 and 4.5, respectively.

Exercise 5.4.∗ Complete the proof of Theorem 3.4(c) as follows:

(a) Uniformly for x � 2 and ε ∈ (0, 1], prove that∑
p�x

log
(
1− 1

p

)
=

∑
p�x

log
(
1− 1

p1+ε/ log x

)
+O(ε).

(b) Uniformly for x � 2 and ε ∈ (0, 1], prove that∑
p>x

log
(
1− 1

p1+ε/ log x

)
= −

∫ ∞

ε

e−u

u
du+O

( 1

log x

)
.

[Hint: Taylor’s theorem.]

(c) Deduce that the constant in (3.6) is κ =
∫ ∞
0

u−1(e−u−1[0,1](u))du. [Hint: Use
Exercise 5.2 to rewrite log ζ(1 + ε/ log x).]

(d) Prove that γ =
∫ ∞
0

u−1(1[0,1](u)− e−u)du.

[Hint: Note that γ = limN→∞(− logN +
∫ 1

0
(1 + x + · · · + xN−1)dx) and let

x = 1− u/N .]
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Chapter 6

The Riemann zeta
function

The explicit formula (5.11) underlines the central role of the Riemann
zeta function and of its zeroes in the study of prime numbers. We thus
undertake a careful study of ζ in this chapter.

The functional equation

One of the most fundamental properties of ζ discovered by Riemann himself
is that it possesses a symmetry with respect to the vertical line Re(s) = 1/2.
This symmetry is depicted in the functional equation of ζ: for all s ∈ C, we
have

(6.1) π−s/2Γ
(s
2

)
ζ(s) = π−(1−s)/2Γ

(1− s

2

)
ζ(1− s),

where Γ is Euler’s Gamma function. We can also rewrite (6.1) as1

(6.2) ζ(s) = λ(s)ζ(1− s), where λ(s) = πs−1/2Γ((1− s)/2)

Γ(s/2)
.

Using Exercise 1.13, we find two alternative expressions for λ:

(6.3) λ(s) = 2s−1πs
/(

Γ(s) cos(πs/2)
)
= 2sπs−1Γ(1− s) sin(πs/2).

As we saw in Chapter 1, the Gamma function is very well understood.
Hence it suffices to study ζ in the half-plane Re(s) � 1/2 and then use the
functional equation to pass to the entire complex plane.

1In the literature, the function λ is usually denoted by χ. Since we have reserved the letter
χ for Dirichlet characters, we use the letter λ, which is the first letter of the Greek word λόγος
that means ratio.
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The functional equation 63

Let us now show (6.1). In the process of doing so, we will see another
proof of the meromorphic continuation of ζ to C.

At the heart of the proof of (6.1) lies the Poisson summation formula
(Theorem B.3). Let f : R → C be as in Theorem B.3, that is to say,

f ∈ C2(R) and f (j)(x) 
 1/x2 for |x| � 1 and j ∈ {0, 1, 2}, so that its
Fourier transform

f̂(ξ) =

∫
R
f(x)e−2πiξxdx

satisfies the bound f̂(ξ) 
 1/ξ2 for |ξ| � 1. Assume further that f is even
and consider its Mellin transform

F (s) =

∫ ∞

0
f(x)xs−1dx,

which is well defined for 0 < Re(s) < 2. The change of variables x → nx
implies that

n−sF (s) =

∫ ∞

0
f(nx)xs−1dx.

Summing this formula over all n � 1 when 1 < Re(s) < 2, we find that

(6.4) ζ(s)F (s) =

∫ ∞

0
Sf (x)x

s−1dx with Sf (x) =
∑
n�1

f(nx).

Next, we use Poisson’s summation formula (B.3) to deduce that

f(0) + 2Sf (x) =
∑
n∈Z

f(nx) =
1

x

∑
n∈Z

f̂(n/x) =
f̂(0) + 2S

f̂
(1/x)

x
,

since f and f̂ are even. We then split the range of integration on the right
side of (6.4) as (1,+∞)∪[0, 1]. We also make the change of variables x → 1/x
to the portion over [0, 1]. We thus find that

ζ(s)F (s) =

∫ ∞

1
Sf (x)x

s−1dx+

∫ ∞

1
Sf (1/x)x

−s−1dx

=

∫ ∞

1
Sf (x)x

s−1dx+

∫ ∞

1
S
f̂
(x)x(1−s)−1dx+

f̂(0)

2(s− 1)
− f(0)

2s
.

In order to symmetrize the above formula, we choose f(x) = 2e−πx2
that is

self-dual, that is to say, f̂ = f . For this choice of f , we have that

F (s) = 2

∫ ∞

0
e−πx2

xs−1dx = π−s/2

∫ ∞

0
e−yys/2−1dy = π−s/2Γ(s/2),

so that

π−s/2Γ
(s
2

)
ζ(s) =

∫ ∞

1
S(x)xs−1dx+

∫ ∞

1
S(x)x(1−s)−1dx+

1

s(s− 1)
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64 6. The Riemann zeta function

with S(x) = 2
∑∞

n=1 e
−πnx2

. The right-hand side of the above formula is
clearly an analytic function for s ∈ C except for simple poles at s = 1 and at
s = 0. It is also invariant with respect to the change of variables s → 1− s,
thus proving the functional equation (6.1). Since Γ does not vanish in C
(see Corollary 1.14) and has a simple pole at s = 0, we also deduce the
meromorphic continuation of ζ to C with its sole singularity being a simple
pole at s = 1.

The zeroes of ζ and the Riemann Hypothesis

Let us now discuss the zeroes of the Riemann zeta function that are inti-
mately related to the distribution of primes.

When Re(s) > 1, we know that ζ(s) is given by an absolutely convergent
Euler product whose factors do not vanish. In particular, ζ(s) �= 0 (see
Remark 4.7(b)). In addition, Theorem 1.14 implies that Γ does not vanish
at all in C. As a consequence, the left-hand side of the functional equation
(6.1) is non-zero for Re(s) > 1. Hence, the right-hand side of (6.1) must
also not vanish in the same region. Equivalently, ζ(s)Γ(s/2) �= 0 for Re(s) <
0. However, note that Γ(s/2) has simple poles at the points −2,−4, . . . .
Hence, ζ must have simple zeroes at −2,−4, . . . , and no other zeroes when
Re(s) < 0. The pole of Γ at 0 does not induce a zero of ζ, because it is
counterbalanced by the pole of ζ at 1. In fact, ζ(0) = −1/2 by Exercise 6.3.

As we mentioned in Chapter 5, the zeroes of ζ at the negative even
integers are called trivial . All other zeroes lie in the strip 0 � Re(s) � 1 and
are called non-trivial . We denote them by ρ = β + iγ. These are the zeroes
appearing on the right-hand side of the functional equation (5.11). For this
reason, the strip 0 � Re(s) � 1 is called the critical strip.

The functional equation and the obvious symmetry ζ(s̄) = ζ̄(s) imply
that if ρ is a non-trivial zero of ζ, then so are the numbers ρ̄, 1−ρ and 1− ρ̄.
In his 1859 mémoire, Riemann postulated that all non-trivial zeroes of ζ lie
on the line Re(s) = 1/2, which is the line of symmetry of ζ. We thus refer
to this line as the critical line. Riemann’s conjecture is known today as the
Riemann Hypothesis.

The Riemann Hypothesis is a very important conjecture because it offers
us unparalleled control on the distribution of primes. To explain this claim,
we go back to the explicit formula (5.11). If ρ = 1/2 + iγ for all non-trivial
zeroes of ζ, then ∣∣∣∣ ∑

|γ|�T

x1/2+iγ

1/2 + iγ

∣∣∣∣ � x1/2
∑
|γ|�T

1√
1/4 + γ2

.
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The order of magnitude of ζ 65

As we will prove later (see Lemma 8.2(a)), the number of zeroes with |γ| ∈
[n, n+ 1] is 
 log(n+ 2), so that

(6.5)

∣∣∣∣ ∑
|γ|�T

x1/2+iγ

1/2 + iγ

∣∣∣∣ 
 x1/2
∑

0�n�T

log(n+ 2)

n

 x1/2 log2 T.

Taking T = x establishes the remarkably accurate estimate

(6.6) ψ(x) = x+O(
√
x log2 x)

uniformly for all x � 2. By partial summation (see Exercise 1.7), this is
equivalent to having that

(6.7) π(x) = li(x) +O(
√
x log x)

uniformly for all x � 2, where we recall that li(x) =
∫ x
2 dt/ log t.

Juxtaposing (6.7) and (0.4), we see that under the Riemann Hypothesis
the distribution of primes is as close to being “random” as we could hope
for (up to factors of log x and log log x). In fact, Exercise 8.2(c) shows that
we cannot replace

√
x by a smaller power of x in (6.7), thus making (6.7)

“the best of all possible worlds”.

In contrast, the best known version of the Prime Number Theorem estab-
lishes (6.7) with a much weaker error of size x exp(−c(log x)3/5/(log log x)1/5)
[114, Corollary 8.30]. In Chapter 8, we will show (6.7) with a remainder term
of size x exp(−c

√
log x) by proving that ζ does not vanish too close to the

line Re(s) = 1.

Remarkably, (6.6) (and hence (6.7)) is equivalent to the Riemann Hy-
pothesis: indeed, let ψ(x) = x + E(x) and apply (1.12) with an = Λ(n),
f(n) = 1/ns, y = 1 and z → +∞ to find that

−ζ ′

ζ
(s) =

s

s− 1
+ s

∫ ∞

1

E(u)

us+1
du (Re(s) > 1).

But if E(u) = O(
√
u log2 u) for u � 2, the right-hand side of the above

formula is meromorphic for Re(s) > 1/2, thus providing a meromorphic
continuation of −ζ ′/ζ to the half-plane Re(s) > 1/2, with the only pole
located at s = 1. In particular, ζ does not vanish in this half-plane. By
the functional equation (6.1), it cannot vanish in the half-plane Re(s) < 1/2
either, and the Riemann Hypothesis follows. We have thus established:

Theorem 6.1. The Riemann Hypothesis is true if and only if (6.6) holds.

The order of magnitude of ζ

In the previous chapter, we gave a rough outline of the proof of the explicit
formula for ψ(x). More generally, we saw how to estimate the partial sums
of an arithmetic function f in terms of the singularities of its Dirichlet series
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66 6. The Riemann zeta function

F . A crucial technical step that we set aside in this discussion is the need
to bound F past its region of absolute convergence. We explain here how
to do this when F = ζ. In Chapter 8, we will develop additional tools that
will also allow us to handle the quotient ζ ′/ζ and establish Theorem 5.1.

So, let us suppose that we are given some s ∈ C. We then want to
understand the size of ζ(s). The functional equation (6.2) and Exercise 1.12
imply that

(6.8) |ζ(s)| �C |ζ(1− s)| · |t|1/2−σ (−C � σ � 1/2, |t| � 1).

Hence, it suffices to bound |ζ(s)| when Re(s) � 1/2.

When Re(s) > 1, this is relatively easy: since ζ is given by an absolutely
convergent Euler product on this half-plane, we have

(6.9) 1/ζ(σ) � |ζ(σ + it)| � ζ(σ).

Indeed, this follows by noticing that 1− |z| � |1/(1− z)| � 1/(1− |z|) when
|z| < 1. In particular, we conclude that |ζ(s)| �ε 1 for σ � 1 + ε. We then

also find by (6.8) that |ζ(s)| �ε,C |t|1/2−σ for σ ∈ [−C,−ε].

On the other hand, bounding ζ inside the critical strip 0 � Re(s) � 1
is much harder. It turns out we can use the information we have out-
side the critical strip to extrapolate a bound for ζ inside it. This uses the
Phragmén-Lindelöf principle [159, Chapter 12], which is a generalization of
the maximum modulus principle.

Theorem 6.2. Let f be a function that is analytic in an open neighborhood
of the vertical strip α1 � Re(s) � α2, and for which there is an absolute
constant C such that f(s) 
 exp{|t|C} when α1 � Re(s) � α2. Assume
further that f(σj + it) 
 (1 + |t|)θj for j = 1, 2 and all t ∈ R.

Given σ ∈ [α1, α2], there is a unique u ∈ [0, 1] such that σ = uα1 + (1−
u)α2. We then have

f
(
σ + it

)

 (1 + |t|)uθ1+(1−u)θ2 (t ∈ R).

We postpone the proof of this theorem momentarily because it is a bit
technical and use it to study ζ. In fact, because of the pole of ζ at s = 1, we
work instead with the function f(s) = (s− 1)ζ(s) that is entire. Note that
f grows at most polynomially in |t|, that is to say, f(s) 
σ (1 + |t|)O(1), as
it can be readily seen by relation (5.8). Since ζ(1+ ε+ it) 
ε 1 and ζ(−ε+

it) 
ε |t|1/2+ε for |t| � 1, Theorem 6.2 implies that ζ(s) 
 |t|(1−σ+ε)/2 for
−ε � σ � 1 + ε and |t| � 1.

To summarize the above discussion, we have shown the following result.
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Theorem 6.3. Fix ε > 0 and C � 1. For s = σ + it with σ � −C and
|t| � 1, we have

ζ(s) 
ε,C

⎧⎪⎨⎪⎩
1 if σ � 1 + ε,

|t|(1−σ+ε)/2 if − ε � σ � 1 + ε,

|t|1/2−σ if − C � σ � −ε.

Motivated by the above theorem, we define

(6.10) �(σ) = lim sup
|t|→∞

log |ζ(σ + it)|
log |t|

for each σ ∈ R, that is to say, �(σ) is the smallest number such that

|ζ(σ + it)| 
ε,σ |t|�(σ)+ε (|t| � 1)

for each fixed ε > 0. The discussion in the beginning of the section implies
that �(σ) = 0 for σ > 1, that �(σ) = 1/2− σ for σ < 0 and that

�(σ) = 1/2− σ + �(1− σ).

Furthermore, Theorem 6.2 implies that �(σ) is a convex function. In partic-
ular, it is continuous (see Exercise 6.7), so that �(1) = 0 and �(0) = 1/2. It
is believed that

�(σ) =

{
0 if σ � 1/2,

1/2− σ if 0 � σ � 1/2.

This is known as the Lindelöf hypothesis.

The convexity of �(σ) reduces the Lindelöf hypothesis to the case when
σ=1/2. Any improvement of the exponent 1/4 in the estimate ζ(1/2+it) 
ε

|t|1/4+ε of Theorem 6.3 is called a subconvexity estimate. In turn, this is
essentially equivalent to proving that the sum

∑
n�x n

it is small compared

to x (i.e., it “exhibits cancellation”) when x is in the vicinity of |t|1/2 (see
formula (7.18)). The current record is �(1/2) � 13/84 ≈ 0.154 due to
Bourgain [16].

Proof of Theorem 6.2. By a linear change of variables, we may assume
that α1 = 0 and α2 = 1, so that our goal is to show that f(σ + it) 

(1 + |t|)(1−σ)θ1+σθ2 . In addition, we may assume that θ1, θ2 � 0; otherwise,
we replace f(s) by f(s)(s+ 1)k for a large integer k.

To study f at height t, we consider the function f(z + it) with 0 �
Re(z) � 1. We further normalize f(z + it) to be bounded on the boundary
of the strip 0 � Re(z) � 1 by letting

gt(z) := f(z + it)
/[
(1 + |t|)(1−z)θ1+zθ2 · (z + 1)N

]
,
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68 6. The Riemann zeta function

where N = max{�θ1	 , �θ2	}. Indeed, note that

|gt(iy)| 
 (1 + |t+ y|)θ1
/[
(1 + |t|)θ1 · (1 + |y|)N

]
� 1

for y ∈ R, by our assumption that N � θ1 � 0. Similarly, |gt(1 + iy)| 
 1.

We have shown that gt is uniformly bounded on the boundary of the
strip 0 � Re(z) � 1. If we knew its maximum occurred on this boundary,
the theorem would readily follow, since

(6.11) |f(σ + it)| � 2N (1 + |t|)(1−σ)θ1+σθ2 · |gt(σ)| (0 � σ � 1).

The main idea of the Phragmén-Lindelöf principle is to construct an aux-
iliary function which is bounded and whose maximum does occur on the
boundary of the strip 0 � Re(z) � 1. To this end, we let

hε(z) = exp{ε(eiπz/4 + e−iπz/4)},
where ε > 0 is fixed for the moment. If z = x+ iy, then note that

Re(eiπz/4 + e−iπz/4) = cos(πx/4)(e−πy/4 + eπy/4) � eπ|y|/4/
√
2

for x ∈ [0, 1] and y ∈ R. Our assumption that f(z + it) 
 exp{|t + y|C}
implies that the function gt/hε is bounded. In fact, we have |(gt/hε)(x +
iy)| � 1 for all x ∈ [0, 1], as long as y is large enough in terms of ε and t (we
suppress the dependence on C, since we consider it fixed).

Let Y = Y (ε, t) be such that |(gt/hε)(x + iy)| � 1 for y � Y and
x ∈ [0, 1]. For each T � Y , we consider the rectangle RT with vertices ±iT
and 1 ± iT . Note that gt/hε is uniformly bounded on the boundary of RT

(independently of ε, t and T ). The maximum modulus principle implies that
(gt/hε)(z) 
 1 for all z ∈ RT . Letting T → ∞, we find that gt(z) 
 hε(z)
for all z in the strip 0 � Re(z) � 1, uniformly in t ∈ R and ε > 0. We then
let ε → 0+ to deduce that gt(z) 
 1, uniformly in t. Hence, the theorem
readily follows by (6.11). �

Exercises

Exercise 6.1. Show that the Riemann Hypothesis is equivalent to knowing that
Re(ρ) � 1/2 for all non-trivial zeroes ρ.

Exercise 6.2. Show that ζ(σ) < 0 when −2 < σ < 1.

Exercise 6.3. Prove that ζ(−n) = (−1)nBn+1/(n+ 1) for n � 0. [Hint: Exercise
1.10(d).]

Exercise 6.4. Use (6.1) and Theorem 1.14 to show that

ζ ′

ζ
(s) +

ζ ′

ζ
(1− s) =

1

s
+

1

1− s
+ γ + log π +

∑
n�1

( 1

2n+ s
+

1

2n+ 1− s
− 1

n

)
.

Conclude that (ζ ′/ζ)(0) = log(2π) and ζ ′(0) = − log(2π)/2.
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Exercises 69

Exercise 6.5. For t ∈ R, let2

ϑ(t) = arg Γ(1/4 + it/2)− t(log π)/2.

Show that Hardy’s function Z(t) := eiϑ(t)ζ(1/2 + it) is real valued.

Exercise 6.6. Let θ ∈ (0, 1) be such that
∑

n�x μ(n) = O(xθ) for all x � 1. Prove

that ζ(s) �= 0 for Re(s) > θ.

Exercise 6.7. Prove that a convex function f : [a, b] → R is continuous. [Hint:
For each x ∈ [a, b], show that the ratio (f(y) − f(x))/(y − x) is increasing as a
function of y ∈ [a, b] \ {x}.]
Exercise 6.8. Prove that the function �(σ) is non-negative and decreasing.

Exercise 6.9. Let f(s) be a bounded analytic function in an open neighborhood of
the strip 0 � Re(s) � 1. If Mσ = supt |f(σ + it)|, then show that Mσ � M1−σ

0 Mσ
1 .

[Hint: Consider fε(s) = f(s)Ms−1
0 M−s

1 /(1 + εs).]

Exercise 6.10. When σ1 = −1 and σ1 = 1, show that we may relax the condition
f(s) 
 exp{|t|C} in Theorem 6.2 to |f(s)| � exp{AeB|t|}, where A � 0 and
0 � B < π/2. Furthermore, show that we cannot take B � π/2. [Hint: Consider
the function f(s) = exp{cos(πs/2)}.]

2Since Γ(s) does not vanish and is analytic for Re(s) > 0, we may define log Γ(s) for Re(s) > 0.
We take the branch that is real valued for s > 0. Then arg Γ(s) = Im log Γ(s), as usual.
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Chapter 7

The Perron inversion
formula

If f is an arithmetic function whose Dirichlet series F can be meromor-
phically continued past its domain of absolute convergence, then we expect
that the asymptotic behavior of the partial sums of f is determined by the
singularities of F , as described in the guesstimate (5.14). The main goal of
this chapter is to justify this heuristic.

In our discussion of Perron’s inversion formula in Chapter 5, we ignored
a subtle technical issue: the choice of the parameter T used to truncate the
integral

∫
(α)(F (s)xs/s)ds and approximate it by

∫
σ=α, |t|�T (F (s)xs/s)ds. In

practice, it is important to have a quantitative form of Perron’s inversion
formula (5.9) that allows us to choose T as an appropriate function of x. To
do so, we approach (5.9) from a slightly different point of view.

The key observation is that∑
n<x

f(n) +
1x∈Nf(x)

2
=

∑
n�1

f(n)δ(n/x) with δ(y) = 10<y<1 +
1y=1

2
.

The Mellin transform of δ is
∫ ∞
0 δ(y)ys−1dy = 1/s, so that

(7.1)
∑
n<x

f(n) +
1x∈Nf(x)

2
=

∑
n�1

f(n) · 1

2πi

∫
(α)

(x/n)s

s
ds

for each α > 1 (or, even, for α > 0). The next natural step is to interchange
the order of summation and integration, which would yield (5.9). It is hard
to justify this step directly because the integrals on the right side of (7.1) do
not converge absolutely. We discuss two ways to circumvent this problem.

70
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7. The Perron inversion formula 71

The first method: Truncating Perron’s integral. Instead of using the
exact formula δ(y) = (1/2πi)

∫
(α)(y

−s/s)ds with α > 0, we can use the

following truncated form of it that offers substantial technical flexibility.

Lemma 7.1. Uniformly for y > 0, α > 0 and T � 1, we have

1

2πi

∫
Re(s)=α
| Im(s)|�T

y−s

s
ds =

{
10<y<1 +O

(
y−α/max{1, T | log y|}

)
if y �= 1,

1/2 +O(α/T ) if y = 1.

We postpone the proof of the above result till the end of the chapter.
Note that if

∑
n�1 |f(n)|/nα converges for some α > 0, then Lemma 7.1

implies

(7.2)
∑
n<x

f(n) +
1x∈Nf(x)

2
=

1

2πi

∫
Re(s)=α
| Im(s)|�T

F (s)
xs

s
ds+O(xα ·R),

where

R =
∑
n�1

|f(n)|
nαmax{1, T | log x

n |}
.

The error term can be bounded if f does not grow too fast, thus yielding a
quantitative version of (5.9) as follows.

Theorem 7.2. Let f be an arithmetic function with Dirichlet series F (s) =∑∞
n=1 f(n)/n

s. Assume there are constants A,C � 0 and θ � −1 such that

|f(n)| � Cnθ(1 + logn)A (n ∈ N).

For x, T � 2 and α � θ + 1 + 1/ log x, we have that∑
n�x

f(n) =
1

2πi

∫
Re(s)=α
| Im(s)|�T

F (s)
xs

s
ds+O

(xα(log x)A+1

T
+ xα−1(log x)A

)
;

the implied constant depends at most on A,C and θ.

We prove Theorem 7.2 at the end of the chapter, along with Lemma 7.1.

The second method: Using smooth cut-offs. We now discuss an alter-
native way to obtain a quantitative form of Perron’s inversion formula. The
underlying cause for the slow decay of the integrand in Perron’s inversion
formula (5.9) is that the function δ is discontinuous. This is a reflection of
the uncertainty principle in harmonic analysis: the discontinuous function
δ is too localized on the interval [0, 1], so its Mellin transform must have
relatively heavy tails (that is to say, it cannot decay too fast at infinity).
In order to get around this issue, we approximate δ by a more delocalized
function whose Mellin transform decays faster at infinity.
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0 1 1 + 1/T

1

Figure 7.1. The graph of the function δT (y).

A concrete example is provided by the function

δT (y) =

⎧⎪⎨⎪⎩
1 if 0 � y � 1,

T + 1− Ty if 1 < y < 1 + 1/T,

0 if y � 1 + 1/T,

where T � 1 is some large parameter that plays an analogous role to that
of the truncation point in Lemma 7.1 (see Figure 7.1). By construction, we
have ∑

n�x

f(n) =
∑
n�1

f(n)δT (n/x) +O
( ∑

x<n�x+x/T

|f(n)|
)
.

We then rewrite δT in terms of its Mellin transform, which is equal to∫ ∞

0
δT (y)y

s−1dy =
(1 + 1/T )s+1 − 1

s(s+ 1)/T
.

Notice that this is an absolutely integrable function on each line Re(s) =
α �= 0, as opposed to the Mellin transform of δ. In addition, Theorem B.4
(applied here with α1 = 1 and α2 = ∞) implies that

δT (n/x) =
1

2πi

∫
(α)

(1 + 1/T )s+1 − 1

s(s+ 1)/T
(x/n)sds

for any α > 1. As a consequence,∑
n�x

f(n) =
1

2πi

∫
(α)

F (s)
xs

s
· (1 + 1/T )s+1 − 1

(s+ 1)/T
ds

+O
( ∑

x<n�x+x/T

|f(n)|
)
.

(7.3)

Notice that (1 + 1/T )s+1 − 1 ∼ (s + 1)/T when s = o(T ), so that the
integrands in (7.3) and in Theorem 7.2 are asymptotically the same for small
s. In addition, the absolute convergence of the integral in (7.3) allows us to
truncate it in a very straightforward way. The larger T is, the better we can
control the error term

∑
x<n�x+x/T |f(n)|, but the worse bounds we have on

the Mellin transform of δT due to the presence of T−1 in the denominator.
Consequently, we have to choose the parameter T in an optimal way that
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balances the gains and the losses. A similar situation arises when using
Lemma 7.1 to truncate Perron’s formula. We will see a concrete application
of this version of Perron’s formula later, in the proof of Theorem 13.2.

Taking the above idea one step further, we approximate the sharp cut-off
function δ by a smooth function φ ∈ C∞(R�0) such that

(7.4)

⎧⎪⎨⎪⎩
φ(y) = 1 if 0 � y � 1,

0 � φ(y) � 1 if 1 < y < 1 + 1/T,

φ(y) = 0 if y � 1 + 1/T.

Example 7.3. A simple way to construct such a φ is to begin with a smooth

function g � 0 that is supported on [0, 1] and for which
∫ 1
0 g(x)dx = 1. We

then set gT (x) = T ·g(Tx), which is supported on [0, 1/T ] and whose integral

over R also equals 1, and take φ(y) =
∫ y+1/T
y−1 gT (w)dw for y > 0. Clearly

0 � φ(y) �
∫∞
−∞ gT (w)dw = 1. Moreover, if y ∈ [0, 1], then y − 1 � 0 and

y + 1/T � 1/T , so that φ(y) =
∫ 1/T
0 gT (w)dw = 1. Finally, if y � 1 + 1/T ,

then y − 1 � 1/T , so that φ(y) = 0. This proves that φ satisfies (7.4).

Notice that for the constructed function φ we have

(7.5) ‖φ(k)‖∞ 
k T k.

This is the typical behavior for the kth derivative of functions φ satisfying
(7.4), since they vary by 1 in an interval of length 1/T . �

Given φ satisfying (7.4), we consider its Mellin transform

Φ(s) =

∫ ∞

0
φ(y)ys−1dy

that converges absolutely for σ > 0. Integrating by parts k + 1 times, and
noticing that φ(k+1) is supported on [1, 1 + 1/T ], we find

Φ(s) =
(−1)k+1

s(s+ 1) · · · (s+ k)

∫ 1+1/T

1
φ(k+1)(y)ys+kdy.(7.6)

This provides a meromorphic continuation of Φ to the entire complex plane.
The only potential poles are at the points s = −k for k ∈ Z�0 of residue

ress=−k Φ(s) = − 1

k!

∫ ∞

0
φ(k+1)(y)dy =

φ(k)(0)

k!
.

By (7.4), we have that φ(0) = 1 and φ(k)(0) = 0 for k � 1, so that the only
pole is at s = 0 and its residue equals 1.

Finally, using (7.6), we find that

Φ(s) 
k T−1 · |s|−k−1 · ‖φ(k+1)‖∞ · (1 + 1/T )max{σ,0}
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for | Im(s)| � 1 and k ∈ Z�0. If φ satisfies (7.5), then

(7.7) Φ(s) 
k (1 + 1/T )max{σ,0} min
0�j�k

T j

|s|j+1
=

(1 + 1/T )max{σ,0}

|s|max{1, |s|/T}k

for |t| � 1 and k ∈ Z�0. In particular, Φ(s) starts decaying extremely fast
as soon as |s| > T , which is in accordance with the uncertainty principle.

Let us know see how we can use the above discussion to estimate the
partial sums of f . We start by observing that∑

n�x

f(n) =
∑
n�1

f(n)φ(n/x) +O
( ∑

x<n�x+x/T

|f(n)|
)
.

For any α > 0, Mellin’s inversion formula (Theorem B.4) implies that

φ(n/x) =
1

2πi

∫
(α)

Φ(s)(x/n)sds.

If F (s) converges absolutely when Re(s) = α, then∑
n�1

f(n)φ(n/x) =
∑
n�1

f(n)

2πi

∫
(α)

Φ(s)xs

ns
ds(7.8)

=
1

2πi

∫
(α)

F (s)Φ(s)xsds,

where the change of order of summation and integration is justified by
Lebesgue’s Dominated Convergence Theorem.

Similarly to ζ, it is often the case that F has a meromorphic continuation
to a half-plane σ > α0 for some α0 < α. In this case, F usually satisfies its
own version of Theorem 6.3: for any fixed σ > α0, the function |F (σ + it)|
is bounded by a suitable power of |t| when |t| → ∞. On the other hand,
(7.7) implies that |Φ(σ + it)| grows faster than any fixed power of |t|, so
that F (s)Φ(s) is absolutely integrable on any vertical line Re(s) = α′ with
α′ > α0. Using Cauchy’s residue theorem, we arrive at the formula

1

2πi

∫
(α)

F (s)Φ(s)xsds =
1

2πi

∫
(α′)

F (s)Φ(s)xsds

+
∑

α′<Re(w)<α

ress=w(F (s)Φ(s)xs),
(7.9)

where the sum on the last line runs over the singularities of F (s)Φ(s). In-
deed, (7.9) follows by letting T →∞ in (5.13) with Φ(s) in place of 1/s.

Finally, the integral on the right-hand side of (7.9) is estimated using
(7.7) and analogues of Theorem 6.3 for F (s). We give the necessary details
in the second example below.
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Two examples

We demonstrate how to use the Perron inversion formula in practice by
employing it to study the partial sums of τk and to count square-full integers.

Averaging the divisor functions τk. We wish to estimate the summatory
function of the kth divisor function τk, where k ∈ Z�2. We have that

∞∑
n=1

τk(n)

ns
= ζ(s)k,

which has a meromorphic continuation to C with its only singularity being
a pole of order k at s = 1. Since τk(n) � nOk(1/ log logn) for n � 3 by
Exercise 2.9(f), we fix ε > 0 and apply Theorem 7.2 with θ = ε/2, A = 0

and α = 1 + ε. We have 1 + ε � θ + 1 + 1/ log x for x � e2/ε, whence

(7.10)
∑
n�x

τk(n) =
1

2πi

∫
Re(s)=1+ε
| Im(s)|�T

ζ(s)k
xs

s
ds+Ok,ε

(x1+ε log x

T

)
uniformly for x � T � 2 and x � e2/ε. We will apply (5.13) to replace the
contour [1 + ε− iT, 1 + ε+ iT ] by C1 + C2 + C3, where

C1 = [1+ε−iT, α′−iT ], C2 = [α′−iT, α′+iT ], C3 = [α′+iT, 1+ε+iT ]

for some α′ ∈ (0, 1) to be chosen later. All implied constants in what follows
might depend on α′, ε and k.

Consider the rectangle whose vertices are the points 1 + ε ± iT and
α′ ± iT . The only pole of the integrand in (7.10) inside this rectangle is at
s = 1 and has order k. Consequently,∑
n�x

f(n) = ress=1
xsζ(s)k

s
+

1

2πi

∫
C1+C2+C3

ζ(s)k
xs

s
ds+O

(x1+ε log x

T

)
.

Remark 5.3 implies that there is a polynomial Pk of degree k − 1 and with
leading coefficient 1/(k − 1)! such that

ress=1(x
sζ(s)k/x) = x · Pk(log x).

We treat the integral over C1 + C2 + C3 as an error term and bound it
crudely. Using Theorem 6.3, we have ζ(s) 
ε (1+|t|)(1−σ+ε)/2 for |s−1| � 1
and 0 � σ � 1 + ε. Since we also have |α′ + it| � 1 + |t| for α′ > 0, we find∫

C2

ζ(s)k
xs

s
ds = i

∫ T

−T
ζ(α′ + it)k

xα
′+it

α′ + it
dt



∫ T

−T
(1 + |t|)(1−α′+ε)k/2−1xα

′
dt


 xα
′
T (1−α′+ε)k/2.
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Similarly, we have that∫
C1

ζ(s)k
xs

s
ds =

∫ 1+ε

α′
ζ(σ − iT )k

xσ−iT

σ − iT
dσ 


∫ 1+ε

α′
T (1−σ+ε)k/2−1xσdσ


 max
α′�σ�1+ε

T (1−σ+ε)k/2−1xσ,(7.11)

and the same estimate holds for the integral over C3. Assuming that T �
x2/k, the maximum in (7.11) occurs when σ = 1 + ε.

To conclude, we have proved that∑
n�x

τk(n) = xPk(log x) +Ok,ε,α′

(
xα

′
T (1−α′+ε)k/2 +

x1+ε log x

T

)
.

The error term increases when α′ increases. Taking α′ = ε yields∑
n�x

τk(n) = xPk(log x) +Ok,ε

(
xε(T k/2 + x/T ) log x

)
.

We optimize this estimate by taking T = x2/(k+2). Replacing ε by ε/2, we
arrive at the following result.

Theorem 7.4. Fix k ∈ Z�2 and ε > 0. There is a polynomial Pk of degree
k − 1 and of leading coefficient 1/(k − 1)! such that∑

n�x

τk(n) = xPk(log x) +Ok,ε(x
k/(k+2)+ε) (x � 1).

Remark 7.5. Theorem 7.4 improves upon Exercise 3.10 when k � 3, while
yielding a slightly weaker version of Theorem 3.3 when k = 2. Since in
its proof we took α′ very close to 0, it is tempting to examine what would
happen had we chosen α′ < 0. The calculation is a bit different now, since
|ζ(α′ + it)| �α′ |t|1/2−α′

for α′ < 0 and |t| � 1. It turns out that this idea
does not lead to an improvement of Theorem 7.4. We leave the verification
of this claim as an exercise. �

Square-full integers. As in Example 5.5, let f be the characteristic func-
tion of square-full integers and

F (s) =
∑
n�1

f(n)

ns
=

ζ(2s)ζ(3s)

ζ(6s)
.

Theorem 7.2 with θ = A = 0 and α = 1 + 1/ log x implies that∑
n�x

f(x) =
1

2πi

∫
Re(s)=1+1/ log x

| Im(s)|�T

ζ(2s)ζ(3s)

ζ(6s)
· x

s

s
ds+O

(x log x
T

)
uniformly for x � T � 2. This formula puts us right away at a disadvantage:
the error term should really be of size O(x1/2+ε/T ), because

∑
n�x f(n) �√

x, that is to say, the parameter θ is −1/2 on average. We could prove a
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more general version of Theorem 7.2 that would allow such an improvement,
but it is significantly simpler to work instead with a smooth cut-off φ.

Let T � 2 be a parameter that we will choose later. By Example 7.3,
there are functions φ± ∈ C∞(R�0) such that

1[0,1−1/T ] � φ− � 1[0,1] � φ+ � 1[0,1+1/T ],

and ‖(φ±)(k)‖∞ 
k T k for each fixed k. Then

(7.12)
∑
n�1

f(n)φ−(n/x) �
∑
n�x

f(n) �
∑
n�1

f(n)φ+(n/x).

Let φ ∈ {φ−, φ+}, and let Φ denote its Mellin transform, which satisfies
(7.7). We use relations (7.8) and (7.9) to find that∑

n�1

f(n)φ(n/x) =
ζ(3/2)

ζ(3)
· Φ(1/2)

2
x1/2 +

ζ(2/3)

ζ(2)
· Φ(1/3)

3
x1/3

+
1

2πi

∫
(α′)

ζ(2s)ζ(3s)

ζ(6s)
Φ(s)xsds

(7.13)

for any α′ ∈ (1/6, 1/3). To ease notation, let α′ be α from now on.

To estimate the integral over the line Re(s) = α, we use Theorem 6.3 to
find that

ζ(2s)ζ(3s) 
ε,α (1 + |t|)1/2−α+ε/2(1 + |t|)1/2−3α/2+ε/2 = (1 + |t|)1−5α/2+ε

for any fixed ε ∈ (0, 1/2]. Finally, since Re(6s) = 6α > 1, we have |ζ(6s)| �
1/ζ(6α) �α 1 from relation (6.9). Together with (7.7), this implies that

ζ(2s)ζ(3s)

ζ(6s)
Φ(s)xs 
ε,α,k

(1 + |t|)−5α/2+εxα

max{1, |t|/T}k

for any fixed k � 0. We use the above inequality to bound the integral in
(7.13): we have∫

Re(s)=α
| Im(s)|�T

ζ(2s)ζ(3s)

ζ(6s)
Φ(s)xsds 


∫ T

−T
(1 + |t|)−5α/2+εxαdt 
 T 1−5α/2+εxα,

since we have assumed that α < 1/3. On the other hand,∫
Re(s)=α
| Im(s)|�T

ζ(2s)ζ(3s)

ζ(6s)
Φ(s)xsds 


∫
|t|�T

|t|−5α/2+εxα

(|t|/T )2 dt 
 T 1−5α/2+εxα,

assuming that ε � 1/2. Inserting these bounds into (7.13), we conclude that∑
n�1

f(n)φ(n/x) =
ζ(3/2)

ζ(3)
· Φ(1/2)

2
x1/2 +

ζ(2/3)

ζ(2)
· Φ(1/3)

3
x1/3

+Oα,ε(x
αT 1−5α/2+ε).
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Finally, since 1[0,1−1/T ] � φ � 1[0,1+1/T ], we have that

Φ(s) =

∫ 1

0
ys−1ds+O(1/T ) = 1/s+O(1/T )

for s ∈ {1/2, 1/3}, so that∑
n�1

f(n)φ(n/x) =
ζ(3/2)

ζ(3)
x1/2 +

ζ(2/3)

ζ(2)
x1/3 +O

(
x1/2

T
+ xαT 1−5α/2+ε

)
for φ = φ±. We optimize the error term by taking α = 1/6 + ε/2 and

T = x4/19. Together with (7.12) this implies the estimate∑
n�x

f(n) =
ζ(3/2)

ζ(3)
x1/2 +

ζ(2/3)

ζ(2)
x1/3 +O(x11/38+ε).

This recovers the main terms of Exercise 3.11, but has a worse error term.

We thus see that even though using Perron’s inversion formula offers
an intuitive way of establishing asymptotic formulas, it is sometimes possi-
ble to prove superior results using more elementary methods. Hence, it is
important to be fluent in both ways of approaching a problem.

Truncating Perron’s integral

We conclude the chapter by proving Lemma 7.1 and Theorem 7.2.

Proof of Lemma 7.1. First, we consider the case 0 < y < 1. We fix a
large A > 0 and apply (5.13) with F (s) = 1 and α′ = −A to find that

(7.14)
1

2πi

∫
Re(s)=α
| Im(s)|�T

(1/y)s

s
ds = 1 +

1

2πi
(I−1 + I0 + I1),

where I−1 is the integral of y−s/s over the line segment [α− iT,−A− iT ], I0
is over [−A−iT,−A+iT ] and I1 is over [−A+iT, α+iT ]. What is important
in the above formula is that the integrand is very small on the new contour
of integration: either the denominator is large (in I±1, that are supported
on the horizontal line segments [−A± iT, α± iT ]), or the numerator is small
(in I0, that is supported on the vertical line segment [−A − iT,−A + iT ])
because y > 1. More concretely,

I±1 =

∫ −A±iT

α±iT

(1/y)s

s
ds 


∫ α

−A

(1/y)σ

|σ|+ T
dσ � 1

T

∫ α

−A
y−σdσ � y−α

T | log y| ,

whereas

I0 =

∫ −A+iT

−A−iT

(1/y)s

s
ds 


∫ T

−T

yA

A+ |t|dt.

Letting A → ∞, we have I0 → 0. This proves the lemma when y � e−1/T .
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When e−1/T � y < 1, we use a variation of (5.13): we replace the
line of integration L = { s ∈ C : σ = α, |t| � T } by the circular arc

C = { s ∈ C : |s| =
√
α2 + T 2, σ � α } traversed clockwise. As in (7.14),

Cauchy’s theorem implies that
∫
L(y

−s/s)ds =
∫
C(y

−s/s)ds+2πi. To bound
the integral over C, we note that |y−s/s| 
 y−α/T for s ∈ C. Since the
length of C is � T , the lemma follows in this case too.

The case y > 1 is similar. However, instead of shifting the contour to the
left, we shift it to the right, so that y−s/s becomes smaller in magnitude.
No pole is encountered this time. We leave the details as an exercise.

It remains to handle the case y = 1. We argue by direct computation:

1

2πi

∫
Re(s)=α
| Im(s)|�T

ds

s
=

1

2π

∫ T

0

( 1

α+ it
+

1

α− it

)
dt =

α

π

∫ T

0

dt

α2 + t2
.

The rightmost integral equals arctan(T/α)/π = 1/2 +O(α/T ), which com-
pletes the proof of the lemma. �

Proof of Theorem 7.2. Using the fact that f(n) � Cnθ(1 + logn)A and
(7.2), we have∑

n�x

f(n) =
1

2πi

∫
Re(s)=α
| Im(s)|�T

F (s)
xs

s
ds+O(xα · E + xθ(log x)A),

where

E =
∑
n�1

nθ(1 + logn)A

nαmax{1, T | log x
n |}

�
∑
n�1

(1 + logn)A

n1+1/ log xmax{1, T | log x
n |}

.

We write E = E1 + E2 + E3 + E4, where E1 is the part of the sum with
|x−n| � 1, E2 is with 1 < |x−n| � x/T , E3 is with max{1, x/T} < |x−n| �
x/2 and E4 is with |x− n| > x/2.

We clearly have that E1 
 (log x)A/x. The sum E2 has non-empty
range only when x � T , in which case we have

E2 �
∑

x−x/T�n�x+x/T

(1 + logn)A

n1+1/ log x
� x

T
· (log x)

A

x
.

For the terms in the range of E3, we note that | log(x/n)| � |n − x|/x, by
Taylor’s expansion of the logarithm about 1, so that

E3 

∑

max{1,x/T}�|n−x|�x/2

(log x)A

T · |n− x| �
∑

1�2j�x/2

∑
2j�|x−n|<2j+1

(log x)A

T · 2j .

Since there are 
 2j integers n with 2j � |x − n| < 2j+1, we deduce that
E3 
 (log x)A+1/T . Finally, for the terms in the range of E4 we note that
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| log(x/n)| � 1, whence

E4 

1

T

∑
n�1

(1 + logn)A

n1+1/ log x

A

(log x)A+1

T

by an application of the Euler-Maclaurin summation formula (Theorem
1.10). (Alternatively, note that the contribution of n ∈ [xj , xj+1) to E4

is 
 T−1(log x)A+1(j + 1)Ae−j . Summing over all j�0 proves the claimed
bound.) Putting together the above estimates implies that E
(log x)A+1/T
+ (log x)A/x, thus completing the proof of the theorem. �

Exercises

Exercise 7.1. Consider an arithmetic function f with Dirichlet series F (s) con-
verging absolutely for Re(s) = α > 0. Prove that

1

x

∫ x

0

∑
n�y

f(n)dy =
∑
n�x

f(n)(1− n/x) =
1

2πi

∫
(α)

F (s)
xs

s(s+ 1)
ds

and ∫ x

1

∑
n�y

f(n)
dy

y
=

∑
n�x

f(n) log(x/n) =
1

2πi

∫
(α)

F (s)
xs

s2
ds.

[Hint: Mellin inversion for φ(y) = 1y�1 · (1− y) and ψ(y) = 1y�1 · log(1/y).]

Exercise 7.2. Let φ ∈ C∞(R�0) be compactly supported, and let Φ denote its
Mellin transform.

(a) Show that Φ(s) is analytic for Re(s) > 0.

(b) If φ(y) = φ0 when y ∈ [0, 1], show that Φ has a meromorphic continuation to
C whose only singularity is a simple pole of residue φ0 at s = 0.

(c) If supp(φ) ⊆ [0,m], then prove that Φ(s) 
φ,A mmax{σ,0}/(1 + |s|)A for all
s ∈ C and any fixed A � 1.

(d) Let f be an arithmetic function with Dirichlet series F (s) converging absolutely
for Re(s) = α > 0. For x � 1, prove that∑

n�1

f(n)φ(n/x) =
1

2πi

∫
(α)

F (s)Φ(s)xsds.

Exercise 7.3. Let f(n) = μ2(n)/ϕ(n) and let F (s) be its Dirichlet series.

(a) Prove that F (s) = ζ(s+1)G(s), where G(s) is a Dirichlet series that converges
absolutely for Re(s) > −1/2.

(b) Write G as an Euler product and calculate its logarithmic derivative G′/G.
Deduce that G(0) = 1 and G′(0) =

∑
p(log p)/(p

2 − p).
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(c) For 1 � T � x and α ∈ (−1/2, 0), prove that∑
n�x

f(n) =
1

2πi

∫
Re(s)=1/ log x
| Im(s)|�T

F (s)
xs

s
ds+O((logx)2/T )

= log x+ γ +G′(0) +
1

2πi

∫
C

F (s)
xs

s
ds+O((log x)2/T ),

where C is the sum of the contours [1/ log x− iT, α− iT ], [α− iT, α+ iT ] and
[α+ iT, 1/ log x+ iT ].

(d) Use Theorem 6.3 to estimate the integral over C and deduce that∑
n�x

f(n) = log x+ γ +G′(0) +Oε(x
−2/5+ε) (x � 1)

for any fixed ε > 0.

Exercise 7.4. Use Theorem 7.2 and its variants to estimate
∑

n�x log n,∑
n�x μ

2(n) and
∑

n�x ϕ(n). Compare your results with those obtained by Theo-
rem 1.12, Exercise 3.8 and Theorem 3.2, respectively.

Exercise 7.5. An integer n is called cube-free if there is no prime p such that p3|n.
On the other hand, an integer is called cube-full if p3|n whenever p|n. Estimate the
number of cube-free and cube-full integers in [1, x].

Exercise 7.6. Show that there is a linear polynomial L, a quadratic polynomial
Q and some δ > 0 such that∑

n�x

2ω(n) = x · L(log x) +O(x1−δ) (x � 1)

and ∑
n�x

2Ω(n) = x ·Q(log x) +O(x1−δ) (x � 1).

Exercise 7.7.∗ Let s = σ + it with 0 < σ � 1 and |t| � 2.

(a) For x � T � 2 and α = 1− σ + 1/ log x, show that∑
n�x

1

ns
=

1

2πi

∫
Re(z)=α
| Im(z)|�T

ζ(s+ z)
xz

z
dz +O

(
x1−σ log x

T

)
.

(b) If | Im(z)| � |t|/2 and ε > 0, then show that

ζ(s+ z) 
ε

{
|t|(1−σ−Re(z))/2+ε if − σ � Re(z) � α,

|t|1/2−σ−Re(z)+ε if Re(z) � −σ.

(c) Let ε > 0 and A � 1 be fixed. Uniformly for x � |t|, prove that

(7.15)
∑
n�x

1

ns
= ζ(s) +OA,ε

(
|t|1/2−σ+ε(|t|/x|)A + x1−σ|t|ε−1

)
.
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82 7. The Perron inversion formula

Exercise 7.8.∗ Let φ be as in Exercise 7.2(b) with φ0 = 1.

(a) Consider s ∈ C with 0 � σ < 1 and |t| � 100, as well as x, y � 1 with
xy = |t|/2π. Show that∑

n�1

φ(n/x)

ns
= x1−sΦ(1− s) + ζ(s) +

1

2πi

∫
(−3)

ζ(s+ z)Φ(z)xzdz.

(b) Use (6.2) to write ζ(s+ z) = λ(s+ z)ζ(1− s− z) and deduce the approximate
functional equation

(7.16) ζ(s) =
∑
n�1

φ(n/x)

ns
+

∑
n�1

φ∗
s(n/y)

n1−s
+OA,φ(|t|−A),

where

φ∗
s(u) := − 1

2πi

∫
(−3)

Φ(z)λ(s+ z)(u|t|/2π)zdz.

(c) Show that λ is meromorphic with its poles located at the odd positive integers
with resz=2n+1 λ(z) = (−1)n−122n+1π2n/(2n)!. Finally, use Exercise 1.12 to
show that λ(a+ib) 
a max{|b|, 1}1/2−a when a, b ∈ R are such that |a+ib−k| �
1/2 for k = 1, 3, 5, . . . .

(d) Let α ∈ (−∞, 3/2] \ {0, 1− σ}. Prove that

φ∗
s(u) = − 1

2πi

∫
(α)

Φ(z)λ(s+ z)(u|t|/2π)zdz

+ 1α>0 · λ(s)− 1α>1−σ · 2Φ(1− s)(u|t|/2π)1−s.

(e) Fix ε > 0 and B > 0. Show that

φ∗
s(u) 
ε,B

{
u−B if u � |t|ε,
|t|1/2−σ+3ε/2 if 0 � u � |t|ε.

[Hint: When u � |t|ε, take α = −C in part (d) with C big enough in terms of
ε and B. Otherwise, take α = 3/2.]

(f) Combine parts (b) and (e) to prove that ζ(s) 
ε |t|(1−σ)/2+ε for |t| � 1 and
0 � σ � 1, thus recovering Theorem 6.3 inside the critical strip.

Exercise 7.9.∗

(a) Let z = a + ib with a, b ∈ R such that |a| 
 |b|2/3 and |z − k| � 1/2 for
k = 1, 3, 5, . . . . Show that

|λ(z)| � (2π)amax{|b|, 1}1/2−a.

[Hint: Use the relations λ(z) = λ(z) and λ(z) = 1/λ(1 − z) to first reduce to
the case when b � 0 and a � 1/2. When a � 1/2 and b � 1, use Exercise
1.12 noticing that |z/2|a = (b/2)a(1+O((a/b)2))a and arg(z/2) = π/2− a/b+
O((a/b)3) for a 
 b. Similar estimates also hold for |(1− z)/2|a and arg((1−
z)/2).]

(b) For s ∈ C with 0 � σ � 1 and |t| � 100, and for x, y � 1 with xy = |t|/2π,
show that

(7.17) ζ(s) =
∑
n�x

1

ns
+ λ(s)

∑
n�y

1

n1−s
+Oε((x

−σ + |t|1/2−σyσ−1)|t|ε).
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[Hint: Consider φ ∈ C∞(R�0) with Mellin transform Φ. Assume (7.4) and

(7.7) with T = |t|1/2−ε. For z = a + ib with |z| � |t|1/2 � |a| and |b| � |t|/2,
show that

Φ(z)λ(s+ z)(|t|/2π)z 
ε,A |t|−A|1 + b/t|−a(1 + 1/T )max{0,a}.

When u � 1− 2/T , use this estimate to show that

φ∗
s(u) = λ(s)− 1

2πi

∫
Re(z)=3/2

| Im(s)|�|t|1/2
Φ(z)λ(s+ z)(u|t|/2π)zdz +OA(|t|−A)

= λ(s)− 1

2πi

∫
Re(z)=|t|1/2
| Im(s)|�|t|1/2

Φ(z)λ(s+ z)(u|t|/2π)zdz +OA(|t|−A),

since Φ(z)λ(s+ z) has no poles when Re(z) � 3/2 and | Im(z)| � |t|1/2. Con-
clude that φ∗

s(u) = λ(s) + OA(|t|−A). On the other hand, when u � 1 + 2/T ,
show that φ∗

s(u) 
A u−10|t|−A by moving the contour to the line Re(z) =
−|t|1/2.]

Remark 7.6. When 0 < Re(s) < 1, formula (7.15) allows us to approximate
ζ(s) accurately by a sum of |t|1+ε terms. On the other hand, taking x = y =√
|t|/2π in (7.17), we can write ζ(s) as a linear combination of two much

shorter sums, each of length
√
|t|/2π. In particular,

ζ(1/2 + it) =
∑

n�
√

|t|/2π

1

n1/2+it
+ e−2iϑ(t)

∑
n�
√

|t|/2π

1

n1/2−it
+Oε(|t|−1/4+ε)

= e−iϑ(t)
∑

n�
√

|t|/2π

2 cos(ϑ(t)− t logn)√
n

+Oε(|t|−1/4+ε),(7.18)

where ϑ(t) is defined in Exercise 6.5. For this reason, formula (7.17) has
significant applications. On a theoretical level, it is very useful when study-
ing the value distribution and the moments of ζ. On a practical level, it
allows us to calculate ζ fast inside the critical strip. Indeed, a variation of
(7.18) was used by Riemann himself to calculate the first few non-trivial
zeroes of ζ and verify they are on the line Re(s) = 1/2. Riemann’s exact
variation of (7.18) was rediscovered by Siegel [164] when he was studying
Riemann’s handwritten notes at the University of Göttingen [155] and it is
known today as the Riemann-Siegel formula. For a detailed discussion of
this subject, see Chapter 7 of Edward’s book on ζ [37]. �
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Chapter 8

The Prime Number
Theorem

Having developed the theory of the Riemann zeta function and of the
Perron inversion, we use them to establish a quantitative version of the
celebrated Prime Number Theorem.

Theorem 8.1. There is a constant c > 0 such that

π(x) = li(x) +O
(
xe−c

√
log x

)
(x � 2).

Instead of working with π(x), we work with Chebyshev’s function ψ(x) =∑
n�x Λ(n). Our first goal is to establish the explicit formula (5.11). Sub-

sequently, we will show that ζ(s) �= 0 when Re(s) ≈ 1. This will allow us to
bound the sum over zeroes in (5.11) and obtain Theorem 8.1.

Proving the explicit formula

In order to use the techniques of the previous chapter, we need to control
ζ ′/ζ past its domain of absolute convergence. The key technical estimate is
the following lemma, whose proof we postpone till the end of the chapter.

Lemma 8.2. Let s = σ + it ∈ C.

(a) There are 
 log(|t|+2) non-trivial zeroes ρ = β+iγ of ζ with |γ−t| � 1,
even when counted with multiplicity.

(b) If |s+ 2n| � 1/2 for all n ∈ N, then

ζ ′

ζ
(s) = − 1

s− 1
+

∑
|γ−t|�1

1

s− ρ
+O(log(|s|+ 2)) ;

the sum runs over non-trivial zeroes of ζ listed with their multiplicity.

84

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.
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Proof of Theorem 5.1. Let x, T � 2. For technical reasons, we first prove
the theorem when |T−γ| � 1/ log T for all ρ. Our starting point is Theorem
7.2, which yields the formula

(8.1) ψ(x)=
1

2πi

∫
Re(s)=1+1/ log x

| Im(s)|�T

(
− ζ ′

ζ
(s)

)
xs

s
ds+O

(
x log2 x

T
+ log x

)
Next, we replace the contour of integration [1+1/ log x−iT, 1+1/ log x−iT ]
by the contour L−1 + L0 + L1, where we have set L−1 = [1 + 1/ log x −
iT,−2N − 1 − iT ], L0 = [−2N − 1 − iT,−2N − 1 + iT ] and L1 = [−2N −
1 + iT, 1 + 1/ log x + iT ] for a fixed large integer N � 1. Indeed, relation
(5.13) with α = 1 + 1/ log x and α′ = −2N − 1 implies that

ψ(x) =
∑

−2N−1<Re(w)<1+1/ log x

ress=w

(
(−ζ ′/ζ)(s)xs

s

)

+
1

2πi

(∫
L−1

+

∫
L0

+

∫
L1

)
(−ζ ′/ζ)(s)xs

s
ds

+O

(
x log2(xT )

T
+ log x

)
,

where the sum over w runs over all poles of f(s) := (−ζ ′/ζ)(s)xs/s in the
rectangle formed by the points 1 + 1/ log x ± iT and −2N − 1 ± iT . Our
next task is to locate all such poles.

The pole of ζ at s = 1 induces a pole of f of residue x. Moreover, for
each zero ρ of ζ of multiplicity mρ, we obtain a pole of residue −mρx

ρ/ρ
(see relation (5.10) and the discussion preceding it). Finally, there is a pole
at s = 0 of residue − log(2π), and poles at s = −2n � −2N of residue
x−2n/(2n) 
 4−n. Therefore

ψ(x) = x−
∑
|γ|�T

xρ

ρ
+

1

2πi

(∫
L−1

+

∫
L0

+

∫
L1

)
(−ζ ′/ζ)(s)xs

s
ds

+O

(
x log2(xT )

T
+ log x

)
,

(8.2)

where each zero ρ is repeated several times according to its multiplicity.

Next, we bound the contribution of the integrals over L−1 and L1. On
these integrals we have | Im(s)| = T . Recall that we have assumed that
|T − γ| � 1/ log T for all γ. If β + iγ is a zero of ζ, so is β − iγ, and we
deduce that |T + γ| � 1/ log T . We thus find that |s − ρ| � 1/ log T for
s ∈ L±1 with σ � −1. Together with Lemma 8.2, this implies that

ζ ′

ζ
(s) 
 log T +

∑
|γ−t|�1

log T 
 log2 T
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86 8. The Prime Number Theorem

for all s ∈ L±1 with σ � −1. When σ � −1, we have the stronger bound
(ζ ′/ζ)(s) 
 log T since the distance of s to the zeroes of ζ is � 1. Conse-
quently,∫

L±1

ζ ′

ζ
(s)

xs

s
ds 


∫ 1+1/ log x

−1

(log T )2xσ

T
dσ +

∫ −1

−2N−1

(log T )xσ

T


 x log2(xT )

T
.

When s ∈ L0, we have |s + 2n| � 1 for all n ∈ N and |s + ρ| � 2N + 1 for
all ρ. Hence, (ζ ′/ζ)(s) 
 log |s|, which implies that∫

L0

ζ ′

ζ
(s)

xs

s
ds 


∫ T

−T

(log(N + |t|))x−2N−1

N + |t| dt = oN→∞(1).

Inserting these estimates into (8.2) and letting N →∞ completes the proof
of Theorem 5.1 when |T − γ| � 1/ log T for all zeroes ρ = β + iγ of ζ.

Finally, consider the general case. There are 
 log T zeroes of ζ in the
horizontal strip {T � Im(s) � T + 1}. By the pigeonhole principle, there is
T ′ ∈ [T, T + 1] such that |T ′ − γ| � 1/ log T ′ for all zeroes. We then have

ψ(x) = x−
∑

|γ|�T ′

xρ

ρ
+O

(x log2(xT ′)

T ′ + log x
)
.

In addition, Lemma 8.2(b) implies that∣∣∣ ∑
T�|γ|�T ′

xρ

ρ

∣∣∣ �
∑

T�|γ|�T+1

∣∣∣xρ
ρ

∣∣∣ 
 x log T

T
.

This proves Theorem 5.1 for all T � 2. �

A zero-free region and the Prime Number Theorem

In view of Theorem 5.1, the only ingredient missing from proving the Prime
Number Theorem is showing that the terms xρ/ρ are small compared to the
expected main term x. Since |xρ| = xβ, we need to prove that β is not too
close to 1, namely that a certain region is free of zeroes of ζ. This is precisely
the context of the next theorem.

Theorem 8.3. There is a constant c > 0 such that ζ(s) �= 0 in the region

σ � 1− c

log(|t|+ 2)
.

Proof. Let ρ0 = β0 + iγ0 be a non-trivial zero of ζ. We need to prove that

(8.3) 1− β0 >
c

log(|γ0|+ 2)
.
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First of all, since ζ has a pole at 1, there is an absolute constant δ ∈ (0, 1]
such that |ρ0 − 1| � δ. In particular, if |γ0| < δ/2, then 1 − β0 > δ/2 �
δ/(4 log 2), so that (8.3) follows in this case provided that c � δ/4, as we
may certainly assume. For the rest of the proof, we assume that |γ0| � δ/2.

In order to explain the idea of the proof, we consider first the extreme
case when β0 = 1, i.e., ζ(1+ iγ0) = 0. By the analyticity of ζ, we must have
that ζ(σ + iγ0) ∼ a · (σ − 1) for some a ∈ C as σ → 1. On the other hand,
we have 1/ζ(σ + iγ0) =

∏
p(1 − 1/pσ+iγ0), and the only way this product

can tend to infinity as σ → 1+ is if piγ0 points towards −1 a lot of the time.
But then p2iγ0 = (piγ0)2 should point often towards 1, thus implying that
ζ(σ+2iγ0) =

∏
p(1− 1/pσ+2iγ0)−1 →∞ as σ → 1+, that is to say, ζ should

have a pole at 1 + 2iγ0. This is impossible, since γ0 �= 0 here, and the only
pole of ζ is at 1.

We formalize the above idea by introducing a family of metrics Dσ(·, ·),
σ > 1, on the set of multiplicative functions taking values in the unit circle
that we define by

(8.4) Dσ(f, g)
2 =

1

2

∑
p

∞∑
m=1

|f(pm)− g(pm)|2 log p
pmσ

.

We think of σ as a parameter that will be optimized later in terms of γ0.

By the triangle inequality,

(8.5)

Dσ(1, n
2iγ0) = Dσ(n

−iγ0 , niγ0)

� Dσ(n
−iγ0 , μ(n)) + Dσ(μ(n), n

iγ0)

= 2Dσ(μ(n), n
iγ0).

The above inequality is a rigorous way to see that if piγ0 ∼ −1 on average,
then p2iγ0 ∼ 1. We will prove though that Dσ(1, n

2iγ0) cannot be too small
because ζ is analytic around 1+2iγ0, whereas a zero ρ0 = β0+ iγ0 too close
to 1 + iγ0 would make Dσ(μ(n), n

iγ0) rather small.

We start by proving a lower bound on Dσ(1, n
2iγ0). Since |1 − pit|2 =

2(1− Re(p−it)) for t ∈ R, we have that

Dσ(1, n
2iγ0)2 =

∑
p,m

(1− Re(p−2iγ0m)) log p

pmσ
= −ζ ′

ζ
(σ) + Re

(ζ ′
ζ
(σ + 2iγ0)

)
.

We evaluate the last term on the right side using Lemma 8.2(b). Since
|γ0| � δ/2, we have |s+ 2iγ0 − 1| � 1. In addition, we have

Re
( 1

σ + 2iγ0 − ρ

)
=

σ − β

(σ − β)2 + (2γ0 − γ)2
� 0
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for each ρ = β + iγ. As a consequence,

Re
(ζ ′
ζ
(σ + 2iγ0)

)
� −O(log(|γ0|+ 2)).

Since we also have that (−ζ ′/ζ)(σ) = 1/(σ − 1) +O(1) , we conclude that

Dσ(1, n
2iγ0)2 � 1

σ − 1
−O(log(|γ0|+ 2)).

Next, we deal with Dσ(μ(n), n
iγ0). Similarly to before, we have that

Dσ(μ(n), n
iγ0)2 = −ζ ′

ζ
(σ)− Re

(ζ ′
ζ
(σ + iγ0)

)
+O(1)

=
1

σ − 1
−

∑
|γ−γ0|�1

σ − β

(σ − β)2 + (γ0 − γ)2
+O(log(|γ0|+ 2))

� 1

σ − 1
− 1

σ − β0
+O(log(|γ0|+ 2))

by dropping all the summands except for the one with ρ = ρ0.

Combining the above estimates, we find that

1

σ − 1
� 4

σ − 1
− 4

σ − β0
+O(log(|γ0|+ 2)).

If σ = 1 + 1/(C log(|γ0|+ 2)) for some large enough C, we have

3.5

σ − 1
>

4

σ − β0
, whence 1− β0 >

σ − 1

7
=

1

7C log(|γ0|+ 2)
.

Taking c = min{δ/4, 1/(7C)} completes the proof of the theorem. �

Remark 8.4. The above proof recasts a classical argument due to Mertens.
The original proof has as its starting point the relation

(8.6) 3 + 4 cos θ + cos(2θ) = 2(1 + cos θ)2 � 0,

often called the 3-4-1 inequality . Setting θ = tm log p and multiplying the
above inequality by p−mσ log p and summing it over all p and m yields (8.5).
The proof of (8.5) we presented is due to Granville and Soundararajan
[74] and fits within the framework of the theory of pretentious multiplicative
functions. A full account of this theory is given in [75]. In addition, elements
of it can be found in Chapters 13, 14, 22 and 27 of this book. �

We are finally ready to prove the Prime Number Theorem.

Proof of Theorem 8.1. We will estimate ψ(x) instead; passing to π(x)
can be easily accomplished by partial summation (see Exercise 1.7(d)).
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Combining the explicit formula (5.11) with Theorem 8.3, we find that
there is an absolute constant c1 > 0 such that

ψ(x) = x+O

( ∑
|γ|�T

x1−c1/ log T

|ρ| +
x log2 x

T

)
for any T ∈ [2, x]. Moreover, since ζ(0) �= 0, we have that |ρ| � 1 for
all non-trivial zeroes of ζ. In particular, we have the estimate |ρ| � 1 + |γ|.
Finally, arguing as in (6.5), we find that

∑
|γ|�T 1/(1+|γ|) 
 log2 T . Putting

everything together, we conclude that

ψ(x) = x+O
(
x1−c1/ log T (log T )2 + x(log x)2/T

)
.

Taking T = e
√
log x completes the proof. �

A bit of complex analysis

We conclude the chapter with the promised proof of Lemma 8.2. The start-
ing point is a variation of the classical Borel-Carathéodory theorem.

Lemma 8.5. Consider a function f(z) =
∑∞

n=0 cnz
n that is analytic in the

disk 1 |z| � R with f(0) = 0. If Re(f(z)) � M whenever |z| = R, then

|cn| �
8M

Rn
for n ∈ Z�1.

Furthermore, for k ∈ Z�0 and |z| � (1− ε)R with 0 < ε < 1, we have

|f (k)(z)| � 8k!M

εk+1Rk
.

Proof. Since f is analytic in the closed disk |z| � R, a compactness argu-
ment implies that it is also analytic in an open disk |z| < R′ with R′ > R. In
particular, its Taylor series

∑∞
n=0 cnz

n converges absolutely when |z| = R.

Note that c0 = f(0) = 0. Write cn = an + ibn so that

Re(f(Reiθ)) =
∞∑
n=0

Rnan cos(nθ)−
∞∑
n=1

Rnbn sin(nθ).

Fourier inversion (or Cauchy’s residue theorem) then implies that

(8.7) Rnan =
1

π

∫ 2π

0
Re(f(Reiθ)) cos(nθ)dθ

for n ∈ Z�0. In particular,
∫ 2π
0 Re(f(Reiθ))dθ = a0 = 0 and

|an| �
1

Rnπ

∫ 2π

0
|Re(f(Reiθ))|dθ

1This means that f is analytic in an open neighborhood of the disk {z ∈ C : |z| � R}.
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for n ∈ Z�1. Hence

|an| �
1

Rnπ

∫ 2π

0
(|Re(f(Reiθ))|+Re(f(Reiθ)))dθ

=
2

Rnπ

∫ 2π

0
max{Re(f(Reiθ)), 0}dθ � 4M

Rn
.

A similar argument implies the same bound for |bn| and the claimed bound

on |cn| follows. For the bound on f (k)(z), we simply note that |f (k)(z)| �∑
n�k n(n− 1) · · · (n− k + 1)|cn|((1− ε)R)n−k for |z| � (1− ε)R, and then

insert our bound for cn. �

If f(z) = log g(z) with g(z) �= 0 on some disk |z| � R, then Re(f(z)) =
log |g(z)|. Lemma 8.5 then allows us to translate an upper bound on |g(z)|
to bounds on f and its derivatives. This leads us to the following lemma,
which is a generalization of the fact that a polynomial of degree d and of
bounded coefficients grows roughly like eO(d) in the unit disk |z| � 1, while
also having at most d roots there. Part (a) is due to Landau, and part (b)
is a weak quantitative form of Jensen’s formula from complex analysis.

Lemma 8.6. Assume that g(z) is analytic in the disk |z| � 4R with g(0) �=
0, and let z1, . . . , zk be its zeroes in the disk |z| � 2R listed with multiplicity.

(a) If M � 0 is such that |g(z)| � eM · |g(0)| when |z| = 4R, then∣∣∣∣g′(z)g(z)
−

k∑
�=1

1

z − z�

∣∣∣∣ � 16M

R
for |z| � R.

(b) If M ′ � 0 is such that |g(z)| � eM
′ · |g(0)| when |z| = 2R, then

(8.8) #{ 1 � � � k : |z�| � R } � 2M ′.

Proof. (a) The function G(z) = g(z)/
∏k

�=1(z − z�) is analytic for |z| � 4R
and non-zero for |z| � 2R. Thus f(z) := log(G(z)/G(0)) is analytic in
the disk |z| � 2R. It also vanishes at the origin. The maximum modulus
principle implies that

max
|z|=2R

|G(z)/G(0)| � max
|z|=4R

|G(z)/G(0)| = max
|z|=4R

∣∣∣∣g(z)g(0)

k∏
�=1

z�
z − z�

∣∣∣∣ � eM ,

since |z�| � 2R � |z− z�| on the circle |z| = 4R. We then bound f ′(z) using
Lemma 8.5 to complete the proof of part (a).

(b) We could use Jensen’s formula to prove the second part. Instead, we
give a direct proof following [146, Lemma 6.1].
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A bit of complex analysis 91

Consider the auxiliary function

h(z) = g(z)
k∏

�=1

2R− zz̄�/2R

z − z�

that is analytic for |z| � 2R. In addition, |h(z)| = |g(z)| for |z| = 2R, since
z/2R = 2R/z̄ for such z and thus |2R− zz̄�/2R| = |z − z�|. The maximum
modulus principle then implies that

max
|z|=2R

|g(z)| � |h(0)| = |g(0)| ·
k∏

�=1

2R

|z�|
� |g(0)| · 2#{ 1���k:|z�|�R },

and the proof is complete. �

Proof of Lemma 8.2. Any set of zeroes of ζ we consider in this proof is
implicitly a multiset with each zero listed as many times as its multiplicity.

(a) Notice that ζ(s) 
 1 + |t| for |s − 1| � 1 and σ ∈ [1/2, 5] by
(5.7). Moreover, relation (5.8) with k = 3 implies that ζ(s) 
 1 + |t|3
for |s − 1| � 1 and σ ∈ [−3/2, 1/2]. We then apply Lemma 8.6(b) with
g(z) = ζ(2 + it + z)(1 + it + z) and R = 3. We note that |g(z)/g(0)| =
O(1 + |t|4) for |z| � 4R, since 1/ζ(2 + it) = O(1) by (6.9). Therefore, if
A = { ρ : |ρ−2−it| � 3 }, then Lemma 8.6(b) implies that |A| 
 log(2+|t|).
Since all zeroes with |γ − t| � 1 are in A, part (a) of the lemma follows.

(b) When σ � 2, the result is trivially true, since (ζ ′/ζ)(s) = O(1) for
such s, as well as |s − ρ| � 1 for all zeroes with |t − γ| � 1 (and there are
O(log(|t|+ 2)) such zeroes).

Next, assume that −1 � σ � 2, so that |s − 2 − it| � 3. Let A′ = { ρ :
|ρ− 2− it| � 6 } and A′′ = { ρ : |t− γ| � 1 }. Lemma 8.6(a) (applied again
to g(z) = ζ(2 + it+ z)(1 + it+ z) with R = 3) implies that∣∣∣∣ζ ′ζ (s) +

1

s− 1
−

∑
ρ∈A′

1

s− ρ

∣∣∣∣ 
 log(2 + |t|).

Note that |s− ρ| � 1 when ρ ∈ A′ \ A′′, and there are � |A′| 
 log(2 + |t|)
such zeroes. This completes the proof of part (b) when σ ∈ [−1, 2].

Finally, assume that σ � −1 and |s + 2n| � 1/2 for all n ∈ N. Then
we have | cot(πs/2)| 
 1. Thus, the functional equation (6.2) and Exercise
1.12(b) imply that

(8.9) (ζ ′/ζ)(s) = −(ζ ′/ζ)(1− s)− log |1− s|+O(1) = O(log |s|).

This completes the proof of Lemma 8.2 in all cases. �
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92 8. The Prime Number Theorem

Exercises

Exercise 8.1. Let x, T � 2 and τ ∈ R.

(a) Adapt the proof of Theorem 5.1 to prove that∑
n�x

Λ(n)niτ =
x1+iτ

1 + iτ
−

∑
|γ+τ |�T

xρ+iτ

ρ+ iτ
+O

(
x log2(x(|τ |+ T ))

T
+ log x

)
.

(b) Assuming the Riemann Hypothesis, prove that∑
n�x

Λ(n)niτ =
x1+iτ

1 + iτ
+O(

√
x log2(x+ |τ |)).

Exercise 8.2.

(a) Show that if N ∈ Z�1 is not a prime power, then ψ(N) = N−
∑

|γ|�N2 Nρ/ρ−
log(2π)+ oN→∞(1). [Hint: First, prove a version of Theorem 7.2 with a better
error term. (Solution in [31, Chapter 17].)]

(b) Show that ζ must have infinitely many non-trivial zeroes.

(c) For each ε > 0, show that there is at least one non-trivial zero ρ with Re(ρ) �
1/2− ε. Conclude that we cannot have ψ(x) = x+O(x1/2−ε) for all x � 1.

Exercise 8.3.

(a) Consider φ and Φ as in Exercise 7.2(b). For x � 1 and s ∈ C\{1} not coinciding
with any zero of ζ show that∑

n�1

Λ(n)φ(n/x)

ns
= x1−sΦ(1− s)−

∑
ρ

xρ−sΦ(ρ− s)

− φ0
ζ ′

ζ
(s)−

∞∑
n=1

x−2n−sΦ(−2n− s).

(b) When s = 0 and x = 1, simplify the above formula to∑
n�1

Λ(n)φ(n) =

∫ ∞

0

φ(y)dy −
∑
ρ

Φ(ρ)

− φ0 log(2π) +
1

2

∫ ∞

1

φ′(y) log(1− 1/y2)dy.

Deduce that ζ has infinitely many non-trivial zeroes.

Exercise 8.4. Write c1 for the constant in Theorem 8.3 and let δt = c1/ log(|t|+2).

(a) For σ � 1− 0.5δt and |t| � 3, show that (ζ ′/ζ)(s) 
 log2 |t|.
(b) In the same range of s, improve the above bound to

(ζ ′/ζ)(s) 
 log |t|.

[Hint: Prove that Re(−(ζ/ζ ′)(s)) � O(log |t|) for σ > 1−δt and that (ζ ′/ζ)(1+
δt + it) 
 log |t|. Then, use Lemma 8.5.]
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(c) For σ � 1− 0.5δt and |t| � 3, prove that

| log ζ(s)| � log log |t|+O(1).

[Hint: When σ � 1 + δt, show that log ζ(s) = log ζ(1 + δt + it) +O(1).]

(d) Show that a constant c2 > 0 such that∑
n�x

μ(n) 
 xe−c2
√
log x (x � 2).

[Hint: Start with Theorem 7.2 with α = 1 + 1/ log x, and then replace the
contour [α− iT, α+ iT ] by the contour

L = [α− iT, α′ − iT ] + [α′ − iT, α′ + iT ] + [α′ + iT, α+ iT ],

where α′ = 1− 0.5δT . To bound 1/ζ on L, note that |1/ζ| � exp{| log ζ|}.]

Exercise 8.5. Assume the Riemann Hypothesis and fix ε ∈ (0, 1/2).

(a) Adapt the argument of Exercise 8.4 to prove that

(ζ ′/ζ)(s), log ζ(s) 
ε log |t| for |t| � 2, σ � 1/2 + ε.

(b) For |t| � 2 and σ � 1/2 + ε prove that

log ζ(s), (ζ ′/ζ)(s) 
ε (log |t|)2max{1−σ,0}+ε.

Infer the Lindelöf Hypothesis. [Hint: Adapt the proof of Theorem 6.2.]

(c) Use Exercise 8.3(a) to give an alternative solution to part (b). [Hint: Re-
arranging the terms in Exercise 8.3(a) gives an expression for (ζ ′/ζ)(s). If
supp(φ) ⊆ [0, 2], then

∑
n Λ(n)φ(n/x)/n

s 
 x1−σ log x. On the other hand,

using an estimate of the form (7.7), the sum over zeroes ρ is Oε,φ(x
1/2−σ log |t|).

Optimize x.]

Exercise 8.6. Prove that the Riemann Hypothesis is equivalent to:

(a) For each ε > 0, we have ψ(x) = x+Oε(x
1/2+ε) uniformly in x � 1.

(b) For each ε > 0, we have
∑

n�x μ(n) 
ε x
1/2+ε uniformly in x � 1.

Exercise 8.7∗ ([31, Chapters 11–12]). Let ξ(s) = π−s/2Γ(s/2)ζ(s)s(s− 1)/2.

(a) Prove that ξ is entire, satisfies the functional equation ξ(s) = ξ(1 − s) and
its zeroes are precisely the non-trivial zeroes of ζ, occurring with the same
multiplicity.

(b) Prove that |ξ(s)| � exp{0.5|s| log |s| + O(|s|)} for |s| � 1. [Hint: It suffices to
consider the case when Re(s) � 1/2.]

(c) Prove that the Hadamard product h(s) =
∏

ρ(1− s/ρ)es/ρ converges absolutely

and uniformly on compact subsets of C (see Exercise 1.14). Deduce that there
is an entire function Q such that ξ = heQ.

(d) Prove that ξ(s)/h(s)
 exp{O(|s| log2 |s|)} for |s| � 3, as follows:
(i) Let ns denote the number of zeroes of ξ in the disk { z : |z − s| � 1 }

counted with multiplicity. Show that ns 
 log |s|.
(ii) Show that there is r ∈ [0, 1] such that all zeroes of ξ are at distance

� 1/(2ns + 2) � 1/ log |s| from the circle { z : |z − s| = r }.
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94 8. The Prime Number Theorem

(iii) Fix z on the circle |z − s| = r. If |ρ| � 2|z|, prove that |(1− z/ρ)ez/ρ| =
eO(|z|2/|ρ|2); if |ρ| � 2|z|, prove that |(1− z/ρ)ez/ρ| � 1/(|s| log |s|).

(iv) If |z − s| = r, prove that ξ(z)/h(z) 
 exp{O(|s| log2 |s|)}. Then use the
maximum modulus principle to bound ξ(s)/h(s).

(e) Use Lemma 8.5 to prove that Q(s) 
 |s| log2 |s| for |s| � 3. Conclude that
Q(s) = A + Bs for some A,B ∈ C. [Hint: If Q(s) =

∑∞
n=0 cns

n, then cn =
(1/2πi)

∮
|z|=R

Q(s)s−n−1ds for any R.]

(f) Show that eA = ξ(0) = 1/2 and B = (ξ′/ξ)(0) = (−γ + log(4π))/2− 1.

(g) Prove that −(ξ′/ξ)(0) = (ξ′/ξ)(1) = B +
∑

ρ(1/ρ+ 1/(1− ρ)). Conclude that

limT→∞
∑

|γ|�T 1/ρ = (γ − log(4π))/2 + 1.

Exercise 8.8∗([31, Chapter 15]). Let N(T ) be the number of zeroes of ζ(s) in the
rectangle 0 < σ < 1, 0 < t < T , and assume that T does not coincide with the
ordinate of a zero.

(a) Let C be a contour that does not self-intersect, parametrized by the map φ :
[0, 1] → C (i.e., φ is surjective and φ|(0,1) injective). Moreover, let f be a
holomorphic function that is defined in an open neighborhood of C and does
not vanish on C.
(i) Show that there is an open, simply connected domain Ω such that Ω∩C =

C \ {φ(0), φ(1)} and f(s) �= 0 for all s ∈ Ω. In particular, we may define
log f(s) on Ω.

(ii) Define the variation of the argument of f along C by

(8.10) ΔC arg f(s) := Im
(
log f(φ(1−))− log f(φ(0+))

)
= Im

∫
C

f ′

f
(s)ds.

Show that ΔC arg f(s) =
∫
C
(f ′/f)(s)ds. In particular, ΔC arg f(s) is

independent of the choice of φ and of the branch of log f .

(b) Let ξ(s) be as in Exercise 8.7, and let R be the rectangle with vertices 2, 2+iT ,
−1 + iT and −1, traversed counterclockwise. Prove that ξ(s) > 0 for s ∈ R, as
well as that

2πN(T ) = ΔR arg ξ(s).

(c) If L = [2, 2 + iT ] + [2 + iT, 1/2 + iT ], then prove that

ΔR arg ξ(s) = 2ΔL arg ξ(s).

[Hint: Show that ξ(σ + it) = ξ(1− σ + it).]

(d) Use Stirling’s formula to prove that

ΔL arg Γ(s/2 + 1) =
T

2
log

T

2e
+

3π

8
+O(1/T ).

(e) Prove that ΔL arg ζ(s) = O(log T ), and conclude that

N(T ) =
T

2π
log

T

2πe
+O(log T ).

[Hint: Note that log ζ(2 + iT ) = O(1). Then use Lemma 8.2 to control
Δ[2+iT,1/2+iT ] arg ζ(s).]
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Chapter 9

Dirichlet characters

Having obtained a firm understanding of the frequency of occurrence of
primes, we turn to other aspects of their distribution. Specifically, we would
like to know what kind of patterns occur among them. Perhaps the simplest
such question one can ask is whether there are primes in a given arithmetic
progression a (mod q), that is to say, primes of the form qn+ a, with q and
a being fixed and n varying. A natural restriction is that a and q must be
coprime but, other than that, there is no reason a priori why the primes
should have any preference for any particular reduced residue class mod q.
Thus, Occam’s razor leads us to the prediction that

(9.1) π(x; q, a) = #{ p � x : p ≡ a (mod q) } ∼ x

ϕ(q) log x
(x → ∞)

for each pair of fixed and coprime natural numbers a and q.

Given the success of the Dirichlet series approach to the study of π(x), it
is tempting to introduce the series

∑
p≡a (mod q) 1/p

s. However, it is not ob-

vious how to analyze this function because the condition p ≡ a (mod q) does
not behave well under multiplication and thus there is no obvious analogue
of ζ. We will circumvent this problem using the ring structure of Z/qZ.

To explain the idea, suppose we want to count primes p ≡ 1 (mod 4).
Instead of counting them on their own, we note that they have a natural
counterpart, the primes p ≡ 3 (mod 4). Since every prime p > 2 is either
1 (mod 4) or 3 (mod 4), we have the linear relation

π(x; 4, 1) + π(x; 4, 3) = π(x)− 1 ∼ x/ log x.

Thus, instead of showing that π(x; 4, 1) ∼ x/(2 logx), it suffices to prove
that π(x; 4, 1) ∼ π(x; 4, 3) or, equivalently, that π(x; 4, 1) − π(x; 4, 3) =

95
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96 9. Dirichlet characters

o(x/ log x). We write

π(x; 4, 1)− π(x; 4, 3) =
∑
p�x

ε(p),

where ε(2) = 0, ε(p) = 1 if p ≡ 1 (mod 4) and ε(p) = −1 if p ≡ 3 (mod 4).
The function ε extends naturally to a 4-periodic function: we let ε(0) =
ε(2) = 0, ε(1) = 1 and ε(3) = −1, and then define ε(n) according to the
remainder of nmod4. The key observation is that ε is completely multiplica-
tive over Z, i.e., ε(mn) = ε(m)ε(n) for all m,n ∈ Z. Hence the Dirichlet
series

∑
p ε(p)/p

s is closely related to the logarithm of E(s) =
∑∞

n=1 ε(n)/n
s.

Furthermore, the periodicity and multiplicativity of ε allows us to get our
hands on E(s) much like we did with ζ(s).

Suppose now more generally that we want to study the primes in some
reduced arithmetic progression mod q. Instead of considering one residue
class on its own, we consider simultaneously all of them. Given complex
numbers ca indexed by a ∈ (Z/qZ)∗, we form the linear combination∑

a∈(Z/qZ)∗
caπ(x; q, a) =

∑
p�x

f(p),

where f(p) = 0 if p|q and f(p) = ca if p ≡ a (mod q) with (a, q) = 1. We
extend f to a q-periodic function over Z letting f(n) = 0 if (n, q) > 1 and
f(n) = ca if n ≡ a (mod q) with (a, q) = 1. We wish to find choices of
coefficients ca for which f is a completely multiplicative function over Z,
similarly to the function ε above.

We are thus naturally led to the concept of Dirichlet characters: given
q ∈ N, we say that the function χ : Z → C is a Dirichlet character mod q if:

• χ is q-periodic;

• χ(n) �= 0 if and only if (n, q) = 1;

• χ is completely multiplicative over Z.

As their name and the preceding discussion indicate, these objects were in-
troduced by Dirichlet in his pioneering work on primes in arithmetic progres-
sions. In the language of group theory, Dirichlet characters are in one-to-one
correspondence with group homomorphisms from (Z/qZ)∗ to C∗, namely 1-
dimensional representations of the group (Z/qZ)∗. This correspondence is
given by associating to each χ the group homomorphism χ̃ : (Z/qZ)∗ → C∗

defined by χ̃(n (mod q)) = χ(n). Basic group theory implies that χ̃ takes
values on the unit circle. In particular, |χ| � 1.

As we will see in the next chapter, there are exactly ϕ(q) Dirichlet char-
acters χ mod q and they provide an orthonormal basis for the Hilbert space
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9. Dirichlet characters 97

of functions f : (Z/qZ)∗ → C equipped with the inner product

〈f, g〉 = 1

ϕ(q)

∑
a∈(Z/qZ)∗

f(a)g(a).

This means that each character χ introduces an independent linear relation

(9.2)
∑

a∈(Z/qZ)∗
χ(a)π(x; q, a) =

∑
p�x

χ(p).

Moreover, the aforementioned orthonormality of the Dirichlet characters
makes it easy to invert these linear relations: we have

(9.3) π(x; q, a) =
1

ϕ(q)

∑
χ (mod q)

χ(a)
∑
p�x

χ(p).

Examining the above formula, we discover a Dirichlet character mod q
that stands out: the function n → 1(n,q)=1. We call it the principal character
mod q and denote it by χ0. Its contribution to π(x; q, a) equals

(9.4)
1

ϕ(q)

∑
p�x, p�q

1 =
π(x) +O(log q)

ϕ(q)
,

since there are � log q/ log 2 prime divisors of q. We thus see that χ0 nat-
urally provides us with the conjectured main term in (9.1). Consequently,
proving (9.1) amounts to showing that

(9.5)
∑
p�x

χ(p) = ox→∞(π(x)) for χ �= χ0.

To estimate the left-hand side of (9.5), we introduce the Dirichlet series

L(s, χ) :=
∞∑
n=1

χ(n)

ns
.

This series is called the Dirichlet L-function associated to χ. Since χ is
periodic and multiplicative, the behavior of L(s, χ) can be analyzed using
analogous tools to the ones used to study ζ. In particular, we will prove
that L(s, χ) can be analytically continued to the entire complex plane when
χ �= χ0. For now, we note that L(s, χ) converges absolutely for Re(s) >
1 because |χ| � 1. In particular, the complete multiplicativity of χ and
Theorem 4.6 imply that

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

.

Taking logarithms, we find that
∑

p χ(p)/p
s ≈ logL(s, χ) for Re(s) > 1,

which provides the link between the sum in (9.5) and L(s, χ).
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98 9. Dirichlet characters

As in the proof of the Prime Number Theorem, it is more convenient to
work with the logarithmic derivative of L(s, χ), for which we have

−L′

L
(s, χ) =

∞∑
n=1

χ(n)Λ(n)

ns
.

Instead of
∑

p�x χ(p) and π(x; q, a), we then estimate

ψ(x, χ) :=
∑
n�x

χ(n)Λ(n) and ψ(x; q, a) :=
∑
n�x

n≡a (mod q)

Λ(n).

To proceed with this task, we use Perron’s formula (Theorem 7.2) to write
ψ(x, χ) in terms of the Dirichlet series (−L′/L)(s, χ). The analogy with
the theory of ψ(x) is now clear: the zeroes of L(s, χ) determine the poles
of (−L′/L)(s, χ) and hence the asymptotic behavior of ψ(x, χ). In fact, in
Chapter 11 we will show a generalization of the explicit formula (5.11):

(9.6) ψ(x, χ) = −
∑
|γ|�T

xρ − 1

ρ
+O

(x log2(qx)
T

)
uniformly for x � T � 2 and non-principal characters χ (mod q). As in
(5.11), we write ρ = β+iγ for a non-trivial zero of L(s, χ), which necessarily
lies inside the critical strip 0 � Re(s) � 1. In addition, zeroes are summed
according to their multiplicities. There is a small difference though: the
function L(s, χ) could have a zero at s = 0, which is the reason why the
summands in (9.6) are slightly modified compared to those of (5.11).

Given (9.6), proving (9.1) is reduced to showing a zero-free region for
L(s, χ).

The strategy we outlined above is carried out in the subsequent three
chapters: Chapter 10 is dedicated to the study of character theory of finite
abelian groups and its applications to Dirichlet characters, and Chapter 11
to the study of Dirichlet L-functions and to the proof of (9.6). Finally, in
Chapter 12, we prove the necessary zero-free regions for Dirichlet L-functions
to establish a uniform version of (9.1).

Exercises

Exercise 9.1. Find all Dirichlet characters mod 2, 3, 4, 5, 8 and 15. In each case,
calculate

∑
χ (mod q) χ(a) for all a = 0, 1, . . . , q − 1, as well as

∑q−1
a=0 χ(a) for all

χ (mod q).

Exercise 9.2. Prove that if χ is a Dirichlet character and (n, q) = 1, then |χ(n)| =
1. [Hint: Show that there is some integer k such that χ(n)k = 1.]
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Exercise 9.3. Let χ be a Dirichlet character mod q.

(a) Prove that χ(−1) ∈ {−1, 1}.
(b) Prove that χ is a real valued function if and only if χ2 = χ0.

(c) If χ is real valued and q is prime, then prove that either χ = χ0 or χ is the
Legendre symbol (·|q). [Hint: Evaluate χ(n2).]

Exercise 9.4.

(a) If χj is a Dirichlet character mod qj for j = 1, 2, then show that χ = χ1χ2 is a
character mod [q1, q2].

(b) Conversely, if χ is a Dirichlet character mod q, and q = q1q2 with (q1, q2) = 1,
construct characters χj (mod qj) for j = 1, 2 such that χ = χ1χ2. [Hint: For
each n ∈ Z, there is a unique class a (mod q) such that a ≡ n (mod q1) and
a ≡ 1 (mod q2). Define χ1(n) := χ(a).]

(c) If p is an odd prime, we know that the group (Z/pkZ)∗ is cyclic for each k � 1.
Construct all Dirichlet characters mod pk.

(d) Fix k � 3. We know that for each odd n, there are unique integers a ∈ {0, 1}
and b ∈ {0, 1, . . . , 2k−2} such that n ≡ (−1)a5b (mod 2k). Use this fact to
construct all Dirichlet characters mod 2k.

(e) Construct all Dirichlet characters mod q and deduce that there are exactly ϕ(q)
of them.

Exercise 9.5. A character χ (mod q) is called faithful if χ(m) = χ(n) �= 0 implies
that m ≡ n (mod q). Otherwise, χ is called unfaithful. If q is prime, then show that
there are ϕ(q − 1) faithful Dirichlet characters mod q.

Exercise 9.6. Let χ be a Dirichlet character mod q. An integer d � 1 is called a
period of χ if χ(m) = χ(n) when m ≡ n (modd) and (mn, q) = 1.

(a) Show that d is a period of χ if and only if χ(n) = 1 whenever n ≡ 1 (mod d)
and (n, q) = 1.

(b) Show that if d1, d2 are periods of χ, then so is (d1, d2). [Hint: If m, n, k, � ∈ Z
are such that (mn, q) = 1 and m = n + kd1 + �d2, then show that there is an
integer a such that (n+ (k − ad2)d1, q) = 1.]

(c) Show that there is a divisor d∗ � 1 of q such that the set of periods of χ is the
set of multiples of d∗. We call d∗ the conductor of χ.

(d) If χ is faithful, show that d∗ = q, but the converse is not always true.

(e) Let χ = χ1χ2 be as in Exercise 9.4(a) with (q1, q2) = 1, and let d∗, d∗1 and d∗2
be their conductors, respectively. Prove that d∗ = d∗1d

∗
2.

Exercise 9.7. Let χ be a real, non-principal character mod pk with p prime.

(a) If p > 2, prove that χ(n) = (n|p) and that its conductor is p. [Hint: Use
Hensel’s lemma to study the congruence x2 ≡ n (mod pk).]

(b) If q = 8, prove there are three possibilities for χ: two of conductor 8 and one
of conductor 4.

(c) If p = 2 and k > 3, then prove that χ(n) = ψ(n (mod8)), where ψ is one of the
three characters in part (b).
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Chapter 10

Fourier analysis on
finite abelian groups

As we saw in the previous chapter, Dirichlet characters are in correspon-
dence with group homomorphisms from (Z/qZ)∗ to C∗. More generally, a
character of an abelian group (G, ·) is a group homomorphism χ : G → C∗.
We write Ĝ for the set of all characters of G. The constant function 1 is
obviously a character, called the principal character of G and often denoted
by χ0. All other characters are called non-principal .

The set Ĝ admits a natural group structure with the operation being

the multiplication of complex-valued functions. The group (Ĝ, ·) is called
the dual group of G or the group of characters of G.

From now on, we assume that G is finite. In this case, Ĝ is also finite.
Indeed, if n = |G|, then gn = 1 from Lagrange’s theorem. In particular,

χ(g)n = χ(gn) = χ(1) = 1. We infer that Ĝ is finite and that 1/χ = χ.

The set Ĝ is a subset of the set of functions from G to C. We denote the
latter set by L2(G) because it naturally forms a Hilbert space over C with
respect to the inner product

〈α, β〉G :=
1

|G|
∑
g∈G

α(g)β̄(g).

Clearly, dimC(L
2(G)) = |G|. A fundamental property of Ĝ is that it forms

an orthonormal basis of L2(G).

We begin by showing that Ĝ is an orthonormal set, that is to say,
〈χ, ψ〉G = 1χ=ψ for all characters χ, ψ ∈ G. The case χ = ψ follows im-
mediately by the fact that χ takes values on the unit circle. On the other

100
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10. Fourier analysis on finite abelian groups 101

hand, if χ �= ψ and we set ξ = χψ̄, then we must prove that
∑

g∈G ξ(g) = 0.
Indeed, our assumption that χ �= ψ implies the existence of an h ∈ G such
that ξ(h) �= 1. Since hG = G, we have

ξ(h)
∑
g∈G

ξ(g) =
∑
g∈G

ξ(hg) =
∑
g∈G

ξ(g),

from which we infer that 〈χ, ψ〉G = |G|−1
∑

g∈G ξ(g) = 0.

Since Ĝ is an orthonormal set of L2(G), it is an independent set. In

particular, we have |Ĝ| � dimC(L
2(G)) = |G|. To show that Ĝ is a basis of

L2(G), it suffices to establish the relation

(10.1) |Ĝ| = |G|.
This relation is obvious if G is cyclic, say G = 〈g〉 of order n: in this case,
every character is uniquely determined by its value at g which, as we saw
above, must be an nth root of unity. Conversely, every nth root of unity
e2πia/n gives rise to a character χ via the relation χ(gj) := e2πiaj/n, so (10.1)
follows in this case. In the general case of a finite abelian group, relation
(10.1) follows by writing G as the direct product of cyclic groups, say

(10.2) G ∼= Z/d1Z× · · · × Z/dkZ,

and applying the following lemma whose proof is left as an exercise.

Lemma 10.1. Let (G1, ·) and (G2, ·) be abelian groups with direct product

G. The function φ : Ĝ1 × Ĝ2 → Ĝ associating the pair (χ1, χ2) to the
character G � (g1, g2) → χ1(g1)χ2(g2) ∈ C∗ is a group isomorphism.

The fact that Ĝ is an orthonormal basis of L2(G) allows us to do Fourier

analysis on G: for each f : G → C, we define the function f̂ : Ĝ → C by

(10.3) f̂(χ) = 〈f, χ〉G.
This is the Fourier transform of f and it satisfies the inversion formula

(10.4) f =
∑
χ∈Ĝ

f̂(χ) · χ.

Specializing to the function f(g) = 1g=h, where h is a given element of G,
we find that

(10.5) 1g=h =
1

|G|
∑
χ∈Ĝ

χ(g)χ(h).

Finally, we have Parseval’s identity

(10.6)
∑
χ∈Ĝ

|f̂(χ)|2 = 1

|G|
∑
g∈G

|f(g)|2.
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Indeed, since |z|2 = z · z̄, we have∑
χ∈Ĝ

|f̂(χ)|2 = 1

|G|2
∑
χ∈Ĝ

∑
g∈G

f(g)χ(g)
∑
h∈G

f̄(h)χ(h)

=
1

|G|2
∑

g,h∈G
f(g)f̄(h)

∑
χ∈Ĝ

χ(g)χ(h),

and (10.6) follows from (10.5).

Additive and multiplicative characters mod q

We study now in more detail the cases when G = Z/qZ and G = (Z/qZ)∗,
the second one corresponding to Dirichlet characters. Since the operation in
Z/qZ is addition, we call the characters of this group the additive characters
mod q. Similarly, we also refer to Dirichlet characters, that is to say, the
characters of (Z/qZ)∗, as the multiplicative characters mod q.

Since Z/qZ is a cyclic group, the discussion in the proof of (10.1) implies
that the additive characters mod q are the functions n → e(an/q) indexed
by a ∈ {0, 1, . . . , q − 1}, where we have introduced the symbol

(10.7) e(x) := e2πix.

In particular, the character group of Z/qZ is canonically isomorphic to Z/qZ.

On the other hand, the construction of the multiplicative characters
mod q is explained in Exercise 9.4. In addition, a more detailed discussion
is presented in [31, Chapter 4] and in [146, Section 4.2].

The Fourier transform on Z/qZ is called the additive Fourier transform
mod q. Using the explicit description of the character group of Z/qZ, we
may identify the additive Fourier transform of f : Z/qZ → C with the

function f̂ : Z/qZ → C given by the formula

f̂(a) =
1

q

∑
n∈Z/qZ

f(n)e(−an/q).

In fact, since there is a natural correspondence between functions on Z/qZ

and q-periodic functions, we can think of f̂ as a q-periodic function from Z
to C, defined for any q-periodic function f : Z → C.

Of particular importance is the interaction between additive and multi-
plicative characters. Recall that a Dirichlet character mod q is a q-periodic
function. Hence, it has an additive Fourier transform mod q given by

χ̂(a) =
1

q

∑
1�n�q

χ(n)e(−an/q).
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A quantity that plays a key role in the study of χ̂ is the Gauss sum

G(χ) :=
∑

1�n�q

χ(n)e(n/q) = qχ̂(−1).

The multiplicativity of χ implies the relation

(10.8)
∑

1�n�q

χ(n)e(an/q) = G(χ)χ(a) whenever (a, q) = 1.

This follows simply by making the change of variables m = an, which is
invertible mod q when (a, q) = 1.

Setting λχ = χ(−1)G(χ)/q = χ(−1)G(χ)/q, relation (10.8) can also be
written as χ̂(n) = λχ ·χ(n) whenever (n, q) = 1, which evaluates the additive
Fourier transform of χ at frequencies n that are coprime to q. In the next
section we shall see that this formula can be expanded to all frequencies
n for an important class of Dirichlet characters called primitive characters.
That is to say, when χ is a primitive Dirichlet character mod q, we will show
that χ̂ = λχ · χ. This demonstrates that primitive characters are conjugate
eigenvectors of the additive Fourier transform mod q.

Primitive characters

Each Dirichlet character χ mod q naturally generates a new Dirichlet char-
acter ξ at every modulus m that is a multiple of q via the relation

ξ(n) = 1(n,m)=1 · χ(n).

We then say that χ induces ξ. Inverting our point of view, we also say that
ξ is a lift of χ.

Given a character χ mod q, a natural question is whether it is the lift of
some character ψ mod d with d a proper divisor of q. If this is the case, we
say that χ is imprimitive and call the smallest such d the conductor of χ.
On the other hand, if such a character ψ does not exist, then we say that χ
is primitive. In the latter case, we define the conductor of χ to simply be
its modulus q.

For example, the principal character χ0 mod q is induced by the principal
character mod 1, that is to say, the constant function 1 on Z. Therefore, if
q > 1, then χ0 is imprimitive and has conductor 1.

Being an imprimitive character χ mod q means that there is a proper
divisor of q (i.e., d < q) that is a period of χ in the sense of Exercise 9.6. In
particular, the above definition of the conductor agrees with the one given
in Exercise 9.6(c), as the following lemma shows.
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104 10. Fourier analysis on finite abelian groups

Lemma 10.2. Let χ be a Dirichlet character mod q. Then, χ is imprimitive
if and only if there is a proper divisor d of q such that χ(m) = χ(n) whenever
m ≡ n (mod d) and (mn, q) = 1.

Proof. It is clear that if χ is induced by a character mod d, then χ(m) =
χ(n) whenever (mn, q) = 1 and m ≡ n (mod d). Let us now prove that the
converse statement is also true.

We define a function ψ : Z → C as follows: if (a, d) > 1, we set ψ(a) = 0.
On the other hand, if (a, d) = 1, we note that there is some k ∈ Z such that
(a+ kd, q) = 1. We then define ψ(a) = χ(a+ kd), which is independent of
the choice of k in virtue of our assumption on χ. The function ψ is clearly
a character mod d inducing χ, thus proving that χ is imprimitive. �

Using the above lemma, we prove the following fundamental property of
primitive characters.

Theorem 10.3. Let χ be a primitive Dirichlet character mod q. For all
n ∈ Z, we have

χ(n) =
1

G(χ)
∑

1�a�q

χ(a)e(an/q).

Proof. When (n, q) = 1, this follows by (10.8). Assume now that (n, q) =
m > 1, in which case we need to show that∑

1�a�q

χ(a)e(an/q) = 0.

Write n = �m and q = dm, so that (�, d) = 1, and note that

∑
1�a�q

χ(a)e(an/q) =
m∑
j=1

d∑
b=1

χ(b+ dj)e((b+ dj)�/d)

=
d∑

b=1

e(b�/d)
m−1∑
j=0

χ(b+ dj).

So it suffices to show that

(10.9)

m−1∑
j=0

χ(b+ dj) = 0

for all b ∈ {1, 2, . . . , d}. Since χ is primitive, there is some j0 ∈ Z for which
the number r = 1 + j0d satisfies the relations (r, q) = 1 and χ(r) �= 1. (To
see this, combine Lemma 10.2 and Exercise 9.6(a).) In particular, when
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reduced mod q, the numbers r · (b+ dj) with 0 � j < are a permutation of
the numbers b+ dj with 0 � j < m. Consequently,

χ(r)

m−1∑
j=0

χ(b+ dj) =

m−1∑
j=0

χ(r(b+ dj)) =

m−1∑
j=0

χ(b+ dj).

Since χ(r) �= 1, relation (10.9) follows. This completes the proof of the
theorem. �

The above theorem and Parseval’s formula (10.6) allow us to determine
the size of the Gauss sum for primitive Dirichlet characters.

Theorem 10.4. If χ is a primitive Dirichlet character mod q, then

|G(χ)| = √
q.

Character sums

Notice in Theorem 10.4 that, even though G(χ) is defined as a sum of ϕ(q)
complex numbers on the unit circle, its modulus equals

√
q, which is ap-

proximately the square-root of ϕ(q) (see Corollary 3.6). This means that
the numbers χ(n)e(n/q) are sufficiently randomly placed around the unit
circle so that they annihilate each other when added all together. This
kind of “square-root cancellation” is typical for averages involving Dirichlet
characters. We demonstrate it in two other settings.

We start by showing that Theorem 10.3 can be used to show a general-
ization of the Poisson summation formula (Theorem B.3).

Theorem 10.5. Let f ∈ C2(R) such that f (j)(x) 
 1/x2 for j ∈ {0, 1, 2}
and |x| � 1, so that f̂(ξ) 
 1/ξ2 for |ξ| � 1.

If χ is a primitive character mod q and N ∈ R>0, then∑
n∈Z

χ(n)f(n/N) =
χ(−1)N

G(χ)
∑
n∈Z

χ(n)f̂(nN/q).

Proof. It suffices to prove the theorem when N = 1. The general case
follows by noticing that the Fourier transform of x → f(x/N) is the function

ξ → Nf̂(Nξ).

We use Theorem 10.3 to write χ in terms of its additive Fourier expansion
and find that∑

n∈Z
χ(n)f(n) =

1

G(χ)
∑
n∈Z

f(n)
∑

1�a�q

χ(a)e(an/q)

=
1

G(χ)
∑

1�a�q

χ(a)
∑
n∈Z

f(n)e(an/q).
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106 10. Fourier analysis on finite abelian groups

We then apply the Poisson summation formula (Theorem B.3) to the func-

tion g(x) = f(x)e(ax/q), whose Fourier transform is ĝ(ξ) = f̂(ξ − a/q).
Thus ∑

n∈Z
χ(n)f(n) =

1

G(χ)
∑

1�a�q

χ(a)
∑
n∈Z

f̂(n− a/q)

=
χ(−1)

G(χ)
∑

1�a�q

χ(−a)
∑
n∈Z

f̂((qn− a)/q).

Since χ(−a) = χ(qn− a) for all n ∈ Z, the theorem follows. �

If we let N ∈ [1, q] in Theorem 10.5 and we assume that supp(f) ⊆
[0, 1], then the sum

∑
n∈Z χ(n)f(n/N) is supported on integers n ∈ [0, N ].

Since f̂(ξ) 
 1/|ξ|2 for |ξ| � 1, the dominant contribution to the dual sum∑
n∈Z f̂(Nn/q) comes from integers n = O(q/N). Hence, roughly speaking,

Theorem 10.5 transforms a sum of length � N to a sum of length � q/N .
In particular, if N >

√
q, then the new sum is shorter, so that bounding it

trivially yields a non-trivial bound on the sum we began with.

More precisely, since f̂(ξ) 
 min{1, 1/|ξ|2} for all ξ, the sum on the
right-hand side of Theorem 10.5 is∑

n∈Z
f̂(Nn/q)χ(n) 


∑
|n|�q/N

1 +
∑

|n|>q/N

1

(Nn/q)2

 q/N.

Together with Theorems 10.4 and 10.5, this implies that

(10.10)
∑
n∈Z

f(n/N)χ(n) 
 N
√
q
· q

N
=
√
q,

another occurrence of square-root cancellation, at least when N � q.

In practice, we often need an estimate like (10.10) but with the integers
n ∈ [0, N ] weighted by 1 and not by the smooth weight f(n/N). Such an
estimate is provided by the Pólya-Vinogradov inequality , which we prove
using a variation of the argument leading to Theorem 10.5.

Theorem 10.6 (Pólya-Vinogradov inequality). Let χ be a non-principal
character mod q. For M ∈ R and N ∈ R�0, we have∑

M<n�M+N

χ(n) 
 √
q log q.

Proof. Since χ is non-principal, we must have that q > 1. We may also
assume that M,N ∈ Z. First, we prove the theorem when χ is primitive.
By Theorem 10.3 and the periodicity of χ, we have

χ(n) =
1

G(χ)
∑

−q/2<a�q/2

χ(a)e(an/q).
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Summing the above formula over n ∈ (M,M +N ], we find

(10.11)
∑

M<n�M+N

χ(n) =
1

G(χ)
∑

−q/2<a�q/2

χ(a)
∑

M<n�M+N

e(an/q).

Notice that we may assume that a �= 0, since χ(0) = 0. The sum of e(an/q)
over n ∈ (M,M + N ] is a geometric series with ratio of consecutive terms
e(a/q). We thus have

(10.12)
∣∣∣ ∑
M<n�M+N

e(an/q)
∣∣∣ = ∣∣∣∣1− e(Na/q)

1− e(a/q)

∣∣∣∣ � 1

2|a/q|

for 1 � |a| � q/2, since |1 − e(x)| = |e(−x/2) − e(x/2)| = 2| sin(πx)| �
4|x| for x ∈ [−1/2, 1/2]. Combining (10.11) and (10.12) with the fact that
|G(χ)| = √

q, we conclude that∣∣∣ ∑
M<n�M+N

χ(n)
∣∣∣ � 2

√
q

π

∑
1�|a|�q/2

1

|a| � 4
√
q

π
(1 + log(q/2)).

This completes the proof in the case that χ is primitive.

Finally, if χ is induced by the primitive character ψ (mod d) with d|q,
then

χ(n) = ψ(n)1(n,q)=1 = ψ(n)1(n,q/d)=1

because ψ is supported on integers coprime to d. Möbius inversion then
implies that∑

M<n�M+N

χ(n) =
∑

M<n�M+N
(n,q/d)=1

ψ(n) =
∑

M<n�M+N

ψ(n)
∑

a|(n,q/d)
μ(a)

=
∑
a|q/d

μ(a)
∑

M<n�M+N
a|n

ψ(n).

In the inner sum, we write n = ma and note that ψ(n) = ψ(a)ψ(m), so
that ψ(a) can be factored outside the summation. Applying the Pólya-
Vinogradov inequality to the primitive character ψ yields the estimate∑

M<n�M+N

χ(n) 

∑
a|q/d

√
d log d.

Every divisor a of q/d comes with a complementary divisor (q/d)/a. At least

one of these divisors is �
√

q/d, so that the total number of permissible

values of a is � 2
√

q/d. (Or simply use the bound in Exercise 2.9(f).) This
completes the proof in this case as well. �

Remark 10.7. Comparing the right-hand side in Theorem 10.6 with that in
(10.10), we see we have an extra logarithm. This is caused by the fact that we
have replaced the smooth cut-off f(n/N) by the sharp cut-off 1(M,M+N ](n).
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Indeed, in the proof of Theorem 10.6, the sum
∑

M<n�M+N e(αn) with
α = a/q ∈ [−1/2, 1/2] decays like 1/|α|. Had we weighted the integers
n ∈ (M,M +N ] smoothly, we would have had faster decay, say 
 1/|α|2.

Superficially, this extra logarithm seems like a technical and insignificant
matter. After all, it is of negligible size compared to

√
q. However, improving

upon the Pólya-Vinogradov inequality is very hard and is related to some
very deep conjectures about Dirichlet characters. Paley [149] showed the
existence of an infinite set of primitive quadratic characters χ for which

M(χ) := sup
x∈[1,q]

∣∣∣∑
n�x

χ(n)
∣∣∣ � √

q log log q,

with q denoting the conductor of χ. On the other hand, Montgomery and
Vaughan proved that M(χ) 
 √

q log log q assuming a suitable generaliza-
tion of the Riemann Hypothesis called the Generalized Riemann Hypothesis
that we will discuss in the next chapter.

Remarkably, when χ has odd order g as an element of the group of Dirich-
let characters mod q, Granville and Soundararajan [72] showed that the
Pólya-Vinogradov inequality can be improved. Their results were sharpened
by Goldmakher [61], who established the estimate M(χ) 
g,θ

√
q(log q)θ for

each fixed θ > (g/π) sin(π/g). A further improvement of this result was
announced more recently by Lamzouri and Mangerel [123]. �

Exercises

Exercise 10.1. Show that the function

f(q) =
∑

n∈(Z/qZ)∗

e(n/q)

is multiplicative and calculate it.

Exercise 10.2.

(a) Calculate all primitive characters mod 3, 4, 5, 8 and 15.

(b) If q is a prime, then show that there are q − 2 primitive characters.

(c) Show that a faithful character, defined in Exercise 9.5, is also primitive.

(d) Calculate all primitive and all faithful characters when q is the product of two
distinct primes, and when q = p2 with p prime.

(e) If Cq denotes the set of Dirichlet characters mod q, and C∗
q denotes the set of

primitive elements of Cq, then calculate |C∗
q |. [Hint: Prove that |Cq| =

∑
d|q |C∗

d |.]
(f) Let χ = χ1χ2 be as in Exercise 9.4(a) with (q1, q2) = 1. Show that χ is primitive

if and only if χ1 and χ2 are primitive.
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(g) If χ is a real primitive character mod q, then show that q = 2kq′, where
k ∈ {0, 2, 3} and q′ is odd and square-free.1 Moreover, if k ∈ {0, 2}, then there
is exactly one real primitive character mod q, whereas if k = 3, then there are
exactly two real primitive characters mod q.

Exercise 10.3. Given two primitive characters χ, ψ (mod q) and an integer a ∈ Z
coprime to q, show that∑

n∈Z/qZ

χ(n+ a)ψ(n) =
χ(−a)ψ(−a)G(χ)G(χψ)

G(ψ) .

Simplify the above expression when ψ = χ. [Hint: Use Exercise 10.1.]

Exercise 10.4.∗ Given a non-principal character χ mod q and N ∈ [1, q/2] ∩ Z,
show that ∑

|n|�N

χ(n)(1− |n|/N) 
 √
q.

[Hint:
∑

|n|�N (1− |n|/N)e(αn) = N−1(sin(Nπα)/ sin(πα))2.]

Exercise 10.5.∗ If χ (mod q) is induced by ψ (mod d), then prove that2

(10.13) G(χ) = μ(m)ψ(m)G(ψ)
with m = q/d, as follows:

(a) For any k ∈ Z, show that

G(χ) =
∑

1�a�q
(a+kd,q)=1

ψ(a)e((a+ kd)/q),

and conclude that

G(χ) = 1

m

∑
1�a�q

ψ(a)e(a/q)
∑

1�k�m
(a+kd,q)=1

e(k/m).

(b) When (a, d) = 1, show that∑
1�k�m

(a+kd,q)=1

e(k/m) = 1(d,m)=1μ(m)e(−ad̄/m),

where d̄ is the multiplicative inverse of d (modm).

(c) When (d,m) > 1, show that both sides of (10.13) are zero.

(d) Assume that (d,m) = 1. If m denotes the multiplicative inverse of m (mod d),
show that d/m+m/d ≡ 1/q (mod 1), and complete the proof of (10.13).

1There is an important connection between real Dirichlet characters and the theory of binary
quadratic forms, presented in Chapters 5 and 6 of Davenport’s book [31].

2See [31, p. 67] for an alternative proof.
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Chapter 11

Dirichlet L-functions

We now turn to the study of the infinite series L(s, χ) =
∑∞

n=1 χ(n)/n
s,

namely the L-function corresponding to the Dirichlet character χ. Since
|χ| � 1, this series converges absolutely when Re(s) > 1, and for such s we
have the Euler product representation

(11.1) L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

.

When χ �= χ0, the summatory function
∑

n�x χ(n) is uniformly bounded
by the Pólya-Vinogradov inequality. Partial summation then implies that
L(s, χ) converges conditionally in the half-plane Re(s) > 0. It is easily seen
that L(s, χ) diverges at s = 0, so that L(s, χ) has abscissa of convergence 0
(but abscissa of absolute convergence 1).

We will show that L(s, χ) can be extended to an entire function. More-
over, we will prove that it enjoys various special properties similar to the
ones possessed by ζ.

The analytic continuation and the functional equation

Notice that if χ (mod q) is induced by the character ψ (mod d), then

(11.2) L(s, χ) =
∏
p�q

(
1− ψ(p)

ps

)−1

= L(s, ψ)
∏
p|q

(
1− ψ(p)

ps

)
.

Because of this relation, the properties of L(s, ψ) transfer (with appropriate
modifications) to L(s, χ), so we often restrict our attention to the study
of Dirichlet L-functions attached to primitive characters whose theory is

110
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The analytic continuation and the functional equation 111

simpler. In particular, Dirichlet L-functions attached to primitive charac-
ters satisfy a functional equation analogous to (6.1) for the Riemann zeta
function.

The functional equation of L(s, χ) changes slightly according to the value
of χ(−1). Characters with χ(−1) = 1 are called even, whereas characters
with χ(−1) = −1 are called odd . We then take

(11.3) a =

{
0 when χ is even,

1 when χ is odd,

and we introduce the so-called completed L-function

ξ(s, χ) := (q/π)(s+a)/2Γ
(s+ a

2

)
L(s, χ),

which is analogous to the function ξ(s) that we defined in Exercise 8.7. The
functional equation for L(s, χ) also involves the quantity

ε(χ) :=
G(χ)
ia
√
q
,

called its root number . Note that |ε(χ)| = 1 in virtue of Theorem 10.4.
Furthermore, it is easy to check that ε(χ) = 1/ε(χ).

Theorem 11.1. Let χ be a primitive, non-principal character. The func-
tions L(s, χ) and ξ(s, χ) can be continued analytically to the entire complex
plane. Moreover, for all s ∈ C, their extensions satisfy the functional equa-
tion

ξ(s, χ) = ε(χ) · ξ(1− s, χ).

Proof. The key to the proof of this theorem is the variation of the Poisson
summation formula given in Theorem 10.5. The argument is very similar to
the one leading to (6.1), so we only sketch it.

We take f(x) = 2xae−πx2
, which has the same parity as χ, i.e., f(−x) =

χ(−1)f(x), and note that its Mellin transform is

F (s) =

∫ ∞

0
f(y)ys−1dy = π−(s+a)/2Γ

(s+ a

2

)
.

Arguing as in (6.4), we find

(11.4) q−a/2ξ(s, χ) = qs/2L(s, χ)F (s) =

∫ ∞

0

∞∑
n=1

χ(n)f(ny/
√
q)ys−1dy

for Re(s) > 1. Since χ(0) = 0, and f and χ have the same parity, we have

Sχ(y) :=
∞∑
n=1

χ(n)f(ny/
√
q) =

1

2

∑
n∈Z

χ(n)f(ny/
√
q).
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112 11. Dirichlet L-functions

We apply Theorem 10.5 to the function f with N =
√
q/y to find that

Sχ(y) =
χ(−1)

√
q

2yG(χ)
∑
n∈Z

χ(n)f̂(ny−1/
√
q).

For our choice of f , we note that f̂ = χ(−1)iaf so that

Sχ(y) =
Sχ(1/y)

ε(χ)y
=

ε(χ)Sχ(1/y)

y
.

We insert the above transformation formula into the part of the integral
over y ∈ (0, 1) in (11.4). As for the Riemann zeta function, this proves at
the same time that ξ(s, χ) can be extended to an entire function, as well as
that it satisfies the claimed functional equation. We leave the verification of
the details of this claim as an exercise. Finally, we note that, since Γ does
not vanish anywhere, L(s, χ) itself extends to an entire function. �

When χ is a primitive, non-principal character, Theorem 11.1 allows us
to obtain some information regarding the location of the zeroes of L(s, χ)
which, in view of the explicit formula (9.6), rule the distribution of primes in
arithmetic progressions. When Re(s) > 1, the Euler product representation
(11.1) implies that L(s, χ) does not vanish. Thus neither does ξ(s, χ) and,
by the functional equation, we also have ξ(s, χ) �= 0 for Re(s) < 0. Since
Γ((s + a)/2) has simple poles at the points −2n − a, n ∈ Z�0, we deduce
that L(s, χ) must have simple zeroes at −1, −3, −5, . . . when χ is odd, and
at −2, −4, −6, . . . when χ is even, but no other zeroes when Re(s) < 0.
Moreover, L(0, χ) = 0 when χ(−1) = 1. In Theorem 12.8, we will show that
L(1, χ) �= 0, which implies that 0 must be a simple zero of L(s, χ) when χ
is even, and that L(0, χ) �= 0 when χ is odd.

The zeroes of L(s, χ) at the points −2n − a with n ∈ Z�0 are called
the trivial zeroes of L(s, χ). All other zeroes of L(s, χ), which are in cor-
respondence with the zeroes of ξ(s, χ) and necessarily lie in the critical
strip 0 � Re(s) � 1, are called non-trivial . They are usually denoted by
ρ = β + iγ, where 0 � β � 1, or by ρχ = βχ + iγχ when we want to under-
line their dependence on χ. We note that the functional equation and the
obvious symmetry L(s, χ) = L(s, χ) imply that if ρ = β+ iγ is a non-trivial
zero of L(s, χ), then so is 1 − ρ = 1 − β + iγ. It is widely believed that
an extension of the Riemann Hypothesis holds, often called the Generalized
Riemann Hypothesis. This conjecture postulates that all non-trivial zeroes
of L(s, χ) lie on the critical line Re(s) = 1/2.

Finally, we consider the case when χ is an imprimitive character induced
by ψ (mod d). Recall the factorization (11.2). In particular, all zeroes of
L(s, ψ) are also zeroes of L(s, χ). Notice that L(s, χ) might have some
additional zeroes, at points s with ps = ψ(p) for some p|q. All such zeroes
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are on the line Re(s) = 0 and we consider them to be trivial zeroes of L(s, χ),
together with the trivial zeroes of L(s, ψ) at s = −2n − a (with the caveat
that s = 0 is excluded if ψ = 1, that is to say, if χ is principal). All other
zeroes of L(s, χ) are considered non-trivial; the summation in (9.6) runs over
them.

Bounds for L(s, χ)

As in the case of the Riemann zeta function, it is very useful to have bounds
on Dirichlet L-functions. By the functional equation in Theorem 11.1, we
may restrict our attention to the half-plane Re(s) � 1/2. We could use
Theorem 6.2, but we present instead a different method that is simpler and
thus more flexible, even though it yields weaker results. For the application
of Theorem 6.2 to L(s, χ), see Exercise 11.1.

Lemma 11.2. Let χ be a non-principal Dirichlet character mod q. For
j ∈ Z�0, s = σ + it with 1/2 � σ � 2, we have

|L(j)(s, χ)| 
j Q
max{0,1−σ}(logQ)j+1 with Q =

√
q(|t|+ 2).

Proof. We estimate L(j)(s, χ) =
∑∞

n=1 χ(n)(− logn)j/ns by inserting the
Pólya-Vinogradov bound on

∑
n�x χ(n) via partial summation. However, we

have to be careful because partial summation yields poor bounds for small
n. There are two reasons for this: firstly, the function x → xs oscillates a lot
for small x, with its derivative sxs−1 getting under control only for x > |s|.
Secondly, the Pólya-Vinogradov bound is non-trivial only for character sums
of length >

√
q log q. For these reasons, we bound the summands with small

n trivially, noticing that∣∣∣∣ N∑
n=1

χ(n)(logn)j

ns

∣∣∣∣ � Nmax{0,1−σ}(logN)j
N∑

n=1

1

n

 Nmax{0,1−σ}(logN)j+1.

To the terms with n > N , we apply partial summation:∑
n>N

χ(n)(logn)j

ns
=

∫ ∞

N

(log y)j

ys
d

∑
N<n�y

χ(n)

=

∫ ∞

N

∑
N<n�y

χ(n)
s(log y)j − j(log y)j−1

ys+1
dy.

The Pólya-Vinogradov inequality then yields the estimate∑
n>N

χ(n)(logn)j

ns

j |s|

√
q(log q)

∫ ∞

N

(log y)j

yσ+1
dy


 |s|√q(log q)(logN)jN−σ.

Taking N = 1 +
⌊
|s|√q

⌋
completes the proof. �
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114 11. Dirichlet L-functions

Proving the explicit formula for L(s, χ)

We conclude this chapter with a proof of the explicit formula (9.6) for
L(s, χ), which we restate in a slightly more general form.

Theorem 11.3. For x � T � 2 and χ (mod q), we have

(11.5) ψ(x, χ) = 1χ=χ0x−
∑
|γ|�T

xρ − 1

ρ
+O

(x log2(xq)
T

)
.

We start with a technical lemma, analogous to Lemma 8.2.

Lemma 11.4. Consider s = σ+ it and a primitive, non-principal Dirichlet
character χ mod q � 3. Furthermore, let a ∈ {0, 1} be as in (11.3). All
implied constants below are absolute. Moreover, the zeroes of L(s, χ) are
listed and counted with their multiplicity.

(a) There are 
 log
[
q(|t|+1)

]
non-trivial zeroes of L(s, χ) with |γ− t| � 1.

(b) Assume that |s− z| � 1/2 for all trivial zeroes z of L(s, χ). Then

L′

L
(s, χ) =

∑
|γ−t|�1

1

s− ρ
+O

(
log

[
q(|s|+ 1)

])
.

Proof. Lemma 11.2 implies the bound L(s, χ) 
 (q(|s|+ 1))2 when 1/2 �
Re(s) � 3/2 (in fact, it implies a better bound, but this will be sufficient).
In addition, we have |L(s, χ)| � ζ(3/2) = O(1) when Re(s) � 3/2. By
the functional equation of L(s, χ) and Exercise 1.12(a), this “polynomial
growth” of L(s, χ) in q(|s| + 1) can be extended to the half-plane Re(s) �
−10. Employing Lemma 8.6(b) as in the proof of Lemma 8.2 yields part (a).
Similarly, we also obtain part (b) when σ � −10. Finally, when σ � −10, we
note that, analogously to (8.9), we have (L′/L)(s, χ) = −(L′/L)(1− s, χ) +
O
(
log(q(|s|+1))

)
. Part (b) follows in this case as well by the trivial bound

(L′/L)(1− s, χ) = O(1). �

Proof of Theorem 11.3. First of all, note that

(11.6)
∑

n�x, (n,q)>1

Λ(n) �
∑∑

p|q, k�1 : pk�x

log p �
∑
p|q

log x 
 (log q)(log x).

Hence, if ξ (modm) is the primitive character inducing χ (mod q), then

(11.7) ψ(x, χ) = ψ(x, ξ) +O((log q)(log x)).

Since L(s, χ) and L(s, ξ) share the same non-trivial zeroes, (11.5) follows for
χ if we can prove it for ξ. This means that, without loss of generality, we
may assume that χ is primitive.

In addition, as in the proof of (5.11), we may reduce the proof to the
case when T is such that |T − γ| � 1/ log x for all zeroes of L(s, χ).
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We let α = 1 + 1/ log x and use Theorem 7.2 to write

ψ(x, χ) =
−1

2πi

∫
Re(s)=α
| Im(s)|�T

L′

L
(s, χ)

xs

s
ds+O

(
x(log x)2

T
+ log x

)
.

Due to the potential presence of zeroes of L(s, χ) at or close to s = 0,
it is convenient to modify the integrand in the above formula and remove
the pole at the origin from the factor xs/s: using Lemma 7.1, we see that∫
Re(s)=α, | Im(s)|�T n−ss−1ds = O(1/(Tnα logn)) for n � 2. Consequently,

ψ(x, χ) =
−1

2πi

∫
Re(s)=α
| Im(s)|�T

L′

L
(s, χ)

xs − 1

s
ds+O

(
x(log x)2

T
+ log x

)
.

Similarly to the proof of Theorem 5.1 in Chapter 8, we move the contour to
the line Re(s) = −N − 1/2 with N a large integer, picking up contributions
from the zeroes of L(s, χ) (and the pole at s = 1 if χ = 1). In the case
when χ = 1, we use Lemma 11.4 to control the logarithmic derivative of
L(s, χ) = ζ(s) on the new contour; otherwise, we use Lemma 8.2. We leave
the details as an exercise. �

Exercises

Exercise 11.1. Fix ε > 0 and C � 1. For all primitive, non-principal Dirichlet
characters χ (mod q) and all s = σ + it with σ � −C, show that

L(s, χ) 
ε,C

⎧⎪⎨⎪⎩
1 if σ � 1 + ε,

[q(|t|+ 2)](1−σ+ε)/2 if − ε � σ � 1 + ε,

[q(|t|+ 2)]1/2−σ if − C � σ � −ε.

Exercise 11.2. Assuming the Generalized Riemann Hypothesis, prove that:

(a) ψ(x, χ) = 1χ=χ0
x+ O(x1/2 log2(qx)) (x � 1, χ (mod q)) .

(b) ψ(x; q, a) = x/ϕ(q) +O(x1/2 log2(qx)) (x � 1, a ∈ (Z/qZ)∗).

Exercise 11.3. Let χ be a primitive, non-principal Dirichlet character.

(a) Show that the Riemann Hypothesis for L(s, χ) is equivalent to knowing that
Re(ρ) � 1/2 for all non-trivial zeroes ρ of L(s, χ).

(b) Show that the Riemann Hypothesis for L(s, χ) is equivalent to knowing that
for each fixed ε > 0 we have ψ(x, χ) 
ε,χ x1/2+ε uniformly for x � 1.

(c) Show that L(s, χ) must have infinitely many non-trivial zeroes.

(d) Fix θ < 1/2. Show that we cannot have ψ(x, χ) 
χ xθ for all x � 1.

Exercise 11.4. Let χ be a primitive, non-principal character mod q.
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(a) Let φ and Φ be as in Exercise 7.2(b), s ∈ C and x � 1. If φ0 �= 0, we also
assume that s /∈ { z : L(z, χ) = 0 }. Then∑

n�1

Λ(n)χ(n)φ(n/x)

ns
= −φ0

L′

L
(s, χ)−

∑
z

xz−sΦ(z − s),

where z runs over all zeroes of L(s, χ) (trivial and non-trivial).

(b) Assume the Riemann Hypothesis for L(s, χ). Show that

L′

L
(s, χ), logL(s, χ) 
ε (log(q|t|+ q))2max{1−σ,0}+ε

for Re(s) � 1/2+ ε and ε > 0, in two ways: firstly, use part (a) as per Exercise
8.5(c); secondly, use a suitable adaption of Theorem 6.2.

(c) Assume the Riemann Hypothesis for L(s, χ) and fix ε > 0. Show that∑
n�x

μ(n)χ(n) 
 qεx1/2+ε for all x � 1

with the implied constant depending at most on ε.

Exercise 11.5. Assume the Generalized Riemann Hypothesis. Given real numbers
x, q, T � 3 and a residue class a ∈ (Z/qZ)∗, we define

B(q, a) = #{n (mod q) : n2 ≡ a (mod q) },

θ(x; q, a) =
∑
p�x

p≡a (mod q)

log p, ZT (x; q, a) =
∑

χ (mod q)

χ(a)
∑

|γχ|�T

xiγχ

1/2 + iγχ
.

(a) For x � T 3/2 � 2, prove that

θ(x; q, a) =
x

ϕ(q)
−

√
x

ϕ(q)
(B(q, a) + ZT (x; q, a)) +Oq

(x log2 x
T

)
.

[Hint: θ(x; q, a) = ψ(x; q, a)−
∑

p�√
x, p2≡a (mod q) log p+O(x1/3).]

(b) For x → ∞, prove that1

(11.8) θ(x; 4, 3)− θ(x; 4, 1) =
√
x

(
1 +

∑
|γχ|�x2/3

xiγχ

1/2 + iγχ

)
+ o(

√
x),

where χ is the unique non-principal character mod 4.

Exercise 11.6∗ ([31, Chapter 16]). Let χ (mod q) be a primitive, non-principal
character and write N(T, χ) for the number of non-trivial zeroes ρ of L(s, χ) with
|γ| � T , counted with multiplicity. Throughout, T is chosen so that L(s, χ) �= 0
when Im(s) = ±T .

1If we let x = eu, then
∫ log x
0 eiγudu = O(1/|γ|) = o(log x) for γ 	= 0. Hence, we expect

that the sum over zeroes in (11.8) is o(1) on average over x. The presence of the term 1 on the
right-hand side of (11.8) then means that most of the time we have θ(x; 4, 3) � θ(x; 4, 1) + δ

√
x

with δ > 0, meaning there are slightly more primes in the residue class 3 (mod4) than in 1 (mod4).
This discrepancy is called Chebyshev’s bias and it is explained in detail in [157] and [70].
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(a) Let R be the rectangle with vertices 5/2 ± iT and −3/2 ± iT traversed coun-
terclockwise, and let L be its right half. Prove that

π · (N(T, χ) + 1) = ΔL arg ξ(s, χ).

(b) Adapting the argument of Exercise 8.8, prove that

N(T, χ) =
T

π
log

qT

2πe
+O(log(qT )) (T � 2).

Exercise 11.7∗([31, Chapters 11–12]). Let χ be a primitive, non-principal Dirichlet
character such that2 ρ �= 0 for all non-trivial zeroes of L(s, χ).

(a) Prove that the Hadamard product h(s, χ) =
∏

ρ(1− s/ρ)es/ρ, defined over all

non-trivial zeroes ρ of L(s, χ), converges absolutely and uniformly on compact
subsets of C.

(b) Prove that ξ(s, χ) = eAχ+Bχsh(s, χ) for some Aχ, Bχ ∈ C by adapting the
argument of Exercise 8.7.

(c) Show that eAχ =ξ(0, χ), thatBχ=(ξ′/ξ)(0, χ) and that Re(Bχ)=−
∑

ρ Re(1/ρ).

Exercise 11.8.∗ Consider a primitive, non-principal character χ mod q, and φ,Φ
as in Exercise 7.2(b) with φ0 = 1. Let a ∈ {0, 1} be as in (11.3) and

λa(s) =

{
2sπs−1Γ(1− s) sin(πs/2) = 2s−1πs/(Γ(s) cos(πs/2)) if a = 0,

2sπs−1Γ(1− s) cos(πs/2) = 2s−1πs/(Γ(s) sin(πs/2)) if a = 1.

(a) For each s ∈ C, show that L(s, χ) = ε(χ)q1/2−sλa(s)L(1− s, χ).

(b) From now on, consider s ∈ C with 0 � σ � 1, as well as x, y � 1 with
xy = qτ/2π, where τ = max{|t|, 1}. Adapt the argument of Exercise 7.8(a,b)
to show the approximate functional equation

L(s, χ) =
∑
n�1

χ(n)φ(n/x)

ns
+ ε(χ)q1/2−s

∑
n�1

χ(n)φ∗
a,s(n/y)

n1−s
,

where

φ∗
a,s(u) := − 1

2πi

∫
(−3)

Φ(z)λa(s+ z)(uτ/2π)zdz.

(c) Show that L(s, χ) 
ε (qτ )(1−σ)/2+ε by adapting the argument of Exercise
7.8(c–f). (This reproves Exercise 11.1 inside the critical strip.)

2We will show later, in Theorems 12.3 and 12.8, that L(1, χ) 	= 0. Hence, the hypothesis that
ρ 	= 0 for the non-trivial zeroes of L(s, χ) follows by the functional equation (Theorem 11.1).
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Chapter 12

The Prime Number
Theorem for arithmetic
progressions

The pinnacle of the theory of Dirichlet L-functions is a quantitative form
of the Prime Number Theorem for arithmetic progressions that is known in
the literature as the Siegel-Walfisz theorem.

Theorem 12.1 (Siegel-Walfisz). Let A > 0. There exists an absolute con-
stant c > 0 such that if 1 � q � (log x)A and a ∈ (Z/qZ)∗, then

π(x; q, a) =
li(x)

ϕ(q)
+OA

(
xe−c

√
log x

)
.

An important feature of this result is that it proves that primes are
equidistributed in (Z/qZ)∗ when the modulus q tends to infinity with x
at a rate that is polynomial in log x, something that is very important in
applications. The range of q and x can be significantly enlarged under the
assumption of the Generalized Riemann Hypothesis (see Exercise 11.2).

To achieve the required uniformity in q and x, we must keep track of the
dependence on q in the various estimates we prove. However, it might be
easier to think of q as fixed, say q = 3, at the first passage of this chapter.

A zero-free region for Dirichlet L-functions

In view of the explicit formula (11.5), the bulk of the proof of Theorem 12.1
is establishing a zero-free region for Dirichlet L-functions. We start with a
simple corollary of Lemma 11.4.

118

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



A zero-free region for Dirichlet L-functions 119

Lemma 12.2. Let χ be a Dirichlet character mod q, s = σ + it with σ ∈
[1, 2], and Z a sublist of the non-trivial zeroes of L(s, χ) with |γ − t| � 1,
possibly containing some zeroes multiple times. Then

Re

(
L′

L
(s, χ)

)
� −Re

(
1χ=χ0

s− 1

)
+

∑
ρ∈Z

Re

(
1

s− ρ

)
−O(log(q|t|+ 2q)).

Proof. Let ψ (mod d) be the primitive character inducing χ. Then

(12.1)
L′

L
(s, χ) =

L′

L
(s, ψ) +

∑
p|q

∞∑
k=1

ψ(p)k log p

pks
=

L′

L
(s, ψ) +O(log q)

by (11.2). We then apply Lemma 8.2(b) or 11.4(b) to L(s, ψ), according to
whether ψ = 1 or ψ �= 1, respectively. The lemma then follows by noticing
that Re(1/(s− ρ)) � 0 when σ � 1. �

Next, we prove a generalization of the zero-free region for ζ. Note that
our result leaves the possibility for the existence of certain exceptional zeroes
close to 1. These potential violations to the Generalized Riemann Hypoth-
esis require different arguments that we present in the subsequent section.

Theorem 12.3. Let q � 3 and Zq(s) =
∏

χ (mod q) L(s, χ). There is an

absolute constant c1 > 0 (i.e., c1 is independent of q) such that the region
of s = σ + it with

(12.2) σ � 1− c1
log(qτ)

, where τ = max{1, |t|},

contains at most one zero of Zq. Furthermore, if this exceptional zero exists,
then it is necessarily a real simple zero of Zq, say β1 ∈ [1− c1/ log q, 1], and
there is a real, non-principal character χ1 (mod q) such that L(β1, χ1) = 0.

Proof. By Theorem 8.3 and relation (11.2), we may restrict our attention
to zeroes of Zq corresponding to non-principal characters χ. As in the proof
of Theorem 8.3, the idea is that if L(s, χ) has a zero close to 1 + it, then
χ(p) ∼ −pit for most primes p. Therefore, χ2(p) ∼ p2it, which yields a pole
of L(s, χ2) at s = 1+2it. This can only happen if χ2 = χ0 and t = 0, so that
this pole corresponds to that of ζ at s = 1. Real zeroes of real characters
are then handled using a modification of this argument.

We now give the details of the above sketch. For convenience, we let

Lt = log
(
qmax{|t|, 1}

)
.

Let ρ = β + iγ be a zero of L(s, χ). If χ is real, we further assume that
either γ �= 0, or that ρ has multiplicity > 1 in L(s, χ). We want to show
that ρ lies outside the region (12.2). Assume for the sake of contradiction
that β � 1− c1/Lγ . We will show this is impossible if c1 is small enough.
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Set c1 = 1/M2 and σ = 1 + 1/(MLγ), and note that

(12.3) σ − β � σ − 1 +
1

M2Lγ
=

M + 1

M2Lγ
� 1

(M − 1)Lγ
.

Recall the distance function Dσ(f, g) defined in (8.4). The triangle inequality
implies that

Dσ(χ(n)n
−iγ, χ(n)niγ) � Dσ(χ(n)n

−iγ , μ(n)) + Dσ(μ(n), χ(n)n
iγ)

= 2Dσ(χ(n), μ(n)n
iγ).

By a straightforward computation (consult the proof of Theorem 8.3), and
using that

∑
p|q(log p)/p = O(log q), we have

Dσ(χ(n)n
−iγ, χ(n)niγ)2 = −ζ ′

ζ
(σ) + Re

(L′

L
(σ + 2iγ, χ2)

)
+O(log q)

and

Dσ(μ(n), χ(n)n
iγ)2 = −ζ ′

ζ
(σ)− Re

(L′

L
(σ + iγ, χ)

)
+O(log q).

Since (−ζ ′/ζ)(σ) = 1/(σ − 1) +O(1) = MLγ +O(1), we infer that

(12.4) 4Re
(L′

L
(σ + iγ, χ)

)
+Re

(L′

L
(σ + 2iγ, χ2)

)
� (3M +O(1))Lγ .

We now bound from below the two summands on the left-hand side of (12.4).

Lemma 12.2 with Z = ∅ implies that

(12.5)
Re

(L′

L
(σ + 2iγ, χ2)

)
� −Re

( 1χ2=χ0

σ − 1 + 2iγ

)
−O(Lγ)

� −(δ(χ, ρ)M +O(1))Lγ ,

where δ(χ, ρ) = 1 if |γ| � 1/(2M log q) and χ is real, and δ(χ, ρ) = 1/2
otherwise. Similarly,

(12.6) Re
(L′

L
(σ + iγ, χ)

)
� 1

σ − β
−O(Lγ) = (M −O(1))Lγ

by Lemma 12.2 with Z = {ρ}, and by (12.3). Inserting (12.5) and (12.6) into
(12.4), and choosing a large M leads to a contradiction when δ(χ, ρ) = 1/2.

It remains to treat the case when δ(χ, ρ) = 1, that is to say, when χ is
real and |γ| � 1/(2M log q). There are two sub-cases. First, if ρ is a multiple
real zero, then Lemma 12.2 with Z = {ρ, ρ}, and relation (12.3) imply that

Re
(L′

L
(σ + iγ, χ)

)
� 2

σ − β
−O(Lγ) � (2M −O(1))Lγ

Together with (12.4) and (12.5), this leads us to a contradiction when M is
large.
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Finally, assume that χ is real and that 0 < |γ| � 1/(2M log q). In this

case, the obvious symmetry L(s, χ) = L(s, χ) implies that ρ is also a zero
that is different from ρ. Applying Lemma 12.2 with Z = {ρ, ρ} then yields

Re
(L′

L
(σ + iγ, χ)

)
� 1

σ − β
+

σ − β

(σ − β)2 + γ2
−O(Lγ)

� (1.8M −O(1))Lγ

by (12.3). As before, this leads to a contradiction when M is large enough.

We have thus proven that the only possible zero in the region (12.2) is a
real, simple zero, and it can only arise as a zero of some Dirichlet L-function
L(s, χ) of a real, non-principal Dirichlet character χ (mod q). It remains
to prove that at most one such χ exists. Assume for contradiction that
there are two different such characters, say χ1 and χ2, and let β1 and β2,
respectively, be their zeroes in the region (12.2). By the triangle inequality,

(12.7) Dσ(χ1, χ2) � Dσ(χ2, μ) + Dσ(μ, χ2).

Since χ1, χ2 and χ1χ2 are all real, non-principal characters mod q, Lemma
12.2 with Z = ∅ yields

Dσ(χ1, χ2)
2 = −ζ ′

ζ
(σ) +

L′

L
(σ, χ1χ2) +O(log q)

� 1

σ − 1
−O(log q) = (M −O(1)) log q,

where σ = 1 + 1/(M log q) and c1 = 1/M2 as before. On the other hand,
arguing as in (12.6), we have

Dσ(χ1, μ)
2 = −ζ ′

ζ
(σ)− L′

L
(σ, χ1) +O(log q)

� 1

σ − 1
− 1

σ − β1
+O(log q) 
 log q.

The analogous upper bound holds for Dσ(χ1, μ)
2 too. Inserting the above

estimates into (12.7) and taking M to be large enough leads to a contradic-
tion. This completes the proof of the theorem. �

Theorem 12.3 allows the potential existence of extreme violations to the
Generalized Riemann Hypothesis. Before discussing this issue, let us see
what we can infer from Theorem 12.3 about prime numbers.

Theorem 12.4. There is an absolute constant c2 > 0 such that

ψ(x; q, a) =
x− χ1(a)x

β1

ϕ(q)
+O

(
xe−c2

√
log x

)
uniformly for x � q � 3 and (a, q) = 1, where the term χ1(a)x

β1 is present
only if there is an exceptional zero in Theorem 12.3.
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Proof. We establish the theorem with c2 < 1. As a consequence, we may

assume that q � e
√
log x; otherwise, we may simply use the trivial bound

ψ(x; q, a) 
 x(log x)/q.

We use the orthogonality of Dirichlet characters (see (10.5)) and the
explicit formula (11.5) to write

ψ(x; q, a) =
1

ϕ(q)

∑
χ (mod q)

χ(a)ψ(x, χ)

=
x

ϕ(q)
−

∑
χ (mod q)

χ(a)
∑

|γχ|�T

xρχ − 1

ρχ
+O

(x log2 x
T

)
,(12.8)

where T ∈ [3,
√
x] will be chosen later. Let ρχ = βχ + iγχ be a zero of

L(s, χ) different from the exceptional zero β1, and with imaginary part γχ
in [−T, T ]. We claim that there is an absolute constant c > 0 such that

(12.9)
xρχ − 1

ρχ

 x1−c/ log(qT )

1 + |γχ|
when ρχ �= β1, |γχ| � T.

Indeed, if βχ � 1/3, we use the trivial bound (xρχ − 1)/ρχ 
 x1/3 log x 

x5/6(log x)/T ; otherwise, we use Theorem 12.3 to find that βχ � 1 −
c1/ log(qT ) for some absolute constant c1 > 0. Since we also have that |ρχ| �
1 + |γχ| in this case, relation (12.9) readily follows with c = min{c1, 1/6}.

Inserting the bound (12.9) into (12.8), we conclude that

ψ(x; q, a) =
x

ϕ(q)
− χ1(a)x

β1

β1
+R

with a remainder term R of size

R 
 1

ϕ(q)

∑
χ (mod q)

∑
|γχ|�T, ρχ 	=β1

x1−c′1/ log(qT )

1 + |γχ|
+

x log2 x

T


 x1−c/ log(qT ) log2(qT ) +
x log2 x

T
,

where we used Lemma 11.4(a) to bound the sum over the zeroes of L(s, χ).

We choose T = e
√
log x and recall that q � e

√
log x. Consequently, R 


xe−c2
√
log x with c2 = c/3. Since χ1(a) = χ1(a) by the fact that χ1 is a real

character (if it exists at all), the proof is complete. �

Since for the moment we know nothing about β1, it could be the case
that β1 = 1. In this extreme case, and assuming that q is fixed and x →∞,
Theorem 12.4 implies that

(12.10) ψ(x; a, q) =

{
(2 + o(1))x/ϕ(q) if χ1(a) = −1,

o(x/ϕ(q)) if χ1(a) = 1.
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We thus see that an exceptional zero of
∏

χ (mod q) L(s, χ) at s = 1 forces a

very uneven distribution of the primes among arithmetic progressions mod
q, with half of the reduced classes containing twice as many primes as they
should, and the rest containing very few primes.

More generally, it can be proven that if there is an exceptional zero at
β1 = 1 − 1/(M log q1), then the residue classes a (mod q) with χ1(a) = −1
contain (2 + ox,u1,u2→∞(1))x/(ϕ(q) logx) primes of size � x, provided that

x is in the range [qu1 , qM/u2 ]. This result is due to Linnik. We will prove a
weak form of it in Chapter 27.

Exceptional characters

The characters χ whose L-function has a zero β in the region (12.2) are called
exceptional , and the zero β is called an exceptional zero or a Landau-Siegel
zero. This definition should not be taken too literally because it depends
on the choice of the unspecified constant c1 in (12.2). Strictly speaking, the
rigorous definition of Landau-Siegel zeroes concerns a sequence of characters
χj (mod qj) such that no product χjχk with j �= k is principal, and for which
there are real numbers

βj = 1− oj→∞(1/ log qj) such that L(βj, χj) = 0.

Disproving the existence of Landau-Siegel zeroes is a major open problem
in analytic number theory. We establish some partial results about them.

We begin by showing the following result due to Landau, which proves
that exceptional zeroes “repel” each other.

Theorem 12.5 (Landau). Let χ1 (mod q1) and χ2 (mod q2) be two real, non-
principal characters that are not induced by the same primitive character,
and both of whose L-functions have real zeroes β1 and β2, respectively. There
is an absolute constant c > 0 such that

min{β1, β2} � 1− c

log(q1q2)
.

Proof. The theorem follows by a simple modification of the last part of
the proof of Theorem 12.3, starting with (12.7). We leave the details as an
exercise. �

We record two important corollaries of Theorem 12.5, both of which
demonstrate the scarcity of Landau-Siegel zeroes.

Corollary 12.6. Let χj (mod qj) be a sequence of primitive characters of
strictly increasing moduli such that L(βj, χj) = 0 for some βj > 1−c/ log qj.
If c is small enough, then qj+1 > q100j for all j.
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Corollary 12.7 (Page). There is an absolute constant c > 0 such that
among all real, primitive characters of conductor � Q, there is at most one
whose Dirichlet L-function has a real zero > 1− c/ logQ.

Corollary 12.7, known in the literature as Page’s theorem, does not ex-
clude the possibility that there is one character χ (mod q) with a zero at 1
that would yield the very uneven distribution of primes described in (12.10).
To show there are no such zeroes, we use a different argument.

Let χ (mod q) be a real, non-principal character such that L(β, χ) = 0
for some β � 1. We have

(12.11) L(1, χ) =

∫ 1

β
L′(σ, χ)dσ 
 (1− β)q(1−β)/2 log2 q

by Lemma 11.2. When β � 1− 1/ log q, this implies that

(12.12) 1− β � L(1, χ)/ log2 q.

Hence we could show that β is not too close to 1 by proving a lower bound
for L(1, χ). A weak but uniform such bound follows.

Theorem 12.8. If χ is a non-principal real Dirichlet character mod q, then

L(1, χ) � 1
√
q log2 q

.

In particular, there is an absolute constant c > 0 such that

L(σ, χ) �= 0 when σ > 1− c

q1/2 log4 q
.

Proof. The second part of the theorem follows readily from the first part
and (12.12). Now, to bound L(1, χ) from below we consider the function
1 ∗ χ. We note that

(1 ∗ χ)(pm) =

⎧⎪⎨⎪⎩
m+ 1 if χ(p) = 1,

12|m if χ(p) = −1,

1 if χ(p) = 0.

Using multiplicativity, we infer that1 (1 ∗ χ)(n) � 0 and (1 ∗ χ)(n2) � 1 for
all n, whence

∑
n�x(1 ∗ χ)(n) �

√
x. On the other hand, we have

S :=
∑
n�x

(1 ∗ χ)(n) =
∑
a�x

χ(a) �x/a� .

We thus see that the expected main term is x
∑

a�x χ(a)/a ∼ xL(1, χ) for
large enough x, which should allow us to get a lower bound for L(1, χ).

1When χ is a primitive character, (1 ∗χ)(n) counts ideals of norm n in the ring of integers of
the quadratic field Q(

√
θq), where θ ∈ {−1,+1} is an appropriate sign (see [137, Chapter 7]). The

inequality (1 ∗ χ)(n2) � 1 has a more conceptual proof in this context, since it is a consequence
of the fact that there is always at least one ideal of norm n2 (the principal ideal (n)).
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However, it is hard to estimate S with a remainder term smaller than
√
x,

which is the size of our lower bound for S. To bypass this technical issue,
we work with the smoothened sum

T :=
∑
n�x

(1 ∗ χ)(n)(1− n/x) =
∑
a�x

χ(a)
∑
b�x/a

(
1− b

x/a

)
.

The Euler-Maclaurin summation formula (Theorem 1.10) implies that∑
n�x

(1− n/x) =
x

2
− 1

x

∫ x

0
{t}dt.

Consequently,

T =
∑
a�x

χ(a)

(
x

2a
− 1

x/a

∫ x/a

0
{t}dt

)
=

x

2

∑
a�x

χ(a)

a
− 1

x

∫ x

0
{t}

∑
a�min{x,x/t}

aχ(a)dt.

Using the Pólya-Vinogradov inequality and partial summation, we find that∑
a>x

χ(a)

a



√
q log q

x
and

∑
a�y

aχ(a) 
 y
√
q log q

uniformly for x, y � 1. Consequently,∑
n�x

(1 ∗ χ)(n)(1− n/x) =
xL(1, χ)

2
+O

(√
q(log q)(log x)

)
.

On the other hand,∑
n�x

(1 ∗ χ)(n)(1− n/x) �
∑
m2�x

(1−m2/x) �
√
x.

Comparing the above estimates when x = cq(log q)4 for a large enough
constant c completes the proof of the theorem. �

Theorems 12.4 and 12.8 establish Theorem 12.1 uniformly for all moduli
q � (log x)(log log x)−8. In order to handle larger q, we need a strengthening
of Theorem 12.8 due to Siegel.

Theorem 12.9 (Siegel). Let ε > 0. There is a constant c(ε) > 0 such that
for all real, primitive, non-principal Dirichlet characters χ (mod q), we have

L(σ, χ) �= 0 when σ > 1− c(ε)q−ε,

with the possible exception of one character χ1 (mod q1).
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Proof. We follow an argument due to Goldfeld [60]. Clearly, by taking
c(ε) � ε/2, we may assume that there is at least one primitive, non-principal
character whose L-function has a zero in [1 − ε/2, 1]. Let χ1 be such a
character of minimal conductor q1 > 1.

Now let χ (mod q) be a different real, primitive, non-principal Dirich-
let character. If q < q1, then the claimed zero-free region follows by the
minimality of q, so assume that q � q1.

We argue similarly to Theorem 12.8, only this time we replace 1 ∗ χ by
f = 1 ∗ χ ∗ χ1 ∗ χχ1. This function is also non-negative; the easiest way to
see this is by examining the logarithm of its Dirichlet series2

F (s) = ζ(s)L(s, χ1)L(s, χ)L(s, χχ1).

Let β1 be the rightmost zero of L(s, χ1) in the interval [1 − ε/2, 1], let
φ ∈ C∞(R�0) such that 1[0,1] � φ � 1[0,2], and consider the auxiliary sum

S =
∞∑
n=1

f(n)φ(n/x)

nβ1
.

On the one hand, we have the trivial lower bound S � 1 by dropping
all summands except for the one with n = 1. On the other hand, we can
evaluate S using Mellin inversion: Exercise 7.2(d) implies that

S = I2, where Iα :=
1

2πi

∫
(α)

F (s+ β1)x
sΦ(s)ds

with Φ denoting the Mellin transform of φ. Since F (β1) = 0, the only pole
of the integrand is at s = 1 − β1, which is a positive number by Theorem
12.8. Shifting the contour to the line Re(s) = −1, we find that

S = x1−β1L(1, χ1)L(1, χ)L(1, χχ1)Φ(1− β1) + I−1.

When s = −1+it, we have |F (s+β1)| 
 max{q, |t|}c1 for some absolute
constant c1 > 0 by Exercise 11.1 (the characters χ, χ1 and χχ1 all have
conductor � q1q � q2). Since |Φ(−1 + it)| 
 1/(1 + |t|)c1+2 by Exercise
7.2(c), we find that I−1 = O(qc1/x). Taking x = c2q

c1 for a large enough
constant c2 makes |I−1| � 1/2. Recalling that S � 1, we infer that

c2q
c1(1−β1)L(1, χ1)L(1, χ)L(1, χχ1)Φ(1− β1) � 1/2.

Next, we note that L(1, χχ1) 
 log q by Lemma 11.2, Φ(1 − β1) �∫ 2
0 y−β1dy � 2/(1− β1), and L(1, χ1) 
 (1 − β1)q

(1−β1)/2 log2 q by (12.11).
Since we also have 1− β1 � ε/2, we conclude that

L(1, χ) � q−(c1+1/2)(1−β1)/ log3 q �ε q
−(c1+1/2)ε.

2This is the Dedekind function of the biquadratic field Q(
√
θq,

√
θ1q1), where θ, θ1 are ap-

propriate signs (see footnote 1 on page 124).
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Together with (12.11), this proves that L(σ, χ) �= 0 for σ � 1−Oε(q
−(c1+1)ε).

Replacing ε by ε/(c1 + 1) completes the proof. �

The possible exceptional character χ1 in Theorem 12.9 causes a sub-
tle but significant problem: since we know nothing about it, we can at
best use Theorem 12.8 to say that L(σ, χ1) has no zeroes when σ > 1 −
O(1/(

√
q1 log

4 q1)) for some c1 > 0. Of course, q1 here is a constant (the
conductor of the hypothetical unique exceptional character χ1), so there is
some constant c̃ = c̃(ε, q1) such that L(σ, χ1) has no zeroes for σ > 1− c̃q−ε

1 .
However, since we have no control over q1, it is impossible to compute a spe-
cific value of c̃. Notice that this is not due to a lack of computing power, but
because of the argument producing c̃. We then say that “c̃ cannot be com-
puted effectively”. We have thus arrived at the ineffective form of Theorem
12.9, known as Siegel’s theorem.

Theorem 12.10 (Siegel). Let ε > 0. There is a constant c(ε) > 0 (that
cannot be computed effectively) such that

L(σ, χ) �= 0 when σ > 1− c(ε)q−ε

for all real, non-principal Dirichlet characters χ (mod q).

Proof. We have already treated the primitive characters. The non-primitive
characters are dealt with via formula (11.2). �

Combining Siegel’s theorem with Theorem 12.4 completes the proof of
Theorem 12.1. Note, however, that the ineffectivity of Theorem 12.10 trans-
fers to the implicit constant in Theorem 12.1. As a consequence, results
proven using Theorem 12.1 are generally not amenable to numerical anal-
ysis. There are some exceptions to this rule, as it is sometimes possible to
isolate the influence of the exceptional character χ1 in Theorem 12.9.

We will revisit exceptional characters in Chapters 22 and 27.

Exercises

Exercise 12.1. Adapt the argument of Exercise 8.4 to prove that there is a con-
stant c > 0 such that for each fixed A > 0 we have∑

n�x

μ(n)χ(n) 
A xe−c
√
log x (1 � q � (log x)A, χ (mod q)).

Exercise 12.2. Let χ be a Dirichlet character mod q and x � q � 3.

(a) Prove that there is an absolute constant c > 0 such that

ψ(x, χ) = 1χ=χ0
x− xβ1

β1
+O

(
xe−c

√
log x + (log q)2x1−c/ log q

)
,

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



128 12. The Prime Number Theorem for arithmetic progressions

where the term xβ1/β1 is present only when χ is the exceptional character from
Theorem 12.3.

(b) Let φ and Φ be as in Exercise 7.2. Prove that

ψ(x, χ) = 1χ=χ0
Φ(1)x− xβ1Φ(β1) +Oφ

(
xe−c

√
log x + (log q)x1−c/ log q

)
,

where the term xβ1Φ(β1) is present only when χ is the exceptional character
from Theorem 12.3.

Exercise 12.3∗([114, Lemma 18.4]). Let χ be a real, non-principal character mod
q, and let β ∈ [1/2, 1] be a zero of L(s, χ).

(a) For x � y � 1, prove that( ∑
y<p�x

1 + χ(p)

p

)( ∑
n�y

(1 ∗ χ)(n)
n

)
�

∑
y<m�xy

(1 ∗ χ)(m)

m
.

(b) For N � q, prove that∑
n�N

(1 ∗ χ)(n)
n

= L(1, χ)(logN + γ) + L′(1, χ) +O(q1/4N−1/2 logN)

using the hyperbola method.

(c) If φ ∈ C∞(R) is such that 1[0,1/2] � φ � 1[0,1], then show that∑
n�y

(1 ∗ χ)(n)
n

� yβ−1
∑
n�1

(1 ∗ χ)(n)φ(n/y)
nβ

� L(1, χ)

1− β
,

as long as y � q2 and q is large enough depending only on φ.

(d) Deduce that ∑
y<p�x

1 + χ(p)

p

 (1− β) log x (x � y � q3).

Exercise 12.4 (Alternative proof of a weak version of Theorem 12.3). Let χ (mod q)
be a Dirichlet character, t ∈ R and τ = max{|t|, 2}. Assume that either χ is complex
or |t| � 1.

(a) Using the 3-4-1 inequality (8.6), prove that

L(σ, χ0)
3|L(σ + it, χ)|4|L(σ + 2it, χ2)| � 1 for σ > 1.

[Hint: Recall that log |z| = Re(log z).]

(b) For σ ∈ (1, 2], show that |L(σ + it, χ)| � (σ − 1)3/4/ log1/2(qτ ).

(c) For σ, σ′ � 1− 1/ log(qτ ), show that

L(σ′ + it, χ) = L(σ + it, χ) +O(|σ′ − σ| log2(qτ )).
Conclude that there is an constant c > 0 such

|L(σ + it, χ)| � 1/ log8(qτ ) for σ > 1− c/ log10(qτ ).
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Chapter 13

Primes and
multiplicative functions

There is a strong connection between the distribution of primes and the
average behavior of multiplicative functions. Landau proved that the Prime
Number Theorem is elementarily equivalent to the relation

∑
n�x μ(n) =

ox→∞(x) (see Exercise 3.15). In a similar vein, the Riemann Hypothesis is

equivalent to the bound |
∑

n�x μ(n)| � x1/2+o(1) as x → ∞ (see Exercise
8.6), whereas the Generalized Riemann Hypothesis amounts to showing the
same estimate for the partial sums of μχ for each character χ (mod q).

In order to understand better the interplay between primes and mul-
tiplicative functions, we assume a more general point of view. Much of
what we have done so far can be roughly described as follows: we are given
an interesting arithmetic sequence indexed by primes, say f(2), f(3), f(5),
. . . , and we want to understand its partial sums. To accomplish this, we
consider a special generating function: the Dirichlet series

∑
p f(p)/p

s. In
certain fortuitous situations, this series is related to the logarithm of the
Dirichlet series F (s) =

∑∞
n=1 f(n)/n

s of a “nice” multiplicative function f .
Analyzing averages of f(n) thus gives us information on averages of f(p).

We now explore the converse direction: assuming we have good bounds
on

∑
p�x f(p), we seek estimates for

∑
n�x f(n). We will accomplish this

goal when the sequence f(p) is roughly constant on average. More precisely,
we assume that there is some κ ∈ C and some parameter Q � 2 such that

(13.1)
∑
p�x

f(p) log p = κx+OA

(
x/(log x)A

)
(x � Q)

for each fixed A > 0. We think of κ as being fixed and Q as varying.

130
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We must further impose a growth condition on f that prevents abnor-
mally large values from ruling its partial sums. A simple way of achieving
this is to assume that there is a fixed k ∈ N such that

(13.2) |f | � τk.

We call such a function divisor-bounded .

For instance, if f = μ, then (13.1) and (13.2) hold with κ = −1, k = 1
and Q = 2, whereas when f = μχ for a non-principal character χ (mod q),
then κ = 0, k = 1 and Q = exp{qε} by the Siegel-Walfisz theorem (Theo-
rem 12.1). A more unusual but still natural example is given by the function

μ̃(n) = μ2(n)(−1)ω(n;5,1), where ω(n; 5, 1) = #{ p|n : p ≡ 1 (mod 5) }. In-
deed, μ̃ satisfies (13.1) with κ = 1/2 and Q = 2, whereas (13.2) holds with
k = 1. We already have good predictions for the partial sums of μ and μχ,
but what about the average behavior of μ̃?

Generalized divisor functions

The study of the above general class of functions f can be reduced to certain
canonical representatives. These are generalizations of the combinatorially
defined divisor functions τm, m ∈ N. Recall that the Dirichlet series of τm
is ζ(s)m. We then define τκ for κ ∈ C to be the arithmetic function whose
Dirichlet series is ζ(s)κ. Using the Euler product representation of ζ and
the Taylor series expansion of (1− x)−κ about x = 0, we find that

(13.3) τκ(p
a) =

(
κ+ a− 1

a

)
.

In particular, τκ(p) = κ, so that (13.1) holds by the Prime Number Theorem.

To relate a general function f satisfying (13.1) to the function τκ, we
go back to the basics. Note that the average value of f(p) − τκ(p) is zero.
Hence, if we write f = τκ ∗ g, then g(p) is zero on average. We might thus
guess that g has small partial sums. Dirichlet’s hyperbola method would
then suggest that f and τκ behave very similarly on average.

A more analytic way to view the above argument is to consider F (s), the
Dirichlet series of f . We then roughly have F (s)ζ(s)−κ ≈ exp{

∑
p(f(p) −

κ)/ps}. For this reason, (13.1) is essentially equivalent to the function Fζ−κ

having a C∞-extension to the half-plane Re(s) � 1 (see Lemma 13.5(a) be-
low). For simplicity, let us assume momentarily a stronger version of (13.3),
with an error term of size O(x1−ε). Then, we can analytically continue Fζ−κ

to the half-plane Re(s) > 1− ε. Hence, we see from (5.14) that the partial
sums of g = f ∗ τ−κ should indeed be rather small (there are no residue
contributions to the right side of (5.14)). This allows us to relate averages
of f and τκ via the hyperbola method.
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Let us now study the partial sums of the prototypical function τκ. We
begin, as usual, by invoking Perron’s inversion formula: for any x /∈ Z and
any α ∈ (1, 1 + 1/ log x], we have

(13.4)
∑
n�x

τκ(n) =
1

2πi

∫
(α)

ζ(s)κ
xs

s
ds.

When κ is an integer, ζκ has a meromorphic continuation to C, so the usual
contour shifting argument can be used to estimate

∑
n�x τκ(n). However,

when κ /∈ Z, the function ζκ is only defined where log ζ(s) is. In particular,
since ζ has a pole at s = 1, we can only define ζ(s)κ in a simply connected
set of the complex plane that does not contain 1, nor any of the zeroes of ζ.
There is no such domain containing a punctured disk centered at 1. Hence, it
is not possible to employ Cauchy’s residue theorem to study the contribution
of the singularity at s = 1 to the partial sums of τκ, which means that we
must develop a new method to deal with the integral in (13.4).

The LSD method

The main idea for estimating the integral in (13.4) goes back to work of
Landau and was further developed by Selberg and Delange. Here, we present
an adaptation of their technique that appeared in [68], which builds upon
ideas in [114, Section 2.4]. The original method of Landau-Selberg-Delange
(called the LSD method for brevity) is presented in great detail in Chapter
II.5 of Tenenbaum’s book [172]. We also outline it in Exercise 13.6.

For simplicity, assume that κ > 1. Note that the integrand ζ(s)κxs/s
blows up to ∞ when s → 1. On the other hand, Exercise 8.4 shows that
ζ(s)κxs/s 
 x|t|−1/2 = o|t|→∞(x) when s = σ+ it with 1 < σ � 1+1/ log x.
Thus, if we take α sufficiently close to 1, it seems reasonable to expect that
most of the contribution to the integral in (13.4) comes from s close to 1.
For such s, we have that ζ(s)κ/s ∼ 1/(s− 1)κ. This leads us to guess that

(13.5)
∑
n�x

τκ(n) ≈
1

2πi

∫
(α)

xs

(s− 1)κ
ds.

The right-hand side of the above formula can be computed using Lemma
13.1 below, which is called Hankel’s formula.

Lemma 13.1 (Hankel’s formula). Let x > 1, α > 0 and Re(κ) > 1. Then

1

2πi

∫
(α)

xs

sκ
ds =

(log x)κ−1

Γ(κ)
.

If, in addition, α > 1, then we have

1

2πi

∫
(α)

xs

s(s− 1)κ
ds =

1

Γ(κ)

∫ x

1
(log y)κ−1dy.
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Proof. We have
∫∞
1 (log x)κ−1x−s−1dx = s−κΓ(κ) for Re(s) > 0. (Justify

why this is true for all s with Re(s) > 0.) Since Re(κ) > 1, the func-
tion 1/sκ is absolutely integrable on every vertical line Re(s) = α with
α �= 0. Thus, the Mellin inversion formula (Theorem B.4) implies that
(1/2πi)

∫
(α) y

ss−κds = 1y>1(log y)
κ−1/Γ(κ) for any α > 0, which proves the

first part of the lemma. Integrating over y ∈ [0, x] proves the second part
too with α+ 1 in place of α. �

The above discussion leads us to conjecture that

(13.6)
∑
n�x

τκ(n) ≈
x(log x)κ−1

Γ(κ)
(x →∞).

Note that this agrees with Theorem 7.4 when κ ∈ N. Remarkably, it also
agrees with what we know for the Möbius function. Indeed, when κ = −1,
we have τ−1 = μ, for which we know that

∑
n�x μ(n) = ox→∞(x). On the

other hand, the right-hand side of (13.6) vanishes because of the pole of the
Gamma function at s = −1.

The main goal of this chapter is to establish an appropriate version of
(13.6) for all multiplicative functions f satisfying (13.1) and (13.2). Un-
der the same assumptions, we will show that the asymptotic behavior of∑

n�x f(n) is determined by the analytic behavior of the Dirichlet series
F (s) when s ≈ 1.

As we mentioned earlier, F (s)ζ(s)κ admits a C∞-extension to the half-
plane Re(s) � 1 under the assumptions of (13.1) and (13.2). Thus, the same
must be true for the function F (s)(s − 1)κ because ζ(s)(s − 1) is analytic
and non-zero in an open neighborhood of the plane Re(s) � 1. We then let

(13.7) cj =
dj

j!dsj

∣∣∣
s=1

(s− 1)κF (s) and c̃j =
dj

j!dsj

∣∣∣
s=1

(s− 1)κF (s)

s

be the Taylor coefficients about 1 of the functions (s − 1)κF (s) and (s −
1)κF (s)/s, respectively. Since s = 1 + (s− 1) and 1/s = 1− (s− 1) + (s−
1)2 ∓ · · · for |s− 1| < 1, these coefficients are linked by the relations

(13.8) c̃j =

j∑
a=0

(−1)acj−a and cj = c̃j + c̃j−1 for j = 0, 1, . . .

with the convention that c̃−1 = 0. Moreover, since ζ(s) ∼ 1/(s − 1) as
s → 1+ and f is multiplicative, we have that

(13.9) c0 = c̃0 =
∏
p

(
1 +

f(p)

p
+

f(p2)

p2
+ · · ·

)(
1− 1

p

)κ
.

We will prove in Lemma 13.5(a) that cj, c̃j 
j,k (logQ)j+2k.

With the above notation, our main theorem is the following.
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134 13. Primes and multiplicative functions

Theorem 13.2. Fix ε > 0 and J ∈ N. If f , cj and c̃j are as above, then

∑
n�x

f(n) =

∫ x

2

J−1∑
j=0

cj
(log y)κ−j−1

Γ(κ− j)
dy +O

(
x(logQ)2k+J−1

(log x)J+1−Re(κ)

)
(13.10)

= x
J−1∑
j=0

c̃j
(log x)κ−j−1

Γ(κ− j)
+O

(
x(logQ)2k+J−1

(log x)J+1−Re(κ)

)
(13.11)

for x � e(logQ)1+ε
. The implied constants depend at most on k, J , ε and the

implied constant in (13.1) for A large enough in terms of k, J and ε.

Remark 13.3. Note that when κ ∈ Z�0, then all the main terms in (13.10)
vanish because of the poles of the Gamma function at 0,−1,−2, . . . . Hence,
for each fixed ε > 0 and A > 0, we infer that

(13.12)
∑
n�x

f(n) 
A,ε x/(log x)
A

(
x � e(logQ)1+ε)

.

On the other hand, when c0 �= 0 and κ /∈ Z�0, we see that
∑

n�x f(n) is

much larger, of size x(log x)Re(κ)−1.

For example, for the function μ̃(n) = μ2(n)(−1)ω(n;5,1) that we saw
above, we have κ = 1/2 and c0 > 0. Hence,

∑
n�x μ̃(n) is of size x/(log x)

1/2.
This might be a bit surprising because it is in stark contradiction with a
common heuristic argument for the Riemann Hypothesis.

Indeed, given a square-free integer n, note that μ̃(n) = 1 when ω(n; 5, 1)
is even, while μ̃(n) = −1 when ω(n; 5, 1) is odd. A similar situation is true
for the Möbius function, with ω(n; 5, 1) replaced by ω(n). Since there is no
reason to suspect any bias for the parity of the functions ω(n; 5, 1) and ω(n),
we may be tempted to model μ and μ̃ by a sequence of random, independent
and equiprobable assignments of +1 or −1 to each square-free integer. The
Central Limit Theorem would then predict that |

∑
n�x μ(n)| � x1/2+o(1)

and |
∑

n�x μ̃(n)| � x1/2+o(1). While the former estimate is believed to be
true in virtue of the Riemann Hypothesis, the second one is very far from
the truth.

In conclusion, we should be very careful when using probabilistic argu-
ments of the above sort to analyze partial sums of multiplicative functions,
because their values are interdependent in a fundamental way. For instance,
if n is odd, then we always have that f(2n) = f(2)f(n), which means that
the values f(2n) and f(n) are highly correlated. �

Before going on to prove Theorem 13.2, we record an important conse-
quence of it.
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Corollary 13.4. Fix A,C � 1 and ε ∈ (0, 1/2]. Let x � 2 and q,m ∈ N
with q � (log x)C and ω(m) � exp{(log x)1−ε}. Then∑

n�x, (n,m)=1
n≡a (mod q)

μ(n) 
ε,A,C
x

(log x)A
.

Proof. Let d = (a, q) and write a = da1 and q = dq1. If n ≡ a (mod q),
then d|n. Hence, for the sum in the statement of the corollary to have any
terms, we must have (d,m) = 1. In this case, we write n = dr, so that∑

n�x, (n,m)=1
n≡a (mod q)

μ(n) =
∑

r�x/d, (r,m)=1
r≡a1 (mod q1)

μ(dr) = μ(d)
∑

r�x/d, (r,dm)=1
r≡a1 (mod q1)

μ(r).

Since (a1, q1) = 1, we may expand the condition r ≡ a1 (mod q1) using
Dirichlet characters. We thus find that

(13.13)
∑

n�x, (n,m)=1
n≡a (mod q)

μ(n) =
μ(d)

ϕ(q1)

∑
χ (mod q1)

χ(a1)
∑
r�x/d

(r,dm)=1

μ(r)χ(r).

Fix χ (mod q1) and note that x/d � x/q � x/(log x)C . We shall apply
Theorem 13.2 with f(n) = 1(n,dm)=1μ(n)χ(n). For this function, Theorem
12.1 implies that∑

p�w

f(p) log p = −
∑
p�w

χ(p) log p+O(ω(dm) logw)

= −1χ=χ0w +OM

(
we−c

√
logw + ω(dm) logw

)
for all w � exp(q

1/M
1 ), where M > 0 is arbitrarily large but fixed, and c

is an absolute positive constant. Note that ω(d) 
 log q for d|q. Hence,
taking M = (1 + ε)C yields (13.1) with parameters κ = −1χ=χ0 and

logQ = max
{
q1/((1+ε)C), (logω(m))1/(1−ε2)}. Moreover, (13.2) clearly holds

with k = 1. Notice that our assumptions on x, m and q imply that

log x � max{q1/C , (logω(m))1/(1−ε)} = (logQ)1+ε.

Consequently, Theorem 13.2 implies that∑
r�x/d, (r,dm)=1

μ(r)χ(r) 
 x/d

(log(x/d))A

 x

(log x)A

(all the main terms vanish because either κ = 0 or κ = −1 here, whence
Γ(κ − j) = ∞ for all j ∈ Z�0). Inserting the above estimate into (13.13)
completes the proof. �
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Estimating Perron integrals without shifting contours

We now turn to the proof of Theorem 13.2. The argument leading to
(13.6) can be made rigorous using the methods of Chapter 7, at least when
Re(κ) > 1. However, it cannot produce an approximation for

∑
n�x τκ(n)

that is strong enough to detect all the lower order terms in the asymptotic
estimation of

∑
n�x τκ(n). To prove Theorem 13.2 we need one additional

idea.

Instead of estimating
∑

n�x τκ(n), we work with the weighted average∑
n�x τκ(n)(logn)

m, where m is a fixed integer at our disposal. It is easy
to go back and forth between these two sums using partial summation.
Moreover, the Dirichlet series of τκ(n)(logn)

m is (−1)m(ζκ)(m)(s), where

(ζκ)(m) denotes the mth derivative of ζκ. Hence

(13.14)
∑
n�x

τκ(n)(logn)
m =

(−1)m

2πi

∫
(α)

(ζκ)(m)(s)
xs

s
ds

for x /∈ Z and any α > 1. Using Exercise 8.4(c), it is possible to show
that (ζκ)(m)(s)/s 
m |t|−1/2 for σ � 1 and |t| � 1, which tends to 0 when
|t| → ∞, no matter how large m is. On the other hand, for s close to 1, we

have (ζκ)(m)(s)/s ∼ (−1)mκ(κ + 1) · · · (κ + m − 1)/(s − 1)κ+m. Choosing
m large enough ensures that our integrand is much bigger for small |t| than
for large |t|. This allows for a much better estimation of the integral on the
right-hand side of (13.14). We provide the necessary details below.

We begin with an auxiliary result. We postpone its proof till the end
of the chapter because it is rather technical in the general case, while being
easy in the prototypical and important case when f = τκ for which (13.1)
holds with Q = e: the analyticity and the non-vanishing of ζ(s)(s−1) when
Re(s) = 1 yields parts (a), (b) and (d), whereas Exercise 8.4 yields part (c).

Lemma 13.5. Let f and cj be as in the statement of Theorem 13.2, and
let F be the Dirichlet series of f . All implied constants might depend on k
and the implicit constants in (13.1).

(a) F (s)(s− 1)κ has a C∞-extension to the half-plane Re(s) � 1.

(b) For j = 0, 1, 2, . . ., we have cj 
j (logQ)j+2k.

(c) For m ∈ Z�0 and ε > 0, we have

F (m)(s) 
m,ε |t|ε + (logQ)m+3k for σ � 1, |t| � 1/ logQ.

(d) For m,J ∈ Z�0 and |s− 1| � 2/ logQ with σ � 1, we have

(−1)mF (m)(s) =
∑

0�j<J

cj
Γ(κ− j +m)

Γ(κ− j)
(s− 1)j−m−κ

+Om,J((logQ)J+2k|s− 1|J−m−Re(κ)).
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Proof of Theorem 13.2. All implied constants might depend on k, J
and ε. In addition, they might depend on the size of κ. However, note
that for (13.1) and (13.2) both to hold, we must have |κ| � k. So the
dependence on κ can be absorbed into the dependence on k. The implied
constants will also depend on an integer m we will choose later in terms of
k, J and ε.

Instead of estimating the partial sums of f , we work with the function
f(n)(logn)m. We will use a smooth variant of Perron inversion to rewrite
the partial sums of this function. Let

(13.15) T = (log x)2k+J+1 and w(s) = T ·
[
(1 + 1/T )s+1 − 1

]/
(s+ 1).

Then (7.3) implies that

(13.16)
∑
n�x

f(n)(logn)m =
(−1)m

2πi

∫
Re(s)=1+1/ log x

F (m)(s)w(s)
xs

s
ds+R,

where |R| �
∑

x<n�x+x/T |f(n)|(logn)m. Since |f | � τk and T is a power of

log x, Theorem 7.4 implies that

(13.17) |R| 
 x(log x)m+k−1/T � x(log x)m−k−1−J .

Next, we turn to the main term in (13.16), which we write as I1+I2+I3
with I1 denoting the portion of the integral with | Im(s)| � 1/ logQ, I2 being
the portion with 1/ logQ < | Im(s)| � T 2, and I3 being the remaining part.

First, we bound I3. For s = 1 + 1/ log x + it, we note that |F (m)(s)| �∑
n�1 |f(n)|(logn)m/n1+1/ log x. Using our assumption that |f | � τk and

Theorem 7.4 (that we insert via partial summation), we infer that F (m)(s) 

(log x)m+k. In addition, we have |w(s)| 
 T/|t|. As a consequence,

(13.18) I3 
 x(log x)m+k/T = x(log x)m−J−k−1

by the choice of T .

To bound I2, we note that if 1/ logQ � |t| � T 2 and m is large enough,
then w(s) 
 T and F (m)(s) 
 |t|1/2 + (logQ)m+3k 
 (log x)m−J−k−1/T 3

by Lemma 13.5(b), since log x � (logQ)1+ε. Consequently,

(13.19) I2 
 x(log x)m−J−k.

It remains to estimate I1. We use Lemma 13.5 to find that

I1 =
∑

0�j<J

Γ(κ− j +m)

Γ(κ− j)
· cj
2πi

∫
L
w(s)(s− 1)j−m−κx

s

s
ds

+O
(
x(logQ)J+2k

∫
|t|�1/ logQ

|s− 1|J−m−Re(κ)dt
)
,
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where L denotes the vertical line segment [1+1/ log x−i/ logQ, 1+1/ log x+
i/ logQ]. For s ∈ L and j ∈ Z ∩ [0, J ], we have w(s) = 1 +O(1/T ) and

(s− 1)j−m−κ 
 |s− 1|j−m−Re(κ) � (log x)m+Re(κ)−j .

Consequently,

I1 =
J−1∑
j=0

Γ(κ− j +m)

Γ(κ− j)
· cj
2πi

∫
L

xs

s(s− 1)m+κ−j
ds+O(E),

where

E = x(log x)m+Re(κ)−J(logQ)J+2k−1.

Assuming that m � J + 2 + k � J + 2 + |κ|, we have∫
Re(s)=1+1/ log x

|t|�1/ logQ

xs

s(s− 1)m+κ−j
ds 
 x(logQ)m+Re(κ)−j−1 (0 � j < J).

Thus, Lemma 13.1 implies that

1

2πi

∫
L

xs

s(s− 1)m+κ−j
ds =

∫ x

2

(log y)m+κ−j−1

Γ(m+ κ− j)
dy+O(x(logQ)m+Re(κ)−j−1),

so that

I1 =

∫ x

2
P (log y)(log y)mdy +O(E) with P (w) =

J−1∑
j=0

cjw
κ−j−1

Γ(κ− j)
.

Combining this formula with (13.16)–(13.19), we deduce that∑
n�x

f(n)(logn)m =

∫ x

2
P (log y)(log y)mdy +O(E).

Finally, we remove the weight (logn)m with a simple partial summation
argument to establish (13.10). Relation (13.11) then follows by expanding∫ x
2 ((log y)

β−1/Γ(β))dy into an asymptotic series using integration by parts
several times, much like we did in Example 1.6. �

Proof of Lemma 13.5. (a) The function ζ(s)(s− 1) is analytic and non-
zero in an open neighborhood of the half-plane Re(s) � 1. Hence, it suffices
to show that Fζ−κ has a C∞-extension to the half-plane Re(s) � 1. We
write Fζ−κ = GH, where

G(s) =
∏
p

(1−1/ps)κ−f(p) and H(s) =
∏
p

1 + f(p)/ps + f(p2)/p2s + · · ·
(1− 1/ps)−f(p)

.

The factors of H(s) are 1 + O(1/p2σ) by Taylor’s theorem and (13.2). In
particular, H(s) is analytic for σ > 1/2 and each derivative H(m)(s) is
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uniformly bounded in the half-plane σ � 1. To establish the C∞-extension
of G, it is more convenient to work with its logarithm, for which we have

(13.20) (logG)(m)(s) =
∑∑
p, a�1

(−a log p)m(f(p)− κ)

apas
.

The series on the right-hand side converges uniformly in compact subsets of
the half-plane Re(s) � 1 by (13.1) and partial summation (see the proof of
Theorem 4.5). This completes the proof of part (a).

(b,c) By the above discussion, both parts will follow if we show that

(13.21) G(m)(s) 
m max{|t|ε, logQ}m+2k for σ � 1, t ∈ R.

Indeed, all derivatives of ζκ(s)(s− 1)κ are bounded in the vicinity of s = 1.
Together with (13.21), this yields part (b). To prove (c), we separate two
cases. When 1/ logQ � |t| � 1, we note that (ζκ)(m)(s) 
m (logQ)m+k,

whereas when |t| � 1 we use the bound (ζκ)(m)(s) 
m |t|ε, which is a conse-
quence of Exercise 8.4(c). Together with (13.21), these estimates establish
part (c) in all cases.

Let us now prove (13.21). We write G = eL and note that G′ = L′eL and

G′′ = L′′eL+(L′)2eL. In general, G(m) is a finite linear combination of terms

of the form L(m1) · · ·L(mr)eL with m1+ · · ·+mr = m and m1, . . . ,mr ∈ Z�1.
This reduces (13.21) to proving that

(13.22) |L(s)| � 2k log logN +Oε(1), L(m)(s) 
m,ε (logN)m (m � 1)

for σ � 1 and |t| � 1, where N = exp(max{|t|ε, logQ}).
To prove (13.22), we adapt the proof of Theorem 11.2: we fix A >

max{m, ε−1}, and use partial summation and (13.1) to find that∑
p>N

(f(p)− κ)(− log p)m

ps

m,A (1 + |t|/(logN)A)(logN)m � 2(logN)m.

Since |f(p)− κ| � k + |κ| � 2k by (13.2), we also trivially have that∣∣∣ ∑
p�N

(f(p)− κ)(− log p)m

ps

∣∣∣ �
{
2k log logN +O(1) if m = 0,

O((logN)m) if m � 1,

as well as ∑∑
p, a�2

(−a log p)m(f(p)− κ)

apas
= Om(1).

This completes the proof (13.22), and hence of (13.21).

(d) Taylor’s theorem implies that

(13.23) F̃ (s) := F (s)(s− 1)κ =
∑

0�j<J

cj(s− 1)j + E(s),
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140 13. Primes and multiplicative functions

where the remainder can be written as

E(s) =

∫ s

1
F̃ (J)(z)

(s− z)J−1

(J − 1)!
dz.

Dividing both sides of (13.23) by (s − 1)κ and differentiating m times, we
see that part (d) will follow if we can show that

(13.24) E(�)(s)(s− 1)−κ−m+� 
m |s− 1|−Re(κ)−m+J(logQ)J+2k

when |s− 1| � 2/ logQ and σ � 1. Indeed, by induction on �, we have

E(�)(s) =

{∫ s
1 F̃ (J)(z)(s− z)J−1−�dz/(J − 1− �)! if � � J − 1,

F̃ (�)(s) if � � J.

Since F̃ (n)(s) 
n (logQ)n+2k for z ∈ [1, s] by (13.21), we find that

E(�)(s)(s− 1)� 
 (|s− 1| logQ)max{�,J}(logQ)2k 
 |s− 1|J(logQ)J+2k

for |s−1| � 2/ logQ. This shows (13.24), and thus part (d) of the lemma. �

Exercises
Exercise 13.1. Let κ ∈ C. Estimate

∑
n�x κ

ω(n) and
∑

n�x κ
ω(n)ϕ(n).

Exercise 13.2. Fix ε > 0 and A � 1. Prove that, uniformly for m ∈ N and
x � 2 + exp{(logω(m))1+ε}, we have

#{n � x : (n,m) = 1 } = x
∏
p|m

(
1− 1

p

)
+OA

( x

(log x)A

)
.

Exercise 13.3. Fix κ ∈ C and ε > 0. Given m ∈ N, let L(m) = log(2 + ω(m)).
Uniformly for m ∈ N and x � exp{L(m)1+ε}, prove that∑

n�x, (n,m)=1

κω(n) =
cκfκ(m)

Γ(κ)
x(log x)κ−1 +Oκ,ε(xL(m)2|κ|(log x)Re(κ)−2),

where cκ =
∏

p(1 +
κ−1
p )(1− 1/p)κ−1 and fκ(m) =

∏
p|m(1 + κ/(p− 1))−1.

Exercise 13.4 (Landau). Let b(n) be the indicator function of those n ∈ N that
can be written as the sum of two squares. Prove that there is a constant c > 0 such
that

∑
n�x b(n) ∼ cx/

√
log x as x → ∞. [Hint: b(n) = 1 if and only if ν is even

whenever pν‖n with p ≡ 3 (mod 4).]

Exercise 13.5. For r > 0 and ε > 0, we let Cr(ε) be the contour { |s| = r :
| arg(s)| � π − ε } traced counterclockwise. We then define the contour

Hr(ε) = (−∞− ir sin ε, re−i(π−ε)] + Cr(ε) + [rei(π−ε),−∞+ ir sin(ε)).

The limit of Hr(ε) when ε → 0+ is denoted by Hr and is called a Hankel contour
(see Figure 13.1). By convention,

∫
Hr

= limε→0+
∫
Hr(ε)

. Prove that

1

2πi

∫
Hr

xs

sκ
ds =

1

Γ(κ)
.

[Hint: Show that both sides are entire functions of κ.]
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r

Figure 13.1. A Hankel contour

Exercise 13.6∗([162], [172, Chapter II.5]). Fix κ ∈ C. Let x � 3, α = 1+1/ log x

and T ∈ [100, e
√
log x], and define w(s) by (13.15).

(a) Prove that∑
n�x

τκ(n) =
1

2πi

∫
Re(s)=α

| Im(s)|�T 2

ζκ(s)w(s)

s
xsds+Oκ

(
x(log x)|κ|

T

)
.

(b) Let δ = 0.5c1/ log(2 + T ) with c1 as in Exercise 8.4. In addition, consider
r ∈ (0, δ) and let H′

r denote the truncated Hankel contour that goes from
−δ − i0+ to −r − i0+, then traces a circle of radius r to −r + i0+, and finally
goes to −δ + i0+. Prove that∑

n�x

τκ(n) =
1

2πi

∫
H′

r

ζκ(s+ 1)

s+ 1
xs+1ds+R,

where |R| � x(log x)Oκ(1)(1/T + x−δ). [Hint: After making the change of
variables s → s+1 in part (a), replace the contour [1/ log x−iT 2, 1/ log x+iT 2]
by the contour of Figure 13.2.]

(c) Develop ζ(s+ 1)κsκ/(s+ 1) into Taylor series about s = 0 to give a new proof
of Theorem 13.2 when f = τκ.

Exercise 13.7.∗

(a) When σ ∈ (0, 1), show that log ζ(σ ± iε) ∼ log |ζ(σ)| ∓ iπ as ε → 0+. [Hint:
First, analyze log ζ(s) when s ∼ 1.]

(b) Use Exercise 13.6(b) to show there is a constant c > 0 such that∑
n�x

τ1/2(n) =
1

π

∫ 1

1/2

|ζ(σ)|1/2
σ

xσdσ +O
(
xe−c

√
log x

)
(x � 2).

(c) Assume the Riemann Hypothesis and fix ε > 0. Show that∑
n�x

τ1/2(n) =
1

π

∫ 1

1/2

|ζ(σ)|1/2
σ

xσdσ +Oε(x
1/2+ε) (x � 2).

Exercise 13.8∗(A partial converse to Theorem 13.2 [120]). Let f be a multiplica-
tive function such that |f | � 1 and

(13.25)
∑
n�x

f(n) 
A x/(log x)A (x � 2)
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142 13. Primes and multiplicative functions

1/ log x+ iT 2−δ + iT 2

1/ log x− iT 2−δ − iT 2

−δ r0

Figure 13.2. Deforming the contour [1/ log x− iT 2, 1/ log x+ iT 2]

for all A > 0. Assume further that there is some δ > 0 such that∑
p�x

Re(f(p)p−it)

p
� (−1 + δ) log log x+OB(1) (|t| � (log x)B, x � 2)

for each fixed B > 0. Then prove that∑
p�x

f(p) log p 
C x/(log x)C (x � 2)

for each fixed C > 0. [Hint: Let F (s)=
∑∞

n=1 f(n)/n
s. Show that

∑
p>x 1/p

1+1/ log x

= O(1) and
∑

p�x(p
1/ log x − 1)/p = O(1), and thus |F (1 + 1/ log x + it)| =

exp{
∑

p�x Re(f(p)p
−it)/p} �B (log x)δ−1 for |t| � (log x)B. Conclude that |F (1+

1/ log x + it)| �B (log x)δ−1 for |t| � (log x)B and hence (F ′/F )(m)(1 + 1/ log x+
it) 
 (log x)m/2 for large m ∈ N .]
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Chapter 14

Evolution of sums of
multiplicative functions

The LSD method allows us to handle partial sums of multiplicative func-
tions whose prime values are very regular. However, the information we have
at our disposal is often more limited. In this chapter, we develop a tech-
nique that allows us to get a hold on partial sums of multiplicative functions
under much weaker conditions. We mainly focus on non-negative functions,
as they are easier to handle while still being a large enough class. For more
advanced topics, see [38, Chapters 6 and 9], [75] and [172, Chapter III.4].

The underlying principle of the method we will use is very simple: if
we know the average behavior of f over integers n � x/2, and over prime
powers pk � x, then we also know the average behavior of f over integers
m � x. Indeed, any integer m � x can be written as m = pkn, with pk � x
and n an integer � x/pk � x/2 that is coprime to p, in which case we also
have f(m) = f(n)f(pk). This simple fact should in principle imply that
S(x) =

∑
n�x f(n) obeys a recurrence relation involving the quantities S(y)

with y � x/2 and the numbers f(pk) with pk � 2x.

An elegant way to derive the claimed recurrence begins with the obvious
identity F ′ = (F ′/F ) · F , where F is the Dirichlet series of f . Hence

(14.1) f log = Λf ∗ f,

where Λf is the arithmetic function associated to the Dirichlet series −F ′/F .
This function generalizes von Mangoldt’s function that satisfies (14.1) with
f = 1. For instance, the definition of Λf readily implies that

Λf (p) = f(p) log p.

143
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144 14. Evolution of sums of multiplicative functions

In addition, similarly to Λ, the function Λf is supported on prime powers
(see Exercise 4.7).

Example 14.1. (a) Let κ ∈ C. If τκ is the function defined in (13.3), then
F (s) = ζ(s)κ, whence F ′/F = κζ ′/ζ. Consequently, Λf = κΛ.

(b) If f = μ2κω, then we have F (s) =
∏

p(1 + κ/ps), whence logF (s) =∑
p

∑∞
m=1(−1)m−1κm/(mpms). We infer that Λf (p

m) = (−1)m−1κm log p,
which grows exponentially fast in m. �

Now, using (14.1), we arrive at the formula

(14.2)
∑
n�x

f(n) logn =
∑
a�x

Λf (a)
∑
b�x/a

f(b).

The slow growth of the logarithm implies that the left-hand side is
≈ (log x)

∑
n�x f(n). Hence, (14.2) allows us to write S(x) =

∑
n�x f(n) as

a weighted average of S(y) with y � x/2, where the weight is controlled by
the values f(pk) with pk � x. This establishes the claimed recurrence for
the partial sums of any multiplicative function. We give two applications of
this fundamental principle of multiplicative functions in Theorems 14.2 and
14.3.

Before we continue, we need to make some technical preparation. We
face the problem that Λf can grow very rapidly even if f is divisor-bounded
(i.e., |f | � τk for some k � 0). For instance, when f = μ2κω with |κ| > 1,
Example 14.1(b) shows that Λf (p

m) grows exponentially fast in m. On
the other hand, we saw in Example 14.1(a) that Λf is very tame when
f = τκ. Motivated by these observations, we introduce the function τf ,
defined as the arithmetic function whose formal Dirichlet series is given by∏

p(1− 1/ps)−f(p). In other words, τf is the multiplicative function with

(14.3) τf (p
m) =

(
f(p) +m− 1

m

)
for all prime powers pm.

Working with τf alleviates various technicalities. For instance, we im-
mediately see that its Dirichlet inverse equals τ−f , and that Λτf is given by
the simple formula Λτf (p

m) = f(p) log p for all prime powers pm. Moreover,
we can easily relate f and τf with a simple convolution trick: if we write

f = τf ∗ rf ,
then the function rf is supported on square-full integers. Since these num-
bers are very sparse (see Exercise 1.6), rf often satisfies the inequality

(14.4)
∑
n�x

|rf (n)| 
 x1−δ (x � 1)
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for some fixed δ > 0. If, for instance, |f | � τk as in Chapter 13, then
|rf | = |f ∗ τ−f | � τ2k, whence (14.4) holds for any δ < 1/2 (see Exercises
2.9(f) and 1.6(b)). Exercise 14.6 establishes (14.4) in many more cases.

Assuming (14.4), we use Dirichlet’s hyperbola method to find that

(14.5)
∑
n�x

f(n) =
∑
a�y

rf (a)
∑
b�x/a

τf (b) +R

for all x � y � 1, where

R =
∑
b�x/y

τf (b)
∑

y<a�x/b

rf (a) 
 x1−δ
∑
b�x/y

|τf (b)|
b1−δ

� x

yδ

∑
b�x/y

τ|f |(b)

b
.

If we extend the summation to all integers b all of whose prime factors are
� x, we arrive at the bound

R 
 x

yδ

∏
p�x

(
1 +

τ|f |(p)

p
+

τ|f |(p
2)

p2
+ · · ·

)

=
x

yδ

∏
p�x

(
1− 1

p

)−|f(p)|
,(14.6)

where we used Taylor’s theorem to obtain the last equality. If we also know
that |f | � τk, then R 
k xy−δ(log x)k (and we can take any δ < 1/2, as we
discussed above). Exercise 14.4 establishes similar results when f satisfies
weaker versions of the growth inequality |f | � τk.

Our first application of (14.2) is a general purpose upper bound for the
partial sums of non-negative multiplicative functions. What we will demon-
strate is that, under some mild conditions, the mean value x−1

∑
n�x f(n)

is controlled by the logarithmic mean value (log x)−1
∑

n�x f(n)/n. This is
a rather special property of multiplicative functions (cf. Exercise 1.8(b)).

Notice that Theorem 14.2 below is sharp in the generality in which it is
stated, since taking f = τk makes both sides of size �k x(log x)k−1. Notice
also that Theorem 14.2 can be used to prove upper bounds when sieving the
integers n � x with a set of primes P (see Exercise 14.4).

Theorem 14.2. If f is a multiplicative function such that 0 � f � τk, then∑
n�x

f(n) 
k x · exp
{∑

p�x

f(p)− 1

p

}
.

Proof. We first prove the theorem in the special case when τf = f . In
particular, we have Λf (p

m) = f(p) log p, so that Λf � kΛ. Together with
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146 14. Evolution of sums of multiplicative functions

(14.2) and Chebyshev’s estimate, this implies that∑
n�x

f(n) logn � k
∑
a�x

f(a)
∑
b�x/a

Λ(b) 
 kx
∑
a�x

f(a)

a
.

We could now use partial summation to remove logn from the leftmost sum.
More simply, note that

(log x)
∑
n�x

f(n) =
∑
n�x

f(n) logn+
∑
n�x

f(n) log(x/n)

�
∑
n�x

f(n) logn+
∑
n�x

f(n) · x
n
,

whence ∑
n�x

f(n) 
k
x

log x

∑
n�x

f(n)

n
.

To complete the proof, we use the idea leading to (14.6): we have that∑
n�x

f(n)

n
�

∑
p|n ⇒ p�x

f(n)

n
=

∏
p�x

( ∞∑
m=0

f(pm)

pm

)
=

∏
p�x

(
1− 1

p

)−f(p)

.

Since (1 − t)−1 � et+2t2 for t ∈ [0, 1/2] by Taylor’s theorem applied to the
function log(1− t), and f(p) � k for all p by assumption, we conclude that

(14.7)
∑
n�x

f(n)

n
� e2ck exp

{∑
p�x

f(p)

p

}
,

where c =
∑

p 1/p
2. Mertens’ second estimate (Theorem 3.4(b)) then com-

pletes the proof when f = τf .

Finally, we consider the general case. As we discussed above, (14.4)
holds for any δ < 1/2 when |f | � τk. Moreover, the remainder term R in
(14.5) satisfies the bound R 
k xy−δ(log x)k. Taking y =

√
x implies that∑

n�x

f(n) =
∑
a�√

x

rf (a)
∑
b�x/a

τf (b) +Ok(x/ log x)


k x
∑
a�√

x

|rf (a)|
a

exp

{ ∑
p�x/a

f(p)− 1

p

}
+

x

log x
.

The term x/ log x is
 x exp{
∑

p�x(f(p)−1)/p} because f � 0 here. For the

sum over a, note that Merten’s second estimate implies that
∑

x/a<p�x 1/p =

O(1) when a � √
x. Moreover,

∑∞
a=1 |rf (a)|/a converges by (14.4) and

partial summation. The claimed estimate on
∑

n�x f(n) thus follows. �

Our second application of (14.2) is a result due to Wirsing [186,187] that
should be compared with Theorem 13.2. The idea underlying its proof is
that if f(p) ≈ κ on average, then (14.2) implies that

∑
n�x f(n) satisfies an
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14. Evolution of sums of multiplicative functions 147

approximate differential equation. For technical reasons, it is much easier
to work with logarithmic averages.

Theorem 14.3. Fix k � 0, c ∈ [0, 1) and κ ∈ C, and consider a multiplica-
tive function f such that |f | � τk,

(14.8)
∑
p�x

f(p) log p

p
= κ log x+O(1) (x � 2)

and

(14.9)
∑
p�x

|f(p)| −Re(f(p))

p
� c log log x+O(1) (x � 2).

We then have∑
n�x

f(n)

n
=

S(f)

Γ(κ+ 1)
· (log x)κ +O((log x)Re(κ)+c−1) (x � 2),

where S(f) =
∏

p(1 − 1/p)κ(1 + f(p)/p + f(p2)/p2 + · · · ). The implied
constant depends at most on k, the distance of c from 1, and the implied
constants in (14.8) and (14.9).

Proof. As in Theorem 14.2, it suffices to consider the case when f = τf .

Let S(x) :=
∑

n�x f(n)/n and note that∑
n�ew

f(n) logn

n
=

∑
m�ew

f(m)

m

∑
a�ew/m

Λf (a)

a

=
∑
m�ew

f(m)

m

(
κ log(ew/m) +O(1)

)
(14.10)

for all w � 1. In addition,∑
m�ew

f(m)

m
log(ew/m) =

∑
m�ew

f(m)

m

∫ ew

m

dy

y
=

∫ ew

1

S(y)

y
dy

by interchanging the order of summation and integration. Lastly, note that

(14.11)

∣∣∣∣ ∑
m�ew

f(m)

m

∣∣∣∣ �
∑
m�ew

|f(m)|
m


 wRe(κ)+c (w � 1)

by (14.7), since
∑

p�x |f(p)|/p � (Re(κ) + c) log log x + O(1) by (14.8) and

(14.9). Consequently,

(14.12) S(ew) = κ

∫ ew

1

S(y)

y
dy +O(wRe(κ)+c) (w � 1).
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On the other hand, partial summation implies that
∑

n�ew f(n)(logn)/n =

wS(ew)−
∫ ew

1 (S(y)/y)dy. Thus

wS(ew) = (κ+ 1)

∫ ew

1

S(y)

y
dy +O(wRe(κ)+c) (w � 1).

We bound the part of the integral over y ∈ [1, e] trivially by 
 1. In
addition, we let y = eu and

S(eu) = uκg(u).

Hence, we arrive at the formula

wκ+1g(w) = (κ+ 1)

∫ w

1
uκg(u)du+O(wRe(κ)+c) (w � 1).

Notice that if we had an exact equality wκ+1g(w) = (κ + 1)
∫ w
1 uκg(u)du

and g were a differentiable function, then we would immediately infer that
g′(u) = 0, that is to say, g is a constant function. We will give an asymptotic
version of this argument.

Let

(14.13) E(w) = g(w)− κ+ 1

wκ+1

∫ w

1
uκg(u)du,

so that

(14.14) E(w) = O(wc−1) (w � 1).

We multiply E(w) by 1/w and integrate over w ∈ [1, z] to find that∫ z

1

E(w)

w
dw =

∫ z

1

g(w)

w
dw −

∫ z

1
uκg(u)

∫ z

u

κ+ 1

wκ+2
dwdu

=
1

zκ+1

∫ z

1
uκg(u)du.

Together with (14.13), this implies that

(14.15) g(z) = E(z) + (κ+ 1)

∫ z

1
E(w)

dw

w
.

By (14.14) and our assumption that c < 1, the integral on the right-hand
side of (14.15) converges and its tails are 
 zc−1. Hence

(14.16) g(z) = λ+O(zc−1) with λ := (κ+ 1)

∫ ∞

1
E(w)

dw

w
.

Taking z = log x completes the proof of the theorem, as long as we can show
that λ = S(f)/Γ(κ+ 1). To do this, we compute S(f) in two ways.

Let F be the Dirichlet series attached to f and note that

S(f) = lim
σ→1+

F (σ)ζ(σ)−κ.
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Since ζ(σ) ∼ 1/(σ − 1) when σ → 1+, we can rewrite the above relation as

(14.17) S(f) = lim
σ→1+

F (σ)(σ − 1)κ.

In addition, partial summation and (14.16) imply that

F (σ) = (σ − 1)

∫ ∞

0
S(eu)e−(σ−1)udu

= (σ − 1)

∫ ∞

0
(λuκ +O(uRe(κ)+c−1 + 1))e−(σ−1)udu

=
(
λΓ(κ+ 1) +O((σ − 1)1−c)

)
(σ − 1)−κ.

Since c < 1, we conclude that limσ→1+ F (σ)(σ−1)κ = λΓ(κ+1). Comparing
this relation to (14.17) yields our claim that λ = S(f)/Γ(κ+ 1). �

Delay differential equations

Wirsing’s theorem capitalizes on the idea that the evolution of the function
S(x) =

∑
n�x f(n) is controlled by a differential equation, a consequence of

(14.2). In fact, an important aspect of (14.2) is that, since Λf (1) = 0, the
right-hand side only involves values of S(t) with t � x/2. There is thus a
certain delay on the right-hand side of (14.2). This feature is amplified if
we consider functions f that are supported on integers free of prime factors
� y, since then the right-hand side of (14.2) only involves values of S(t)
with t � x/y. The simplest such example is the indicator function of y-
rough integers, namely integers all of whose prime factors are > y. We
denote their summatory function by

Φ(x, y) := #{n � x : P−(n) > y },

where we recall that P−(n) is the smallest prime factor of n with the con-
vention that P−(1) = ∞.

The function Φ(x, y) is closely related to the sieve of Eratosthenes-
Legendre. In particular, when y =

√
x, we see that Φ(x,

√
x) ∼ x/ log x

by the Prime Number Theorem. On the other extreme, Theorem 2.1 with
m =

∏
p�y p implies that Φ(x, y) ∼ e−γx/ log y when y tends to infinity at

a rate such that y � log x, since then ω(m) � π(y) 
 log x/ log log x. We
want to fill in the gap and understand how Φ(x, y) evolves when y goes from√
x to log x.

Using (14.2) with f(n) = 1P−(n)>y, for which Λf (p
k) = 1p>y log p, we

find that

(14.18)
∑

n�x, P−(n)>y

logn =
∑∑
pk�x, p>y

Φ(x/pk, y) log p.
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150 14. Evolution of sums of multiplicative functions

The left-hand side should be roughly Φ(x, y) log x, while prime powers pk

with k � 2 should not contribute significantly to the right-hand side. We
should thus have

(log x)Φ(x, y) ≈
∑

y<p�x

Φ(x/p, y) log p.

Note that Φ(x/p, y) = 1 when p > x/y, since the only integer � x/p < y
free of prime factors � y is the number 1. Consequently,

(14.19) (log x)Φ(x, y) ≈ x+
∑

y<p�x/y

Φ(x/p, y) log p.

If we pretend for a moment that x → Φ(x, y) is a continuously differen-
tiable function, the Prime Number Theorem suggests that the sum over p is

≈
∫ x/y
y Φ(x/w, y)dw. Letting x/w = yt and u = log x/ log y, we find that

(14.20) (log x)Φ(x, y) ≈ x+ x

∫ u−1

1

Φ(yt, y)

yt/ log y
dt.

This relation suggests that there is a function B such that

(14.21) Φ(x, y) ∼ xB(u)

log y
(x = yu, u � 1, y →∞).

For consistency with the estimate Φ(x, y) ∼ x/ log x when
√
x � y �

x/ log x, and with the recursive relation (14.20), we must have that

(14.22) B(u) =
1

u
(1 � u � 2), uB(u) = 1 +

∫ u−1

1
B(v)dv (u � 2).

The above relations together define a unique continuous function B : R�1 →
R called Buchstab’s function. It is usually denoted by ω, but we use the
letter B here to avoid confusion with the arithmetic function ω(n).

For consistency with Theorem 2.1 and Mertens’ third estimate, we should
have that limu→∞B(u) = e−γ . Exercises 14.7 and 14.11 give two ways of
proving this guess rigorously. For now, we note that 1/u � B(u) � 1 for
u � 1, as can be seen by (14.22) and induction on �u�. Moreover, B is differ-
entiable in (1, 2) ∪ (2,+∞) and its derivative satisfies the delay differential
equation

uB′(u) = B(u− 1)−B(u) for u > 2.

As we will see again later on, the solutions to delay differential equations
rule the asymptotic behavior of various sieve-theoretic functions.

We now prove that (14.21) is indeed true.

Theorem 14.4. Fix u > 1. If x = yu, then

Φ(x, y) =
xB(u)

log y
+Ou

( x

(log x)2

)
.

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



Delay differential equations 151

Proof. We argue by induction on �u�. When 1 < u � 2, the theorem follows
by the Prime Number Theorem. Assume now its validity when u � N for
some N ∈ Z�2, and consider u ∈ (N,N + 1].

We begin by simplifying (14.18). Note that∑
k�2

∑
pk�x/y, p>y

Φ(x/pk, y) log p �
∑
p�y

∑
k�2

x log p

pk
=

∑
p�y

x log p

p(p− 1)

 x

y
,

where the last inequality follows by Chebyshev’s estimate (Theorem 2.4) and
partial summation. In addition, Theorem 14.2 with f(n) = 1P−(n)>y implies
that Φ(x, y) 
 x/ log y for x � y � 2. Together with partial summation,
this yields the estimate

∑
n�x, P−(n)>y log(x/n) 
 x/ log y. We combine this

inequality with relation (14.18) to deduce that

(log x) =
∑

n�x, P−(n)>y

logn+O(x/ log y)

=
∑

y<p�x

Φ(x/p, y) log p+O(x/ log y).

Since Φ(x/p, y) = 1 for p > x/y, we conclude that

(log x)Φ(x, y) =
∑

y<p�x/y

Φ(x/p, y) log p+ x+O(x/ log y).

Finally, note that x/p � yu−1 when p > y, so that the induction hypothesis
can be applied to estimate Φ(x/p, y). Consequently,

(log x)Φ(x, y) =
x

log y

∑
y<p�x/y

B
( log(x/p)

log y

) log p
p

+ x+Ou

( x

log y

)
.

Since B is continuous and t → θ(yt) =
∑

p�yt log p is a step function with

jumps of length log p whenever t = log p/ log y, we have

(14.23)
∑

y<p�x/y

B
( log(x/p)

log y

) log p
p

=

∫ u−1

1
B(u− t)

dθ(yt)

yt
.

Next, we write θ(yt) = yt(1 + δ(yt)), and integrate by parts to find that1∫ u−1

1
B(u− t)

dθ(yt)

yt
= (log y)

∫ u−1

1
B(u− t)dt+B(u− t)δ(yt)

∣∣∣u−1

t=1

+

∫ u−1

1
(B′(u− t) +B(u− t) log y)δ(yt)dt.(14.24)

1Strictly speaking, we have to treat separately the integrals over [1, u′] and [u′, u− 1], where
u′ = min{2, u−1}, because of the discontinuity of B′ at 2. Formula (14.24) remains valid though.
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Since δ(yt) 
 1/ log(yt) by the Prime Number Theorem, we conclude that∑
y<p�x/y

B
( log(x/p)

log y

) log p
p

= (log y)

∫ u−1

1
B(u− t)dt+Ou(1).

Plugging this formula into (14.23) and using (14.22) proves that Φ(x, y) =
xB(u)/ log y+Ou(x/ log

2 x) for u ∈ (N,N+1]. This completes the inductive
step, and hence the proof of the theorem. �

The “dual” to y-rough numbers are y-smooth numbers,2 which are inte-
gers all of whose prime factors are � y. These numbers also play a central
role in number theory, and we will enounter them again when we develop
sieve methods in Part 4. Here, we use ideas from the theory of multiplicative
functions to study their counting function

Ψ(x, y) := #{n � x : P+(n) � y },

where we recall that P+(n) denotes the largest prime factor of n with the
convention that P+(1) = 1.

Arguing heuristically and writing x = yu as before, we find that

(log x)Ψ(x, y) ≈
∑

n�x, P+(n)�y

logn ≈
∑
p�y

Ψ(x/p, y) log p(14.25)

≈
∫ y

1
Ψ(x/t, y)dt

= (log y)

∫ u

u−1

Ψ(yv, y)

yv
dv.(14.26)

This relation leads us to conjecture that there is a function ρ such that

(14.27) Ψ(x, y) ∼ xρ(u) (x = yu, u � 0, y → ∞).

For consistency with the estimate Ψ(x, y) = �x� = x + O(1) when y > x,
and with (14.26) when u � 1, we must have that

(14.28) ρ(u) = 1 (0 � u � 1), uρ(u) =

∫ u

u−1
ρ(v)dv (u � 1).

Together, these relations define a unique differentiable function ρ : R�0 → R
called the Dickman-de Bruijn function. Note that differentiating the second
formula in (14.28) yields the delay differential equation

(14.29) uρ′(u) = −ρ(u− 1).

2The reason for this terminology comes from looking at the sequence of divisors of an integer.
If n is y-smooth, then every interval [z, zy], z < x/z, contains a divisor of n. On the other hand,
if n is y-rough, then its divisors can have a much more singular distribution.
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Unlike Buchstab’s function that is of order of magnitude 1, the Dickman-
de Bruijn function decays extremely rapidly. For instance, Exercise 14.10(c)

states that ρ(u) = eO(u)(u log u)−u.

We conclude this chapter with a proof of our guess (14.27).

Theorem 14.5. Fix u > 0. For x = yu, we have

Ψ(x, y) = xρ(u) +Ou(x/ log x).

Proof. Unlike (14.18), where x/pk � yu−1 in its range of summation, in
(14.25) we only have the bound x/pk � x/2. Hence, we cannot use this rela-
tion to induct on �u�. We could induct on �log x/ log 2� (see Exercise 14.8,
where such an induction is performed in another problem), but we present
instead a proof that uses a different recursive formula due to Buchstab.

Note that if z > y and n is z-smooth but not y-smooth, then P+(n) ∈
(y, z]. Hence, we may uniquely write n = pm, where p ∈ (y, z] and P+(m) �
p (we simply take p = P+(n)). This leads us to Buchstab’s identity

(14.30) Ψ(x, z)−Ψ(x, y) =
∑

y<p�z

Ψ(x/p, p).

When y � √
x and z = x, we have x/p � p for all p > y, so that (14.30)

becomes

Ψ(x, y) = �x� −
∑

y<p�x

�x/p�

= x− x
∑

y<p�x

1

p
+O(π(x))

= x(1− log u) +O(x/ log x)

by Mertens’ and Chebyshev’s estimates (see Theorems 3.4(b) and 2.4, re-
spectively). This establishes the theorem for u ∈ [1, 2].

For the general case, we apply (14.30) with z =
√
x to find that

Ψ(x, y) = xρ(2)−
∑

y<p�√
x

Ψ(x/p, p) +O(x/ log x).

Since log(x/p)/ log y < u − 1 for p > y, we may now induct on �u� to
establish the theorem, arguing similarly to the proof of Theorem 14.4. We
leave the details as an exercise. �

Exercises

Exercise 14.1. Let f be as in Theorem 14.2. Show that∑
n>x

f(n)

n2

k,λ

1

x
· exp

{∑
p�x

f(p)− 1

p

}
(x � 1).
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[Hint: If M denotes the right-hand side of the above inequality, show that∑
xej<n�xej+1 f(n)/n2 
 M · e−j · (1 + j/ log x)max{k−1,0} uniformly for j � 0.]

Exercise 14.2. For fixed r ∈ R and k ∈ N, show that∑
n�x

τk(n)(ϕ(n)/n)
r �r,k x(log x)k−1 (x � 2).

[Hint: To get the lower bound, use Theorem 7.4 and Hölder’s inequality.]

Exercise 14.3. Let g be such that μ2/ϕ = g ∗ (1/ id), where id(n) = n.

(a) Calculate g on all prime powers. Then use Exercise 14.1 to show that∑
n>x

|g(n)| �
∑

ab2>x

μ2(a)μ2(b)

aϕ(a)bϕ(b)

 1√

x
(x � 1).

(b) Prove that there is some constant c such that∑
n�x

μ2(n)

ϕ(n)
= log x+ c+O

(
(log x)/

√
x
)

(x � 2).

Exercise 14.4. Uniformly for m ∈ N and x � 1, prove that

#{n � x : (n,m) = 1 } 
 x ·
∏

p|m, p�x

(1− 1/p).

Exercise 14.5. Let f be a multiplicative function with 0 � f � τk.

(a) If g is such that f ∗ g = τk, then prove that μ2(n)g(n) � 0 and∑
n�x

μ2(n)f(n)

n

∑
n�x

μ2(n)g(n)

n
�

∑
n�x

μ2(n)τk(n)

n
(x � 1).

(b) Prove that ∑
n�x

f(n)

n
�k exp

{∑
p�x

f(p)

p

}
(x � 1).

(c) If
∑

p�y f(p) � cy/ log y for y ∈ [
√
x, x], then prove that∑

n�x

f(n) �k,c x · exp
{∑

p�x

f(p)− 1

p

}
.

[Hint: Note that
∑

n�x f(n) �
∑

m�x1/3 f(m)
∑

x1/3<p�x/m f(p).]

(d) Let b(n) be as in Exercise 13.4. Give a new proof of the estimate∑
n�x

b(n) � x/
√

log x (x � 2).

Exercise 14.6.∗ Let f be a multiplicative function, and write f = τf ∗ rf .
(a) For each ε > 0, use Hölder’s inequality to prove that∑

n�x

|rf (n)| 
ε x
1−ε/(2+2ε)

( ∑
n�x

|rf (n)|1+ε/n
)1/(1+ε)

.

[Hint: Recall that rf is supported on square-full integers.]
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(b) Assume there are constants k � 0 and λ ∈ [1, 2) such that |f(pν)| � kλν−1 for
all prime powers pν . Prove that |rf (n)| � no(1)λΩ(n). Deduce that (14.4) holds
for some δ > 0.

(c) Assume there is θ > 1 such that
∑

p�x

∑
ν�1 |f(pν)|θ/pν 
 log log x for all

x � 3.
(i) If ε < θ − 1, prove that

∑
ν�1 τ|f |(p

ν)1+ε/pν 
ε,θ |f(p)|1+ε/p. [Hint:

Show that f(p) 
 (p log log(p+ 1))1/θ and use Exercise 1.2(e).]
(ii) Show that |rf (n)|1+ε � τ (n)ε

∑
ab=n |f(a)|1+ετ|f |(b)

1+ε, and conclude
that (14.4) holds for any δ < (1− θ)/(4− 2θ).

(d) Let f be as in part (c). Assume further that (14.8) and (14.9) hold. Prove that
f satisfies the conclusions of Theorems 14.2 and 14.3.

(e) Let f be as in part (c). Assume further that (13.1) holds with Q = 2. Prove
that f satisfies the conclusions of Theorem 13.2. [Hint: Use Hölder’s inequality
to bound

∑
x<n�x+x/T |f(n)|.]

Exercise 14.7.∗ Let κ ∈ C, c ∈ [0, 1), k, C � 0 and Q � 3. Consider a multiplica-
tive function f such that τf = f and |f | � τk. Assume further that∣∣∣∑

p�x

f(p) log p

p
− κ log x

∣∣∣ � logQ and
∑
p�x

|f(p)| − Re(f(p))

p
� c log log x+ C.

for all x � Q, and let S(f) be as in Theorem 14.3. All implied constants below
may depend on κ, k, c and C, but they must be uniform in x and Q.

(a) For x � Q, prove the following estimates:

(i)
∑

p>x(f(p)− κ)/p = O(logQ/ log x).

(ii)
∑

m�x |f(m)|/m 
 |S(f)|(log x)Re(κ)+c for x � Q.

(iii)
∑

n�x f(n)/n = (S(f)/Γ(κ+1))·(logx)κ ·(1+O((logQ)(log x)c−1). [Hint:

Improve (14.14) to E(w) 
 |S(f)|(logQ)wc−1 for w � logQ.]

(b) Prove that limu→∞ B(u) = e−γ .

Exercise 14.8.∗ Let f : N → C be a multiplicative function such that |f | � τk for
some k ∈ N. Assume further that∣∣∑

p�x

f(p) log p
∣∣ � Mx/(log x)A (x � 2)

for some M,A > 0. Show that there is M ′ = M ′(k,A,M) such that

(14.31)
∣∣ ∑
n�x

f(n)
∣∣ � M ′x/(log x)A−k+1 (x � 2)

as follows. Firstly, reduce to the case when f = τf . Then, prove that∑
n�x

f(n) logn =
∑

ab�x, a�xε

Λf (a)f(b) +Oε,k,A,M (x/(log x)A−k)

for all x � 2 and each fixed ε ∈ (0, 1). Finally, induct on the dyadic interval
(2j−1, 2j ] containing x to prove (14.31).

Exercise 14.9.∗ Let f : N → C be a multiplicative function satisfying (13.1) for
some fixed A > 1 and κ ∈ C. Assume further that (13.2) holds. Estimate the
partial sums of f . [Hint: Write f = τκ ∗ g and use Exercise 14.8 on g.]
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Exercise 14.10. We extend the Dickman-de Bruijn function to all u by letting
ρ(u) = 0 for u < 0. Note then that uρ(u) =

∫ u

u−1
ρ(v)dv for all u.

(a) Show that 0 < Γ(σ) < 1 when 1 < σ < 2, as well as that Γ(σ) is increasing for
σ � 2. [Hint: Use Theorem 1.14 to show that log Γ is convex on R>0.]

(b) For u > 0, show that 0 < ρ(u) < 1/Γ(u + 1). [Hint: Argue by contradiction
and consider the smallest u that does not satisfy the inequalities 0 < ρ(u) <
1/Γ(u+ 1).]

(c) Prove that ρ(u) = e−u log(u log u)+O(u) for u � 1. [Hint: Note that if ce−ta(t) �
ρ(t) � Ce−tb(t) for all t < u, where a, b : R�1 → R�1 are increasing, then

c
∫ u

u−1
e−ta(u)dt � uρ(u) � C

∫ ∞
u−1

e−tb(u−1)dt.]

(d) Consider the Laplace transform of the Dickman-de Bruijn function

ρ̂(s) =

∫ ∞

0

ρ(t)e−stdt for Re(s) > 0.

Show that ρ̂ ′(s) = ρ̂(s)(e−s−1)/s, and conclude that there is a constant c ∈ C
such that ρ̂(s) = ec−f(s), where f(s) =

∫ s

0
z−1(1− e−z)dz.

(e) Show that sρ̂(s) → 1 when s → ∞ over positive real numbers. Use Exercise
5.4(c) to conclude that c = γ.

Exercise 14.11.

(a) For u > 2, show that uB′(u) = −
∫ u

u−1
B′(v)dv and |B′(u)| � ρ(u).

(b) Show that limu→∞ B(u) exists and equals 1 +
∫ ∞
1

B′(u)du.

(c) If B̂(s) =
∫∞
1

B(v)e−svdv, then show that B̂′(s) = −e−ss−1(B̂(s) + 1). Con-

clude that there is a constant d ∈ C such that B̂(s) + 1 = s−1ed+f(s) with

f(s) =
∫ s

0
z−1(1− e−z)dz. In particular, lims→0+ sB̂(s) = ed.

(d) Let s → ∞ in the formula B̂(s) + 1 = s−1ed+f(s) and use Exercise 5.4(c) to

conclude that d = −γ. In particular, ρ̂(s)(B̂(s) + 1) = 1/s.

(e) Let L(s) =
∫∞
1

B′(v)e−svdv. Show that B̂(s) = (e−s + L(s))/s. Deduce that

limu→∞ B(u) = e−γ .

(f) Show that the difference E(u) := B(u) − eγ changes signs infinitely often as
u → ∞. [Hint: Show that E(u) = −

∫ ∞
u

B′(v)dv = O(e−u). On the other

hand, substituting B = E+e−γ in the formula uB′(u) = −
∫ u

u−1
B′(v)dv, show

that uE(u) = −
∫ ∞
u−1

E(v)dv for u > 2.]
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Chapter 15

The distribution of
multiplicative functions

To obtain a better understanding of multiplicative functions it is not
enough to know their asymptotic behavior. We also must study the distri-
bution of their values. A probabilistic framework thus arises.

Given a set A ⊆ {n � x}, we write

Pn�x(A) = |A| /�x�

for the probability that a randomly chosen integer n � x lies in A. The
underlying σ-algebra is naturally the power set of N�x. Given a random
variable Z : N�x → C, we write

En�x[Z] =
1

�x�
∑
n�x

Z(n).

Within this framework, the value distribution of a real-valued function f is
determined by the distribution function R � u → Pn�x(f(n) � u).

As in the previous chapters, we shall focus on multiplicative functions
f with f(p) ∼ κ on average. We then expect that f(n) is roughly κω(n) on
average, so that the value distribution of f is reduced to that of ω.

The Kubilius model

To study ω, we note that ω(n) =
∑

p|n 1 =
∑

p 1p|n. We then define the key

random variables Bd(n) := 1d|n for d ∈ N, so that

(15.1) ω =
∑
p�x

Bp

157
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158 15. The distribution of multiplicative functions

on the probability space N�x. The functions Bd are Bernoulli random vari-
ables. Since there are exactly �x/d� multiples of d up to x, we have

Pn�x(Bd(n) = 1) =
�x/d�
�x� =

x/d+O(1)

x+O(1)
= 1/d+O(1/x).

When d is fixed and x →∞, the above expression tends to 1/d. In addition,
if p1, . . . , pm are distinct primes, then

(15.2)

Pn�x(Bp1(n) = · · · = Bpm(n) = 1) = Pn�x(Bp1···pm(n) = 1)

=
1

p1 · · · pm
+O(1/x).

Therefore, if we let x →∞, we find that

Pn�x(Bp1(n) = · · · = Bpm(n) = 1) ∼
m∏
j=1

Pn�x(Bpj (n) = 1).

We are thus led to the conclusion that the random variables Bp for p prime
are approximately independent from each other.

The above analysis and relation (15.1) imply that ω is the sum of quasi-
independent random variables. It is thus tempting to use tools from prob-
ability theory to study its value distribution. There is an obvious problem
with this approach: most of the standard probabilistic tools apply to truly
independent random variables.

To circumvent this problem, we introduce new Bernoulli random vari-
ables Kp (living in some ambient probability space) that are completely
independent from each other, and for which we have the exact equality
P(Kp = 1) = 1/p. The random variables Kp are idealized models of Bp.
Collectively, they form the Kubilius model of the integers.

Let us consider now the sum S =
∑

p�xKp, whose distribution models
the function ω on the space N�x. Since S is the sum of independent ran-
dom variables, we may apply to it well-established probabilistic tools. We
can then hope to transfer the results on S to the deterministic setting of
ω. However, it should be noted that the Kubilius model has its limits, as
Remark 2.2 reveals. We will return to this important point in Chapter 18
and discuss it in more detail.

We conclude our introductory discussion of the Kubilius model showing
that it is possible to construct the random variables Kp in a very natural
and concrete way. We take as our probability space the set of y-smooth
integers S(y), which we employ with the probability measure

PS(y)(A) :=
∏
p�y

(
1− 1

p

) ∑
n∈A

1

n
.
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A Central Limit Theorem for ω 159

Notice that the random variables (Bp)p�y we saw before become completely
independent of one another in this new probability space: if p1 < · · · < pk �
y and a1, . . . , ak ∈ Z�1, then

ES(y)[B
a1
p1 · · ·B

ak
pk
] =

∏
p�y

(
1− 1

p

) ∑
n∈S(y)

p1,...,pk|n

1

n
=

1

p1 · · · pk
.

A Central Limit Theorem for ω

We now use the Kubilius model to study the value distribution of ω. Simi-
larly to (15.1), we have that ω =

∑
p�y Bp on the space S(y), that is to say,

ω is a sum of independent random variables. Its mean value is

ES(y)[ω] =
∑
p�y

1

p
= log log x+O(1)

by Mertens’s second estimate (Theorem 3.4(b)). Similarly, its variance
equals

VS(y)[ω] =
∑
p�y

VS(y)[Bp] =
∑
p�y

(
1

p
− 1

p2

)
= log log x+O(1),

where we used the independence of the variables Bp. Since the Bp’s are uni-
formly bounded and the variance of ω tends to infinity, Lindeberg’s Central
Limit Theorem (see Theorem 27.2 in [7] or Theorem 2.1.5 in [168]) implies
that, for any fixed α � β, we have

(15.3) lim
y→∞

Pn∈S(y)
(
α � ω(n)− log log y√

log log y
� β

)
=

1√
2π

∫ β

α
e−t2/2dt.

The random variables Bp are approximately independent with respect to
the probability measure Pn�x too. Thus, we might expect a similar result
to hold for this measure. This was indeed proved by Erdős and Kac in 1940.

Theorem 15.1 (Erdős-Kac). For each fixed α � β, we have that

lim
x→∞

Pn�x

(
α � ω(n)− log log x√

log log x
� β

)
=

1√
2π

∫ β

α
e−t2/2dt.

We will use the so-called method of moments to prove Theorem 15.1.
The key result is Theorem 15.2, whose proof is given in Appendix C. We
write N (0, 1) for the standard normal distribution.

Theorem 15.2. Let (Xj)
∞
j=1 be a sequence of real-valued random variables.

(a) Assume that

(15.4) lim
j→∞

E[Xk
j ] = E[N (0, 1)k] for all k ∈ Z�1.

Then (Xj)
∞
j=1 converges in distribution to N (0, 1).
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(b) Conversely, assume that (Xj)
∞
j=1 converges in distribution to N (0, 1).

If, in addition, supj�1 E[X
2k
j ] < ∞ for all k ∈ N, then (15.4) holds.

We already know that (ω−log log y)/
√
log log y converges in distribution

to N (0, 1) with respect to the measure PS(y) when y → ∞. We now check
that the second hypothesis of Theorem 15.2(b) holds for it.

Lemma 15.3. Uniformly for y � 2 and k ∈ Z�1, we have

En∈S(y)

[∣∣∣ω(n)− log log y√
log log y

∣∣∣k] 
 k!.

Proof. Note that |t|k � k!e|t| � k!(et + e−t) for any t ∈ R. It thus suffices
to prove that

En∈S(y)[e
αω(n)/

√
log log y] 
 eα

√
log log y

for α = ±1. The independence of the Bernoulli random variables Bp implies
that

ES(y)[z
ω] =

∏
p�y

ES(y)[z
Bp ] =

∏
p�y

(
1 +

z − 1

p

)
� exp

{∑
p�y

z − 1

p

}
for all z > 0. We take z = eα/

√
log log y, for which we have

z − 1 = eα/
√
log log y − 1 = α/

√
log log y +O(1/ log log y).

Hence, Mertens’ second estimate (Theorem 3.4(b)) completes the proof. �

We are now ready to prove the Erdős-Kac theorem.

Proof of Theorem 15.1. We follow an idea due to Billingsley [7, Section
30]. Throughout, we let λx = log log x.

By Theorem 15.2(a), it suffices to prove that the moments En�x[(ω(n)−
λx)

k/λ
k/2
x ] converge to E[N (0, 1)k] when x → ∞. However, we already

know that En∈S(y)[(ω(n)− λy)
kλ

−k/2
y ] tends to E[N(0, 1)k] when y →∞ by

Theorem 15.2(b), which is applicable in view of relation (15.3) and Lemma
15.3. Consequently, it suffices to show that

(15.5) En�x

[(ω(n)− λx√
λx

)k
]
= En∈S(y)

[(ω(n)− λy√
λy

)k
]
+ ox→∞(1)

for each fixed k ∈ Z�1, where y = y(x) is an appropriate function of x going
to infinity.

An integer n � x has � log x/ log y prime factors > y (see Exercise
2.9(e)). So, if we let y = x1/ log log log x and ω(n; y) := #{ p|n : p � y }, then

ω(n) = ω(n; y) +O(log log log x) (n � x).
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Since we also have that |λy − λx| = ox→∞(
√
λx), relation (15.5) is reduced

to showing that

(15.6) En�x

[
(ω(n; y)− λx)

k
]
= En∈S(y)

[
(ω(n)− λx)

k
]
+ ox→∞(λk/2

x ).

Note that

En�x

[
(ω(n; y)− λx)

k
]
− En∈S(y)

[
(ω(n; y)− λx)

k
]

=
k∑

j=0

(
k

j

)
(−λx)

k−j
(
En�x[ω(n; y)

j]− En∈S(y)[ω(n)
j]
)
.

Hence, it suffices to show that, for each fixed j ∈ Z ∩ [0, k], we have

En�x[ω(n; y)
j]− En∈S(y)[ω(n)

j] = ox→∞(λj−k/2
x ).

We begin by noticing that ω(·; y)j=(
∑

p�y Bp)
j =

∑
p1,...,pj�y Bp1 · · ·Bpj .

Taking expectations implies that

En�x[ω(n; y)
j] =

∑
p1,...,pj�y

Pn�x(∩j
i=1{Bpi(n) = 1}).

We then apply a variant of (15.2) to conclude that

En�x[ω(n; y)
j] =

∑
p1,...,pj�y

�x/[p1, . . . , pj ]�
�x�

=
∑

p1,...,pj�y

1

[p1, . . . , pj ]
+O(π(y)j/x),

where [p1, . . . , pj ] denotes the least common multiple of the primes p1, . . . ,
pj . A similar calculation implies that

En∈S(y)[ω(n)
j] =

∑
p1,...,pj�y

1

[p1, . . . , pj ]
,

whence En�x[ω(n; y)
j] − En∈S(y)[ω(n)

j] 
 π(y)j/x = ox→∞(λ
j−k/2
x ) by the

choice of y. This completes the proof of Theorem 15.1. �

Dissecting sums of multiplicative functions

Now that we have a good understanding of the distribution of ω, we use it
to analyze the finer structure of

∑
n�x κ

ω(n). Our goal is to determine which
values of ω give the dominant contribution to this sum. More concretely, we
want to identify those sets I(x) ⊂ R�0 with the property

(15.7)
∑

n�x, ω(n)∈I(x)
κω(n) ∼

∑
n�x

κω(n) (x → ∞).
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162 15. The distribution of multiplicative functions

Of course, we could take I(x) = R�0, but this is not so insightful. We want
to find I(x) that is as small as possible, while still satisfying (15.7).

Since ω has mean value log log x and standard deviation
√
log log x over

the probability space N�x a natural guess is the set

I1(x) = [log log x− ξ(x)
√
log log x, log log x+ ξ(x)

√
log log x],

where ξ(x) is a function tending to infinity slowly. However, note that

κω(n) = (log x)log κ+o(1) on the set A1(x) := {n � x : ω(n) ∈ I1(x) },
whence

(15.8)
∑

n∈A1(x)

κω(n) = (log x)log κ+o(1) · |A1(x)| = x(log x)log κ+o(1)

as x →∞. If κ �= 1, we find that log κ < κ−1. Hence, Theorem 13.2 implies
that the contribution of integers n ∈ A1(x) to

∑
n�x κ

ω(n) is negligible.

From the above discussion, we conclude that the sum
∑

n�x κ
ω(n) with

κ �= 1 is dominated by integers n � x with “atypical” values of ω(n) with re-
spect to the measure Pn�x. As a matter of fact, for the purpose of identifying
I(x), it is more natural to switch to the weighted probability measure

(15.9) Pκ
n�x(A) :=

∑
n∈A κω(n)∑
n�x κ

ω(n)
.

We write Eκ
n�x[Z] for the expectation of the random variable Z : Nn�x → R

with respect to this measure. Finding a set satisfying (15.7) then amounts
to understanding the distribution of ω with respect to the measure Pκ

n�x.

It turns out that ω is approximately Gaussian with respect to Pκ
n�x as

well, but with expectation and variance ∼ κ log log x. We may then take

(15.10) Iκ(x) = [κ log log x− ξ(x)
√
log log x, κ log log x+ ξ(x)

√
log log x],

where ξ(x) →∞. The details of this argument are outlined in Exercise 15.2.

Exercises

Exercise 15.1. Deduce that Theorem 15.1 holds with Ω in place of ω too. [Hint:
Use Exercise 3.9.]

Exercise 15.2. Fix κ > 0, and let Pκ
n�x be defined by (15.9). Define also

Pκ
S(y)(A) =

∏
p�y(1 + κ/(p− 1))−1

∑
n∈A κω(n)/n.

(a) For d ∈ S(y), prove that Pκ
n∈S(y)(Bd(n) = 1) = κω(d)d−1

/∏
p|d(1 +

κ−1
p ).

(b) If ω(d) � k for some fixed k ∈ N and x � d2, then prove that

Pκ
n�x(Bd(n) = 1) = Pκ

n∈S(y)(Bd(n) = 1) +Ok,κ(1/(d log x)).

[Hint: Use Theorem 13.2 on the function fd(m) := κω(dm)−ω(d).]
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(c) For each fixed α � β, prove that

lim
x→∞

Pκ
n�x

(
α � ω(n)− κ log log x√

κ log log x
� β

)
=

1√
2π

∫ β

α

e−t2/2dt.

In particular, (15.7) holds for the set Iκ(x) defined by (15.10).

Exercise 15.3.∗ Let f : N → R�0 be multiplicative. Determine necessary condi-
tions under which ω satisfies an analogue of the Erdős-Kac theorem with respect

to the measure Pf
n�x(A) =

∑
n∈A f(n)/

∑
n�x f(n).

Exercise 15.4.∗ (a) (Landau [126]) For each fixed k ∈ N, prove that

Pn�x(ω(n) = k) ∼ 1

log x
· (log log x)

k−1

(k − 1)!
(x → ∞).

(b) (Hardy-Ramanujan [95]) Show there are constants A and B such that

Pn�x(ω(n) = k) � A

log x
· (log log x+B)k−1

(k − 1)!
,

uniformly for x � 2 and k ∈ N.
[Hint: When ω(n) = k+1, prove that there are at least k ways to write n = pam
with p � n1/(a+1) and ω(m) = k. Then, induct on k.]

Exercise 15.5.∗ Let q ∈ N and Pq denote the uniform counting measure on the set
of Dirichlet characters mod q (i.e., Pq(X ) := |X |/ϕ(q) for any set X of Dirichlet
characters mod q).

Let Z(x;χ) = π(x)−1/2
∑

p�x χ(p). If x, q → ∞ at a rate such that x = qo(1),
and χ is sampled with respect to the measure Pq, then prove that the random vari-

ables χ →
√
2 Re(Z(x;χ)) and χ →

√
2 Im(Z(x;χ)) both converge in distribution

to the standard normal distribution.1 [Hint: Model χ(p) by eiθp , where θ2, θ3, θ5,
. . . is a sequence of independent random variables that are uniformly distributed
on [0, 2π].]

1In fact,
√
2 ·(Re(Z(x;χ)), Im(Z(x;χ))) converges to a 2-dimensional Gaussian: when q → ∞

and x= qo(1), the quantity Pq(Re(Z(x;χ))� u/
√
2, Im(Z(x;χ))� v/

√
2) tends to P(N(0, 1)� u)

· P(N(0, 1) � v). Proving this result requires a 2-dimensional analogue of Theorem 15.2 and is an
excellent exercise on the method of moments.
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Chapter 16

Large deviations

Let X be a real-valued random variable with expectation μ = E[X]. In
many cases, most of the mass ofX is concentrated around μ. To measure this
concentration, we seek to estimate the rate of decay to 0 of the probabilities
P(X > μ + u) and P(X < μ− u), that is to say, how “heavy” are the right
and left tails of the distribution of X.

If X is exponential, i.e. it has density 1t�0 · e−t, then μ = 1, P(X >
1 + u) = e−u−1 and P(X < 1 − u) = 0 for u � 1. On the other hand, the
tails of N (0, 1) are of size ≈ exp(−u2/2), which is much smaller than e−u−1.
Hence, a Gaussian is more concentrated than an exponential distribution.

As another example, consider the distribution of ω with respect to the
measure Pκ

n�x defined in (15.9). Understanding wherein lies the mass of this
distribution is essentially equivalent to finding a set I(x) satisfying (15.7).

The study of tails of distributions is the subject matter of Cramér’s
theory of large deviations ([168, Section 1.3], [7, Chapter 9]). For simplicity,
let us assume thatX is normalized so that μ = 0. We focus on understanding
the frequency of occurrence of the event {X > u}. Since {X < −u} =
{−X > u}, this treats left tails as well upon replacing X by −X.

The main tool in the study of {X > u} is the Laplace transform of X,

LX(s) := E[esX ],

which is typically defined in some vertical strip c1 < Re(s) < c2. The
simplest way of using LX(s) to estimate P(X > u) is via Chernoff’s in-
equality (which is a simple consequence of Markov’s inequality): for any
σ ∈ I := (c1, c2) ∩ (0,+∞), we have

(16.1) P(X > u) = P(eσ(X−u) > 1) � E[eσ(X−u)] = e−σu · LX(σ).

164
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Dissecting sums of multiplicative functions: Encore 165

If the function e−σu ·LX(σ) is minimized at α = α(u) ∈ I, then its derivative
must vanish at σ = α, whence

(16.2) L′
X(α) = uLX(α).

We assume for simplicity that the equation L′
X(σ) = uLX(σ) has a unique

solution in I, so that α is determined by (16.2).

The above method can often yield lower bounds on P(X > u) as well:
in many cases it turns out that for the optimal choice of σ = α the integral
LX(σ) =

∫
eσXdP is dominated by values of X ≈ u, that is to say,

LX(α) ≈
∫
X≈u

eαXdP ≈ eαuP(X ≈ u).

Hence, we also have the rough lower bound P(X > u) � e−αuLX(α).

A more sophisticated approach is to use the inverse Laplace transform:
for c ∈ I, Perron’s inversion formula implies that

(16.3) P(X > u) = E

[
1

2πi

∫
(c)

es(X−u)

s
ds

]
=

1

2πi

∫
(c)

LX(s)e−suds

s
,

provided, of course, that we can justify an application of Fubini’s theorem.
The choice of c is crucial here, and we take c = α. This is because if we write
LX(s)e−su = ef(s), then f ′(α) = 0, so that the integrand has a stationary
point at s = α. Under some mild conditions, the integral in (16.3) is then
dominated by values of s ≈ α. We may thus obtain an asymptotic evaluation
for P(X > u) using Taylor’s theorem for the integrand, much like we did in
the proof of formula (1.20).

We present below three applications of this circle of ideas.

Dissecting sums of multiplicative functions: Encore

First, we use the method of large deviations to obtain information on the
multiplicative structure of a “typical” integer with respect to the probability
measure Pκ

n�x. Results of this kind fall under the subfield of number theory
called Anatomy of Integers. To state our theorem, we let p1(n) < p2(n) <
· · · < pω(n)(n) denote the sequence of the distinct prime factors of n in
increasing order.

Theorem 16.1. Fix κ, ε > 0 and a function ξ : R>0 → R>0 tending to
infinity. Let A(x) be the set of integers n � x with

j

κ+ ε
� log log pj(n) � j

κ− ε
(ξ(x) � j � ω(n))

and ω(n)/ log log x ∈ [κ− ε, κ+ ε]. Then Pκ
n�x(A(x)) = 1− ox→∞(1).
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Proof. All implied constants might depend on κ. Recall the notation

ω(n; y) = #{ p|n : p � y } =
∑
p�y

Bp(n).

Since ω(n; pj(n)) = j, the theorem will follow if we can show that, for each
fixed ε ∈ (0, κ) and each fixed function ψ : R>0 → R>0 with limx→∞ ψ(x) =
∞, the event

(16.4) (κ− ε) log log y � ω(n; y) � (κ+ ε) log log y (ψ(x) � y � x)

occurs with probability 1 − ox→∞(1) with respect to the measure Pκ
n�x.

Since Eκ
n�x[ω(n; y)] ∼ κ log log y, this amounts to showing a simultaneous

concentration-of-measure inequality for all of the random variables ω(·; y).
To accomplish the above task, we use Chernoff’s inequality (16.1) (also

called Rankin’s trick in this context): for all u � κ and all σ > 0, we have

(16.5) Pκ
n�x

(
ω(n; y) > u log log y

)
� (log y)−σu · Eκ

n�x[e
σω(n;y)].

In addition, we have

(16.6) Eκ
n�x[e

σω(n;y)] � 1

x(log x)κ−1

∑
n�x

κω(n)eσω(n;y) 
σ (log y)κ(e
σ−1),

where the first estimate follows from Theorem 13.2, and the second one
from Theorem 14.2 (applied to the function f(n) = κω(n)eσω(n;y), for which
f(p) = κ + κ(eσ − 1)1p�y) and from Mertens’ second estimate (Theorem
3.4(b)). We insert (16.6) into (16.5) and optimize the resulting upper bound
by taking σ = log(u/κ). This yields the inequality

Pκ
n�x

(
ω(n; y) > u log log y

)

 (log y)−κQ(u/κ)

uniformly for y ∈ [2, x] and κ � u � 100κ, where Q(t) := t log t− t+ 1.

A very similar argument also proves that

Pκ
n�x

(
ω(n; y) < u log log y

)

 (log y)−κQ(u/κ) (2 � y � x, 0 < u � κ).

We thus arrive at the concentration-of-measure inequality

(16.7) Pκ
n�x

(∣∣ω(n; y)− κ log log y
∣∣ > ε log log y

)

κ (log y)−δ(κ,ε),

where δ(κ, ε) = κmin{Q(1 + ε/κ), Q(1 − ε/κ)} > 0. This establishes the
theorem for a fixed value of y.

We pass to a result for all values of y using a simple trick: we fix the check

points yj = min{ψ(x)ej , x}, j � 0, and let J be such that yJ−1 < x = yJ .
Then, the union bound and relation (16.7) with ε/2 in place of ε imply that

Pκ
n�x

( J⋃
j=0

{∣∣ω(n; yj)− κ log log yj
∣∣ > ε

2
log log yj

})

κ

J∑
j=0

(log yj)
−δ(κ,ε/2)


κ,ε (logψ(x))
−δ(κ,ε/2).
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Now, let n � x be such that |ω(n; yj)−κ log log yj | � 0.5ε log log yj whenever
0 � j � J . We know that this holds with probability 1 − ox→∞(1). In
addition, if y ∈ [ψ(x), x], then there is j ∈ {1, . . . , J} such that yj−1 � y �
yj . Hence

ω(n; y) � ω(n; yj) � (κ− ε/2) log log yj−1 � (κ− ε) log log y,

provided that x is large enough (so that y � ψ(x) is also large enough).
Starting with the inequality ω(n; y) � ω(n; yj) we may also prove that
ω(n; y) � (κ+ ε) log log y. This completes the proof of the theorem. �

The saddle-point method: Encore

In Theorem 15.1, we let the value of ω vary in certain wide intervals. Now,
we study the proportion of integers n � x for which ω(n) takes a given
value k. This is a rare event, so we will study it using the method of large
deviations and the theory of the inverse Laplace transform.

Theorem 16.2. Fix C > 0. For x � 1 and k ∈ Z∩ [1, C log log x], we have

Pn�x(ω(n) = k) =
G(α)

Γ(α+ 1)
· (log log x)

k−1

(k − 1)! log x

(
1 +OC

(
k/(log log x)2

))
,

where α = (k − 1)/ log log x and

G(z) :=
∏
p

(
1 +

z

p− 1

)(
1− 1

p

)z

=
∏
p

(
1 +

z − 1

p

)(
1− 1

p

)z−1
.

Proof. We may assume that k � 2, with the case k = 1 following from the
Prime Number Theorem.

Since ω takes values in Z�0, it is easy to invert the Laplace transform
here: using Cauchy’s residue theorem, we readily find that

Pn�x(ω(n) = k) = En�x

[ 1

2πi

∮
|z|=r

zω(n)dz

zk+1

]
=

1

2πi

∮
|z|=r

En�x[z
ω(n)]

dz

zk+1

for any r > 0. We estimate the integrand using Theorem 13.2: we have

En�x[z
ω(n)] = H(z)z(logx)z−1 +Or((log x)

Re(z)−2)(16.8)

uniformly for |z| = r, where H(z) := G(z)/Γ(z + 1). As a consequence,

(16.9) Pn�x(ω(n) = k) =
1

2πi

∮
|z|=r

H(z)(log x)z−1 +Or((log x)
z−2)

zk
dz.

The function H(z) is entire and has bounded derivatives. Hence, it will not
affect the order of magnitude of the integral. If it were not present, nor did
we have an error term, we could use Cauchy’s theorem to find that

(16.10)
1

2πi

∮
|z|=r

(log x)z−1

zk
dz =

1

log x
· (log log x)

k−1

(k − 1)!
.
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The main idea is to choose r in a way that the mass of the integrals in (16.9)
and in (16.10) is concentrated around the point z = r, because then we can
replace H(z) by H(r) in (16.9) at the cost of a small error, and then apply
(16.10).

To carry out the above strategy, we use the saddle-point method: we
pick r = α = (k−1)/ log log x, so that, if we write (log x)z−1/zk−1 = e�(z)/z,
then �′(α) = 0. (We have left a z in the denominator because dz/z is the
natural invariant measure on the circle |z| = r.) For this choice of r, it can
be seen using quadratic approximation that most of the mass of the integral
in (16.10) is on the arc |z − α| 
 α/

√
k.

Now, we write Pn�x(ω(n) = k) = I1 + I2, where

I1 :=
1

2πi

∮
|z|=α

H(α)(log x)z−1

zk
dz =

H(α)

log x
· (log log x)

k−1

(k − 1)!

by Cauchy’s theorem, and

I2 :=
1

2πi

∮
|z|=r

(H(z)−H(α) +OC(1/ log x))(log x)
z−1

zk
dz

=
1

2πi

∮
|z|=α

[(z − α)H ′(α) +OC(|z − α|2 + 1/ log x)](log x)z−1

zk
dz

by Taylor’s theorem. The integral of (z − α)(log x)z−1/zk vanishes by
Cauchy’s theorem and the choice of α. We bound the remaining part of
I2 by making the change of variables z = αeiθ with θ ∈ [−π, π]. In conclu-
sion, we have arrived at the estimate

I2 
C

∫ π

−π

(log x)α cos θ−1(α2|eiθ − 1|2 + 1/ log x)

αk−1
dθ.

For all θ ∈ [−π, π], we have |eiθ−1| � |θ|, by Taylor’s theorem. In addition,

(log x)α cos θ � ek cos θ � ek(1−θ2/2+θ4/24) � ek(1−cθ2),

where c = (1− π2/12)/2 ≈ 0.0887. Therefore,

I2 
C
ek

αk−1 log x

∫ π

−π
(α2θ2 + 1/ log x)e−ckθ2dθ


C
ek

αk−1 log x
·
(
α2k−3/2 + k−1/2/ log x

)

C

α2

k
· 1

log x
· (log log x)

k−1

(k − 1)!

by Stirling’s formula and the choice of α. Finally, we note that H(α) �C 1
for α ∈ [0, C] to complete the proof. �
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Smooth numbers

The theory of large deviations can be used to obtain strong quantitative
bounds for the number of y-smooth numbers � x. Notice that

En∈S(y)[logn] = En∈S(y)
[∑

d|n
Λ(d)

]
=

∑
d∈S(y)

Λ(d)

d
=

∑
p�y

log p

p− 1
∼ log y

as y →∞. Thus, if n is y-smooth and > x = yu, then logn is approximately
u times larger than its expected size. This offers a heuristic explanation why
the Dickman-de Bruijn function decays so fast.

Optimizing Chernoff’s inequality (16.1) (often referred to as Rankin’s
trick in this context) leads us to the following general theorem.

Theorem 16.3. Let f be a multiplicative function such that 0 � f � τk for
some k ∈ Z�1. Let x � y � 3 and u = log x/ log y. If y � (log x)2+δ for
some δ > 0, then∑

n∈S(y), n>x

f(n)

n
� eOk,δ(u)

(u log(2u))u
· exp

{∑
p�y

f(p)

p

}
.

Proof. All implied constants might depend on δ and k. We may assume
that u is large enough and that δ � 1/2. Let ε ∈ [1/ log y, 1/2− δ/5] to be
chosen later. We have∑

n∈S(y), n>x

f(n)

n
�

∑
n∈S(y)

(n/x)εf(n)

n
= x−ε

∏
p�y

(
1 +

∞∑
m=1

f(pm)

pm(1−ε)

)
.

To each factor, we apply the inequality 1 + t � et. Our assumptions that
0 � f � τκ and that ε � 1/2− δ/5 imply that

∑
p,m�2 f(p

m)/pm(1−ε) 
 1.
Consequently,

(16.11)
∑

n∈S(y), n>x

f(n)

n

 exp

{
− ε log x+

∑
p�y

f(p)

p1−ε

}
.

Next, we write ε = w/ log y, so that 1 � w � (1/2− δ/5) log y. For the

primes p � y1/w, we note that pw/ log y = 1 +O(w log p/ log y). Thus∑
p�y1/w

f(p)

p1−w/ log y
=

∑
p�y1/w

f(p)

p
+O(1) �

∑
p�y

f(p)

p
+O(1),

by Mertens’s estimates (Theorem 3.4). For the bigger primes, we use Cheby-
shev’s estimate (Theorem 2.4) and partial summation to find that∑

y1/w<p�y

f(p)

p1−w/ log y
�

∑
y1/w<p�y

k

p1−w/ log y

 1 +

ew

log y
+

∫ y

y1/w

tw/ log y

t log t
dt.
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Making the change of variables tw/ log y = ez, we deduce that the right-hand
side is 
 ew/w.

Putting the above estimates together, we conclude that∑
n∈S(y), n>x

f(n)

n

 exp

{
− uw +O(ew/w) +

∑
p�y

f(p)

p

}
.

We choose w � 1 implicitly via the formula ew−1/w = u. Taking logarithms,
we find that w− 1− logw = log u. In particular, w � log u, whence logw =
log log u + O(1). We appeal again to the identity w − 1 − logw = log u to
find that w = log(u log u)+O(1). If we can show that w � (1/2− δ/5) log y
for this choice of w, the theorem will follow. This inequality is true if

e(1/2−δ/5) log y−1

(1/2− δ/5) log y
� u ⇐⇒ y1/2−δ/5 � e(1/2− δ/5) log x

⇐⇒ y � c · (log x)2/(1−2δ/5),

where c = (e(1/2− δ/5))2/(1−2δ/5). The last inequality is indeed satisfied by
our assumption that y � (log x)2+δ, thus concluding the proof. �

Using the method of proof of Theorem 14.2, we can deduce from The-
orem 16.3 an analogous result for the arithmetic mean of a multiplicative
function over y-smooth integers. Taking f = 1 we find a uniform bound for
the function Ψ(x, y) that we encountered in Chapter 14.

Theorem 16.4. Assume the set-up of Theorem 16.3. Then∑
n∈S(y)∩[1,x]

f(n) � eOk,δ(u)

(u log(2u))u
· x · exp

{∑
p�y

f(p)− 1

p

}
.

Proof. Without loss of generality, δ � 1/2. In addition, in virtue of Theo-
rem 14.2, we may assume that u is large. Lastly, the condition y � (log x)2+δ

allows us to also assume that x and y are large. As in the proof of Theorem
16.3, we consider a parameter ε ∈ [1/ log y, 1/2− δ/5].

We use a variation of the proof of Theorem 14.2 that links mean val-
ues of multiplicative functions to logarithmic mean values. Mimicking the
argument there, we start by writing

(16.12) (log x)
∑

n∈S(y)∩[1,x]
f(n) = S1 + S2,

where

S1 =
∑

n∈S(y)∩[1,x]
f(n) log(x/n) and S2 =

∑
n∈S(y)∩[1,x]

f(n) logn.
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For S1, we note that log(x/n) � (x/n)1−ε/(1− ε) � 2(x/n)1−ε and thus

(16.13) S1 � 2x1−ε
∑

n∈S(y)

f(n)

n1−ε
.

Next, we bound S2. We do not have control on Λf because we have not
assumed that τf = f . Instead, we note that

f(n) logn = f(n)
∑
pa‖n

log(pa) =
∑

pam=n
p�m

f(m)f(pa) log(pa),

whence

S2 �
∑∑∑

m∈S(y), p�y, a�1
pam�x

af(pa)f(m) log p =
∑∑

m∈S(y), p�y
pm�x

f(m) log p
∑
a�1

pam�x

af(pa).

For each fixed m and p, we have 1 � a � log(x/m)/ log p and f(pa) �
τk(p

a) 
k ak−1 � (log(x/m)/ log p)k−1. Hence

S2 
k

∑
m∈S(y)∩[1,x/2]

f(m)
∑

2�p�min{x/m,y}

(log(x/m))k+1

(log p)k
.

For any z � 2, Chebyshev’s estimate and partial summation imply that∑
2�p�z

(log(x/m))k+1

(log p)k

k z ·

(
log(x/m)

log z

)k+1

.

If z = min{x/m, y}, then log(x/m)/ log z � u and z � (x/m)1−εyε. We
thus conclude that

S2 
k uk+1yεx1−ε
∑

m∈S(y)

f(m)

m1−ε
.

Together with (16.12) and (16.13), this implies that

(16.14)
∑

n∈S(y)∩[1,x]
f(n) 
k

ukyεx1−ε

log y

∑
n∈S(y)

f(n)

n1−ε
.

We then follow the proof of Theorem 16.3 to bound the right side of (16.14)
(taking ε = w/ log y with ew−1/w = u). This completes the proof. �

It is also possible to use the theory of large deviations to obtain an
asymptotic estimate for Ψ(x, y). This is done using an analogue of (16.3)
obtained by Theorem 7.2, which implies that

Ψ(x, y) =
1

2πi

∫
(α)

∏
p�y

(
1− 1

ps

)−1xs

s
ds.
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We choose α satisfying the analogue of (16.3), which is the equation∑
p�y

log p

pα − 1
= log x.

This argument was carried out by Hildebrand and Tenenbaum [103].

Theorem 16.5. For x � y � 2 with u = log x/ log y and α as above, we
have

Ψ(x, y) =
xα

∏
p�y(1− 1/pα)−1

α
√
2πL

(
1 +O

(1

u
+

log y

y

))
,

where L = − d
dσ

∣∣
σ=α

∑
p�y(log p)/(p

σ − 1) =
∑

p�y p
α(log p)2/(pα − 1)2.

More details on the subject of smooth numbers can be found in Chapter
III.5 of Tenenbaum’s book [172], as well as in the survey article [104] of
Hildebrand and Tenenbaum.

Exercises

Exercise 16.1. Estimate the sum
∑

1<n�x 1/ω(n) in two ways: (a) use Theorem

16.2; (b) use concentration-of-measure inequalities obtained by the method of large
deviations.

Exercise 16.2. Fix C > 0 and let λy =
∏

p�y(1 − 1/p)−1. For y � 1 and k ∈ Z
with 0 � k � Cλy, prove that

Pn∈S(y)(ω(n) = k) = G(k/λy)e
−λyλk

yk!
−1

(
1 +OC(k/λ

2
y)

)
,

where G(z) is defined in Theorem 16.2.

Exercise 16.3. Let k � 0, and let f be a multiplicative function such that 0 �
f � τk.

(a) Use Theorem 16.3 to show that there is some constant C = C(k) such that∑
n∈S(y)∩[1,x]

f(n)

n
�k exp

{∑
p�y

f(p)

p

}
for x � yC � 1.

(b) Give a new proof of the lower bound from Exercise 14.5(b) that states that∑
n�x f(n)/n �k exp{

∑
p�y f(p)/p} for all x � 1.

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



Part 4

Sieve methods

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



Chapter 17

Twin primes

The theory of Dirichlet L-functions allows us to make significant progress
on our understanding of prime numbers. However, there are numerous im-
portant questions about primes that seem to be intractable using Dirichlet
series because they are fundamentally of non-multiplicative character. To
study them, we go back to the basics and employ the most fundamental way
of detecting primes: the sieve of Eratosthenes-Legendre. We illustrate some
of the main ideas by discussing the famous twin prime conjecture.

Twin primes arise naturally when studying the spacing distribution of
primes. The first ten primes are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29, and the
spacings between them are 1, 2, 2, 4, 2, 4, 2, 4, 6. The number 1 will never
appear again as a spacing because all primes p � 3 are odd, and thus p+ 1
cannot be prime because it is even and > 2. By the same argument, no odd
number > 1 will ever appear as a spacing between two consecutive primes.
On the other hand, there is no obvious reason why the even numbers should
not keep reoccurring. Already the number 2 appears four times in the above
list, and the number 4 appears three times. The number 6 appears once,
but this is only because we have not looked far enough yet for a second
appearance. Indeed, 31 and 37 are both primes and they differ by 6.

In 1849, de Polignac conjectured that any even number should appear
infinitely many times as the gap between two consecutive primes. The pairs
of primes that differ by 2 (and which are necessarily consecutive) are called
twin primes. To study them, we define their counting function

π2(x) := #{n � x : n, n+ 2 are both primes }.

The twin prime conjecture, which is a special case of Polignac’s conjecture,
states that π2(x) →∞ as x → ∞.

174
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Counting twin primes is a so-called additive problem: we are asking
for solutions of the equation q − p = 2, where both p and q are prime
numbers. Hence, the Dirichlet series approach, which was crucially based
on the Euler product representation of the Dirichlet L-functions, is of limited
use here. To make progress towards the twin prime conjecture, we revisit
the combinatorial ideas of Chapter 2.

Sieving for twin primes

We begin by rewriting π2(x) using the sieve of Eratosthenes-Legendre: if for
some n ∈ (

√
x+ 2, x] the product n(n+ 2) has no prime factors �

√
x+ 2,

none of n and n+2 have prime divisors smaller than their square-root, and
so they must both be prime. The converse is also true. Hence,

π2(x) = #{n � x : (n(n+ 2), P (
√
x+ 2 )) = 1 }+O(

√
x)

with P (y) =
∏

p�y p as usual. We would like to use the inclusion-exclusion

principle to estimate π2(x) but the most direct application of this argument
produces trivial bounds (see the discussion following Theorem 2.1). Limiting
our goal to an upper bound for π2(x), we use Legendre’s idea to find that

(17.1) π2(x) � π2(x, y) +O(y),

where

π2(x, y) = #{n � x : (n(n+ 2), P (y)) = 1 }
and y is a parameter �

√
x+ 2 that we are free to choose. We then apply

inclusion-exclusion as in (2.5) to find that

(17.2) π2(x, y) =
∑

d|P (y)

μ(d) ·N2(x; d),

where

N2(x; d) = #{n � x : d|n(n+ 2) }.
To estimate the right-hand side of (17.2), we note that each interval of length
d contains exactly ν2(d) numbers n such that d|n(n+ 2), where

ν2(d) := #{n ∈ Z/dZ : n(n+ 2) ≡ 0 (mod d) }.
Adapting the argument leading to (2.3), we deduce the formula

(17.3) N2(x; d) = x · ν2(d)
d

+O(ν2(d)).

The function ν2 is multiplicative by the Chinese Remainder Theorem and
on primes it equals

ν2(p) =

{
1 if p = 2,

2 if p > 2.

In particular, ν2(d) � 2ω(d) = τ(d) for square-free integers d.
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The above discussion leads us to the asymptotic formula

(17.4)

π2(x, y) = x
∑

d|P (y)

μ(d)ν2(d)

d
+O

( ∑
d|P (y)

2ω(d)
)

=
x

2

∏
3�p�y

(
1− 2

p

)
+O(3π(y)).

As in the proof of (2.9), we are forced to choose y to be a multiple of log x.
We thus arrive at the estimate

π2(x) 

x

(log log x)2
.

Note, however, that this bound is worse than the trivial inequality π2(x) �
π(x) 
 x/ log x.

It seems that we have quickly reached an impasse. This remained the
state of affairs for more than a hundred years following Legendre’s work
on the sieve of Eratosthenes. The great breakthrough in sieve theory that
turned it from an interesting observation to an indispensable part of modern
number theory was undertaken by Viggo Brun in 1915. His starting point
was the realization that it is possible to replace the exact formula (17.4) by
upper and lower bounds that involve a lot fewer summands, thus making
the remainder terms much more manageable.

Brun’s first improvement of the sieve of Eratosthenes-Legendre arises
from a better understanding of the mechanics of the inclusion-exclusion
principle. Recall that π2(x, y) counts the number of n � x that are in
the complement of the union of the sets N2(x; p) = {n � x : p|n(n + 2) }
with p � y. By the union bound, we have x − π2(x, y) � T1(x, y), where
T1(x, y) =

∑
p�y N2(x; p). The expression x − T1(x, y) then serves as a

first approximation to π2(x, y) that always underestimates its size, because
there are numbers lying in the intersection of two of the sets N2(x; p).
We then add to x − T1(x, y) the quantity T2(x, y) =

∑
p1<p2�y N(x; p1p2).

This leads to an overestimation of π2(x, y), the reason being that there
are numbers lying in the intersection of three of the sets N2(x; p). At the
next step we thus subtract from the expression x − T1(x, y) + T2(x, y) the
quantity T3(x, y) =

∑
p1<p2<p3�y N2(x; p1p2p3). The resulting expression

x− T1(x, y) + T2(x, y)− T3(x, y) underestimates π2(x, y).

Continuing in the above fashion, we arrive at the Bonferonni inequalities

(17.5)
2�−1∑
j=0

(−1)jTj(x, y) � π2(x, y) �
2�∑
j=0

(−1)jTj(x, y)
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for any � ∈ Z�1, where Tj(x, y) =
∑

p1<···<pj�y N2(x; p1 · · · pj). We rewrite

these inequalities in terms of the Möbius function as

(17.6)
∑

d|P (y)
ω(d)�2�−1

μ(d)N2(x; d) � π2(x, y) �
∑

d|P (y)
ω(d)�2�

μ(d)N2(x; d).

We must choose � so that the following two requirements are met:

• � must be small enough, so that the upper and lower bounds in
(17.6) have a lot fewer terms than the right-hand side of (17.2).
This will allow us to estimate π2(x, y) for y much larger than log x.

• � must be large enough, so that the lower and upper bounds in
(17.6) are close to the real size of π2(x, y).

With the above requirements in mind, we note that (17.6) implies that

π2(x, y) =
∑

d|P (y)
ω(d)�2�−1

μ(d)N2(x; d) +O
( ∑

d|P (y)
ω(d)=2�

N2(x; d)
)
.

Since N2(x; d) = x · ν2(d)/d+O(ν2(d)) by (17.3), as well as ν2(d) � 4� when
d is square-free with ω(d) � 2�, we infer that

(17.7) π2(x, y) = x
∑

d|P (y)
ω(d)�2�−1

μ(d)ν2(d)

d
+O

( ∑
d|P (y)
ω(d)�2�

4� +
∑

d|P (y)
ω(d)=2�

4�x

d

)
.

We must choose � large enough so that

(17.8)
∑

d|P (y)
ω(d)�2�−1

μ(d)ν2(d)

d
∼

∏
p�y

(
1− ν2(p)

p

)
=

1

2

∏
3�p�y

(
1− 2

p

)
.

Theorem 16.1 implies that, when weighted with κω(n), a “random” inte-
ger n tends to have ∼ κ log log n prime factors. Motivated by this fact, we
will eventually choose � = c log log y for a large enough constant c. To prove
that (17.8) holds for such a choice, we start by observing the inequalities

(17.9)
∑

d|P (y)
ω(d)�2�−1

μ(d)ν2(d)

d
�

∏
p�y

(
1− ν2(p)

p

)
�

∑
d|P (y)
ω(d)�2�

μ(d)ν2(d)

d
,

which are analogous to (17.6). (In fact, they follow from (17.6) with x =
P (y), because we then haveN2(x; d)/x = ν2(d)/d and π2(x, y)/x =

∏
p�y(1−

ν2(p)/p). See also Exercise 17.2.) Using (17.7) and (17.9), we find that

(17.10) π2(x, y) = x
∏
p�y

(
1− ν2(p)

p

)
+O

( ∑
d|P (y)
ω(d)�2�

4� +
∑

d|P (y)
ω(d)=2�

4�x

d

)
.

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



178 17. Twin primes

Since ν2(2) = 1 and ν2(p) = 2 for p � 3, Mertens’ third estimate (Theo-
rem 3.4(c)) implies that the main term of (17.10) has size � x/(log y)2.

The first remainder term in (17.10) controls how many summands there
are in the truncated version of the inclusion-exclusion principle (17.6). To
bound it, we simply note that if d|P (y) and ω(d) � 2�, then d � y2�. Hence∑

d|P (y)
ω(d)�2�

4� � 4�y2�.

This is small compared to the main term if (2y)2� � x/(log x)3, say.

Finally, the second remainder term in (17.10) measures how close the
upper and lower bounds in (17.6) are. It should thus become small when �
becomes large enough. Indeed, we have

(17.11)
∑

d|P (y)
ω(d)=2�

4�x

d
�

∑
p1<···<p2��y

4�x

p1 · · · p2�
� 4�x

(2�)!

(∑
p�y

1

p

)2�

by rearranging the 2� primes in all (2�)! possible ways. The right side of
(17.11) is � x · (log y)2 · P(Z = 2�), where Z is a Poisson random variable
of parameter λ =

∑
p�y 2/p ∼ 2 log log y. Since Z has mean value λ and is

concentrated around its mean value with high probability (see Exercise 1.9),
we can make P(Z = 2�) as small as we want by letting the ratio �/

∑
p�y 1/p

be large enough. More concretely, using the inequality n! � nn/en, we have∑
d|P (y)
ω(d)=2�

4�x

d
� x ·

(
e
∑

p�y 1/p

�

)2�


 x

(log y)3

for � � 3.99
∑

p�y 1/p ∼ 3.99 log log y. In addition, we must have (2y)2� �
x/(log x)3. Such an � exists as long as y � x1/(8 log log x) and x is large enough.

To summarize, we have proved that

(17.12) π2(x, y) =
{
1 +O(1/ log y)

}x
2

∏
3�p�y

(
1− 2

p

)
when 2 � y � x1/(8 log log x) and x is large. As an immediate corollary, we
have the following remarkable result due to Brun.

Theorem 17.1. For x � 2, we have

π2(x) 

x(log log x)2

(log x)2
.

In particular, the series
∑

p, p+2 twin primes 1/p converges.
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Proof. The first part follows from (17.1) and (17.12) with y = x1/(8 log log x).
For the second part, we use partial summation. Alternatively, note that if
P2 denotes the set of primes p such that p + 2 is also prime, then we have∑

p∈P2∩(2j ,2j+1] 1/p � 2−jπ2(2
j+1) 
 (log j)2/j2 by the first part. Summing

this inequality over all j proves the convergence of
∑

p∈P2
1/p. �

Remark 17.2. The value of the series in the statement of Theorem 17.1
is called Brun’s constant and its numerical calculation has an interesting
history, as it led to the discovery of a bug in Intel’s� PentiumTM micropro-
cessor by Nicely (see [184]). �

The Cramér-Granville model

It is important to take a moment and understand the quality of our bound
on π2(x). Namely, we want to understand what the expected size of π2(x)
is and how this compares to the estimate π2(x) 
 x(log log x)2/(log x)2.

To answer these questions, we go back to Cramér’s model. Recall the
basic set-up: (Xn)n�1 is a sequence of independent Bernoulli random vari-
ables such that P(Xn = 1) = 1/ log n for n � 3. This sequence is presumed
to model the indicator function of the primes.

Consider now the random variable Π2(x) =
∑

n�xXnXn+2 as a ran-
dom model of π2(x). A straightforward calculation reveals that E[Π2(x)] ∼
x/ log2 x as x → ∞, thus suggesting that π2(x) ∼ x/ log2 x. However, as we
mentioned when we originally introduced Cramér’s model (see page 4), the
random variables Xn are insensitive to arithmetic information. We should
thus be careful when using them because they may lead us to false con-
clusions. For example, the same argument as above also suggests that the
number of n � x such that both n and n + 1 are primes is ∼ x/ log2 x, a
conclusion that is blatantly false.

To get around this issue, we modify Cramér’s model following an idea
due to Granville. To capture the arithmetic structure of primes modulo small
integers, our new model will consist of random variables (Yn)

∞
n=1 supported

on N = {n > y2 : (n, P (y)) = 1 }, where y is a large parameter to be
chosen later. Theorem 2.1 implies that N contains approximately α :=∏

p�y(1 − 1/p) proportion of N. Since an integer n in N is presieved with

all primes � y, its chances of being prime are ∼ α−1/ logn > 1/ logn.

In view of the above discussion, we define the Cramér-Granville model
to be a sequence of independent Bernoulli random variables (Yn)

∞
n=1 with

(17.13) P(Yn = 1) = α−11n∈N / log n.
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180 17. Twin primes

The corresponding model for the number of twin primes up to x is Π̃2(x) =∑
n�x YnYn+2, for which we have

E[Π̃2(x)] = α−2
∑

y2<n�x

1(n(n+2),P (y))=1

log(n) log(n+ 2)
.

If y � x1/(9 log log x), then (17.12) and partial summation imply that

E[Π̃2(x)] ∼
x

(log x)2

∏
p�y

(
1− ν2(p)

p

)(
1− 1

p

)−2
.

The product over primes converges absolutely as y → ∞, since its factors
are 1 +O(1/p2). Letting y →∞ leads us to conjecture that

π2(x) ∼ c2 ·
x

(log x)2
, where c2 = 2

∏
p�3

(
1− 2

p

)(
1− 1

p

)−2
.

The constant c2 is called the twin prime constant.

In view of the above discussion, our bound on π2(x) is off by a fac-
tor of (log log x)2. To remove this extra factor, we must find more effi-
cient versions of (17.6), where the parameter y is allowed to be even larger

than x1/(8 log log x), while still being able to control the total error after in-
serting (17.3). Doing so is a delicate task that requires a good under-
standing of which integers d we can discard from the formula π2(x, y) =∑

d|P (y) μ(d)N2(x; d) without losing too much information. In turn, this re-

lies on a good grasp of the distribution of multiplicative functions that we
studied in Chapters 15 and 16. We note, however, that we will not be able
to obtain a non-trivial lower bound on π2(x, y) when y =

√
x+ 2, which is

what would be required to settle the twin prime conjecture.

Exercises

Exercise 17.1 (The Bonferonni inequalities). Let A1, . . . , Ak be subsets of a finite
set X. If A = Ac

1 ∩ · · · ∩ Ac
k, then show that

|A| = |X| −
∑

1�k1�k

|Ak1
| ± · · ·+ (−1)r

∑
1�k1<···<kr�k

|Ak1
∩ · · · ∩Akr

|+Δr

for all r ∈ Z�0, where (−1)r+1Δr � 0. [Hint: Show the identity |A| = |X| −∑k
k1=1 |Ak1

\
⋃

k1<	�k A	| by dividing the elements of X \A according to the largest

index k1 such that a ∈ Ak1
. Then iterate this identity.]

Exercise 17.2. Let ν̃2 denote the completely multiplicative function with ν̃2(p) =
ν2(p), and define a probability measure on the set S(y) of y-smooth integers by

P(A) =
∏
p�y

(
1− ν2(p)

p

) ∑
n∈A

ν̃2(n)

n
.
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If Ad = {n ∈ S(y) : d|n } with d|P (y), prove P(Ad) = ν2(d)/d and deduce (17.9).
[Hint: The Bonferonni inequalities have a measure-theoretic version.]

Exercise 17.3. Adapt Brun’s method to prove the following estimates:

(a) If m is x1/(4 log log x)-smooth, then

#{n � x : (n,m) = 1 } ∼ x · ϕ(m)

m
(x →∞) .

(b) #{x− y < p � x} 
 y log log y/ log y for x � y � 3.

(c) #{n � x : n2 + 1 is prime } 
 x log log x/ log x.

Exercise 17.4. Let h = (h1, . . . , hk) be a k-tuple of distinct integers. For each
prime p, define νh(p) to be the number of congruence classes mod p occupied by
the numbers h1, . . . , hk, and set

S(h) :=
∏
p

(
1− νh(p)

p

)(
1− 1

p

)−k

.

(a) Show that S(h) is an absolutely convergent Euler product.

(b) The k-tuple h is called admissible if νh(p) < p for all primes p. Show that this
is equivalent to having S(h) > 0.

(c) If h is an admissible k-tuple, the Hardy-Littlewood conjecture states that

(17.14) #{n � x : n+ h1, . . . , n+ hk are all primes } ∼ S(h) · x

(log x)k

when x →∞. Use the Cramér-Granville model to justify this conjecture.

Exercise 17.5. Let N ∈ Z�1. Use the Cramér-Granville model to predict an
asymptotic formula for the number of pairs of primes (p, q) such that p+ q = 2N .

Exercise 17.6 (Montgomery’s conjecture). Use a suitable version of the Cramér-
Granville model to argue that, for each fixed ε > 0, we have

π(x; q, a) =
li(x)

ϕ(q)
+Oε

(
xε(x/q)1/2

)
uniformly for x � q � 1 and (a, q) = 1. In particular,

π(x; q, a) ∼ x

ϕ(q) logx

if x and q tend to infinity at a rate such that q � x1−ε.
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Chapter 18

The axioms of sieve
theory

The general problem in sieve theory asks for bounds on the quantity

S(A,P) := #{ a ∈ A : (a,P) = 1 },

where A is a finite set of integers, P is a finite set of primes, and the notation
(a,P) = 1 means that a has no prime factors from P.

It is convenient to generalize further this set-up. Given a sequence of
weights A = (an)

∞
n=1 ⊂ R�0 with

∑∞
n=1 an < ∞, we define

S(A,P) =
∑

(n,P)=1

an.

This incorporates the quantity #{ a ∈ A : (a,P) = 1 } by taking an = 1A(n).
We will switch back and forth between the two definitions, using the more
general one when discussing theoretical aspects of the sieve, and the more
specialized one when discussing concrete applications. This ambiguity in
the notation helps us avoid the introduction of unnecessary new symbols.

Various important questions can be written in the above language.

Example 18.1. If A = {x − y < n � x} for some x � y + 1 � 2 and
P = {p � √

x}, then S(A,P) counts primes in the interval (x − y, x]. If,
for instance, x = N2 and y = 2N for some N ∈ Z�3, then proving that
S(A,P) > 0 is equivalent to Landau’s conjecture that there is always a
prime number between (N − 1)2 and N2. �

182
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Example 18.2. If A = {n(n + 2) : 1 < n � x } and P = {p �
√
x+ 2},

then S(A,P) counts integers n ∈ (
√
x+ 2, x] such that both n and n+2 are

prime numbers, that is to say, (n, n+ 2) is a pair of twin primes. �
Example 18.3. Generalizing the above examples, let A = { f(n) : x− y <
n � x }, where x � y � 1 and f is a polynomial over Z. Assume further
that f = f1 · · · fr, where f1, . . . , fr are irreducible polynomials over Z
(i.e., they are primitive and irreducible over Q), and let P = {p � z},
where z = max{ |fj(n)|1/2 : x − y < n � x, 1 � j � r }. (Note that z ∼
cxd/2 when x → ∞, where d = max1�j�r deg(fj) and c is some appropriate
positive constant.) Then S(A,P) counts integers n ∈ (x − y, x] such that
f1(n), . . . , fr(n) are all primes > z. Since fj(n) 
 ndeg(fj), any such n must

satisfy the inequalities x � n � xd/(2d
′), where d′ = min1�j�r deg(fj). Note

that for this range to be non-empty we must have that d′ � d/2.

For instance, if f(x) = x2+1, y = x and P = {p �
√
x2 + 1}, then prov-

ing that S(A,P) > 0 for infinitely many values of x would imply Landau’s
conjecture that there are infinitely many primes of the form n2 + 1. �
Example 18.4. We can also count twin primes using an alternative set-up:
we take A = { p+2 : p � x } and P = {p �

√
x+ 2}, so that S(A,P) counts

primes p � x such that p + 2 is a prime >
√
x+ 2. As we will see later on,

this alternative formulation yields better results on twin primes. �
Example 18.5. If A = { 2N − p : p � N } and P = {p �

√
2N} for some

integer N � 2, then S(A,P) counts primes p � N such that 2N − p is also
prime. In particular, S(A,P) > 0 if and only if we can write 2N as the
sum of two primes (the smallest one of which we take to be p). Proving this
statement for all N � 2 is Goldbach’s conjecture. �
Example 18.6. If A = { p− 1 : p � x } and P = { p′ � x : p′ ≡ 3 (mod 4) },
then S(A,P) counts primes p � x such that p − 1 has no prime factors
≡ 3 (mod 4). In particular, p− 1 can be written as the sums of two squares.

Using a trick due to Iwaniec, we can reduce the size of primes in P:
we take A = { p − 1 : p � x, p ≡ 3 (mod 8) } and P = { p′ � √

x : p′ ≡
3 (mod 4) }. We claim that all primes p counted by S(A,P) are such that
p − 1 is the sum of two squares. It suffices to prove that p − 1 has no
prime factors that are 3 (mod 4). Note that (p − 1)/2 ≡ 1 (mod 4). Hence,
the number (p− 1)/2 is divisible by an even number of primes ≡ 3 (mod 4)
(counted with multiplicity). But p− 1 � x− 1 can have at most one prime
factor >

√
x. We thus conclude that if p ≡ 3 (mod 8) and (p − 1,P) = 1,

then p − 1 has no prime factors ≡ 3 (mod 4). In particular, p − 1 can be
written as the sum of two squares. �

Typically, we study S(A,P) in a general axiomatic framework. We
introduce and discuss each of the three sieve axioms in the following sections.
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184 18. The axioms of sieve theory

Axiom 1: Generalizing the Kubilius model

By Möbius inversion, we have

(18.1) S(A,P) =
∑
n

an
∑

d|(n,P)

μ(d) =
∑
d|P

μ(d)Ad,

where the notation d|P means that d|
∏

p∈P p (i.e., d is square-free and all

of its prime factors lie in P), and

(18.2) Ad :=
∑

n≡0 (mod d)

an =
∑
m

adm.

In the important case when we are sieving a set A instead of a sequence, we
have

Ad = #{ a ∈ A : a ≡ 0 (mod d) }.
In order to proceed further, we must estimate Ad asymptotically. We work
out such an estimate in each of the examples discussed above:

Example 18.1: Here A = {x− y < n � x}, so Ad = y/d+O(1).

Example 18.2: We have A = {n(n + 2) : n � x }. Thus, relation (17.3)
implies that Ad = x ·ν2(d)/d+O(ν2(d)), where ν2(d) counts the roots of the
polynomial x(x+ 2) mod d.

Example 18.3: Since A = {f(n) : x − y < n � x} with x � y � 1
and f(x) ∈ Z[x], a straightforward generalization of (17.3) implies that
Ad = y · νf (d)/d+O(νf (d)) with νf (d) = #{n ∈ Z/dZ : f(n) ≡ 0 (mod d)}.

Example 18.4: Here we have A = { p + 2 : p � x }, so that Ad =
π(x; d,−2). If d is even, then Ad = 1. On the other hand, if d is odd and
� (log x)C for some fixed C > 0, the Siegel-Walfisz theorem (Theorem 12.1)

implies that Ad = li(x)/ϕ(d)+OC(xe
−c

√
log x), where c is an absolute positive

constant. Note that if we assume the Generalized Riemann Hypothesis,
Exercise 11.2 implies the improved estimate Ad = li(x)/ϕ(d) +O(

√
x log x)

for odd d.

Example 18.5: Here we have A = { 2N − p : p � N }. Consequently,
Ad = π(N ; d, 2N). When (d, 2N) > 1, any prime p ≡ 2N (mod d) must di-
vide 2N , whence Ad � ω(2N) 
 log(2N). On the other hand, if (d, 2N) = 1

with d � (logN)C , we have the estimate Ad = li(N)/ϕ(d)+OC(Ne−c
√
logN ).

Example 18.6: In the second part, we took A = { p − 1 : p � x, p ≡
3 (mod 8) } and P = { p′ � √

x : p′ ≡ 3 (mod 4) }. Therefore, Ad =
π(x; 8d, ad) whenever d|P, where ad is determined by the Chinese Remain-
der Theorem and the congruences ad ≡ 1 (mod d) and ad ≡ 3 (mod 8). We

thus conclude that Ad = li(x)/ϕ(8d) +OC(xe
−c

√
log x) for d � (log x)C with

d|P.
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Axiom 1: Generalizing the Kubilius model 185

Observe that in all of the above examples there is a quantity X and a
multiplicative function ν such that

(18.3) Ad ∼
ν(d)

d
·X for all small enough d|P.

We summarize in the following table the values of X and ν for each of our
six examples:

Example X ν(d)

18.1 y 1
18.2 x ν2(d)
18.3 y νf (d)

Example X ν(d)

18.4 li(x) 12�d · d/ϕ(d)
18.5 li(N) 1(d,2N)=1 · d/ϕ(d)
18.6 li(x)/4 d/ϕ(d)

Note that

(18.4) ν(p) < p for all p ∈ P
in each of Examples 18.1–18.6 (with the possible exception of Example 18.3
if there is a prime p such that xp − x|f(x) over the finite field Fp = Z/pZ).
Relation (18.4) means that Ap is asymptotically smaller than X ∼ A1, which
we certainly need if we are to extract elements an of the sequence A with n
having no prime factors in P.

We denote the remainder term in the approximation (18.3) by

rd := Ad −X · ν(d)/d.
Since d|P in all summands of (18.1), we only need to control rd when d|P.
We thus arrive at the first axiom of sieve theory.

Axiom 1. There is a multiplicative function ν, a parameter X and a se-
quence of remainders (rd)d|P such that

Ad =
ν(d)

d
·X + rd for all d|P

and

ν(p) < p for all p ∈ P.

In the spirit of the Kubilius model of the integers, the function ν(d)/d
can be interpreted as a multiplicative density function that we denote by

(18.5) δ(d) :=
ν(d)

d
∈ [0, 1] for d|P.

Indeed, if we employ N with the probability measure

P(E) :=

∑
n∈E an∑
n�1 an

,

then the event Ed = {n ∈ N : d|n } occurs with probability

P(Ed) = Ad/A1 ∼ δ(d)

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



186 18. The axioms of sieve theory

when (18.3) holds with sufficiently small remainder rd. Hence, our as-
sumption that ν is multiplicative means that the events (Ep)p∈P are quasi-
independent. This leads us to guess that

(18.6) S(A,P) ∼ X
∏
p∈P

(1− δ(p)) = X
∏
p∈P

(
1− ν(p)

p

)
.

The same relation can also be seen by replacing Ad by δ(d)X + rd in (18.1)
and ignoring all the remainder terms.

In Theorem 2.1, we saw that the above guess is true when A = {n �
x} and P ⊂ [1, logx]. This theorem will be improved and generalized in
the next chapter thus establishing (18.6) when P ⊂ [1, Xo(1)] for various
sequences A. On the other hand, relation (18.6) fails when A = {n � x}
and P = {p � √

x}, as we discussed in Remark 3.5. This reflects the failure
of the independence hypothesis for the divisibility by large primes: indeed,
if p1 > p2 > p3 > x1/3, then there is no integer n � x that is simultaneously
divisible by p1, p2 and p3. In particular, Ep1 ∩ Ep2 ∩ Ep3 = ∅, which means
that the events Ep1 , Ep2 , Ep3 are interrelated.

Axiom 2: The sifting dimension

A very useful and intuitive way to think of the quantity ν(p) is as the number
of residue classes we must “remove/sieve out” modulo p in order to capture
elements of our sequence A that are primes (or products of a few primes).
For instance, in Example 18.2, we want to make both n and n + 2 to be
primes. Hence, we must sieve out all integers lying in the congruence classes
0 (mod p) and −2 (mod p). Correspondingly, we have

(18.7) ν(p) = #
(
{0 (mod p)} ∪ {−2 (mod p)}

)
=

{
1 if p = 2,

2 if p � 3.

Similarly, consider the set-up of Example 18.3 with f(x) = x2 + 1. In
order to capture prime values of this polynomial, we must remove from the
set {n � x} all integers that lie in a congruence class a (mod p) such that

a2 + 1 ≡ 0 (mod p) for some prime p �
√
x2 + 1. We then find that

(18.8) ν(p) =

⎧⎪⎨⎪⎩
1 if p = 2,

2 if p ≡ 1 (mod 4),

0 if p ≡ 3 (mod 4).

Naturally, the larger ν(p) gets the harder it is to estimate S(A,P). A
simple way of ensuring that ν(p) does not get too large is to assume the
existence of a parameter k > 0 such that

(18.9) ν(p) � k for all p ∈ P.
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For each of our six examples, we have:

Example ν(p) k

18.1 1 1
18.2 2− 1p=2 2
18.3 νp(f) deg(f)

Example ν(p) k

18.4 1p>2 · p/(p− 1) 3/2
18.5 1p�2N · p/(p− 1) 3/2
18.6 p/(p− 1) 3/2

where in Example 18.3 we used the fact that a polynomial of degree d has
� d roots over the finite field Fp, and in Example 18.6 that minP = 3.

As we remarked above, the smaller k is, the easier it is to estimate
S(A,P). With this in mind, note that in Examples 18.4–18.6 we may take
k ∼ 1 when p is large enough. However, in Example 18.3, the inequality
νp(f) � deg(f) is sharp in full generality, because a polynomial f(x) factors
completely mod p for a positive proportion of the primes by the Chebotarev
Density Theorem (see [148, Theorems 8.3 (p. 47) and 13.4 (p. 545)], as well
as relation (18.8) above for a concrete example).

It turns out that for many applications we only need an averaged form
of (18.9) that allows us to reduce the value of k. There are various ways of
averaging (18.9). A very useful one is the following.

Axiom 2. There are constants κ � 0 and C > 0 such that∏
p∈P∩(y1,y2]

(
1− ν(p)

p

)−1

�
(
1 +

C

log y1

)(
log y2
log y1

)κ

uniformly for 3/2 � y1 � y2 � maxP.

Axiom 2 is often called the Iwaniec condition;1 the infimum of the values
of κ satisfying it is called the sifting dimension of A with respect to the set
of primes P. Note that if (18.9) holds and there is some ε ∈ (0, 1] such that
ν(p)/p � 1−ε for all p ∈ P, then Axiom 2 holds with κ = k and C = C(k, ε)
by Mertens’ third estimate (Theorem 3.4(c)).

For each of our six examples, we have:

Example ν(p) κ

18.1 1 1
18.2 2− 1p=2 2
18.3 νp(f) r

Example ν(p) κ

18.4 1p>2 · p/(p− 1) 1
18.5 1p�2N · p/(p− 1) 1
18.6 p/(p− 1) 1/2

where r is the number of irreducible factors of f over Q, and in Example
18.6 we have κ = 1/2 because P ⊂ {p ≡ 3 (mod 4)}.

Often, we must assume a more precise version of Axiom 2.

1Often, the Iwaniec condition refers to a slightly weaker version of Axiom 2, where the factor
1 + C/ log y1 is replaced by some absolute constant C′.
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Axiom 2′. There are constants κ, k � 0 and ε ∈ (0, 1] such that∑
p∈P∩[1,w]

ν(p) log p

p
= κ logw +O(1) for all w � maxP

and

ν(p) � min{(1− ε)p, k} for all p ∈ P.

It is easy to show that Axiom 2′ implies Axiom 2 for some C = C(ε, k, κ).

Axiom 3: The level of distribution of A

In order for Axiom 1 to be meaningful, we must be able to show that the
quantities rd are small compared to the alleged main term X · ν(d)/d. In
practice, we only need to show such an estimate on average. The precise
condition that we will need is the following.

Axiom 3. There are constants A > 0 and m ∈ N, and a quantity D � 1
such that ∑

d�D, d|P
τm(d)|rd| � X

(logX)A
.

In Chapter 19 we will appeal to this axiom with m = 1, whereas in
Chapter 21, we will use it with m = 3. The quantity D is called the level of
distribution of the sequence A. It is a measure of how well we can control
the distribution of A among the progressions 0 (mod d).

Example 18.7. When A = { f(n) : x − y < n � x } for a polynomial
f(x) ∈ Z[x], as in Example 18.3 above (which incorporates Examples 18.1
and 18.2 as well), then rd = O(νf (d)). Since νf (p) � deg(f) =: k, we find
that rd = O(τk(d)) for d|P, so that∑

d�D, d|P
τm(d)|rd| 


∑
d�D

τm(d)τk(d) 
k,m D · (logD)km−1

by Theorem 14.2. Recalling that X = y here, Axiom 3 holds with

�(18.10) D �k,m y/(log y)A+km−1.

Example 18.8. In Example 18.4, we noted that rd = OC(xe
−c

√
log x) for

d � (log x)C . This allows us to verify Axiom 3 with D = (log x)C for any
fixed C > 0. However, this is a much smaller level of distribution than the
one we obtained in relation (18.10). This poses a serious hurdle if we want
to study twin primes using the set-up of Example 18.4.

On the other hand, if we assume the Generalized Riemann Hypothe-
sis, we have rd = O(

√
x log x). We may thus verify Axiom 3 with D �√

x/(log x)A+m−1. Remarkably, Bombieri [8, 10] and A. I. Vinogradov [176]
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proved unconditionally (i.e., without the assumption of any unproven hy-
potheses) that we have a level of distribution that is almost as strong.

Theorem 18.9 (The Bombieri-Vinogradov theorem). Fix A � 0. For x � 2

and 1 � Q � x1/2/(log x)A+3, we have

(18.11)
∑
q�Q

max
y�x

max
(a,q)=1

∣∣∣∣π(y; q, a)− li(y)

ϕ(q)

∣∣∣∣ 
A
x

(log x)A+1
.

This landmark result yields Axiom 3 withm = 1 andD � √
x/(log x)A+3

in Examples 18.4 and 18.6, and with m = 1 and D �
√
N/(logN)A+3 in

Example 18.5. We will prove it in Chapter 26. �

Remark 18.10. It is believed that the Bombieri-Vinogradov theorem can
be extended significantly. More precisely, Elliott and Halberstam [41] con-
jectured the following improvement.

The Elliott-Halberstam conjecture. Fix A, ε > 0. Relation (18.11)
holds uniformly for x � 2 and 1 � Q � x1−ε.

The Elliott-Halberstam conjecture is very deep, going well beyond the
reach of the Generalized Riemann Hypothesis. Among other things, it im-
plies that the level of distribution is D = x1−ε in Examples 18.4 and 18.6,
and D = N1−ε in Example 18.5. Partial results towards it have been proven
by Bombieri, Iwaniec, Fouvry, Friedlander and Zhang [11–13, 49–52, 188].
On the other hand, Friedlander, Granville, Hildebrand and Maier [53–55]
disproved (18.11) when Q = x/ exp(A(1− ε)(log log x)2/ log log log x) build-
ing on the earlier work of Maier [134] that we will discuss in Chapter 30. �

The fundamental lemma of sieve theory

Assuming Axioms 1–3, our goal is to substitute the exact identity

S(A,P) =
∑
d|P

μ(d)Ad

by upper and lower bounds

(18.12)
∑
d∈D−

μ(d)Ad � S(A,P) �
∑
d∈D+

μ(d)Ad,

where D± are certain subsets of {d|P} for which both sides of (18.12) can
be bounded asymptotically. We will accomplish this goal in Chapter 19 by
extending and improving the ideas of Brun presented in Chapter 17.

Replacing Ad by Axiom 1 in (18.12), we find that

X
∑
d∈D−

μ(d)ν(d)

d
+

∑
d∈D−

μ(d)rd � S(A,P) � X
∑
d∈D+

μ(d)ν(d)

d
+

∑
d∈D+

μ(d)rd.
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In order to be able to apply Axiom 3 and estimate the sum of the
remainder terms, we must assume that D± ⊆ {d|P, d � D}. On the other
hand, the sets D± must be chosen in a way that

(18.13)
∑
d∈D±

μ(d)ν(d)

d
∼

∑
d|P

μ(d)ν(d)

d
=

∏
p∈P

(
1− ν(p)

p

)
.

Let y = maxP, so that P ⊆ {p � y}. Since the sets D± can only contain
integers � D, considerations based on Theorems 16.3 and 16.4 suggest that
(18.13) can be accomplished as long as the ratio logD/ log y is large enough.
The following theorem confirms this heuristic.

Theorem 18.11 (The Fundamental Lemma of Sieve Theory). Consider A
and P satisfying Axioms 1 and 2 for some κ, C > 0. Set y = maxP and
uκ = 1 + 2/(e0.53/κ − 1), and note that 1 < uκ < 1 + 3.8κ.

(a) Uniformly for u � 1, we have

S(A,P) = (1 +Oκ,C(u
−u/2))X

∏
p∈P

(
1− ν(p)

p

)
+O

( ∑
d�yu, d|P

|rd|
)
.

(b) Assume Axiom 3 with m = 1, A = κ+1 and D � yuκ. If logX � log y
and D,X are large enough in terms of κ and C, then

X

100

∏
p∈P

(
1− ν(p)

p

)
� S(A,P) � 5X

∏
p∈P

(
1− ν(p)

p

)
.

We will prove Theorem 18.11 in Chapter 19. In part (b) of its statement,

the crucial quantity is D1/uκ because it determines the maximum size of
primes we can sieve with. To get a sense of the quality of our result when κ
and D vary, we discuss the case of twin primes.

Example 18.12. Recall that we have two set-ups for getting our hands
on twin primes. In the first set-up, given in Example 18.2, we have κ = 2
and D = x1−o(1), so that D1/uκ = x1/u2−o(1) ≈ x1/7.59. On the other
hand, in Example 18.4 we have κ = 1 and D = x1/2−o(1), so that D1/u2 =
x0.5/u1−o(1) ≈ x1/7.72. Hence, the first set-up allows us to sieve with larger
primes. However, when κ = 1, it is possible to establish a version of Theorem
18.11(b) valid for y � D1/2−ε, which becomes y � x1/4−ε in the set-up of
Example 18.4 (see [59, Chapter 12]). On the contrary, the best known

version of Theorem 18.11 when κ = 2 is valid for y � D1/4.2664, which

becomes y � x1/4.2664 in the set-up of Example 18.2 (see [33, Theorem 6.1]
or [34]). �

Corollary 18.13. For x � 2, we have

π2(x) = #{ p � x : p+ 2 is prime } 
 x/(log x)2
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and
#{ p � x : Ω(p+ 2) � 7 } � x/(log x)2.

Proof. For the first part, note that

π2(x) � S(A,P) +O(x1/7.8)

with A = { p + 2 : p � x } and P = {p � x1/7.8}. By our analysis of
Example 18.4, we may apply Theorem 18.11(b) with X = li(x), ν(d) =
1(d,2)=1d/ϕ(d) and level of distribution D � √

x/(log x)100 (assuming the
Bombieri-Vinogradov theorem). Consequently,

S(A,P) � li(x)
∏
p∈P

(
1− ν(p)

p

)
∼ x

log x

∏
3�p�x1/7.8

(
1− 1

p

)
� x

(log x)2

by Mertens’ third estimate. The claimed upper bound on π2(x) then follows.

For the second part, we may assume that x is large enough. We have

#{ p � x : Ω(p+ 2) � 7 } � S(A,P) � x

(log x)2
.

Indeed, if p � x is counted by S(A,P), then all prime factors of p + 2 are

> x1/7.8. But an integer � x + 2 can have at most seven prime factors
> x1/7.8. This completes the proof. �

Remark 18.14. Chen [24,25] proved that the second part of Corollary 18.13
is true with the number 7 replaced by 2. A proof of this result that comes
remarkably close to the twin prime conjecture is presented in [59, Section
25.6] and in [86, Chapter 11]. �

Exercises

Exercise 18.1. For x � y � 3, use Theorem 18.11 to prove:

(a) If m is x1/u-smooth, then

#{n � x : (n,m) = 1 } = (1 +O(e−100u)) · xϕ(m)/m .

(b) #{x− y < p � x} 
 y/ log y .

(c) #{x− y < p � x : (p2 + 1)/2 is prime } 
 y/(log y)2 .

(d) #{n � x : Ω(n2 + 1) � 7 } � x/ log x .

(e) If h = (h1, . . . , hk) is a fixed admissible k-tuple, then

#{n � x : n+ h1, . . . , n+ hk are all primes } 
h x/(log x)k .

(f) #{ p � x : p− 1 is the sum of two squares } 
 x/(log x)3/2.
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Chapter 19

The Fundamental
Lemma of Sieve Theory

In Chapter 17, we saw how Brun used some simple facts about the
inclusion-exclusion principle to obtain upper and lower bounds for π2(x, z).
In the present chapter, we will generalize and improve these bounds with
our end goal being to establish the Fundamental Lemma of Sieve Theory.

Given an integer n and a set of primes P, let us write P−(n) to denote
the smallest prime factor of n from the set P with the convention that
P−(n) = 1 if (n,P) = 1. Given any sequence A = (an)

∞
n=1 ⊂ R�0 with∑

n�1 an < ∞, we have

S(A,P) =
∑

(n,P)=1

an =
∑
n�1

an −
∑
p1∈P

∑
P−(n)=p1

an

=
∑
n�1

an −
∑
p1∈P

∑
P−(m)�p1

ap1m.(19.1)

This formula is called Buchstab’s identity and its importance is that it allows
us to perform inclusion-exclusion one step at a time. To see why it is true,
note that if n � 1 is such that (n,P) > 1, then there is a unique p1 ∈ P
with P−(n) = p1. Equivalently, p1|n and P−(n/p1) � p1. Setting n = mp1
completes the proof of (19.1).

Recall the notation Ad defined in (18.2). The first term on the right side
of (19.1) equals A1, so it can be estimated using Axiom 3. Next, we want
to estimate the double sum over p1 and m in (19.1). For each fixed p1 ∈ P,
we are asking for a bound on S(Ap1 ,P ∩ [2, p1)), where Ap1 = (ap1m)∞m=1.
Getting such a bound might be impossible for certain p1. For instance, if

192
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p1 is bigger than the level of distribution D, then we cannot say anything
meaningful about

∑
m�1 ap1m = Ap1 . For this reason, we will discard certain

“inconvenient” primes p1. In general, given any set Π1 ⊆ P, we have the
upper bound

S(A,P) � A1 −
∑

p1∈Π1

∑
P−(m)�p1

ap1m.

We now iterate the above argument: applying Buchstab’s identity (19.1)
with P ∩ [2, p1) in place of P, and with (ap1m)∞m=1 in place of (an)

∞
n=1, yields∑

P−(m)�p1

ap1m = Ap1 −
∑

p2∈P∩[2,p1)

∑
P−(m)�p2

ap1p2m.

Hence, our upper bound for S(A,P) can be rewritten as

S(A,P) � A1 −
∑

p1∈Π1

Ap1 +
∑∑
p2<p1

p1∈Π1, p2∈P

∑
P−(m)�p2

ap1p2m.

The “unknown” rightmost sum has non-negative weight now, so we cannot
drop any potentially inconvenient terms from it. We rewrite it using a new
application of Buchstab’s identity (19.1), this time with P ∩ [2, p2) as our
set of primes, and with (ap1p2m)∞m=1 in place of (an)

∞
n=1. Thus

S(A,P) � A1 −
∑

p1∈Π1

Ap1 +
∑∑
p2<p1

p1∈Π1, p2∈P

Ap1p2

−
∑∑∑
p3<p2<p1

p1∈Π1, p2,p3∈P

∑
P−(m)�p3

ap1p2p3m.

We may now choose any set Π3 ⊆ P × P × P and obtain an upper bound:

S(A,P) � A1 −
∑

p1∈Π1

Ap1 +
∑∑
p2<p1

p1∈Π1, p2∈P

Ap1p2

−
∑∑∑
p3<p2<p1

p1∈Π1, (p1,p2,p3)∈Π3

∑
P−(m)�p3

ap1p2p3m.

Continuing this way, we find that, given any choice of sets Π2j−1 ⊆
P2j−1, j ∈ Z�1, we have the general upper bound

(19.2) S(A,P) �
∑
d∈D+

μ(d)Ad,

where

(19.3) D+ =

{
d = p1 · · · pr :

p1 > · · · > pr, pj ∈ P for all j,
(p1, . . . , pj) ∈ Πj for all odd j � r

}
.
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Similarly, given any choice of sets Π2j ⊆ P2j , j ∈ Z�1, iterating Buch-
stab’s identity and dropping certain terms at every even step, leads us to
the lower bound

(19.4) S(A,P) �
∑
d∈D−

μ(d)Ad,

where

(19.5) D− =

{
d = p1 · · · pr :

p1 > · · · > pr, pj ∈ P for all j,
(p1, . . . , pj) ∈ Πj for all even j � r

}
.

Evidently, this construction offers a great deal of flexibility. For example,
the choice Πj = Pj for j � 2� and Πj = ∅ for j > 2� corresponds to the
Bonferonni inequalities that led to (17.5) (see also Exercise 17.2). This
choice is often called Brun’s pure sieve.

Generally speaking, the upper and lower bounds for S(A,P) we obtained
in (19.2) and (19.4) constitute part of the theory of the so-called combina-
torial sieve. This is not the only way of producing bounds for S(A,P), as
we will see in Chapter 21.

Brun’s sieve

Brun introduced more sophisticated choices of sets Πj that can be motivated
by considering what the prime factors of a typical integer look like. We
present a variation of his argument below.

Throughout, we let

y = maxP and D = yu.

Recall that S(y) denotes the set of y-smooth numbers. In view of relation
(18.13) and the discussion surrounding it, our goal is to choose the sets Πj

in such a way that

(19.6)
∑
d∈D±

μ(d)ν(d)

d
∼

∑
d|P

μ(d)ν(d)

d
=

∑
d∈S(y)

μ(d)ν(d)1d|P
d

,

while ensuring that D± ⊆ [1, D].

If we assume that ν(p)1p∈P ∼ κ on average (e.g. we assume Axiom 2′),
then ν(d)1d|P behaves similarly to κω(d) on average. Now, let p1 > p2 >
· · · > pr be the prime factors of d in decreasing order. A variation of Theo-
rem 16.1 implies that, when we weigh d ∈ S(y) with κω(d)/d, the sequence
{log p1, . . . , log pr} typically decays exponentially with ratio of consecutive
terms ≈ exp(−1/κ). In addition, for the largest prime factor, we typically
have log p1 � log y. Hence, the typical asymptotic behavior of the prime
factors of d is

log pj ≈ (log y) · e−j/κ.
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Here we are weighing d with μ(d)ν(d)1d|P/d that has alternating signs, but
we still expect a similar behavior for the prime factors of d: almost all the
weight of

∑
d∈S(y) μ(d)ν(d)1d|P/d should be supported on integers for which

log pj/ log y ≈ exp(−cj/κ) for some appropriate c.

Motivated by the above discussion, we set

(19.7) Πj = { (p1, . . . , pj) ∈ Pj : p1 > · · · > pj , pj � yj },

where yj are certain cut-off parameters that decay doubly exponentially.
Their precise definition is a bit technical: given an integer J � 0 and real
numbers α ∈ (0, 1) and w ∈ [2, y], we let

(19.8) y2j−1 = y2j =

⎧⎪⎨⎪⎩
y if j � J,

yα
j−J

if J < j � K,

w otherwise,

where K is the largest integer such that yα
K−J � w.

Note that yj = y for j � 2J , so that the sets Πj do not restrict the first
2J prime factors of integers d ∈ D±. This will ensure (19.6) when J → ∞,
provided that α is close enough to 1. In addition, note that the sets Πj do
not restrict the prime factors � w of integers d ∈ D±. This last condition
is of a more technical nature and the reason why we insert it will become
clearer later on (see relation (19.13) below).

Choosing J , α and w appropriately, we prove:

Theorem 19.1 (The Fundamental Lemma of Sieve Theory, II). Let κ > 0,

C � 1, y � 1, P ⊆ {p � y} and D = yu with u � uκ = 1 + 2/(e0.53/κ − 1).
If D is large enough in terms of κ and C, then there are two arithmetic
functions λ± such that:

(a) λ±(1) = 1, |λ±| � 1, supp(λ±) ⊂ { d|P : d � D };
(b) (1 ∗ λ−)(n) � 1(n,P)=1 � (1 ∗ λ+)(n) for all n ∈ N;

(c) if ν is any multiplicative function such that 0 � ν(p) < p for all p ∈ P,
and which satisfies Axiom 2 with parameters κ and C, then

11

103

∏
p∈P

(
1− ν(p)

p

)
�

∑
d|P

λ−(d)ν(d)

d
�

∑
d|P

λ+(d)ν(d)

d
� 4.9

∏
p∈P

(
1− ν(p)

p

)

and
∑
d|P

λ(d)ν(d)

d
= {1+Oκ,C(u

−u/2)}
∏
p∈P

(
1− ν(p)

p

)
for λ ∈ {λ+, λ−}.

Firstly, let us prove how this more technical form of the fundamental
lemma allows us to deduce Theorem 18.11.
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Proof of Theorem 18.11 assuming Theorem 19.1. Let us consider λ±

as in the statement of Theorem 19.1, with P, y, κ, C as in Theorem 18.11 and
D = yu. Since 1(n,P)=1 � (1∗λ+)(n), we have S(A,P) �

∑
n an

∑
d|n λ

+(d).

Interchanging the order of summation and applying Axiom 1 yields the up-
per bound

S(A,P) � X
∑
d

λ+(d)ν(d)

d
+R+, where R+ :=

∑
d

λ+(d)rd.(19.9)

Similarly, we have the lower bound

(19.10) S(A,P) � X
∑
d

λ−(d)ν(d)

d
+R−, where R− :=

∑
d

λ−(d)rd.

Since |λ±| � 1 and supp(λ±) ⊂ {d|P, d � D}, we have |R±| �
∑

d|P, d�D |rd|.
If we assume Axiom 3 with A = κ + 1 and m = 1, we thus have |R±| �
X/(logX)κ+1. If we further suppose that logX � log y and that X is large
enough, then Axiom 2 implies that |R±| � 10−100X

∏
p∈P(1− ν(p)/p).

By the above discussion and Theorem 19.1, both parts of Theorem 18.11
follow immediately when u � uκ. It remains to prove part (a) when u � uκ.

Let z = D1/uκ � y and P�z = P ∩ [2, z]. We then have

0 � S(A,P) � S(A,P�z) 
κ,C X
∏

p∈P�z

(1− ν(p)/p)

by the portion of part (a) already proven. In view of Axioms 1 and 2, we
have

1 �
∏

p∈P�z
(1− ν(p)/p)∏

p∈P(1− ν(p)/p)
� (1 + C/ log z) · (uκ/u)κ 
κ,C 1.

Hence, 0 � S(A,P) 
 X
∏

p∈P(1− ν(p)/p), and Theorem 18.11(a) follows
in this case too by assuming the implicit constant in its statement is large
enough. �

Proof of Theorem 19.1. Let y∗ = y∗(κ,C) be a large enough constant to
be chosen later. If y � y∗, we simply take λ±(d) = μ(d) · 1d|P . We then
trivially have ∑

d|P

λ±(d)ν(d)

d
=

∏
p∈P

(
1− ν(p)

p

)
.

In addition, any d in the support of λ± satisfies d �
∏

p�y∗ p � D provided
that D is large enough. This proves the theorem in this case.

Assume now that y � y∗. Let ε = ε(κ,C) be a small enough constant,
and let u∗ = u∗(κ,C, ε) be a large enough constant, both to be chosen later.
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We then define λ±(d) := 1d∈D±μ(d) with the sets Πj given by (19.7) and
the parameters yj satisfying (19.8) with

w =
ε log y

2
,

{
α = e−0.53001/κ, J = 0 if uκ � u � u∗,

α = e−5/u, J = �3u/10	 if u > u∗.

To check that λ± satisfy condition (a), we must verify that D± ⊂ [1, D].
If d = p1 · · · psd0 ∈ D− with p1 > p2 > · · · > ps > w and d0|

∏
p∈P∩[2,w] p,

then p1, . . . , p2J+1 � y and p2j+1 � p2j � y2j for all j � J +1. In addition,
if y∗ is large enough, then our choice of w and the Prime Number Theorem
imply that d0 �

∏
p�w p � yε for all y � y∗. Hence,

(19.11)
log d

log y
� log d0

log y
+ 2J + 1 + 2

∑
j�J+1

αj−J � ε+ 2J + 1 +
2

α−1 − 1
.

The right side of (19.11) is � u if u � u∗ and u∗ is large enough, because
1/(α−1 − 1) ∼ u/5 in this case. In addition, the right side of (19.11) is � u
if u ∈ [uκ, u

∗] and ε is small enough, by the definition of uκ. Hence, there
are choices of u∗ and ε such that D− ⊂ [1, D].

Similarly, if d = p1 · · · psd0 ∈ D+ with p1 > p2 > · · · > ps > w and
d0|

∏
p∈P∩[2,w] p, then p1, . . . , p2J � y, p2j � p2j−1 � y2j−1 for all j � J +1,

and d0 � yε. Arguing as above, we infer that

log d

log y
� ε+ 2J + 2

∑
j�J+1

αj−J � u,

provided that ε and u∗ are chosen appropriately. As a consequence, we also
have D+ ⊂ [1, D]. This establishes condition (a).

To check that (b) is satisfied, we follow the argument leading to (19.2)
and (19.4), but this time starting from the indicator version of Buchstab’s
identity that reads

(19.12) 1(n,P)=1 = 1−
∑
p∈P

1p1|n · 1P−(n/p1)�p1 .

Alternatively, we may simply note that (b) follows by applying (19.2) and
(19.4) to the sequence A defined by ak = 1k=n.

It remains to prove that the functions λ± satisfy condition (c). To this
end, set

V (z) =
∑

d|P∩[2,z)

μ(d)ν(d)

d
=

∏
p∈P, p<z

(
1− ν(p)

p

)
,

as well as

β = −κ logα =

{
0.53001 if uκ � u � u∗,

5κ/u if u > u∗.
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Since ν(p) < p for all p ∈ P, we have V (z) > 0 for all z. In addition, since

y2j−h = max{yαj−J
, w} for j > J and h ∈ {0, 1}, Axiom 2 implies that

V (y2j−h)

V (y)
=

∏
p∈P∩(y2j−h,y]

(
1− ν(p)

p

)−1

�
(
1 +

C

logw

)
α−κ(j−J)

� exp((j − J)β + ε),(19.13)

since we may assume that y∗ is large enough so that w = 0.5ε log y � eC/ε

for all y � y∗. We remark that (19.13) also implies that

(19.14)
∑

p∈P∩(y2j−h,y]

ν(p)

p
� (j − J)β + ε (j > J, h ∈ {0, 1}),

as it can be seen using the inequality ν(p)/p � − log(1− ν(p)/p).

Now, let us consider d|P such that d /∈ D+. If we write d = p1 · · · pr,
then there is a unique integer j > J such that

(19.15) p2j−1 > y2j−1 and p2k−1 � y2k−1 (1 � k < j).

Hence, there is a unique way to write

d = p1 · · · p2j−1d
′,

where d′|
∏

p∈P∩[2,p2j−1)
p and the primes p1, . . . , p2j−1 are a strictly decreas-

ing sequence of elements of P satisfying (19.15). Since μ(d) = −μ(d′) and ν
is multiplicative, we conclude that

(19.16) V (y)−
∑
d|P

λ+(d)ν(d)

d
= −

∑
j>J

V2j−1,

where we have set

Vm =
∑

ym<pm<···<p1�y
p1,...,pm∈P

pi�yi (i<m, i≡m (mod 2))

ν(p1) · · · ν(pm)

p1 · · · pm
· V (pm).

Similarly, we have

(19.17) V (y)−
∑
d|P

λ−(d)g(d)

d
=

∑
j>J

V2j.

Next, we fix an integer m > 2J and proceed to the estimation of Vm.
Note that 0 � V (pm) � V (ym) for pm > ym. Since the function ν is non-
negative, we infer that

0 � Vm � V (ym)
∑

ym<pm<···<p1�y
p1,...,pm∈P

ν(p1) · · · ν(pm)

p1 · · · pm
.
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By rearranging the primes p1, . . . , pm in all possible m! ways, we find that

Vm � V (ym)

m!

∑
· · ·

∑
p1,...,pm∈P∩(ym,y]

distinct

ν(p1) · · · ν(pm)

p1 · · · pm
� V (ym)

m!

( ∑
p∈P∩(ym,y]

ν(p)

p

)m

.

Writing m = 2j − h with h ∈ {0, 1} and j > J , and applying (19.13) and
(19.14), we arrive at the inequality

V2j−h � V (y) · e
(j−J)β+ε((j − J)β + ε)2j−h

(2j − h)!
.

If we let j = J + � and sum the above inequality over all � � 1, we find that

(19.18)
∑
j>J

V2j−h � V (y)

∞∑
�=1

eβ�+ε(β�+ ε)2J+2�−h

(2J + 2�− h)!
.

For the first part of the theorem, note that β� + ε � 0.53002� as long
as u∗ is large enough and ε is small enough. In particular, the summands
on the right-hand side of (19.18) are decreasing as functions of J , and we
deduce that∑

j>J V2j−h

V (y)
�

∞∑
�=1

e0.53002�(0.53002�)2�−h

(2�− h)!
�

{
1− 11/103 if h = 0,

3.9 if h = 1,

where the last inequality is verified numerically. Together with (19.16) and
(19.17), this completes the proof of the first part of condition (c).

For the second part of (c), we may assume that ε � κ and u � u∗, with
u∗ large enough so that β = 5κ/u � min{1/6, ε/2} and J = �3u/10	 � 2ε/β.
Since n! � (n/e)n for all n ∈ Z�0, we have∑

j>J V2j−h

V (y)
�

∞∑
�=1

eβ�+ε(β�+ ε)2J+2�−h

(2J + 2�− h)!
�

∞∑
�=1

(
eβ/2+1(β�+ ε)

2J + 2�− h

)2J+2�−h

.

In addition, noticing that e1+β/2 � e13/12 � 3 and that β�+ε � 2max{β�, ε},
we find that

eβ/2+1(β�+ ε)

2J + 2�− h
�

{
3ε/J � 10κ/u if � � ε/β,

3β = 15κ/u if � > ε/β.

In any case, the right-hand side is � 15κ/u. Assuming that u∗ � 30κ as we
may, we conclude that∑

j>J V2j−h

V (y)
�

∞∑
�=1

(15κ/u)2J+2�−h 
 (15κ/u)2J 
 u−u/2.

This completes the proof of the theorem. �
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Sieve weights

A careful reexamination of the proof of the Fundamental Lemma of Sieve
Theory reveals that its most crucial component is the construction of the
arithmetic functions λ± from Theorem 19.1. These functions replace the
exact Möbius inversion formula

(19.19) 1(n,P)=1 =
∑

d|(n,P)

μ(d)

with an upper and a lower bound of the form

(19.20)
∑
d|n

λ−(d) � 1(n,P) �
∑
d|n

λ+(d).

In general, a function λ+ that is supported on { d|P : d � D } and that
satisfies the right inequality of (19.20) for all n is called an upper bound sieve
of level D for the set of primes P. We then write λ+ ∈ Λ+(D,P). Similarly,
an arithmetic function λ− : N → R that is supported on { d|P : d � D } and
that satisfies the left inequality of (19.20) for all n is called a lower bound
sieve of level D for the set of primes P, and we write λ− ∈ Λ−(D,P).

Given any choice of sets Πj ⊆ Pj , the functions λ±(d) = 1d∈D±μ(d) with
D± defined by (19.3) and (19.5) are in the classes Λ±(D,P). Indeed, this
assertion follows from relation (19.12) and the discussion surrounding it.

All sieves λ± ∈ Λ±(D,P) yield bounds for S(A,P) as per (19.9) and
(19.10). A good choice of λ± should have the additional property that the
upper bound in (19.9) and the lower bound in (19.10) are as close to each
other as possible. This roughly means that the convolutions w±

n = (1∗λ±)(n)
behave on average similarly to 1(n,P)=1.

The above point of view of sieve methods will be very useful when study-
ing gaps between primes in Chapters 28 and 29, where our goal will be to
construct a sieve weight wn that correlates strongly with many of the inte-
gers n, n + 1, . . . , n + H being prime. In particular, the non-negativity of
the sieve weights 1 ∗ λ+ will be crucial.

Sifting limits and the beta sieve

There is a construction of sieve weights that yields a version of Theorem
18.11 with a smaller constant in place of uκ: given a parameter β, we let

(19.21) Πj = { (p1, p2, . . . , pj) ∈ Pj : p1 > · · · > pj , p1 · · · pj < D/pβj }.
The upper and lower bound sieves produced from these sets Πj are together
called the beta sieve. It was introduced by Rosser and was fully developed
by Iwaniec. To explain why we choose the sets Πj in this specific way, we
must introduce the concept of the sifting limit .
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Given a dimension κ, let βκ be the infimum of all numbers β such that

(19.22) S(A,P) � X
∏
p∈P

(
1− ν(p)

p

)
whenever the pair (A,P) satisfies Axioms 1–3, the second one with dimen-
sion κ and the third one with level of distribution D � (maxP)β. That is
to say, βκ is the infimum of all numbers with which we can replace uκ in
Theorem 18.11 and still have a version of the lower bound there.

Now, given a pair (A,P) as above and some primes p1 > · · · > pj from
the set P, we have

Ap1···pjd =
ν(d)

d
· ν(p1 · · · pj)

p1 · · · pj
X + rp1···pjd

whenever d|
∏

p∈P∩[2,pj) p. We thus see that Axiom 1 holds for the se-

quence Ap1···pj := (ap1···pjm)∞m=1 and the set of primes P ∩ [2, pj) with

X
∏j

i=1 ν(pi)/pi in place of X, rp1···pjd in place of rd and with the same
multiplicative density ν(d)/d. It is reasonable to expect that Ap1···pj has
level of distribution D/(p1 · · · pj) (for instance, consider the case when A =
{x− y < n � x}). Hence, if we assume that β > βκ, then

S(Ap1···pj ,P ∩ [2, pj)) � X
∏
p∈P
p<pj

(
1− ν(p)

p

)
when D/(p1 · · · pj) � pβj

by our hypothesis (19.22). Assume, now, we want to construct a lower bound
sieve for S(A,P) using iterations of Buchstab’s identity (19.1) as explained
earlier in this chapter: we have

S(A,P) = A1 −
∑
p1∈P

S(Ap1 ,P ∩ [2, p1))

= A1 −
∑
p1∈P

Ap1 +
∑∑

p1,p2∈P, p2<p1

S(Ap1p2 ,P ∩ [2, p2)).

Since we cannot control the terms with D/(p1p2) < pβ2 , we drop them and
set

Π2 = { (p1, p2) ∈ P2 : p1 > p2, p1p2 < D/pβ2 }.
Continuing as above, and dropping each time the terms with D/(p1 · · · pj) <
pβj , we arrive at the choice (19.21) for the sets Πj .

Notice that our hypothesis that relation (19.22) holds when maxP �
D1/β is fed into itself, thus becoming a “self-fulfilling prophecy”. This is
a typical feature of sieve-theoretic functions, whose asymptotic behavior is
often ruled by delay differential equations. We already saw this phenomenon
in the study of smooth and rough numbers. In the case of the beta sieve,
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Iwaniec proved that choosing the sets Πj by (19.21) for an appropriate value
of β leads to the inequalities

f(u) + o(1) � S(A,P)∏
p∈P(1− ν(p)/p)

� F (u) + o(1) (D,X →∞)

under Axioms 1–3, where P ⊆ [1, y], u = logD/ log y and the functions f and
F are the solutions to the following system of delay differential equations:{
uκF (u) = A if u � β + 1,

uκf(u) = B if u � β,

{
(uκF (u))′ = κuκ−1f(u− 1) if u > β + 1,

(uκf(u))′ = κuκ−1F (u− 1) if u > β

for certain parameters A and B. In particular, we have

A > 1, B > 0, β = 1 when κ < 1/2,

A = 2(eγ/π)1/2, B = 0, β = 1 when κ = 1/2,
A > 1, B = 0, 1 < β < 2 when κ > 1/2,
A = 2eγ , B = 0, β = 2 when κ = 1,
A ≈ 21.7484437308, B = 0, β ≈ 4.8339865967 when κ = 2,

where the calculation of A and β in the last two lines is due to S. Blight.

A comprehensive discussion of the beta sieve can be found in Chapter
11 of the book by Friedlander and Iwaniec [59]. In particular, Section 11.19
there gives numerical approximations for A and β for more values of κ.

Exercises

Exercise 19.1. Given a finite set of primes and multiplicative density function
δ : N → [0, 1], we set

Vδ(P) =
∏
p∈P

(1− δ(p)).

If, in addition, δ(p) < 1 for all p ∈ P, we define the relative density function

(19.23) δ∗(q) =
∏
p|q

δ(p)

1− δ(p)
for all q|P.

(a) If λ is an arithmetic function supported on {q|P}, prove that∑
q|P

λ(q)δ(q) = Vδ(P)
∑
q|P

δ∗(q)(1 ∗ λ)(q).

(b) If λ± ∈ Λ±(D,P) and δ1, δ2 are two multiplicative functions with 0 � δ1(p) �
δ2(p) < 1 for all p ∈ P, then prove the monotonicity principles∑

q|P λ−(q)δ2(q)

Vδ2(P)
�

∑
q|P λ−(d)δ1(q)

Vδ1(P)
� 1

and ∑
q|P λ+(q)δ2(q)

Vδ2(P)
�

∑
q|P λ+(q)δ1(q)

Vδ1(P)
� 1.
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Exercise 19.2. It is often easier to construct upper bound sieves rather than lower
bound ones. This exercise shows how to pass from a collection of upper bound sieves
to a lower bound sieve.

Consider a number D � 1 and a set of primes P. Suppose that for each prime
p ∈ P we are given a sieve λ+

p ∈ Λ+(D/p,P ∩ [2, p)). Show that the function

λ−(d) =

⎧⎪⎨⎪⎩
1 if d = 1,

−λ+
p (d/p) if d|P, d > 1, p = P−(d),

0 otherwise.

is a lower bound sieve of level D for the set of primes P.

Exercise 19.3∗ (The Brun-Hooley sieve). This exercise develops a variation of
Brun’s pure sieve that leads to results of the same strength as Theorem 18.11.
Throughout, A and P satisfy Axioms 1–3 with sifting dimension κ, level of distri-
bution D and A = κ + 1. In addition, y = maxP and u = logD/ log y, with u
assumed to be large enough in terms of κ and C.

(a) If P =
⋃R

r=1 Pr is a partition of the set of primes P, then prove that

1(n,P)=1 �
R∏

r=1

∑
dr|Pr

ω(dr)�2	r

μ(dr)

for any choice of integers �r.

(b) Fix ε > 0 and λ > 1. Set yr = yλ
1−r

and let R be the biggest integer such that
yR � eC/ε. Then define PR = P ∩ [2, yR] as well as Pr = P ∩ (yr+1, yr] when
1 � r � R− 1. Finally, set

D+ = { d = d1 · · · dR : dr|Pr, ω(dr) � 2�r (1 � r � R− 1) }
with �r=

⌊
r(u− u0)(1− 1/λ)2/2

⌋
, where u0=log(

∏
p∈PR

p)/ log y. Prove that

the function λ+(d)=1d∈D+μ(d) is in the class Λ+(D,P).

(c) Let ν be the function from Axiom 1 and set

V +
r =

∑
d|Pr, ω(d)�2	r

μ(d)ν(d)

d
, Vr =

∑
d|Pr

μ(d)ν(d)

d

and Er = V +
r − Vr, with the convention that �R = ∞. Prove that

0 � Er �
∑

d|Pr, ω(d)=2	r+1

ν(d)

d
� (κ logλ+ ε)2	r+1

(2�r + 1)!
for r = 1, . . . , R− 1.

(d) Prove that

R∏
r=1

V +
r −

R∏
r=1

Vr =
R−1∑
r=1

V1 · · ·Vr−1ErV
+
r+1 · · ·V +

R−1VR � SeSV1 · · ·VR

with S =
∑R−1

r=1 Er/Vr. Conclude that

S(A,P) � (1 +Oκ,C((u+ 1)−u/2 + 1/ logX))X
∏
p∈P

(
1− ν(p)

p

)
.
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(e) Use Buchstab’s identity to show that

S(A,P) � (1−Oκ,C(u
−u/2 + 1/(logX)C))X

∏
p∈P

(
1− ν(p)

p

)
.

Exercise 19.4.∗ Assume the notation and assumptions of Theorem 19.1. In par-
ticular, λ± are the sieve weights constructed in its proof, y = maxP and D = yu.
All implied constants below may depend on the parameters κ and C.

(a) Let f : N → C be an arithmetic function for which there is a multiplicative
function ν as in Theorem 19.1(c) and some S � 0 such that∣∣∣∣ ∑

d|P∩[2,z)

μ(d)f(dm)

d

∣∣∣∣ � Sν(m)
∏

p∈P, p<z

(
1− ν(p)

p

)

for all m|
∏

p∈P, p�z p and all z ∈ [1, y]. For λ ∈ {λ+, λ−}, prove that

∑
d|P

λ(d)f(d)

d
=

∑
d|P

μ(d)f(d)

d
+O

(
S

uu/2

∏
p∈P

(
1− ν(p)

p

))
.

(b) Let ν be as in Theorem 19.1. Assume further there is some k � 0 such that
0 � ν(p) � k for all p ∈ P. For λ ∈ {λ+, λ−} and r ∈ N, prove that∑
d|P

λ(d)ν(d)(log d)r

d
=

∑
d|P

μ(d)ν(d)(log d)r

d
+O

(
(log y)r

uu/2

∏
p∈P

(
1− ν(p)

p

))
with the implied constant depending also on r and k.

(c) Let ν be as in Theorem 19.1. For λ ∈ {λ+, λ−} and x � y, prove that∑
n�x

(n,P)=1

ν(n)μ2(n)

n
=

∑
n�x

(λ ∗ 1)(n)ν(n)μ2(n)

n
+O

(
1

uu/2

∏
p�x
p/∈P

(
1 +

ν(p)

p

))
.

[Hint: Use part (a) with f(d) =
∑

a�x/d ν(da)μ
2(da)/a, ν∗(d) =

∏
p|d ν(p)/(1+

ν(p)/p) in place of ν, and S =
∏

p�x(1 + ν(p)/p) =
∏

p�x(1− ν∗(p)/p)−1.]

Exercise 19.5∗ (A study of the beta sieve). Let P be a set of primes and y =
1 + maxP. Given D = yu with u � 2, let λ±(d) = 1d∈D±μ(d) be the beta sieve
weights (i.e., D± are given by (19.3) and (19.5) with the sets Πj given by (19.21)).
In addition, let ν be a multiplicative function such that 0 � ν(p) � min{p − 1, k}
for all p ∈ P.

(a) Let m = 2j−h with h ∈ {0, 1}. Assume that p1 > p2 > · · · are some primes in
P such that p1 · · · pm−1p

β+1
m > D and p1 · · · pn−1p

β+1
n � D for all n < m with

n ≡ h (mod2). Prove that

p1p2 · · · p2i−h−1 � Dy−(u−1)
(

β−1
β+1

)i−1

(1 � i � j),

and deduce that pm > yδm with δm = u−1
β+1

(
β−1
β+1

)j−1 � 1
β+1

(
β−1
β+1

)m/2
.
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(b) If V (z) =
∏

p∈P, p<z(1− ν(p)/p) and

Vm =
∑

· · ·
∑

yδm<pm<···<p1�y
p1,...,pm∈P

p1···pm−1p
β+1
m >D

ν(p1 · · · pm)

p1 · · · pm
· V (pm),

prove that V (y) =
∑

d|P μ(d)ν(d)/d and

V (y)−
∑
j�1

V2j �
∑
d|P

λ−(d)ν(d)

d
�

∑
d|P

λ+(d)ν(d)

d
� V (y) +

∑
j�1

V2j−1.

(c) For any ε ∈ [0, 1), use Rankin’s trick to prove that

Vm � km

m!yε(u−β)

( ∑
yδm<p�y

1

p1−ε

)m

V (yδm).

(d) Show that there is a choice of β � 1 + 4k such that∑
d|P

λ±(d)ν(d)

d
= (1 +Ok(u

−u))V (y).

[Hint: Choose ε = w/ log y as in the proof of Theorem 16.3.]

(e) If u � 1 + 2/(e0.5295/k − 1) and all primes of P are large enough in terms of k,
prove that ∑

d|P

λ−(d)ν(d)

d
� V (y)

40
.

[Hint: Take ε = 0 in part (c).]

(f) Assume that logD � c + (1 + 2/(e0.5295/k − 1)) log y with c large enough in
terms of k. Construct a sieve λ∗ ∈ Λ−(D,P) that satisfies the conclusion of
part (e) even when P contains small primes. [Hint: Partition P = P1 ∪ P2,
where P1 = P ∩ [1, y0] and P2 = P ∩ (y0, y]. Any d|P can be uniquely written
as d = d1d2 with dj |Pj . Take λ

∗(d) = μ(d1)λ
−(d2) with λ− a lower bound beta

sieve of level D/ec for P2.]
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Chapter 20

Applications of sieve
methods

Sieve methods are a versatile tool that can be employed in a great variety
of ways. We demonstrate their utility by presenting several results where
they play a key role.

Primes in short arithmetic progressions

When y/q � xε, a strengthening of Montgomery’s conjecture (see Exercise
17.6) states that

(20.1) #{x− y < p � x : p ≡ a (mod q) } ∼ y

ϕ(q) log x
(x →∞).

This statement is well beyond the reach of the Generalized Riemann Hy-
pothesis, which is not sufficient to detect primes in (x− y, x] when y � √

x,
nor primes p ≡ a (mod q) that are � q2. Nevertheless, we can use a sieve to
prove an upper bound of the expected order of magnitude.

Theorem 20.1 (The Brun-Titchmarsch inequality). Uniformly for q ∈ N,
a ∈ (Z/qZ)∗ and x � y � q, we have

#{x− y < p � x : p ≡ a (mod q) } 
 y

ϕ(q) log(2y/q)
.

Proof. When y � 10q, the result follows trivially by the fact that there
are � y/q + 1 integers in the arithmetic progression a (mod q) that also
lie in the interval (x − y, x]. Let us now assume that y > 10q and set

A = {x− y < n � x : n ≡ a (mod q) } and P = {p � z} with z = (y/q)1/4.

206
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The Titchmarsch-Linnik divisor problem 207

Any prime p ∈ (x − y, x] that is in the congruence class a (mod q) is
either � z, or is counted by S(A,P). Hence,

(20.2) #{x− y < p � x : p ≡ a (mod q) } � S(A,P) + z.

We estimate S(A,P) using Theorem 18.11(b). We must first verify Axioms
1–3. We have

Ad = #{x− y < n � x : n ≡ 0 (mod d), n ≡ a (mod q) }.
If (d, q) > 1, there are no integers n in the intersection of the congruence
classes 0 (mod d) and a (mod q), because (a, q) = 1. We thus have Ad = 0
when (d, q) > 1. Assume now that (d, q) = 1. For such integers d, the
Chinese Remainder Theorem implies that there is a unique congruence class
ad (mod qd) such that Ad = #{x−y < n � x : n ≡ ad (mod qd) }. Therefore,
Ad = y/(qd)+rd with |rd| � 2. In conclusion, Axiom 1 holds with X = y/q,
ν(d) = 1(d,q)=1 and |rd| � 2. Axiom 2 then obviously holds with κ = 1,

and Axiom 3 with m = 1, A = 2 and D = (y/q)/(log(y/q))3. We may thus
apply Theorem 18.11(b) and Mertens’ third estimate (Theorem 3.4(c)) to
deduce that

(20.3) S(A,P) 
 y

q

∏
p�z, p�q

(
1− 1

p

)
� y

q log z

∏
p�z, p|q

(
1− 1

p

)−1
.

The last product is �
∏

p|q(1− 1/p)−1 = q/ϕ(q). This completes the proof.
�

The Titchmarsch-Linnik divisor problem

Two consecutive integers are always coprime. More generally, we expect
their multiplicative structure to be more-or-less uncorrelated. Thus, even if
p is a prime number, then the integer p − 1 should still have the anatomy
of a “typical” integer as described in Theorem 16.1, except for obvious re-
strictions such as the fact that p − 1 is even if p > 2, or that p − 1 cannot
be congruent to 2 (mod 3) if p > 3. It is then reasonable to guess that∑

p�x

τk(p− 1) ≈ 1

log x

∑
n�x

τk(n) �k x(log x)k−2.

Titchmarsch studied the sum on the left-hand side when k = 2 and eval-
uated it asymptotically under the assumption of the Generalized Riemann
Hypothesis. Subsequently, Linnik removed this assumption, so that the fol-
lowing result now holds unconditionally.

Theorem 20.2. For x � 3, we have that∑
p�x

τ(p− 1) =
ζ(2)ζ(3)

ζ(6)
x+O

(
x log log x

log x

)
.
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Proof. We follow an argument due to Rodriguez [156]. Note that

τ(n) =
∑
ab=n

1 = 1n=� + 2
∑

a|n, a<
√
n

1.

Therefore,∑
p�x

τ(p− 1) = 2
∑
p�x

∑
a<

√
p−1

a|p−1

1 +O(
√
x)

= 2
∑

a<
√
x−1

(
π(x; a, 1)− π(a2 + 1; a, 1)

)
+O(

√
x)

by interchanging the order of summation of a and p. We have the crude
bound π(a2+1; a, 1) = O(a2/[ϕ(a) log(2a)]) from the Brun-Titchmarsch in-
equality. This bound is 
 x1/4 when a � x1/4, whereas it is 
 (x1/2/ log x) ·
a/ϕ(a) when a ∈ (x1/4, x1/2]. As a consequence,∑

a<
√
x−1

π(a2 + 1, a, 1) 
 x1/4 · x1/4 + x1/2

log x
· x1/2 
 x

log x
.

with the last estimate following by Theorem 14.2 applied with f(a) =
a/ϕ(a). In addition, the Bombieri-Vinogradov theorem (Theorem 18.9) im-
plies that ∑

p�Q

∣∣∣∣π(x, a, 1)− li(x)

ϕ(a)

∣∣∣∣ 
 x

log x

with Q =
√
x/(log x)3. Consequently,∑

p�x

τ(p− 1) = 2
∑
a�Q

li(x)

ϕ(a)
+ 2

∑
Q<a�

√
x−1

π(x, a, 1) +O

(
x

log x

)
.

Now, applying Wirsing’s theorem (Theorem 14.3) with f(a) = a/ϕ(a), we
find that∑

a�Q

1

ϕ(a)
=

ζ(2)ζ(3)

ζ(6)
logQ+O(1) =

ζ(2)ζ(3)

2ζ(6)
log x+O(log log x).

Since li(x) = x/ log x+O(x/ log2 x), we conclude that∑
p�x

τ(p− 1) =
ζ(2)ζ(3)

ζ(6)
x+ 2

∑
Q<a�

√
x−1

π(x, a, 1) +O

(
x log log x

log x

)
.

Finally, we bound crudely the sum over a ∈ [Q,
√
x− 1], taking advan-

tage that this is a short interval if we rescale it logarithmically (we have
log a = log x + O(log log x) when a ∈ [Q,

√
x− 1]). Indeed, using the
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Multiplicative functions over short arithmetic progressions 209

Brun-Titchmarsch inequality and Wirsing’s theorem once again with f(a) =
a/ϕ(a), we have that∑

Q<a�
√
x−1

π(x, a, 1) 

∑

Q<a�
√
x−1

x

ϕ(a) log x

 x log log x

log x
.

This completes the proof of the theorem. �

Multiplicative functions over short arithmetic progressions

Our last application of sieve methods is an analogue of the Brun-Titchmarsch
inequality for multiplicative functions that greatly generalizes Theorem 14.2.
It was proved by P. Shiu [165].

Theorem 20.3. Fix k ∈ N and ε > 0. Given any choice of q ∈ N, a ∈
(Z/qZ)∗, real numbers x � y � 1 with y/q � xε, and a multiplicative
function f such that 0 � f � τk, we have∑

x−y<n�x
n≡a (mod q)

f(n) 
k,ε
y

q
exp

{∑
p�x
p�q

f(p)− 1

p

}
.

Proof. All implied constants might depend on k and ε without further
notice. We may assume that x is large enough in terms of them. We begin
by showing a preliminary estimate.

Set z = y/q ∈ [xε, x] and note that
∑

z1/u<p�x 1/p � log u + O(1) for
u � 1. We thus infer the bound

(20.4)
∑

X−Y <n�X
n≡b (mod q)

P−(n)>z1/u

1 
 Y

q

∏
p�z1/u

p�q

(
1− 1

p

)

 uY

q
exp

{
−

∑
p�x
p�q

1

p

}

uniformly for X � Y � y/z1/2, u � 4 and (b, q) = 1, as it can be seen by

(20.3) applied with z1/u and b in place of z and a, respectively. Let us now
show how to deduce the general case of the theorem from (20.4).

Call S the sum in the statement of the theorem. The rough idea is to
fix some small parameter δ > 0 and to decompose each integer n in the
range of S as n = mm′ with P+(m) � zδ < P−(m′). (Such a decomposition
always exists and is unique.) Anatomical considerations based on Theorems

16.1 and 16.4 suggest that m � z1/2 for a “typical” n, as long as δ is small
enough. Fixing such an m (which must also be coprime to q), we see that
m′ ∈ (x/m− y/m, x/m] and m′ ≡ am (mod q), where m denotes the inverse
of m (mod q). In addition, since 0 � f � τk and Ω(m′) � log x/ log(zδ) =
O(1/δ) (see Exercise 2.9(e) for the last inequality), we have f(n) 
 f(m).
Thus, for each fixed m � z1/2, we should be able to estimate the sum over
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m′ using (20.4). The problem is that there are various “atypical” integers n
for which m′ > z1/2. Dealing with them creates various technicalities. We
give the details below.

First of all, since f(n) � τk(n) 
 nε/4, the contribution of integers
� z1/2 to S is 
 z1/2xε/4 � z3/4. We consider now an integer n > z1/2 in
the range of S. We decompose it in its prime factors, say n =

∏R
i=1 p

νi
i with

p1 < p2 < · · · < pR. If we let nr =
∏r

i=1 p
νi
i , then there is a unique integer

r ∈ [1, R] such that nr−1 � z1/2 < nr. We then write m = nr−1, p
′ = pr,

ν = νr and m′ = n/m, so that P−(m′) = p′, P+(m) < p′ and (p′)νm >√
z � m. Since 0 � f � τk and Ω(m′) � log x/ log p′ � log(z1/ε)/ log p′, we

have

(20.5) f(n) = f(m)f(m′) � f(m)kε
−1 log z/ log p′ .

Moreover, the relation mm′ ≡ a (mod q) and our assumption that (a, q) = 1
imply that (m, q) = 1 and m′ ≡ am (mod q).

From the above discussion, we infer that

S � S1 + S2 + S3 +O(z3/4),

where S1 is the part of S with p′ > z1/4, S2 is the part with p′ � z1/4 and
m > z1/4 and S3 is the part with m, p′ � z1/4. Note that ν � 2 in S3,
since z(ν+1)/4 � (p′)νm > z1/2 for its summands. For this reason, the main
contribution to S comes from S1 and S2. We estimate each sum individually
below.

To bound S1, we apply (20.5) and then (20.4) to find that

S1 � k4/ε
∑

m�√
z

(m,q)=1

f(m)
∑

(x−y)/m<m′�x/m
m′≡am (mod q)

P−(m′)>z1/4

1 

∑

m�√
z

(m,q)=1

f(m)
z/m

exp{
∑

p�x, p�q 1/p}
,

since z = y/q. We then use (14.7) to arrive at the estimate

S1 
 λz, where λ := exp

{∑
p�x
p�q

f(p)− 1

p

}
.

Next, we estimate S2. We introduce the checkpoints zj = z2
−j
. There

is a unique J ∈ N such that zJ+1 < (log z)3 � zJ . For j < J , we let
Nj be those integers n in the range of S2 that also satisfy the inequality
zj+1 < P+(m) � zj. Finally, we let NJ be the set of zJ -smooth integers n
in the range of S2. We also write S2,j for the contribution of n ∈ Nj to S2.
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First, we estimate S2,j for j < J . Since p′ > P+(m) > zj+1 = z2
−j−1

in
its range, an adaptation of the argument we used to bound S1 implies that

S2,j � k2
j+1/ε

∑
z1/4<m�√

z
(m,q)=1, P+(m)�zj

f(m)
∑

(x−y)/m<m′�x/m
m′≡am (mod q)
P−(m)>zj+1

1


 k2
j+1/ε

∑
z1/4<m�√

z
(m,q)=1, P+(m)�zj

f(m)
2jz/m

exp{
∑

p�x, p�q 1/p}
.

We then apply Theorem 16.3 with f(m)1(m,q)=1 in place of f to deduce that

S2,j 
 λz/ej.

In the sum S2,J , we do not have any precise information about the
position of p′. We will thus estimate the sum over m′ trivially. The gains
will come from the fact that m is zJ -smooth, and here zJ � (log z)6. More
precisely, using the fact that f(n) � τk(n) 
 z0.01 for n � x � z1/ε, we have

S2,J 
 z0.01
∑

z1/4<m�√
z

P+(m)�(log z)6

∑
x/m−y/m<m′�x/m

m′≡am (mod q)

1


 z1.01
∑

m>z1/4

P+(m)�(log z)6

1

m

 z1.01−1/24+o(1) = oz→∞(λz)

by Theorem 16.3. We conclude that S2 �
∑J

j=1 S2,j 
 λz.

Finally, it remains to bound S3. Note that (p
′)νz1/4 � (p′)νm > z1/2, so

that (p′)ν > z1/4 in its range. Since we also have that p′ � z1/4, there must

exist some integer μ � 2 such that z1/4 < (p′)μ � z1/2. Writing n = (p′)μn′,
and observing that p′ � q and that f(n) � τk(n) 
 z0.01 for n � x, we arrive
at the estimate

S3 
 z0.01
∑
μ�2

∑
z1/4<(p′)μ�z1/2

p′�q

∑
(x−y)/(p′)μ<n′�x/(p′)μ

n′≡(p′)μa (mod q)

1


 z0.01
∑
μ�2

∑
(p′)μ>z1/4

z

(p′)μ
�

∑
μ�2

∑
p′

z0.01+11/12

(p′)2μ/3

 z1.01−1/12

by Rankin’s trick, since (p′)μ/3 � z1/12 when (p′)μ > z1/4. We thus see that
the contribution of S3 to S is negligible.

Putting together the above estimates proves that S 
 λz, thus complet-
ing the proof of the theorem. �
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Exercises

Exercise 20.1. Let x = yu. Given n ∈ N, we write ny for its y-smooth part, that
is to say, ny :=

∏
pk‖n, p�y p

k. Uniformly for all A ⊆ S(y), prove that

Pn�x(ny ∈ A) = Pn∈S(y)(n ∈ A) +O(e−u).

Use the above relation to give an alternative proof of the Erdős-Kac theorem.

Exercise 20.2.∗

(a) For x � 2, prove that ∑
p�x

τ3(p− 1) � x log x.

[Hint: Show that
∑

d|n,d�x1/3 τ (d) � τ3(n) � 3
∑

d|n,d�x2/3 τ (d) when n � x.]

(b) Assume the Elliott-Halberstam conjecture. Prove that there is a constant c > 0
such that ∑

p�x

τ3(p− 1) = cx log x+O(x) (x � 1).

Exercise 20.3.∗ Let f be a multiplicative function with 0 � f � τk.

(a) Adapt the proof of Shiu’s theorem to show that∑
p�x

f(p− 1) 
k x exp
{∑

p�x

f(p)− 2

p

}
.

[Hint: You will need an estimate for #{n � x : P−(n(2an+1)) > y } uniformly
in a ∈ N and x � y � 1.]

(b) Fix C � 10. Uniformly for 2 � k � C log log x, show that

#{ p � x : ω(p− 1) = k } 
C

√
k · x(log log x)

k

(log x)2k!
.

[Hint: Use Chernoff’s inequality (a.k.a. Rankin’s trick).]

(c) Show an estimate analogous to the one in part (a) for the sum∑
x−y<p�x

p≡1+2a (mod 2q)

f(p− 1)

when (a(1 + 2a), q) = 1 and y/q � xε for some fixed ε > 0.
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Chapter 21

Selberg’s sieve

In 1947, Selberg introduced a different approach to sieving based on the
simple fact that squares are non-negative. This allowed him to construct in
one stroke a very general class of upper bound sieves often called Λ2-sieves.

We start with a set of primes P and a function λ : N → R that is
supported on integers d|P and satisfies the condition λ(1) = 1. Then

(21.1) 1(n,P)=1 �
(∑

d|n
λ(d)

)2
.

Indeed, if (n,P) = 1, then both sides of (21.1) equal 1; otherwise, the left
side is 0 whereas the right one is non-negative.

Opening the square in (21.1), we find that the right side equals (1 ∗
λ+)(n), where

λ+(d) =
∑

[d1,d2]=d

λ(d1)λ(d2).

Hence, λ+ is an upper bound sieve for the set of primes P. If, in addition,
we assume that supp(λ) ⊂ [1,

√
D], then supp(λ+) ⊂ [1, D]. We denote this

special class of upper bound sieves λ+ by Λ2(D,P). Lower bound sieves can
also be obtained using Exercise 19.2.

We have thus produced a general class of sieve weights λ+ for which the
inequality (1 ∗ λ+)(n) � 1(n,P)=1 is automatically satisfied. Optimizing the

choice of λ+ then becomes a calculus problem. Indeed, using Axiom 1 and
the argument leading to (19.9), we find that

(21.2) S(A,P) � X
∑
d1,d2

λ(d1)λ(d2)ν([d1, d2])

[d1, d2]
+

∑
d1,d2

λ(d1)λ(d2)r[d1,d2].

213
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214 21. Selberg’s sieve

Ignoring the error term for now, we focus on minimizing the main term

Q :=
∑
d1,d2

λ(d1)λ(d2)ν([d1, d2])

[d1, d2]
.

This is a quadratic form in the variables λ(d) with d �
√
D and d|P, under

the restriction that λ(1) = 1.

Selberg’s solution to this minimization problem was to diagonalize Q,
since then finding the optimal choice of λ becomes trivial. To motivate his
argument, let us consider first the special case when ν = 1. We then have

(21.3) Q =
∑
d1,d2

λ(d1)λ(d2)

[d1, d2]
=

∑
d1,d2

λ(d1)λ(d2)

d1d2
(d1, d2).

A natural thing to do next is to set m = (d1, d2), so that dj = maj with
(a1, a2) = 1. We then find that

Q =
∑
m

1

m

∑
(a1,a2)=1

λ(ma1)λ(ma2)

a1a2
.

The problem is that the variables a1 and a2 on the right-hand side are
tangled via the condition (a1, a2) = 1. If we did not have this condition, the
double sum would factor as a perfect square thus diagonalizing Q.

We could replace the condition (a1, a2) = 1 using the Möbius inversion
formula 1(a1,a2)=1 =

∑
d|a1,a2 μ(d). Instead, we use a trick that untangles a1

and a2 in a simpler way: we go back to (21.3) and rewrite its right-hand
side using the convolution identity

(d1, d2) =
∑

m|(d1,d2)
ϕ(m) =

∑
m|d1,d2

ϕ(m).

Together with the change of variables dj = maj , this implies that

Q =
∑
m

ϕ(m)

m2

∑
a1,a2

λ(ma1)λ(ma2)

a1a2
=

∑
m

ϕ(m)

m2

(∑
a

λ(ma)

a

)2

Setting ξ(m) =
∑

a λ(ma)/a diagonalizes Q, which allows us to minimize it
easily in terms of the new variables ξ.

We now generalize the above idea to arbitrary functions ν. First of all,
note that we may assume that λ is supported on integers d|P ′ with

P ′ := { p ∈ P : ν(p) > 0 }.

This restriction is justified by simply observing that ν([d1, d2]) = 0 whenever
either d1 or d2 is a square-free integer with at least one prime factor from
P \ P ′.
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Now, for any choice of d1, d2|P ′, the number [d1, d2] is square-free. Hence,

ν([d1, d2])

[d1, d2]
=

ν(d1)ν(d2)

d1d2
· (d1, d2)

ν((d1, d2))
=

ν(d1)ν(d2)

d1d2

∑
m|d1,d2

ϕ∗(m)

ν(m)
,

where1

(21.4) ϕ∗(m) := m
∏
p|m

(
1− ν(p)

p

)
.

We then find that

Q =
∑
d1,d2

λ(d1)λ(d2) ·
ν(d1)ν(d2)

d1d2

∑
m|d1,d2

ϕ∗(m)

ν(m)

=
∑
m

ν(m)ϕ∗(m)

m2

(∑
a

λ(ma)ν(a)

a

)2

,

where we let dj = maj for each j. It is now clear that making the change of
variables

ξ(m) = 1m∈D

∑
a

λ(ma)ν(a)

a
with D := { d �

√
D : d|P ′ }.

diagonalizes Q. We need to show that this is an invertible change of vari-
ables, which we accomplish by an application of Möbius inversion. Since λ
is also supported on D , for each d we have∑

m∈D , d|m

μ(m/d)ν(m)ξ(m)

m
=

∑
m∈D , d|m

μ(m/d) · ν(m)

m

∑
a

λ(ma)ν(a)

a

n=ma
=

∑
n∈D , d|n

λ(n)ν(n)

n

∑
m: d|m|n

μ(m/d).

Making the change of variables m = de in the innermost sum, we find that
it equals

∑
e|n/d μ(e) = 1n=d. We thus arrive at the inversion formula

(21.5)
λ(d)ν(d)

d
=

∑
m∈D , d|m

μ(m/d)ν(m)ξ(m)

m
.

This proves our claim about the invertibility of our change of variables.

Recall our constraint λ(1) = 1 which, in view of (21.5), becomes

(21.6)
∑
m∈D

μ(m)ν(m)ξ(m)

m
= 1.

We have thus transformed our task to minimizing the quadratic form Q =∑
m ν(m)ϕ∗(m)ξ(m)2/m2 under condition (21.6), with ξ supported on D .

1Note that ν/ϕ∗ = δ∗, where δ∗ is the multiplicative function we saw in Exercise 19.1.
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216 21. Selberg’s sieve

We can solve the above minimization problem using Lagrange multipli-
ers. Alternatively, we can use the Cauchy-Schwarz inequality: applying it
with coefficients (ν(m)ϕ∗(m))1/2ξ(m)/m and 1m∈Dμ(m)(ν(m)/ϕ∗(m))1/2,
we find that

1 =

( ∑
m∈D

μ(m)ν(m)ξ(m)

m

)2

� Q
∑
m∈D

μ2(m)ν(m)

ϕ∗(m)
.

We know that the above inequality is an equality exactly when there is a
constant L �= 0 such that

(21.7) ξ(m) =
1

L
· 1m∈D · μ(m)m

ϕ∗(m)

for all m. To calculate the value of L, we use (21.6). This yields L =∑
m∈D ν(m)/ϕ∗(m), where we used that D contains only square-free integers

(so that μ2(m) = 1 for each m ∈ D). The minimal value of Q is thus

Q =
1

L2

∑
m∈D

ν(m)

ϕ∗(m)
=

1

L
.

The above calculations lead us to the following fundamental result.

Theorem 21.1. Let A and P satisfy Axiom 1. If D � 1 and ϕ∗ is defined
by (21.4), then

S(A,P) � X

L
+

∑
d�D
d|P

3ω(d)|rd| with L =
∑

m�
√
D

m|P

ν(m)

ϕ∗(m)
.

Proof. Let ξ be defined by (21.7), where we recall that D = { d �
√
D :

d|P ′ } with P ′ = { p ∈ P : ν(p) > 0 }. Then, we define λ(d) via relation
(21.5) when d ∈ D , whereas we set λ(d) = 0 otherwise. We claim that

(21.8) |λ(d)| � 1 whenever d ∈ D .

Before proving this inequality, let us see how it establishes the theorem.

Indeed, the first term on the right-hand side of (21.2) equals X/L by the
discussion preceding Theorem 21.1, whereas the second term is
�

∑
d1,d2∈D |r[d1,d2]| by virtue of (21.8). Given a square-free integer d, there

are 3ω(d) ways to write it as d = [d1, d2]. This completes the proof, assuming
the validity of (21.8).
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To prove (21.8), we first calculate λ(d). For any d ∈ D , relation (21.5)
and our choice of ξ imply that

λ(d) =
d

ν(d)

∑
m∈D , d|m

μ(m/d)ν(m)ξ(m)

m

=
d

Lν(d)

∑
m∈D , d|m

μ(m/d)μ(m)ν(m)

ϕ∗(m)

m=da
=

μ(d)

L
· d

ϕ∗(d)

∑
a: da∈D

ν(a)

ϕ∗(a)
.

For each d ∈ D (that is necessarily square-free), we have the formula
d/ϕ∗(d) =

∑
b|d ν(b)/ϕ

∗(b). We thus find that

λ(d) =
μ(d)

L

∑
a: da∈D

∑
b|d

ν(a)

ϕ∗(a)
· ν(b)

ϕ∗(b)
.

The products ab with a and b as above are all distinct from each other, with
each one of them determining a unique integer n ∈ D . Since ν/ϕ∗ � 0, we
conclude that ∑

a: da∈D

∑
b|d

ν(a)

ϕ∗(a)
· ν(b)

ϕ∗(b)
�

∑
n∈D

ν(n)

ϕ∗(n)
= L.

This proves our claim (21.8), thus completing the proof of the theorem. �

The sum L from the statement of Theorem 21.1 can be estimated asymp-
totically using Theorem 14.3 and Axiom 2′. The resulting bound for S(A,P)
is given below.

Theorem 21.2. Let A and P ⊆ {p � y}. Assume that Axioms 1, 2′

and 3 hold, the second one with parameters κ, k and ε, and the third one
with m = 3, A = κ + 1 and level of distribution D � y2. If, in addition,
logX � log y, then

S(A,P) �
(
X +Oκ,k,ε(X/ log y)

)
· Γ(κ+ 1) · eκγ

∏
p∈P

(
1− ν(p)

p

)
.

Proof. All implied constants might depend on κ, k and ε. By Theorem
21.1 with D = y2 and our assumptions on (A,P), it suffices to show that

(21.9) L :=
∑
m�y
m|P

ν(m)

ϕ∗(m)
=

e−κγ

Γ(κ+ 1)

∏
p∈P

(
1− ν(p)

p

)−1

+O((log y)κ−1),

Indeed, since
∏

p∈P(1−ν(p)/p)−1 � (log y)κ from Axiom 2′, inverting (21.9)

yields L−1 = (eκγ/Γ(κ+ 1) +O(1/ log y))
∏

p∈P(1− ν(p)/p) as needed.
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To prove (21.9), we define the multiplicative function f by the relation

f(pm) =

{
1p∈P · 1m=1 · ν(p)/(1− ν(p)/p) if p � y,

τκ(p
m) if p > y,

where τκ is defined by (13.3). In particular, L =
∑

m�y f(m)/m. We evalu-

ate this sum using Theorem 14.3, whose conditions hold for f by Axiom 2′

and Mertens’ estimates (Theorem 3.4(c)). Hence,

S =
(log y)κ

Γ(κ+ 1)

∏
p

(
1 +

f(p)

p
+

f(p2)

p2
+ · · ·

)(
1− 1

p

)κ

+O((log y)κ−1).

The factors with p > y are all equal to 1. On the other hand, we have∏
p�y

(
1 +

f(p)

p
+

f(p2)

p2
+ · · ·

)
=

∏
p∈P

(
1− ν(p)

p

)−1

.

Using Mertens’ third estimate to evaluate
∏

p�y(1 − 1/p)κ completes the

proof of (21.9) and hence of the theorem. �

As a direct corollary of Theorem 21.2 with P = {p � √
x/(log x)2k}, we

have an estimate for the number of prime values of an admissible k-tuple.
(See Exercise 17.4 for the definition of an admissible k-tuple.)

Corollary 21.3. Let h = (h1, . . . , hk) be an admissible k-tuple of distinct
integers, and define νh(p) = #{hj (mod p) : 1 � j � k }. Then

#{n � x : n+ h1, . . . , n+ hk are all primes } � (2kk! + ε)
S(h)x

(log x)k

with ε = Ok,h(log log x/ log x) and

S(h) =
∏
p

(
1− νh(p)

p

)(
1− 1

p

)−k

.

This result should be compared with the Hardy-Littlewood conjecture
(17.14). In particular, taking h1 = 0 and h2 = 2, Corollary 21.3 implies
that the number of twin primes is at most 8 times the expected amount. In
Exercise 21.2 we will see an improvement of this result when k = 2.

Our final application of Selberg’s sieve is an explicit version of the Brun-
Titchmarsch inequality which shows that the number of primes � x in the
progression a (mod q) is at most 2 + ε times the expected number when
log x/ log q → ∞. In Exercise 22.2, we will see that improving this factor
to 2− ε would imply that there are no exceptional zeroes in Theorem 12.3.
However, this cannot be done using only Axioms 1–3 and their variations,
as we discuss after the proof of Theorem 21.4.
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Theorem 21.4 (The Brun-Titchmarsch inequality, II). Uniformly for q ∈
N, a ∈ (Z/qZ)∗ and x � y � q, we have

#{x− y < p � x : p ≡ a (mod q) } � (2 + ε)y

ϕ(q) log(2y/q)

with ε = O(log log(3y/q)/ log(y/q)).

Proof. There are two ways to obtain the claimed upper bound, both in-
volving a trick to get the required uniformity in q. The more standard proof
is quite similar to the proof of Theorem 20.1, and it is outlined in Exer-
cise 21.1. We present here an alternative proof that uses the monotonicity
principle (see Exercise 19.1).

Let A = {x − y < n � x : n ≡ a (mod q) } and P = {p � z} with z to
be determined. As in the proof of Theorem 20.1, the pair (A,P) satisfies
Axiom 1 with X = y/q, ν(d) = 1(d,q)=1 and |rd| � 2. Hence, for any function
λ supported on square-free integers � z, (21.2) implies that

#{x− y < p � x : p ≡ a (mod q) } � S(A,P) + z

� y

q

∑
(d1d2,q)=1

λ(d1)λ(d2)

[d1, d2]
+ 2z2‖λ‖2∞,

where ‖λ‖∞ is the supremum norm of λ. The sum over d1, d2 in the main
term can be written as ∑

m

λ+(m)1(m,q)=1

m
,

where λ+(m) =
∑

[d1,d2]=m λ(d1)λ(d2) is an upper bound sieve. Hence,

Exercise 19.1(b) with δ1(m) = 1(m,q)=1/m and δ2(m) = 1/m implies that

0 �
∑

(d1d2,q)=1

λ(d1)λ(d2)

[d1, d2]
�

∏
p�z, p|q

(
1− 1

p

)−1 ∑
d1,d2

λ(d1)λ(d2)

[d1, d2]

� q

ϕ(q)

∑
d1,d2

λ(d1)λ(d2)

[d1, d2]
.

We now choose the weights λ to be the optimal weights with respect to
the function ν(d) = 1 and the set of primes P = {p � z}, in which case
‖λ‖∞ � 1 by (21.8) and∑

d1,d2

λ(d1)λ(d2)

[d1, d2]
= 1

/ ∑
m�z

μ2(m)

ϕ(m)
,

since ϕ∗ = ϕ here. By Theorem 14.3, we have
∑

m�z μ
2(m)/ϕ(m) = log z+

O(1). We thus conclude that

#{x− y < p � x : p ≡ a (mod q) } � y

ϕ(q)(log z +O(1))
+O(z2).

Taking z = (y/q)1/2(log(2y/q))−100 completes the proof. �
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The parity problem of sieve methods

As we discussed above, improving the constant 2 in Theorem 21.4 would have
the spectacular consequence of eliminating Landau-Siegel zeroes. However,
Selberg proved that this is not possible using sieve methods and the mere
assumption of Axioms 1–3 and their variations. To do so, he constructed sets
A that satisfy Axioms 1–3 and for which the true size of S(A,P) matches
the upper bound provided by Theorem 21.2.

Indeed, let P = {p � √
x},

A(1) = {n � x : Ω(n) is odd } and A(0) = {n � x : Ω(n) is even }.
Note that

A
(j)
d =

∑
n�x
d|n

1 + (−1)j+Ω(n)

2

=
�x/d�
2

+
(−1)j+Ω(d)

2

∑
m�x/d

(−1)Ω(m)

=
x

2d
+O

(x
d
e−c

√
log(x/d)

)
for some absolute constant c > 0, where the error is bounded using Exercise
8.4(d) and a convolution trick (i.e., we write (−1)Ω = μ ∗ f). Theorem 13.2
can also be used if we settle for a weaker error term.

The above estimate implies that Axiom 1 is satisfied with X = x/2 and
ν(d) = 1. In addition, Axiom 2′ holds with κ = k = 1, whereas Axiom 3

holds with m = 3, A = 2 and D = x/e(log log x)
3
. We may thus apply

Theorem 21.2 to conclude that

(21.10) 0 � S(A(j),
√
x) � (1 + o(1))

x/2

log
√
x
= (1 + o(1))

x

logx

as x → ∞.

On the other hand, we can calculate S(A(j),
√
x) directly. We know that

any integer n >
√
x counted by it must be prime. Therefore

S(A(1),
√
x) = π(x) +O(

√
x) ∼ x

log x

as x → ∞ from the Prime Number Theorem, whereas

S(A(0),
√
x) = O(

√
x) = o

( x

log x

)
.

So we see that, up to an error of size o(x/ log x), the upper bound in (21.10)
is sharp when j = 1, and the lower bound is sharp when j = 0. In particular,
we cannot hope to improve upon (21.10) unless we impose an extra axiom
that eliminates the above examples.
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Because of the shape of Selberg’s extremal examples, the inability to
improve upon (21.10) under Axioms 1–3 is called the parity problem of sieve
methods. The underlying reason that causes this obstruction is that the
sieve weights we have constructed under Axioms 1–3 do not correlate with
the Möbius function, so they cannot differentiate between integers with an
even and an odd number of prime factors.

In Chapter 23, we will present a method going back to Vinogradov that
allows us to “break the parity barrier” for certain sequences (an)

∞
n=1 using

bilinear form methods. The book of Harman [96] and the paper of Fried-
lander and Iwaniec [56] study such “parity-breaking sieves” in a much more
systematic way. Let us briefly mention that the axiom imposed on A in [56]
concerns (roughly) bilinear sums of the form

∑
k�K, ��L ak�μ(k�). Showing

that there is cancellation in such sums means that the sequence A does not
correlate with the Möbius function.

Remark 21.5. In light of the above discussion, Chen’s theorem [24,25] that
there are infinitely many primes p such that p+2 is the product of at most
two primes is the best possible result we can hope for using sieve methods
and the mere assumption of Axioms 1–3. �

Exercises

Exercise 21.1. Let q ∈ N and z � 1.

(a) Note that q/ϕ(q) =
∑

d|q μ
2(d)/ϕ(d) and μ2(m)/ϕ(m) =

∏
p|m(1+1/p+1/p2+

· · · ). Conclude that

q

ϕ(q)

∑
m�z, (m,q)=1

μ2(m)

ϕ(m)
�

∑
m�z

μ2(m)

ϕ(m)
�

∑
m�z

1

m
� log(�z�+ 1).

(b) Use the above inequalities to prove that

#{x− y < p � x : p ≡ a (mod q) } � y

ϕ(q) log(�z�+ 1)
+ 2z2 + z

for all x � y � 1, and deduce Theorem 21.4.

Exercise 21.2. Let h be an even integer, and let Lh =
∑

p|h(log p)/p.

(a) Show that Lh � log(ω(h)) + O(1).

(b) Show that there are two absolute constants M1 and M2 such that

#{ p � x : p+ h prime } �
(
1 +

M1(Lh + log log x)

log x

)
4c2x

(log x)2

∏
p|h, p>2

p− 1

p− 2

when x � eM2Lh , where c2 denotes the twin prime constant as usual. [Hint:
Use Exercise 14.7.]

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



Chapter 22

Sieving for zero-free
regions

Sieve methods provide an alternative way of establishing zero-free re-
gions for Dirichlet series that are of the same strength as Theorems 8.3 and
12.3. The idea is as follows: assume that we want to obtain a zero-free
region for ζ close to 1 + it, where |t| � 2. For any σ ∈ (0, 1), we have

ζ(σ + it) = ζ(1 + it)−
∫ 1

σ
ζ ′(α+ it)dα.

Now, let δ ∈ (0, 1) be such that the quantity M := sup1−δ�σ�1 |ζ ′(σ + it)|
satisfies the inequality δM � |ζ(1 + it)|/2. We then infer that 1/2 � |ζ(σ+
it)|/|ζ(1 + it)| � 3/2 for σ ∈ [1 − δ, 1]. Hence, we have reduced proving
a zero-free region to an upper bound for ζ ′(σ + it) and a lower bound for
ζ(1+it), so that we can determine the largest δ for which δM � |ζ(1+it)|/2.

To bound ζ ′, we argue as in Theorem 11.2, but we need to be a bit more
careful because the Dirichlet series representation of ζ is not valid inside the
critical strip. We apply the Euler-Maclaurin summation formula to obtain
a generalization of (5.7): for each N ∈ Z�1 and for Re(s) > 1, we have

(22.1) ζ(s) =

N∑
n=1

1

ns
+

∑
n>N

1

ns
=

N∑
n=1

1

ns
+

N1−s − 1

1− s
− s

∫ ∞

N

{y}
ys+1

dy.

Now, both ζ(s) and the rightmost expression in (22.1) are well-defined for
Re(s) > 0. In addition, they share the same singularities in this region (a
simple pole of residue 1 at s = 1). Since they are equal for Re(s) > 1, they
must also be equal for Re(s) > 0 by the identity principle. Differentiating

222
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yields the formula

ζ ′(s) = −
N∑

n=1

logn

ns
+

N1−s − 1

(1− s)2
− N1−s logN

1− s
−

∫ ∞

N

{y}(1− s log y)

ys+1
dy,

valid for all Re(s) > 0 and all N ∈ Z�1. We take N = �|t|�, put absolute
values everywhere and argue as in the proof of Lemma 11.2 to find that
ζ ′(s) = O(log2 |t|) for σ > 1− 1/ log |t| and |t| � 2.

On the other hand, we have | log ζ(1+it)| � log log |t|+O(1) by Exercise
8.4(c), whence |ζ(1+ it)| � 1/ log |t|. This leads to a zero-free region of the
form σ � 1−O(1/ log3 |t|) which is weaker than the one in Theorem 8.3.

To understand why we arrived at a weaker zero-free region, we must
reexamine the above argument. Notice that to bound ζ ′(s) we estimated
trivially all the summands with n � |t|. In fact, for the upper bound ζ ′(s) =
O(log2 |t|) to be achieved, we must have that nit ≈ 1 for all n � |t|. But then
pit ≈ 1 for all primes p � |t|, so that

∏
p�|t| |1 − 1/p1+it|−1 ≈ log |t|. This

suggests we should be able to replace the lower bound |ζ(1+ it)| � 1/ log |t|
by the stronger estimate |ζ(1 + it)| � log |t|, which would then lead us to a
zero-free region of the same strength as the one in Theorem 8.3.

Sifted Dirichlet series

To get around the above issue, we introduce a truncated version of ζ. Instead
of truncating in an archimedean way and considering the sum

∑
n>N 1/ns,

we truncate it multiplicatively and work with

ζy(s) :=
∑

P−(n)>y

1

ns
=

∏
p>y

(
1− 1

ps

)−1

.

This “multiplicatively truncated” version of ζ has the advantage of possess-
ing an Euler product representation. More generally, given a Dirichlet series
F (s) =

∑∞
n=1 f(n)/n

s, we set

(22.2) Fy(s) =
∑

P−(n)>y

f(n)

ns
.

When F (s) is a Dirichlet L-function, we have the following crucial estimate.

Theorem 22.1. Let χ be a Dirichlet character mod q, s = σ+ it and y ∈ R
such that y � max{10, q(|t|+ 1)} and σ � 1− 1/ log y. If χ is principal, we
further assume that |t| � 1/ log y. For j ∈ {0, 1}, we have

(22.3) L(j)
y (s, χ) 
 (log y)j.
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Before embarking on the proof of Theorem 22.1, let us see how we can
use it to extract a zero-free region for L(s, χ). Set

(22.4) qχ,t := max{q(|t|+ 1), 10, exp(1χ=χ0/|t|)}.

When y � qχ,t, we also have |t| � 1χ=χ0/ log y. Thus, Theorem 22.1 implies
that L′

y(σ + it, χ) 
 log y for σ � 1− 1/ log y. As a consequence,

Ly(σ + it, χ)− Ly(1 + it, χ) =

∫ σ

1
L′
y(α+ it, χ)dα 
 |1− σ| log y.

We thus infer that there is an absolute constant c > 0 such that

(22.5) |Ly(σ + it, χ)| � |Ly(1 + it, χ)| for |σ − 1| � c · |Ly(1 + it, χ)|
log y

.

In particular, we see that the size of |Ly(1+ it, χ)| controls the quality of the
zero-free region we can obtain. Moreover, if the upper bound |Ly(1+it, χ)| �
O(1) from Theorem 22.1 is the true order of magnitude of |Ly(1 + it, χ)|,
then we recover the zero-free region for L(s, χ) given in Theorem 12.3.

We now prove Theorem 22.1. After this task has been completed, we
will see how we can control the size of Ly(s, χ).

Sifted character sums

The key to proving Theorem 22.1 is the Fundamental Lemma of Sieve The-
ory, which allows us to estimate character sums running over y-rough num-
bers. Going from such an estimate to a bound for Ly(s, χ) is then accom-
plished by a routine partial summation argument.

Lemma 22.2. For t ∈ R and x � y � max{q(|t|+ 1), 10}100, we have∑
n�x

P−(n)>y

χ(n)nit = 1χ=χ0 ·
x1+it

1 + it

∏
p�y

(
1− 1

p

)
+O

(
x1−110/ log y

log y

)
.

Proof. Let λ± be the sieve weights from Theorem 19.1 with D =
√
x,

P = {p � y} and κ = 1. Set δ = λ+ − λ− and note that δ ∗ 1 � 0, as well
as that (λ+ ∗ 1)(n)− (δ ∗ 1)(n) � 1P−(n)>y � (λ+ ∗ 1)(n). Consequently,

(22.6)
∑
n�x

P−(n)>y

χ(n)n−it =
∑
n�x

χ(n)n−it(λ+ ∗ 1)(n) +O
(∑

n�x

(δ ∗ 1)(n)
)
.

For the error term, we have∑
n�x

(δ ∗ 1)(n) =
∑

m�√
x

δ(m)
⌊ x

m

⌋
= x

∑
m�√

x

λ+(m)− λ−(m)

m
+O(

√
x).
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Since logD/ log y = 0.5 log x/ log y here, Theorem 19.1 yields the estimate

(22.7)
∑
n�x

(δ ∗ 1)(n) 
 x1−110/ log y
/
log y.

For the main term, we have∑
n�x

χ(n)n−it(λ+ ∗ 1)(n) =
∑
d�√

x

λ+(d)χ(d)d−it
∑

m�x/d

χ(m)m−it.

We apply partial summation to remove the factor m−it from the inner sum.
Note that

∑
n�w χ(n) = 1χ=χ0wϕ(q)/q +O(q), by periodicity. Hence,∑

m�w

χ(m)m−it = 1χ=χ0

ϕ(q)

q
· w

1−it

1− it
+O((|t|+ 1)q log(2w))

uniformly for w � 1. In turn, this implies that∑
n�x

χ(n)n−it(λ+ ∗ 1)(n) = 1χ=χ0

ϕ(q)

q
· x

1−it

1− it

∑
d�√

x

λ+(d)χ0(d)

d

+O(
√
xq(|t|+ 1) log x).

(22.8)

Since we have assumed that x � y � max{q(|t|+ 1), 10}100, we have
√
xq(|t|+ 1) log x � x0.51 � x1−1.1/ log(10) � x1−110/ log y.

In addition, note that

ϕ(q)

q

∑
d�√

x

λ+(d)χ0(d)

d
= (1 +O(x−110/ log y))

∏
p�y

(
1− 1

p

)
by Theorem 19.1, since y � q here. Combining the above estimates with
(22.6) and (22.7) completes the proof of the lemma. �

Proof of Theorem 22.1. Let χ and t satisfy the hypotheses of the the-
orem, and recall the definition of qχ,t from (22.4). First, we prove (22.3)
when y � q100χ,t and σ ∈ [1− 100/ log y, 2]. From Lemma 22.2 we know that

(22.9)
∑
n�x

1P−(n)>yχ(n)n
−it = α · x

1−it

1− it
+R(x) for all x � y,

where α = 1χ=χ0

∏
p�y(1− 1/p) and R(x) = Rχ,t,y(x) 
 x1−110/ log y/ log y.

Hence, for all w ∈ C with Re(w) > 1, partial summation implies that

Ly(w + it, χ) = 1 + α

∫ ∞

y

dx

xw+it
− R(y)

yw
+ w

∫ ∞

y

R(x)

xw+1
dx

= 1 +
α

w + it− 1
− α

∫ y

1

dx

xw+it
− R(y)

yw
+ w

∫ ∞

y

R(x)

xw+1
dx(22.10)
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In view of (22.9), the right-hand side of (22.10) is meromorphic for Re(w) >
1 − 110/ log y. In addition, it has the same singularities as Ly(w + it, χ),
i.e., a simple pole at w = 1 − it of residue α. Hence, (22.10) must hold for
Re(w) > 1 − 110/ log y. Differentiating it j times and setting w = σ, we
infer that

(−1)jL(j)
y (s, χ) = 1j=0 +

α

(s− 1)2
− α

∫ y

1

(log x)jdx

xs
− R(y)(log y)j

yσ

+

∫ ∞

y

R(x)[σ(log x)j − j(log x)j−1]

xσ+1
dx.

Since R(x) 
 x1−110/ log y/ log y and σ � 1 − 100/ log y, the two terms
involving R on the right-hand side of the above identity are 
 (log y)j . If
χ �= χ0, this proves (22.3) because α = 0. Finally, if |t| � c1/ log y, we note
that α 
 1/ log y and |s− 1| � |t| � c1/ log y, as well as

∫ y
1 (log x)

jx−sdx 

(log y)j . Putting together these estimates completes the proof of (22.3) in
this case as well.

Finally, we prove (22.3) when qχ,t � y � q100χ,t and σ � 1 − 1/ log y.

The case σ � 2 is trivial by the absolute convergence of L(j)(s, χ). Assume
now that 1 − 1/ log y � σ � 2 and let z = y100, so that z � q100χ,t and
σ ∈ [1 − 100/ log z, 2] Thus, the results we proved above apply with z in
place of y, that is to say, Lz(s, χ) 
 1 and L′

z(s, χ) 
 log z. In addition,
note that

(22.11) |Ly(s, χ)| = |Lz(s, χ)|
∏

y<p�z

|1− χ(p)/ps|−1 � |Lz(s, χ)| 
 1,

where the product over p was bounded by observing that 1 − 1/p � |1 −
χ(p)/ps| � 1 + 1/p and then applying Mertens’ third estimate (Theorem
3.4(c)). Similarly, we have

L′
y(s, χ) = L′

z(s, χ)
∏

y<p�z

(
1− χ(p)

ps

)−1

− Ly(s, χ)
∑∑

y<p�z,m�1

χ(pm) log p

pms


 |L′
z(s, χ)|+ |Ly(s, χ)| log z 
 log y,

where we used Mertens’ second and third estimates to obtain the first in-
equality. This completes the proof of Theorem 22.1. �

Pretentious multiplicative functions

Relation (22.5) reduces the proof of a zero-free region for L(s, χ) to under-
standing the size of Ly(1 + it, χ). We shall accomplish the latter task using
the theory of pretentious multiplicative functions. Our starting point is the
following lemma.
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Lemma 22.3. Let f be a completely multiplicative function with |f | � 1,
and let F denote its Dirichlet series. For y � 2 and σ > 1, we have

logFy(s) =
∑

y<p�x

f(p)

p1+it
+O(1) with x = max{y, e1/(σ−1)}.

Proof. Note that Fy(s) =
∏

p>y(1−f(p)/ps)−1 by the complete multiplica-

tivity of f . Since |f | � 1, we infer that

(22.12) logFy(s) =
∑
p>y

∑
m�1

f(p)m

mpms
=

∑
p>y

f(p)

ps
+O(1).

Now, Chebyshev’s estimate and partial summation imply that

(22.13)
∑

p>e1/(1−σ)

1

pσ

 1.

This proves the lemma when σ � 1 + 1/ log y (since x = y then). On the
other hand, if σ < 1 + 1/ log y, so that σ = 1 + 1/ log x, then (22.12) and
(22.13) imply that

logFy(s) =
∑

y<p�x

f(p)

p1+1/ log x+it
+O(1).

Finally, observe that p1/ log x = 1+O(log p/ log x) for p � x, and recall that∑
p�x(log p)/p 
 log x. This completes the proof of the lemma. �

For future reference, we record the following one-sided bound for the
averages of χ(p)/p1+it, which is obtained as a direct corollary of Theorem
22.1 and Lemma 22.3.

Corollary 22.4. Let χ be a Dirichlet character mod q and t ∈ R. Then∑
u<p�v

Re(χ(p)p−it)

p
� O(1) for all u � v � qχ,t.

Lemma 22.3 relates Ly(1+ it, χ) to logarithmic averages of χ(p)p−it and
demonstrates that for Ly(1+ it, χ) to be small, the quantities χ(p)p−it must
predominantly have negative real part. The most extreme case would be
when χ(p)p−it ≈ −1 for most p, in which case we can think of χ(n)n−it as
“pretending to be” the Möbius function. To study more rigorously this type
of arguments, we introduce the distance function

D(f, g;u, v)2 =
1

2

∑
u<p�v

|f(p)− g(p)|2
p

,
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which is a variant of the distance function used in the proofs of Theorems
8.3 and 12.3. Note that if |f(p)| = |g(p)| = 1 for all p ∈ (u, v], then

(22.14) D(f, g;u, v)2 =
∑

u<p�v

1− Re(f(p)ḡ(p))

p
.

Together with Lemma 22.3, this establishes the connection of Ly(s, χ) to
the distance function.

With the above notation, we have the following significant strengthening
of Corollary 22.4 that shows that there exists a parameter Y controlled by
the size of Ly(1+ it, χ) such that the average behavior of χ(p)p−it undergoes
a phase transition when p ≈ Y : it is 0 on average when p � Y , whereas it
is −1 on average when p < Y .

Theorem 22.5. Let χ be a Dirichlet character mod q, t ∈ R and y � qχ,t.
There exists some Y = Y (χ, t) ∈ [y,+∞] such that

(22.15) D(χ(n), μ(n)nit;u, v) = O(1) when [u, v] ⊆ [y, Y )

and

(22.16)
∑

u<p�v

Re(χ(p)p−it)

p
= O(1) when [u, v] ⊆ [Y,+∞).

In fact, we have log Y/ log y � 1/|Ly(1 + it, χ)|.

Proof. We take Y = max{y, y1/|Ly(1+it,χ)|}. Since |Ly(1 + it, χ)| 
 1 from
Theorem 22.1, we have that log Y/ log y � 1/|Ly(1 + it, χ)|.

To deal with the potential issue of having L(1 + it, χ) = 0,1 we let
Yε = y1/|Ly(1+ε+it,χ)| for ε � 0. In addition, let fε(n) = χ(n)n−ε−it and call
Fy,ε(s) the associated sifted Dirichlet series (that equals Ly(s+ ε+ it, χ)).

First, we prove a generalization of (22.16): we claim that

(22.17)
∑

u<p�v

Re(fε(p))

p
= O(1) when [u, v] ⊆ [Yε,+∞).

(Taking ε = 0 in (22.17) recovers (22.16).) We may assume that Yε < ∞;
otherwise, (22.17) is vacuous. For σ > 1, Theorem 22.1 implies that

(22.18) Fy,ε(σ) = Fy,ε(1) +

∫ σ

1
F ′
y,ε(α)dα = Fy,ε(1) +O((σ − 1) log y).

Hence, if C is a large enough constant (independently of any parameter), we
have that |Fy,ε(σ)| � |Fy,ε(1)| when 0 < σ − 1 � |Fy,ε(1)|/(C log y). Since
|Fy,ε(1)|/ log y = 1/ log Yε, we infer that |Fy,ε(1 + 1/ log u, χ)| � |Fy,ε(1 +

1We are assuming we have no knowledge about the zeroes of L(s, χ).

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



Pretentious multiplicative functions 229

1/ log v, χ)| for v � u � Y C
ε . Taking logarithms and applying Lemma 22.3

twice, we arrive at the estimate∑
y<p�u

Re(fε(p))

p
=

∑
y<p�v

Re(fε(p))

p
+O(1).

This completes the proof of (22.17) when [u, v] ⊆ [Y C
ε ,∞). For the remain-

ing range, we simply note that
∑

Yε<p�Y C
ε
1/p = O(1).

Next, we prove (22.15). Fix, for the moment, ε > 0. (We will even-
tually let ε → 0+.) We then know that Yε < ∞ from the Euler product
representation of L(s, χ). Now, for any x � Yε, we have that∑
y<p�Yε

Re(fε(p))

p
=

∑
y<p�x

Re(fε(p))

p
+O(1) = log

∣∣∣Fy,ε

(
1 +

1

log x

)∣∣∣+O(1),

where the first equality follows by (22.17) and the second one from Lemma
22.3. Letting x → ∞, we deduce that∑

y<p�Yε

Re(fε(p))

p
= log |Fy,ε(1)|+O(1) = −

∑
y<p�Yε

1

p
+O(1),

where the second equality follows from the definition of Yε and Mertens’
second estimate (Theorem 3.4(b)). We conclude that

(22.19)
∑

y<p�Yε

1 + Re(fε(p))

p
� O(1).

Now fix [u, v] ⊂ [y, Y ). If ε is small enough, then [u, v] ⊂ [y, Yε). In
addition, all summands in (22.19) are non-negative, because 1 + Re(z) � 0
when |z| � 1. In conclusion,

0 �
∑

u<p�v

1 + Re(fε(p))

p
� O(1)

for all ε that are sufficiently small. Letting ε → 0+ completes the proof of
(22.15) and hence of the theorem. �

We now combine the above result with the ideas used in the proof of
Theorem 12.3. Note that the result we obtain below can be combined with
(22.5) to yield a result that is almost as strong as Theorem 12.3.

Theorem 22.6. Consider a Dirichlet character χ mod q, and real numbers
t and y � max{q(|t|+ 2), 10}.
(a) (i) If either χ is not real or |t| � 1/ log y, then |Ly(1 + it, χ)| � 1.

(ii) If χ is real and non-principal and |t| � 1/ log y, then

|Ly(1 + it, χ)| � max{Ly(1, χ), |t| log y}.
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(b) Assume that χ is real and non-principal, and let χ′ (mod q′) be another
real, non-principal character that is not induced by the same primitive
character as χ. If Ly(1, χ) � Ly(1, χ

′) for some y � max{q, q′}, then
Ly(1, χ) � 1.

Proof. (a-i) Our assumptions on χ, y and t imply that y � qχ,t and y � qχ2,t.
Now, let Y be as in Theorem 22.5. Since we already know that |Ly(1, χ)| 
 1
from Theorem 22.1, it suffices to prove that |Ly(1, χ)| � 1 or, equivalently,
that log Y 
 log y. Theorem 22.5 implies that D(χ(n), μ(n)nit; y, Y ) 
 1.
Applying Minkowski’s inequality as in the proof of Theorem 12.3 (or simply
noticing that |z2 − w2| � 2|z + w| when |z|, |w| � 1), we have

D(χ2(n), n2it; y, Y ) � 2D(χ(n), μ(n)nit; y, Y ) 
 1.

On the other hand, Corollary 22.4 and relation (22.14) imply that

D(χ2(n), n2it; y, Y )2 � log(log Y/ log y)−O(1).

Comparing the above estimates, we find that log Y 
 log y, as needed.

(a-ii) Let z = e1/|t|, so that z � y � max{q(|t|+2), 10} and |t| � 1/ log z.
Hence, |Lz(1+ it, χ)| � 1 by part (a-i) applied with z in place of y. Together
with Theorem 22.5, this implies that∑

z<p�x

Re(χ(p)p−it)

p
= O(1) (x � z).

We combine the above estimate with Lemma 22.3 to find that

(22.20)

logLy(1 + it, χ) = lim
x→∞

logLy(1 + 1/ log x+ it, χ)

=
∑

y<p�z

χ(p)

p1+it
+O(1).

We have |p−it − 1| = |
∫ t
0 (log p)p

iudu| � |t| log p. Hence,

logLy(1 + it, χ) =
∑

y<p�z

χ(p)

p
+O(1).

Let Y be as in Theorem 22.5 with t = 0. Then

logLy(1 + it, χ) =
∑

y<p�min{Y,z}

χ(p)

p
+O(1) = −

∑
y<p�min{Y,z}

1

p
+O(1),

where we first applied (22.16), followed by an application of (22.15) (both
with t = 0). Since log Y � (log y)/Ly(1, χ) � log y, Mertens’s second
estimate completes the proof of part (a-ii).

(b) Let Y = max{y, y1/|Ly(1,χ)|} and Y ′ = max{y, y1/|Ly(1,χ′)|}, as in
the proof of Theorem 22.5. Since Ly(1, χ) � Ly(1, χ

′), we must have that
Y � Y ′. Hence, Theorem 22.5 implies that D(ψ, μ; y, Y ) 
 1 for ψ ∈ {χ, χ′}.
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Using Minkowski’s inequality, we infer that D(χ, χ′; y, Y ) 
 1. On the other
hand, Corollary 22.4 and relation (22.14) yield that

D(χ, χ′; y, Y )2 � log(log Y/ log y)−O(1),

where we used that χχ′ is a non-principal mod [q, q′] � y2, which follows by
our assumption that χ and χ′ are induced by different primitive characters.
Hence, log Y 
 log y, which completes the proof of the theorem. �

Exercises

Exercise 22.1. Let f and F be as in Lemma 22.3. Fix t ∈ R and y � 2, and assume
that the function σ → F (σ+it) is continuously differentiable for σ � 1−1/ log y, as

well as that F
(j)
y (σ+ it, f)| 
 (log y)j uniformly for j ∈ {0, 1} and σ � 1−1/ log y.

Let Y = y1/min{1,|Fy(1+it)|}.

(a) Prove that{
D(f(n), μ(n)nit;u, v) = O(1) when [u, v] ⊆ [y, Y ),∑

u<p�v Re(f(p)p
−it)/p = O(1) when [u, v] ⊆ [Y,+∞).

(b) Prove that there is an absolute constant c > 0 such that

|Ly(σ + it, χ)| �

⎧⎪⎨⎪⎩
log y/ log Y if 1− c/ log Y � σ � 1 + 1/ log Y,

(σ − 1) log y if 1 + 1/ log Y � σ � 1 + 1/ log y,

1 if σ � 1 + 1/ log y.

Exercise 22.2.∗ Assume there are constants ε > 0, L � 2 and q0 such that

π(x; q, a) � (2− ε)x

ϕ(q) log x
(x � qL, q � q0).

Show that there is some c = c(q0, L, ε) > 0 such that, for all moduli q � 1, the
function

∏
χ (mod q) L(s, χ) has no zeroes with σ � 1−c/ log(q(|t|+2)) (i.e., there are

no Landau-Siegel zeroes). [Hint: Given a real, non-principal character χ (mod q),
prove a lower bound for the sum

∑
qL<p�x(1 + χ(p))/p.]

Exercise 22.3.∗ Let χ be a real, non-principal Dirichlet character mod q. Theorem
22.6 proves that if Lq(1, χ) � 1, then L(s, χ) does not have a Landau-Siegel zero.
This exercise shows that the converse is also true. Moreover, it establishes a precise
connection between the location of a potential Landau-Siegel zero and the size of
Lq(1, χ).

Throughout, q1 = max{q, 10}100, x � y � q1 , u = log x/ log y, 1 − 1/ log y �
σ < 1 and V (y) =

∏
p�y(1− 1/p).

(a) Let fσ(x) = (x1−σ − 1)/(1 − σ) =
∫ x

1
w−σdw. Show that there is a constant

γσ,y = O(log y) such that∑
n�x

P−(n)>y

1

nσ
=

(
fσ(x) + γσ,y

)
V (y) +O(e−100u).
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(b) For A′ � A � y and x � y, show that∑
A<a�A′

P−(a)>y

χ(a)fσ(x/a)

aσ
=

∫ x

1

∑
A<a�min{A′,x/w}

P−(a)>y

χ(a)

aσ
· dw
wσ


 x1−σ log(xA)

A100/ log y
.

Conclude that∑
n�x

P−(n)>y

(1 ∗ χ)(n)
nσ

=

{
x1−σ

1− σ
Ly(1, χ)−

( 1

1− σ
− γσ,y

)
Ly(σ, χ)

}
V (y) +O(e−u).

[Hint: Recall Lemma 22.2.]

(c) Show that there is an absolute constant c > 0 such that if Ly(σ, χ) � 0 for
some σ ∈ [1 − c/ log y, 1), then Ly(1, χ) � (1 − σ) log y. [Hint: Examine the
sign of (1/(σ − 1)− γσ,y)Ly(σ, χ).]

(d) Show that if L(σ, χ) �= 0 for σ ∈ [1− c/ log q1, 1], then Lq(1, χ) � 1.

(e) If there is β ∈ [1 − c/ log q1, 1] such that L(β, χ) = 0, then show that 1 − β �
Lq(1, χ)/ log q. [Hint: To prove the upper bound on 1 − β, use part (c). To
prove the lower bound, use the Fundamental Theorem of Calculus.]
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Chapter 23

Vinogradov’s method

The parity barrier of sieve methods prevents us from getting tight bounds
on

∑
p�x ap under the mere assumption of Axioms 1–3 for the sequence

A = (an)
∞
n=1. In 1934, I. M. Vinogradov1 developed a new method for

estimating
∑

p�x ap when A satisfies certain additional hypotheses.

To simplify the exposition of Vinogradov’s idea, let us assume that |an| �
1 for all n. We then have∑

p�x

ap =
∑
n�x

P−(n)>
√
x

an +O(
√
x).

Applying a variant of Buchstab’s identity (19.1) to the right-hand side yields
that

(23.1)
∑
p�x

ap =
∑
n�x

P−(n)>xε

an −
∑

xε<p�x

∑
n�x

P−(n)=p

an +O(
√
x),

where ε > 0 is at our disposal. If we assume that the sequence A satisfies
a suitable version of Axioms 1–3, the first sum on the right-hand side of
(23.1) can be estimated accurately using the Fundamental Lemma of Sieve
Theory (Theorem 18.11) for small enough values of ε. Thus, it remains to
handle the double sum over p and n.

Writing n = pm, we find that

B :=
∑

xε<p�x

∑
n�x

P−(n)=p

an =
∑∑
xε<p�x

mp�x, P−(m)�p

amp.

1Not to be confused with A. I. Vinogradov from the Bombieri-Vinogradov theorem.

234
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The right-hand side closely resembles a bilinear sum

(23.2)
K∑
k=1

L∑
�=1

ak�xky�

for appropriate coefficients xk and y�. There is a small technicality: the
variables p and m are weakly tangled via the relations pm � x and P−(m) �
p. We can easily decouple them though: we (roughly) have

(23.3) B ≈
∑

xε<2j�x1/2

Bj with Bj =
∑∑

2j−1<p�2j

m�x/2j , P−(m)�2j

amp,

so that B is a sum of O(log x) bilinear sums (Bj is of the form (23.2) with
K = x/2j , L = 2j , xk = 1P−(k)�2j and y� = 1� is prime1�∈(2j−1,2j ]).

Vinogradov’s groundbreaking idea is that, for certain special sequences
A, we can obtain strong estimates for the bilinear sum (23.2) no matter
what the coefficients xk and y� are, as long as they are of controlled size
(e.g. if |xk|, |y�| � 1 for all k, �) and as long as both K and L are large, so
that we have genuine bilinearity.2 We may thus forget the precise definition
of xk and y�. If this alleged bilinear estimate (which we can think of as
“Axiom 4” of sieve theory) is available in a large enough region of K and
L so that both terms on the right-hand side of (23.1) can be handled (the
first one by Axioms 1–3 and the second one by Axiom 4), we can break the
parity barrier and extract primes from the sequence (an)

∞
n=1.

We will explain Vinogradov’s method more rigorously in the subsequent
sections. But first let us note that Axiom 3 of sieve methods can also be
thought of as an estimate for a bilinear sum of the form (23.2), but with
y� = 1 for all �. Indeed, if (an)

∞
n=1 ⊂ [1, L] and we assume Axiom 1, then

K∑
k=1

L∑
�=1

ak�xk =
K∑
k=1

xkAk = X
K∑
k=1

xkν(k)

k
+

K∑
k=1

xkrk,

where Ak is defined by (18.2). If we assume that |xk| � 1 and that Axiom 3
holds with level of distribution D � K, then we can obtain a strong estimate
for

∑
k�K xkrk. Conversely, if we can estimate this sum for any choice of

xk, we can also estimate it when xk is the sign of rk, which brings us right
back to Axiom 3.

In conclusion, we may think of Axiom 3 as a bilinear estimate with
the coefficients y� being smooth functions of �. This point of view will be
important in the next section.

2If, for instance, K = 1, then the expression in (23.2) becomes a sum over a single variable.
We want to avoid such degenerate situations.
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Two types of functions

Various technicalities in Vinogradov’s method are simplified if instead of
the sum

∑
p�x ap we work with

∑
n�x anΛ(n). Indeed, the combinatorial

identity Λ = μ ∗ log readily implies that

(23.4)
∑
n�x

anΛ(n) =
∑
k��x

ak�μ(k) log �.

We thus see right away that
∑

n�x anΛ(n) has some sort of bilinear structure.
To bring the right-hand side of (23.4) into the form (23.2), we localize k into
a dyadic interval (2j−1, 2j ], so that � � x/2j−1. As we briefly mentioned
before, the method of bilinear sums is efficient only when both k and � are
“long variables”, that is to say, when 2j and x/2j are both large (say when
D � 2j � x/D). On the other hand, when 2j � D, we can take advantage
of the fact that the long variable � is weighted with the smooth function
log. Hence, this part of the sum can be handled too, provided that we have
at our disposal an appropriate version of Axiom 3, as per the discussion
in the end of the previous section. It remains to handle the summands
with x/D < 2j � x. If we can rewrite this part of the sum as a linear
combination of sums that fit into one of the two above categories (i.e., a
combination of some bilinear sums, and of some other ones with at least one
smooth variable), we will have completed the estimation of

∑
n�x anΛ(n).

This brings us to the heart of Vinogradov’s method: given x � 1, we
seek an identity of the form

(23.5) Λ(n) =
∑

1�j�J

(fj ∗ gj)(n) +R(n) for n � x,

where the function R is a negligible “remainder term” in the sense that∑
n�x |anR(n)| is small compared to

∑
n�x |an|, and for each j the summands

fj ∗ gj fall into one of the following two categories:

I) supp(fj) ⊆ [1, yj] for some yj that is small compared to x and gj ∈
C∞(R�1). We then call fj ∗ gj a quasi-smooth or type I function and
refer to the sum∑

n�x

an(fj ∗ gj)(n) =
∑
k�yj

fj(k)
∑
��x/k

ak�gj(�)

as a quasi-smooth, quasi-linear or type I sum.

II) supp(fj) ⊆ [1, yj ] and supp(gj) ⊆ [1, zj], where Dj � yj , zj � x/Dj for
some large Dj . We then call fj ∗ gj a type II function and its average∑

n�x

an(fj ∗ gj)(n) =
∑∑

k�yj , ��zj , k��x

ak�fj(k)gj(�)

a bilinear or type II sum.
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Decomposing von Mangoldt’s function

Vaughan’s identity. One of the simplest and most useful ways to arrive
at an identity of the form (23.5) was discovered by Vaughan. Given an
arithmetic function f and a parameter V , we write

(23.6) f�V (n) := 1n�V · f(n) and f>V (n) := 1n>V · f(n).
With the above notation, the identity Λ = μ ∗ log can be written as

(23.7) Λ = μ�V ∗ log + μ>V ∗ log .
The first term on the right-hand side of (23.7) is of type I. But the second
term is neither of type I nor of type II. To proceed, we replace μ>V by μ�V

using Möbius inversion: we have

(23.8) μ>V ∗ 1 = δ − μ�V ∗ 1,
where we recall the notation δ(n) = 1n=1 from Chapter 3. As preparation
for inserting (23.8) into (23.7), we write the latter formula as

Λ = μ�V ∗ log + μ>V ∗ 1 ∗ Λ.
Because Λ has unrestricted support, we first split it as Λ = Λ�U + Λ>U ,
where U is some parameter, and then apply (23.8) only to the part of Λ
supported on [1, U ]. We conclude that

Λ = μ�V ∗ log + μ>V ∗ 1 ∗ Λ>U + (δ − μ�V ∗ 1) ∗ Λ�U .

We have thus proven Vaughan’s identity :

Lemma 23.1. For any U, V � 1, we have

(23.9) Λ = μ�V ∗ log − (Λ�U ∗ μ�V ) ∗ 1 + (Λ>U ∗ 1) ∗ μ>V + Λ�U .

The function Λ�U is supported on small integers and hence contributes
a negligible amount to averages of Λ. The function μ�V ∗ log is a quasi-
smooth convolution: the first factor is a bounded function supported on
integers � V . Similarly, the function (Λ�U ∗μ�V ) ∗ 1 is also a quasi-smooth
convolution, with the factor Λ�U ∗ μ�V being supported on [1, UV ] and
satisfying the pointwise bound |Λ�U ∗ μ�V | � Λ ∗ 1 = log. We denote the
total contribution to Λ of these two type I functions by

(23.10) Λ� := μ�V ∗ log − (Λ�U ∗ μ�V ) ∗ 1.
Finally, the function

(23.11) Λ� := (Λ>U ∗ 1) ∗ μ>V

is of type II: its first factor is supported on integers > U and its second one
on integers > V .

A very useful feature of Λ� is that one of its factors is the Möbius function
that is completely aperiodic (see Corollary 13.4 and Exercise 23.4). As a
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result, Λ� typically contributes to the error term in the estimation of the sum∑
n�x anΛ(n), so that the main term comes from Λ�. We thus think of Λ� as

the “structured” part of Λ. It resembles a sieve-type weight and we need a
suitable version of Axiom 3 to estimate its averages. On the other hand, we
think of Λ� as an “unstructured/random” error term, and we usually treat
it using bilinear methods.

Remark 23.2. By definition, we have

Λ�(n) =
∑∑
k�=n

k>U, �>V

(Λ>U ∗ 1)(k)μ(�).

When n � x, we have U < k = n/� � x/V . However, we often need better
control of the support of the variables k and �. To achieve this goal, we cover
the interval (U, x/V ] by dyadic intervals (2j−1, 2j ], where 2j ∈ (U, 2x/V ]. If
k ∈ (2j−1, 2j ], we also have that � = n/k � x/2j−1. This leads us to the
more accurate decomposition

(23.12) Λ�(n) =
∑

U<2j�2x/V

(fj ∗ gj)(n) for n � x,

where fj(k) = (Λ>U ∗ 1)(k)12j−1<k�2j and gj(�) = μ(�)1V <��x/2j−1 . �

Presieving Λ. In many occasions, it is advantageous to use a variant of
Vaughan’s identity whose summands enjoy slightly different properties. A
simple way of obtaining such a variant is by presieving Λ. Indeed, since
primes do not have small prime factors, we write

Λ(n) = Λ(n) · 1P−(n)>y + Λ(n) · 1P−(n)�y.

We expect Λ(n) · 1P−(n)�y to be small on average because it is supported
on prime powers pm with p � y. Next, we decompose the function Λ(n) ·
1P−(n)>y by first replacing Λ by μ ∗ log. This yields the identity

(23.13) Λ(n)1P−(n)>y =
∑∑
k�=n

P−(k�)>y

μ(k) log �.

The fact that log(1) = 0 means that the above sum is supported on integers
� > 1. Since we also know that P−(�) > y, we must have � > y. We thus
see that we automatically have a long � variable weighted with the smooth
function log times the indicator function of integers free of prime factors � y.
Even though the latter is not a smooth function, it is quasi-smooth when y is
small enough. The reason is that Theorem 19.1 allows us to approximate the
function n → 1P−(n)>y = 1(n,P (y))=1 by convolutions λ± ∗ 1, where λ± take
values in [−1, 1] and have small support. Hence, for all practical purposes,
we may think of the function � → 1P−(�)>y log � as a quasi-smooth function.
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Motivated by the above discussion, we split the right-hand side of (23.13)
according to the size of k, which leads us to the following decomposition:

(23.14) Λ = Λ�
sieve + Λ�

sieve +Rsieve,

where

Λ�
sieve(n) =

∑∑
k�=n, k�D
P−(k�)>y

μ(k) log �,(23.15)

Λ�
sieve(n) =

∑∑
k�=n, k>D, �>y

P−(k�)>y

μ(k) log �(23.16)

and Rsieve(n) = 1P−(n)�yΛ(n). Note that Λ�
sieve is essentially of type I, Λ�

sieve

is of type II and Rsieve is of negligible size on average, since

(23.17)
∑
n�x

Rsieve(n) =
∑∑
p�y, pm�x

log p �
∑
p�y

log x � y log x.

A choice of y and D that works for many applications is

(23.18) y = exp{(log x)θ1} and D = exp{(log x)θ2},
where 0 < θ1 < θ2 < 1 can be chosen freely.

The main advantage of (23.14) compared to Vaughan’s identity is that

the functions Λ�
sieve and Λ�

sieve are presieved with all primes � y. This rather
technical feature of (23.14) plays a key role in the proof of Linnik’s theorem
in Chapter 27. We will also see in Exercise 26.4 how it leads to a better
version of the Bombieri-Vinogradov theorem.

A secondary advantage of (23.14) versus Vaughan’s identity is that its

“main term” Λ�
sieve consists of a single type I function. This fact makes

various calculations easier and will come into play in Chapter 24.

On the other hand, Vaughan’s identity offers much more freedom in the
choice of the parameters U and V . Therefore, we have more control over the
support of the functions appearing in the type I and type II sums, which is
very important in certain applications. In contrast, the parameters y and D
in (23.14) must be chosen carefully so that we have enough room to apply
the Fundamental Lemma of Sieve Theory. In particular, y must be xo(1).

Remark 23.3. It is possible to create a new combinatorial decomposition
of Λ that combines the best attributes of Vaughan’s identity and of (23.14).
This is done by presieving Vaughan’s identity, that is to say, by multiplying
all summands of (23.9) with the function n → 1P−(n)>y. �

There are a lot more combinatorial decompositions of von Mangoldt’s
function than the ones we discussed above. A formula of particular im-
portance is Heath-Brown’s identity, given in Exercise 23.5 below. It is not
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exactly of the form (23.5). Hence working with it is a bit more complicated,
the task being understanding how to rearrange its terms and bring it to the
form (23.5). However, Heath-Brown’s identity has the important feature
that all of the long functions appearing in it are smooth.

A further analysis of the subject of combinatorial decompositions of Λ
can be found in [114, Chapter 13] or [59, Chapter 17]. Finally, a more sieve-
theoretic approach to Vinogradov’s method that is more in line with the
discussion in the introduction of this chapter is presented in Harman’s book
on prime-detecting sieves [96].

The additive Fourier transform of the primes

To exemplify Vinogradov’s method, we employ it to study a concrete and
rather important example: the exponential sum∑

p�x

e(αp).

This sum is intimately related with the additive properties of primes and we
will use it in the next chapter to study ternary arithmetic progressions in
the primes. To get an idea of its size, we begin by studying it assuming the
Generalized Riemann Hypothesis. This will serve as a guide for what kind
of bounds to look for when we estimate it later via Vinogradov’s method.

First, let us consider the special case when α is a rational number, say
α = a/q with (a, q) = 1. Then

(23.19)

∑
p�x

e(ap/q) =
∑

b∈(Z/qZ)∗
e(ab/q)π(x; q, b) +

∑
p�x, p|q

e(ap/q)

=
li(x)

ϕ(q)

∑
b∈(Z/qZ)∗

e(ab/q) +O(
√
xq log(qx))

by Exercise 11.2 and partial summation. Making the change of variables
n ≡ ab (mod q), we see that the sum over b is the Gauss sum of the principal
character mod q, which equals μ(q) (see Exercises 10.1 and 10.5). Therefore∑

p�x

e(pa/q) =
μ(q)

ϕ(q)
· li(x) +O(

√
xq log(qx)).

To estimate
∑

p�x e(pα) for irrational α, we find a good rational approx-
imation to it using the following classical result.

Lemma 23.4 (Dirichlet’s approximation theorem). Let α ∈ R and Q � 1.
There is a reduced fraction a/q with q � Q and∣∣∣∣α− a

q

∣∣∣∣ < 1

qQ
.

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



Type I exponential sums 241

Proof. Consider the �Q�+1 numbers αq with 0 � q � Q. We reduce them
mod 1 to place them in the interval [0, 1). By the pigeonhole principle, there
must exist 0 � q1 < q2 � Q such that ‖αq2−αq1‖ � 1/(�Q�+1) < 1/Q. We
then take q′ = q2−q1 and a′ to be the unique integer in [αq′−1/2, αq′+1/2),
so that 1 � q′ � Q and |αq′−a′| = ‖αq′‖ < 1/Q. Letting a/q be the fraction
a′/q′ in reduced form completes the proof. �

Fix Q and a/q as in Lemma 23.4. If we write α = β + a/q, then

(23.20)

∑
p�x

e(αp) =

∫ x

2−
e(βy)d

∑
p�y

e(ap/q)

=
μ(q)

ϕ(q)

∫ x

2

e(βy)

log y
dy +O

(
(1 + |β|x)

√
xq log(qx)

)
by partial summation. Since |β| � 1/(qQ), taking Q =

√
x(log x)3 yields

(23.21)
∑
p�x

e(pα) =
μ(q)

ϕ(q)

∫ x

2

e(βy)

log y
dy +O

( x

(log x)2
+
√
xq log x

)
.

In particular, we see that if α is close to a rational number of denominator
q ∈ [(logx)2,

√
x/(log x)3], then there is significant cancellation among the

numbers e(αp) with p � x, which makes
∑

p�x e(αp) smaller than π(x).

The above calculation is a manifestation of an important principle stem-
ming from the Hardy-Littlewood circle method that we will study in detail
in Chapter 24: the Fourier transform

(23.22)
∑
n�x

cne(nα)

of various interesting arithmetic sequences (cn)n�x is big when α lies close to
a rational number of small denominator, and it is small otherwise. The rough
heuristic to explain this dichotomy is that when α is far from any fraction of
small denominator, the sequence (e(nα))n�x lacks any meaningful arithmetic
structure, so that it cannot correlate with any “reasonably regular” sequence
(cn)n�x.

A central problem in analytic number theory is to establish strong esti-
mates for the exponential sum

∑
n�x cne(nα): an asymptotic formula when

α is close to a fraction of small denominator, and a non-trivial upper bound
otherwise. In particular, we would like to do so when cn is the indicator func-
tion of the primes without appealing to the unproven Generalized Riemann
Hypothesis.

Type I exponential sums

In view of the decomposition of Λ into type I and type II functions, the esti-
mation of

∑
p�x e(αp) boils down to the estimation of

∑
n�x(f ∗g)(n)e(αn),
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when f ∗ g is a function of type I or II. We begin by studying the first
category of functions.

Let us begin by handling the simplest non-trivial type I function: the
constant function 1. Arguing as in (10.12), we have

(23.23)
∣∣∣∑
n�x

e(αn)
∣∣∣ = ∣∣∣∣e(α) · 1− e(α�x�)

1− e(α)

∣∣∣∣ � 1

2‖α‖ ,

where we recall that ‖α‖ denotes the distance of α from the nearest integer.
We thus immediately see that, as long as ‖α‖ = o(1/x), the sum

∑
n�x e(αn)

is small compared to the trivial bound

(23.24)
∣∣∣∑
n�x

e(αn)
∣∣∣ �

∑
n�x

1 � x.

Using partial summation, we may easily pass from (23.23) and (23.24)
to an estimate for the Fourier transform of the function logv, where v is any
fixed positive real number. Indeed, we have∑

n�x

(logn)ve(nα) =

∫ x

1−
(log t)vd

∑
n�t

e(nα)


 (log x)v ·min{x, ‖α‖−1}(23.25)

uniformly for x � 1 and v � 0. Similar estimates are true if we replace logv

by a more general smooth function but we will not need them.

The above observations and the simplest version of Dirichlet’s hyperbola
method allow us to establish non-trivial estimates for general exponential
sums of type I when α is close to a fraction a/q of large denominator (say,
with q � (log x)A for some large A). The notation ‖f‖∞ in the statement of
Theorem 23.5 below stands for the supremum norm of f . Finally, its proof
features an important concept in the study of exponential sums: we say that
a set of real numbers {α1, . . . , αr} is δ-spaced mod 1 if

(23.26) ‖αi − αj‖ � δ whenever i �= j.

Theorem 23.5. Let f : N → C be supported on [1, y], v � 0, x � 2, α ∈ R
and a/q be a reduced fraction with |α− a/q| � 1/q2. Then

(23.27)
∑
n�x

(f ∗ logv)(n)e(nα) 

(
y +

x

q
+ q

)
(log x)v+1‖f‖∞.

Proof. If q = 1, q > x or y > x, we simply note that |(f ∗ logv)(n)| �
‖f‖∞τ(n)(logn)v and use Theorem 3.3. Assume now that 2 � q � x and
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y � x. Opening the convolution and applying (23.25) yields∑
n�x

(f ∗ logv)(n)e(nα) =
∑
k�y

f(k)
∑
��x/k

(log �)ve(� · kα)


 (log x)v‖f‖∞
∑
k�y

min
{
x/k, 1/‖kα‖

}
.(23.28)

We cover the last sum by subsums of length q̃ := �q/2� defined by

Sm :=
∑

mq̃<k�(m+1)q̃

min
{
x/k, 1/‖kα‖

}
.

Since (a, q) = 1, the numbers ka/q with mq̃ < k � (m+ 1)q̃ are all distinct
mod 1. Hence, ‖k1a/q − k2a/q‖ � 1/q whenever mq̃ < k1 < k2 � (m+ 1)q̃.
On the other hand, if we write α = a/q + β, then |k1β − k2β| � q̃|β| �
(q/2)/q2 = 1/(2q). As a consequence, we find that the numbers kα with
mq̃ < k � (m+ 1)q̃ are (2q)−1-spaced mod 1. We index them as α1, . . . , αq̃

in a way that ‖α1‖ � · · · � ‖αq̃‖. For each integer j ∈ [1, q̃], the interval

(− j−1
4q , j−1

4q ) can contain at most j−1 of the reductions mod 1 of the numbers

α1, . . . , αq̃. Hence, we must have that ‖αj‖ � (j − 1)/(4q) for j = 1, . . . , q̃.

When m � 1, the above discussion and the fact that x/k < x/(mq̃)
whenever k > mq̃ yield the inequality

(23.29) Sm � x

mq̃
+

∑
2�j�q/2

4q

j − 1

 x

mq
+ q log q.

However, when m = 0, we cannot use the above argument as it currently
stands because we do not have a good bound for the summand of S0 corre-
sponding to the integer k with kα = α1. Note though that if 1 � k � q/2,
then |kβ| � (q/2)/q2 = 1/(2q) and ‖ka/q‖ � 1/q. Therefore, ‖kα‖ � 1/(2q)
for all k ∈ Z ∩ [1, q/2]. In particular, ‖α1‖ � 1/(2q) when m = 0, and thus

(23.30) S0 � 2q +
∑

2�j�q/2

4q

j − 1

 q log q.

Combining (23.29) with (23.30), and noticing that there are � y/q̃ 
 y/q
integers m ∈ [1, y/q̃] allows us to estimate the expression in (23.28) and
complete the proof of the theorem. �

Type II exponential sums

Let us now consider the exponential sum
∑

n�x(f ∗ g)(n)e(αn) for a type
II function f ∗ g. For concreteness, we assume momentarily that supp(f) ⊆
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[1, y] and supp(g) ⊆ [1, z] with y = xθ and z = x1−θ for some θ ∈ (0, 1). We
then find that

(23.31)
∑
n�x

(f ∗ g)(n)e(αn) =
∑∑
k�y, ��z
k��x

f(k)g(�)e(αk�).

The advantage of this formula is that it transforms the Fourier transform of
f ∗ g into a double sum that we can interpret as an average of many sums.
For instance, we may arrange the summation as

(23.32)
∑
n�x

(f ∗ g)(n)e(αn) =
∑
k�y

f(k)
∑

��min{z,x/k}
g(�)e(αk�).

In practice, we do not know much about the function g, so that for a given
k we cannot hope to do much better than the trivial upper bound

(23.33)

∣∣∣∣ ∑
��min{z,x/k}

g(�)e(αk�)

∣∣∣∣ �
∑

��min{z,x/k}
|g(�)|.

(Consider for instance the case when g(�) = e(−α�) and k = 1.) However, it
turns out that (23.33) can be improved for most k, something that we can
take advantage of since we are averaging over many values of k.

We begin by noticing that the sum in the left-hand side of (23.33) can
be interpreted as the Hermitian inner product over C of the vectors

�g = (g(�))d�=1 and �vk = (1k��x · e(−k�α))d�=1,

where d = �z�. The key observation is that if α ≈ a/q with large q, then
the vectors �vk are approximately orthogonal to each other, so that the fixed
vector �g cannot correlate strongly with many of them. Consequently, we
expect that the trivial bound (23.33) can be improved significantly for most
values of k.

To see the claim that the vectors �vk are mutually quasi-orthogonal, note
that relation (23.23) implies the estimate

(23.34) 〈�vk1 , �vk2〉 =
∑

��min{z,x/k1,x/k2}
e(−k1�α)e(−k2�α) 


1

‖(k2 − k1)α‖
.

Generalizing the argument used to prove Theorem 23.5, we will show that
if α is far from fractions of small denominator, the quantity ‖(k2 − k1)α‖ is
away from 0 for most pairs (k1, k2) with k1 �= k2, so that 〈�vk1 , �vk2〉 is small.

The above ideas will be vastly generalized in Chapter 25, where we study
bounds for general bilinear sums

∑M
m=1

∑N
n=1 am,nxmyn. We will prove there

that there is some Δ that depends at most on the coefficients am,n such that∣∣∣∣ M∑
m=1

N∑
n=1

am,nxmyn

∣∣∣∣ � Δ ·
( M∑

m=1

|xm|2
)1/2( N∑

n=1

|yn|2
)1/2

.

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



Type II exponential sums 245

For now, we use this circle of ideas to derive a strong bound for the Fourier
transform of type II functions. The notation ‖f‖2 in the statement of The-
orem 23.6 stands for the �2-norm of f , that is to say, ‖f‖22 =

∑
n�1 |f(n)|2.

Theorem 23.6. Let f, g : N → C be two arithmetic functions such that
supp(f) ⊆ [1, y] and supp(g) ⊆ [1, z]. In addition, consider α ∈ R and a
reduced fraction a/q such that |α− a/q| � 1/q2. For all x � 1, we have∑

n�x

(f ∗ g)(n)e(αn) 

(
q + y + z +

yz

q

)1/2√
log(2q) · ‖f‖2‖g‖2.

In particular, if yz � 2x and |f |, |g| � 1, so that ‖f‖2 � √
y and ‖g‖2 � √

z,
then ∑

n�x

(f ∗ g)(n)e(nα) 

( x
√
q
+

x
√
y
+

x√
z
+
√
xq

)√
log(2q).

Proof. Let S be the sum we want to bound, which we arrange in the “dual”3

form to (23.32)

S =
∑
��z

g(�)
∑

k�y, k��z

f(k)e(k�α).

We use the Cauchy-Schwarz inequality to remove the unknown function g:

|S|2 � ‖g‖22
∑
��z

∣∣∣∣ ∑
k�y, k��x

f(k)e(k�α)

∣∣∣∣2.
As a result, the variable � is now weighted with the smooth function 1.
Opening the square via the identity |z|2 = zz̄ yields that

|S|2 � ‖g‖22
∑∑∑
��z, k1, k2�y
k1�, k2��x

f(k1)f̄(k2)e((k1 − k2)�α)

= ‖g‖22
∑∑
k1, k2�y

f(k1)f̄(k2)
∑

��min{z,x/k1,x/k2}
e(� · (k1 − k2)α).(23.35)

We bound the innermost sum of (23.35) using (23.34) to find that

|S|2 
 ‖g‖22
∑∑
k1, k2�y

|f(k1)f(k2)| ·min
{
z,

1

‖(k2 − k1)α‖
}
.

To remove one of the unknown factors f(kj), we use the inequality |zw| �
(|z|2 + |w|2)/2. This implies that

|S|2 
 ‖g‖22
∑

j∈{1,2}

∑∑
k1, k2�y

|f(kj)|2min
{
z,

1

‖(k2 − k1)α‖
}
.

3This terminology will be explained in Chapter 25.
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The theorem will then follow if we can prove the following estimate:

(23.36)
∑
k�y

min
{
z,

1

‖kα+ η‖
}



(
q + y + z +

yz

q

)
log(2q),

uniformly for all η ∈ R. This will be demonstrated by adapting the argument
of the proof of Theorem 23.5.

If q = 1, (23.36) follows by majorizing all summands by z. Let us
consider now the more interesting case when q � 2. We let q̃ = �q/2� and
break the interval [1, y] into subintervals of length q̃ to find that

(23.37)
∑
k�y

min
{
z,

1

‖kα+ η‖
}

�
�y/q̃�∑
m=0

(m+1)q̃∑
k=mq̃+1

min
{
z,

1

‖kα+ η‖
}
.

Fix m ∈ Z�0. Arguing as in the proof of Theorem 23.5, we find that the
numbers kα+ η are (2q)−1-spaced mod 1 when mq̃ < k � (m+1)q̃. Hence,
a straightforward adaptation of the proof of (23.29) implies that∑

mq̃<k�(m+1)q̃

min
{
z,

1

‖kα+ η‖
}

� z +
∑

2�j�q/2

4q

j − 1

 z + q log q.

Inserting this bound into (23.37) completes the proof of (23.36), and hence
of the theorem. �

Remark 23.7. Remarkably, the estimate for
∑

n�x(f ∗g)e(αn) supplied by
Theorem 23.6 is essentially sharp. For simplicity, we consider only the case
when y � z, since the other one is symmetric.

Indeed, let x � yz � x/2 and choose f(k) to be the complex conjugate
of

∑
��z g(�)e(αk�). We then have∑

n�x

(f ∗ g)e(αn) =
∑
k�y

∣∣∣∑
��z

g(�)e(αk�)
∣∣∣2 = ‖f‖22.

If we now let {g(�)}��z be a sequence of independent random variables with
P(g(�) = 1) = P(g(�) = −1) = 1/2, we find that

E

[∑
k�y

∣∣∣∑
��z

g(�)e(k�α)
∣∣∣2] =

∑
k�y

∑
��z

1 � x.

In particular, there must exist a choice of g(�) such that
∑

n�x(f ∗g)e(αn) =
‖f‖22 � x. Since ‖g‖22 = �z�, we infer that∑

n�x

(f ∗ g)e(αn) = ‖f‖22 �
√
x‖f‖2 �

√
y · ‖f‖2‖g‖2.

By swapping the roles of f and g, we can also find choices of them such that
|
∑

n�x(f ∗ g)e(αn)| � √
z · ‖f‖2‖g‖2.

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



The additive Fourier transform of the primes: Encore 247

Finally, let us consider the case when α = a/q, f(k) = e(−ak/q) for
k � y, and g(�) = 1�≡1 (mod q) for � � z. We then have∑

n�x

(f ∗ g)e(αn) =
∑∑
k�y, ��z

�≡1 (mod q)

1 � y · (z/q + 1) �
√

yz/q + y · ‖f‖2‖g‖2.

To conclude, a general estimate for
∑

n�x(f ∗g)e(αn) can never be better

than max{y, z, yz/q}1/2‖f‖2‖g‖2, and Theorem 23.6 comes remarkably close
to this bound. �

The additive Fourier transform of the primes: Encore

We shall now apply the methods we have developed to establish Vino-
gradov’s famous estimate.

Theorem 23.8. Let α ∈ R and consider a reduced fraction a/q such that
|α− a/q| � 1/q2. For all x � 2, we have∑

n�x

Λ(n)e(nα) 

( x
√
q
+ x4/5 +

√
xq

)
(log x)5/2.

Proof. We may assume that q � x; otherwise, the theorem follows by
bounding all summands by log x.

Let us decompose Λ using Vaughan’s identity. First, we deal with Λ�.
We apply Theorem 23.5 twice, once to the convolution μ�V ∗ log (so v = 1
and f = μ�V here, with y = V and ‖f‖∞ = 1) and once to (μ�V ∗Λ�U ) ∗ 1
(so v = 0 and f = μ�V ∗ Λ�U here, with y = UV and |f | � 1 ∗ Λ = log,
whence ‖f‖∞ � log(UV )). We thus conclude that

(23.38)
∑
n�x

Λ�(n)e(nα) 

(
UV +

x

q
+ q

)
log2(xUV ).

Next, we deal with Λ�. We rewrite this function using (23.12) and apply
Theorem 23.6 to each summand fj ∗gj of that identity. Since q � x, ‖fj‖22 �
2j log2 x and ‖gj‖22 � x/2j−1, we find that∑

n�x

Λ�(n)e(nα) 

∑

U<2j�2x/V

( x
√
q
+
√
2jx+

x

2j/2
+
√
xq

)
(log x)3/2.

We note that
√
2jx 
 x/

√
V and x/2j/2 
 x/

√
U . Applying these bounds

to each of the O(log x) choices of j yields the estimate

(23.39)
∑
n�x

Λ�(n)e(nα) 

( x
√
q
+

x√
U

+
x√
V

+
√
xq

)
(log x)5/2.
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Since we also have that |
∑

n�x Λ�U (n)e(nα)| �
∑

n�U Λ(n) 
 U and q �√
xq by our assumption that q � x, Vaughan’s identity in combination with

(23.38) and (23.39) implies that∑
n�x

Λ(n)e(nα) 

(
UV + x/

√
q + x/

√
U + x/

√
V +

√
xq

)
(log x)5/2.

Taking U = V = x2/5 to optimize the above bound completes the proof. �

Theorem 23.8 confirms the prediction we made using the Generalized
Riemann Hypothesis that the exponential sum

∑
n�x Λ(n)e(αn) can only be

large when α is close to a rational number with small denominator. Indeed,
if |α− a/q| � 1/q2 with (log x)A � q � x/(log x)A, we find that

(23.40)
∑
n�x

Λ(n)e(αn) 
A x/(log x)(A−5)/2.

We will demonstrate the utility of this key estimate in the next chapter.

Conclusion

Vinogradov’s method allows us to deal with very general sums of the form

(23.41)
∑
n�x

anΛ(n),

where (an)
∞
n=1 is some interesting sequence. To estimate (23.41), we first use

various combinatorial ideas such as convolution identities and Buchstab it-
erations to obtain an appropriate decomposition of Λ of the form (23.5). We
then handle quasi-smooth sums, namely sums of the form

∑
n�x an(f ∗g)(n)

with f “small” and g smooth, using a mix of tools such as the summation
formulas of Poisson and of Euler-Maclaurin, L-functions, sieves and esti-
mates for exponential sums (e.g. the Pólya-Vinogradov inequality and other
more advanced results beyond the scope of this book). Finally, we estimate
bilinear sums, namely sums of the form

∑
n�x an(f ∗g)(n) with f and g both

supported on large integers, by employing methods arising from the theory
of bilinear forms that we will fully develop in Chapter 25 (with the Cauchy-
Schwarz inequality playing a central role), coupled with various exponential
sum estimates. We thus see that this approach to the distribution of primes
utilizes the full toolset we have at our disposal.

Exercises

Exercise 23.1. Consider α ∈ R and a reduced fraction a/q such that |α− a/q| �
1/q2. Prove that∑

n�x

τ (n)e(αn)
 (
√
x+ q + x/q) log x (x � 2).
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Exercise 23.2. Let v � 0, let f be an arithmetic function supported in [1, y], and
χ be a non-principal Dirichlet character mod q. For x � 2, prove that∑

n�x

(f ∗ logv)(n)χ(n)
 √
q(log q)(log x)v

∑
k�y

|f(k)|.

Exercise 23.3. Let r, s > 1 be such that 1/r + 1/s = 1. Assuming the set-up of
Theorem 23.5, prove that∑

n�x

(f ∗ logv)(n)e(nα)
r

(
y1/rq1/s + q + x/q

)
(log x)v‖f‖s,

where ‖f‖s = (
∑∞

k=1 |f(k)|s)1/s.
Exercise 23.4.∗

(a) For any U, V � 1, prove that

μ = −μ�U ∗ μ�V ∗ 1 + μ>U ∗ μ>V ∗ 1 + μ�U + μ�V .

(b) Let α ∈ R, and let a/q be a reduced fraction with |α− a/q| � 1/q2. For every
fixed ε > 0, show that∑

n�x

μ(n)e(nα) 
ε

(
x/
√
q +

√
xq

)
(log x)3 + x4/5+ε (x � 3).

[Hint: Select U = V = min{x2/5, q, x/q} in part (a).]

(c) (Davenport) Fix A � 1. Prove that∑
n�x

μ(n)e(nα) 
A x/(log x)A (x � 2, α ∈ R).

Exercise 23.5 (Heath-Brown’s identity). Let k ∈ N, x � 1 and V � x1/k. For
n � x, show that

Λ(n) =

k∑
j=1

(−1)j−1

(
k

j

)
(log ∗ 1 ∗ · · · ∗ 1︸ ︷︷ ︸

j−1 times

∗μ�V ∗ · · · ∗ μ�V︸ ︷︷ ︸
j times

)(n).

[Hint: Let f = μ�V ∗1 and g = μ>V ∗1. On the one hand, we have Λ∗g ∗ · · · ∗ g︸ ︷︷ ︸
k times

= 0

on N�x. On the other hand, g = δ − f with δ(n) = 1n=1.]
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Chapter 24

Ternary arithmetic
progressions

Vinogradov’s method allows us to advance significantly our understand-
ing of additive patterns among the primes. We exemplify this principle here
by proving the existence of infinitely many ternary arithmetic progressions
a, a+d, a+2d all of whose elements are prime numbers. The same ideas can
also be used to study the ternary Goldbach conjecture (stating that every
odd integer � 7 is the sum of three primes), as well as other similar “ternary
additive problems” (see Exercise 24.1, as well as Chapter 26 of Davenport’s
book [31]). On the contrary, binary additive problems, such as the twin
prime conjecture or the binary Goldbach conjecture (every even integer � 4
is the sum of two primes), are generally out of the reach of the currently
available methods. We give a brief explanation of the added difficulties when
dealing with binary problems in the last section of this chapter.

We now state the main result of this chapter.

Theorem 24.1. Fix A > 0. For x � 2, we have∑∑∑
n1,n2,n3�x

n2−n1=n3−n2

Λ(n1)Λ(n2)Λ(n3) = x2
∏
p�3

(
1− 1

(p− 1)2

)
+OA

( x

(log x)A

)
.

Remark 24.2. Green and Tao [77] proved that, for any given k, there
are infinitely many k-step arithmetic progressions a, a + d, a + 2d, . . . ,
a + (k − 1)d all of whose elements are prime numbers. Their proof uses
techniques related to the celebrated theorem of Szemerédi that lie beyond
the scope of this book. This theorem states that if a set of integers A has
positive lower density, in the sense that #A∩ [1, x] � x for infinitely many
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The Hardy-Littlewood circle method 251

x, then A contains arbitrarily long arithmetic progressions. Even though
the primes do not have positive lower density, Green and Tao established a
suitable transference principle that allowed them to pass from Szemerédi’s
theorem to the case when A is the set of primes. An important step in doing
so is the construction of a “sieve majorant” for the indicator function of the
primes. �

The Hardy-Littlewood circle method

In a series of papers, Hardy and Littlewood introduced a general technique
that gave them access to a wide array of additive problems. They called their
approach the circle method for reasons that will become apparent shortly.
Their ideas were further developed by I. M. Vinogradov and led to Theo-
rem 24.1. We describe them in the context of counting ternary arithmetic
progressions.

The starting point of the circle method is the orthogonality relation

(24.1) 1n=0 =

∫ 1

0
e(αn)dα,

valid for any integer n. Using it with n = n1 + n3 − 2n2 allows us to
re-express the indicator function of the event that the integers n1, n2, n3

are in arithmetic progression: 1n2−n1=n3−n1 =
∫ 1
0 e(αn1)e(αn3)e(−2αn2)dα.

Multiplying both sides by Λ(n1)Λ(n2)Λ(n3) and summing over n1, n2, n3 � x
yields the formula

(24.2)
∑∑∑
n1,n2,n3�x

n2−n1=n3−n2

Λ(n1)Λ(n2)Λ(n3) =

∫ 1

0
S(x;α)2S(x;−2α)dα,

where S(x;α) is the additive Fourier transform of Λ, that is to say,

S(x;α) :=
∑
n�x

Λ(n)e(αn).

The name “circle method” comes from interpreting the expression in (24.2)
as an integral over R/Z (which is a circle from a geometric point of view).

Formula (24.2) is what we would call a “gambit” in chess. The gain it
offers is that it transforms the unknown expression on its left side into a new
expression that we can hope to estimate using our knowledge for the sum
S(x;α) from the previous chapter. However, to achieve this transformation,
we had to make a sacrifice: the trivial bound for the expression on the right-

hand side of (24.2) is
∫ 1
0 (

∑
n�x Λ(n))

3dα � x3. This means that we must
somehow recover the loss of a factor of 1/x. There are two key ideas that
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will allow us to compensate for this loss:

• There is a set M of α ∈ [0, 1] (called the set of major arcs) that
“dominate” the integral in (24.2). This set has Lebesgue measure
(log x)O(1)/x, and the sum S(x;α) has size x/(log x)O(1) on it. It
thus contributes ≈ x3 · 1/x = x2 to the integral of (24.2), which is
the size of the expected main term.

• The size of S(x;α) for a “generic” α ∈ [0, 1] is x1/2+o(1). This
follows from Parseval’s identity:1

(24.3)

∫ 1

0
|S(x;α)|2dα =

∑
n�x

Λ(n)2 � x log x.

It turns out that the major arcs consist of those numbers that are close
to rationals of small denominator. More precisely, we may take

(24.4) M =
⋃⋃

1�q�L, 0�a�q
(a,q)=1

[a/q − L/x, a/q + L/x]

with L = (log x)2A+7. We also define the set of minor arcs m := [0, 1] \M.
The motivation for this terminology is the fact that S(x; 2α) 
 x/(log x)A+1

when α ∈ m. Indeed, for any such α, Lemma 23.4 implies the existence of
a reduced fraction a/q with q � x/L and |α− a/q| � L/(qx) � 1/q2. Since
α /∈ M, we must have q > L. Hence, the claimed bound on S(x; 2α) follows
by (23.40). Together with (24.3), this implies that∫

m

|S(x;α)2S(x;−2α)|dα 

∫ 1

0
|S(x;α)|2 x

(log x)A+1
dα 
 x2

(log x)A
.

Thus most of the contribution to the right side of (24.2) comes from α ∈ M.

It remains to estimate S(x;α) when α ∈ M. Consider first the case
when α = a/q. Then, we may argue as in (23.19) to prove that

(24.5)
∑
n�x

Λ(n)e(an/q) =
μ(q)

ϕ(q)
x+OA

(
xe−c

√
log x

)
for some c > 0; indeed, here q � (log x)2A+7, so the Siegel-Walfisz theorem
is applicable and we do not need to appeal to the unproven Generalized
Riemann Hypothesis. Finally, if α = β+a/q with |β| � L/x, we may adapt
the proof of (23.21) to pass from (24.5) to an estimate for S(x;α).

Putting together the above estimates leads to a proof of Theorem 24.1.
The details we have omitted are presented in Chapter 26 of Davenport’s
book [31] (the treatment there concerns the ternary Goldbach conjecture,
but it can be easily adapted to our setting). Here, we will give a different

1Relation (24.3) admits a short self-contained proof: we use the identity |z|2 = zz̄ to write

|S(x;α)|2 as a double sum over n1, n2 � x, and then note that
∫ 1
0 e(α(n1 − n2))dα = 1n1=n2 .
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way of calculating the main term of Theorem 24.1. Before proceeding, let us
pause for a moment to observe the amazing complementarity of the available
estimates: Vinogradov’s method can handle S(x;α) when |α− a/q| � 1/q2

with q � (log x)2A+7, and stops working well for smaller q. However, the
remaining range of q is precisely what is covered by the best-known version
of the Prime Number Theorem for arithmetic progressions. This allows us to
handle the full range of integration and prove Theorem 24.1 unconditionally.

Making the entire circle a minor arc

Given arithmetic functions f1, f2, f3, we define the weighted count of ternary
arithmetic progressions

T (f1, f2, f3;x) =
∑∑∑
n1,n2,n3�x
n1+n3=2n2

f1(n1)f2(n2)f3(n3).

Our goal is to estimate T (Λ,Λ,Λ;x). We will extract the main term to this
quantity by decomposing Λ.

Rather than employing Vaughan’s identity, it is more convenient to use
(23.14). This leads us to the formula

(24.6) T (Λ,Λ,Λ;x) =
∑∑∑

f1,f2,f3∈{Λ	
sieve,E}

T (f1, f2, f3;x)

with E = Λ�
sieve + Rsieve. If y and D are chosen as in (23.18), we will show

that any summand involving at least one term fj = E is negligible. The key

to proving this is the aperiodicity of the function Λ�
sieve that manifests itself

in Theorem 24.3 below. A close examination of its proof reveals another
instance of the complementarity of Vinogradov’s method and of the Siegel-
Walfisz theorem to which we alluded above (though it is subtler now, with
the Siegel-Walfisz theorem hiding within the proof of Corollary 13.4).

Theorem 24.3. Consider x, y,D � 2 satisfying (23.18) with 0 < θ1 < θ2 <
1, and fix A � 1. If Λ�

sieve is defined by (23.16), then for all α ∈ R we have∑
n�x

Λ�
sieve(n)e(αn) 
θ1,θ2,A

x

(log x)A
.

Proof. All implied constants might depend on θ1, θ2 and A. Applying
Lemma 23.4 with Q = x/(log x)2A+5, we may find a reduced fraction a/q
such that 1 � q � Q and |α − a/q| � 1/(qQ). We use a different argument
according to whether q � (log x)2A+5 or not.

First, we study the case when (log x)2A+5 � q � x/(log x)2A+5. We

begin by writing Λ�
sieve = f̃ ∗ g̃ with f̃(k) = 1k>D,P−(k)>y μ(k) and g̃(�) =

1�>y,P−(�)>y log �. We then argue as in the proof of (23.39): we localize
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dyadically the factors of the convolution f̃ ∗ g̃ as in (23.12) and then apply
Theorem 23.6 to each summand separately. This yields the estimate∑

n�x

Λ�
sieve(n)e(nα) 


( x
√
q
+

x
√
y
+

x√
D

+
√
xq

)
(log x)5/2.

The right-hand is 
 x/(log x)A by our choice of q, y and D, thus completing
the proof of the theorem in this case.

Finally, we consider the case when q � (log x)2A+5. We begin by study-
ing the case α = a/q. For each w ∈ [

√
x, x], we have∑

n�w

Λ�
sieve(n)e(na/q) =

∑
b∈Z/qZ

e(ba/q)
∑
n�w

n≡b (mod q)

Λ�
sieve(n)

=
∑

b∈Z/qZ
e(ba/q)

∑
y<��w/D
P−(�)>y

log �
∑

D<k�w/�, P−(k)>y
k�≡b (mod q)

μ(k).(24.7)

Fix � and b momentarily, and let d = (�, q). The congruence k� ≡ b (mod q)
is equivalent to having d|b and k ≡ �′b/d (mod q/d), where �′ denotes the

inverse of �/d mod q/d. Since w/� � D = exp{(log x)θ2} = exp{(log y)θ2/θ1}
and q � (log x)2A+5 = (logD)(2A+5)/θ2, Corollary 13.4 applied with m =∏

p�y p implies that the innermost sum of (24.7) is 
 (w/�)/(log x)5A+12.
Thus,∑

n�w

Λ�
sieve(n)e(na/q) 


∑∑
b∈Z/qZ, ��w

log � · w/�

(log x)5A+12

 w

(log x)3A+5

uniformly for w ∈ [
√
x, x] and q � (log x)2A+5. To pass to an estimate for∑

n�x Λ
�
sieve(n)e(nα), we write α = a/q + β, so that |β| � (log x)2A+5/x.

Using partial summation similarly to (23.20) implies that∑
√
x<n�x

Λ�
sieve(n)e(nα) =

∫ x

√
x
e(βw)d

∑
n�w

Λ�
sieve(n)e(na/q) 


x

(log x)A
.

Since we also have the trivial bound
∑

n�√
x Λ

�
sieve(n)e(nα) 


√
x log2 x by

noticing that |Λ�
sieve| � log, the theorem follows. �

Let us now prove our claim that any summand on the right-hand side of
(24.6) with fj = E for some j is negligible. For concreteness, assume that
f3 = E; the other cases follow similarly. Arguing as in (24.2), we have

T (f1, f2, f3;x) =

∫ 1

0
Sf1(x;α)Sf2(x;−2α)Sf3(x;α)dα,

where Sf (x;α) =
∑

n�x f(n)e(αn) denotes the additive Fourier transform
of the arithmetic function f . Since we have assumed that f3 = E, Theo-
rem 24.3 implies that Sf3(x;α) = OA(x/(log x)

A+2) for all α ∈ R (i.e., there
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are no “major arcs” anymore). Consequently,

T (f1, f2, f3;x) 

x

(log x)A+2

∫ 1

0
|Sf1(x;α)Sf2(x;−2α)|dα

� x

(log x)A+2

(∫ 1

0
|Sf1(x;α)|2dα

∫ 1

0
|Sf2(x;−2α)|2dα

)1/2

from the the Cauchy-Schwarz inequality. Parseval’s identity implies that∫ 1
0 |Sf (x; kα)|2dα =

∑
n�x |f(n)|2 for any k ∈ Z \ {0} (see (24.3)). When

f ∈ {Λ�
sieve, E}, we have |f | � 2 log and thus

∑
n�x |f(n)|2 
 x(log x)2. To

conclude, we have proved that

T (f1, f2, f3;x) 
A x2/(log x)A when there is fj = E.

This reduces Theorem 24.1 to proving the following estimate.

Proposition 24.4. Assuming the set-up of Theorem 24.3, and with Λ�
sieve

defined by (23.15), we have

T (Λ�
sieve,Λ

�
sieve,Λ

�
sieve;x) = x2

∏
p�3

(
1− 1

(p− 1)2

)
+OA

( x2

(log x)A

)
.

Proof. As we will see, the proof boils down to a lattice-point counting esti-
mate. For technical reasons to be explained later, we break the summation
into short intervals. To this end, set η = 1/(log x)A+5 and let J be the

largest integer such that (1− η)J � 1/
√
x. Since |Λ�

sieve| � log x, we have

T (Λ�
sieve,Λ

�
sieve,Λ

�
sieve;x) =

∑∑∑
x(1−η)J+1<n1,n3�x

2n2=n1+n3

∏
1�j�3

Λ�
sieve(nj) +O(x1.6).

If we cover the range of n1 and n3 by intervals of the form (x(1−η)j+1, x(1−
η)j], where j ∈ Z ∩ [0, J ], then the theorem is reduced to proving that

(24.8)
∑∑∑

xj(1−η)<nj�xj (j=1,3)
2n2=n1+n3

∏
1�j�3

Λ�
sieve(nj) = ρη2x1x3(1 +O(1/(log x)A))

for x1, x3 ∈ [
√
x, x], where ρ =

∏
3�p�y(1− 1/(p− 1)2).

Fix x1, x3 as above and let T (x1, x3) denote the sum in (24.8). We have

(24.9) T (x1, x3) =
∑∑∑

kj�D,P−(kj)>y ∀j
μ(k1)μ(k2)μ(k3)L(k1, k2, k3),

where

L(k1, k2, k3) :=
∑∑∑

xj(1−η)/kj<�j�x/kj (j=1,3)

2k2�2=k1�1+k3�3, P−(�j)>y ∀j

(log �1)(log �2)(log �3).
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We fix k1, k2, k3 � D free of prime factors � y and estimate L(k1, k2, k3).
Since the variables kj are weighted with the Möbius function, it suffices to
consider the case when they are all square-free.

We rewrite L(k1, k2, k3) in the notation of Chapter 18. First of all, we
remove the logarithmic weights from the variables �j using the fact that
we have restricted them into short intervals. Indeed, the conditions xj(1−
η)/kj < �j � x/kj for j = 1, 3 imply that x2(1 − η)/k2 < �2 � x2/k2
with x2 = (x1 + x3)/2. We thus have log �j = log(xj/kj) + O(η) = (1 +
O(η/ logx)) log(xj/kj) for each j. As a consequence,

L(k1, k2, k3) = (1 +O(η/ log x))S(W ,P)
∏

1�j�3

log(xj/kj),

where P = {3 � p � y} and W = (wn)
∞
n=1 is the sequence of weights

wn = 12�n ·#
{
(�1, �2, �3) ∈ Z3 :

�1�2�3 = n, 2k2�2 = k1�1 + k3�3,
xj(1− η)/kj < �j � x/kj (j = 1, 3)

}
To estimate S(W ,P), we apply Theorem 18.11(a). We must first check
Axioms 1–3.

Given d|P, we set Wd =
∑

n≡0 (mod d)wn. Then,

Wd = #
{
(�1, �2, �3) ∈ Z3 :

2 � �1�2�3, d|�1�2�3, 2k2�2 = k1�1 + k3�3,
xj(1− η)/kj < �j � x/kj (j = 1, 3)

}
.

To estimateWd, we first split the range of the pairs (�1, �3) according to their
reduction mod 4, mod k2 and mod d (which are mutually coprime integers).
The permissible reductions lie in the sets

A = { (a1, a3) ∈ (Z/4Z)2 : k1a1 + k3a3 ≡ 2 (mod 4), a1a3 ≡ 1 (mod 2) },
B = { (b1, b3) ∈ (Z/k2Z)

2 : k1b1 + k3b3 ≡ 0 (mod k2) },
C = { (c1, c3) ∈ (Z/dZ)2 : c1c3(k1c1 + k3c3) ≡ 0 (mod d) }.

Given (a1, a3) ∈ A, (b1, b3) ∈ B, (c1, c3) ∈ C and (�1, �3) ∈ Z2 such that

(24.10) �j ≡ aj (mod 4), �j ≡ bj (mod k2), �j ≡ cj (mod d) (j = 1, 3),

the equation 2k2�2 = k1�1+k3�3 has a unique solution �2 which is necessarily
an odd integer. In addition, the number of pairs (�1, �3) that satisfy (24.10)
and the inequalities xj(1− η) < �j � xj for j = 1, 3 equals∏

j∈{1,3}

( ηxj
4kjk2d

+O(1)
)
=

η2x1x3
16k1k22k3d

2
+O

( ηx

k2min{k1, k3}d
+ 1

)
.

Therefore,

Wd =
( η2x1x3
16k1k22k3d

2
+O

( ηx

k2min{k1, k3}d
+ 1

))
· |A| · |B| · |C|.
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We easily see that |A| = 2. In addition, since d is square-free and coprime to
k1k3, the Chinese Remainder Theorem implies that |C| =

∏
p|d(3p− 2). By

a similar argument, |B| =
∏

p|k2, p�(k1,k3) p
∏

p|(k1,k2,k3) p
2 = k2 · (k1, k2, k3),

since k2 is square-free. Putting everything together, we conclude that

Wd =
η2x1x3
8d2

· (k1, k2, k3)
k1k2k3

∏
p|d

(3p− 2) +O
(
3ω(d)(ηx+ k22d)

)
.

Therefore, Axiom 1 holds with X= η2x1x3

8 ·(k1,k2,k3)k1k2k3
, ν(d)=

∏
p|d(3−2/p) and

rd 
 3ω(d)(ηx+ k22d). In addition, Axiom 2 holds with κ = 3, and Axiom 3

with D = x1/2, A = κ + 1 and m = 1, since k1, k2, k3 � exp{(log x)θ2} =
xo(1) here. Hence, Theorem 18.11(a) implies that

L(k1, k2, k3) =
(
1 +OA

( η

log x

))
· λη2x1x3 ·

(k1, k2, k3)

k1k2k3

∏
j∈{1,2,3}

log(xj/kj),

where λ = 8−1
∏

3�p�y(1− 1/p)(1− 2/p). Together with (24.9), this gives

(24.11) T (x1, x3) = λη2x1x3M +OA(η
3x1x3(log x)

5),

where

M :=
∑∑∑

kj�D,P−(kj)>y ∀j

(k1, k2, k3)

k1k2k3

∏
j∈{1,2,3}

μ(kj) log(xj/kj)

and in the calculation of the error term of (24.11) we used the bound∑
k1,k2,k3�D

(k1,k2,k3)
k1k2k3


 (log x)3, which can be seen by letting g = (k1, k2, k3)

and kj = gnj . Since η = 1/(log x)A+5, (24.11) reduces (24.8) to proving that

(24.12) M =
∏
p�y

(1− 1/p)−3 +OA(1/(log x)
A).

We claim that we may replace (k1, k2, k3) by 1 in all summands of M at
the cost of a small error term. Indeed, if g = (k1, k2, k3) > 1, then g > y
since P−(g) > y. Hence, if we write kj = gnj , then (g − 1)/(k1k2k3) �
1g>y/(g

2n1n2n3). Since
∑

g>y 1/g
2 
 1/y, we find that

(24.13) M =
∑∑∑

kj�D,P−(kj)>y ∀j

3∏
j=1

μ(kj) log(xj/kj)

kj
+O((log x)6/y).

If we let Mj =
∑

kj�D,P−(kj)>y k
−1
j μ(kj) log(xj/kj), then the main term

of (24.13) factors as M1M2M3. By Corollary 13.4, we have the estimate∑
k�w,P−(k)>y μ(k) 
 w/(logw)A+2 for w � D. Hence, partial summation

implies that

Mj = (log xj) · (1/ζy)(1) + (1/ζy)
′(1) +OA(1/(log x)

A)
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258 24. Ternary arithmetic progressions

with ζy(s) =
∑

P−(k)>y k
−s defined as in Chapter 22. Since ζy(s) ∼ (s −

1)−1
∏

p�y(1−1/p) and ζ ′y(s) ∼ (s−1)−2
∏

p�y(1−1/p) as s → 1+, we infer

that (1/ζy)(1) = 0 and (1/ζy)
′(1) =

∏
p�y(1−1/p)−1. Relation (24.12) then

follows, thus completing the proof of (24.8), and hence of the theorem. �

Binary additive problems

It is natural to wonder whether the circle method can be used to approach
binary additive problems such as the twin prime conjecture. For this prob-
lem too we have a formula analogous to (24.2):

(24.14)
∑
n�x

Λ(n)Λ(n+ 2) =

∫ 1

0
|S(x;α)|2e(−2α)dα.

We still expect the main term to come from the major arcs. As a matter of
fact, it can be shown rigorously that if we define M by (24.4), then∫

M

|S(x;α)|2e(−2α)dα ∼ c2x,

where c2 = 2
∏

p�3(1 − 1/(p − 1)2) is the twin prime constant. However,
it is not known how to show that the minor arcs contribute a negligible
amount. Indeed, as we discussed before, Parseval’s identity (24.3) implies

that S(x;α) = x1/2+o(1) for a “generic” α ∈ [0, 1]. Hence, no matter how we
choose m, we cannot expect to have a better bound than∫

m

|S(x;α)|2dα 
 x1+o(1),

which is of comparable size to the expected main term. This means that
in order to prove the twin prime conjecture using the circle method, we
must exploit cancellation between the various parts of the integral in (24.14)
coming from the factor e(−2α).

Exercises

Exercise 24.1. If N is an odd integer, prove that∑∑∑
n1+n2+n3=N

Λ(n1)Λ(n2)Λ(n3) = GNN2 +OA(N
2/(logN)A)

for each fixed A � 1, where GN =
∏

p|N (1− 1/(p− 1)2)
∏

p�N (1 + 1/(p− 1)3).

Exercise 24.2. If Λ�
sieve is as in Proposition 24.4, prove that∑

n�x

Λ�
sieve(n)Λ

�
sieve(n+ 2) = c2x+OA(x/(log x)

A)

for every fixed A � 1, where c2 = 2
∏

p�3(1− 1/(p− 1)2).
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Chapter 25

Bilinear forms and the
large sieve

Let us suppose we are given a sequence of complex numbers (cn)n∈Z and
we wish to study its distribution among the different arithmetic progressions
mod q. To be more precise, our aim is to determine the behavior of the sum∑

H<n�H+N

cn1n≡j (mod q)

when j varies over Z/qZ, with N � 1 and H being two given integers. To
this end, we consider the additive and multiplicative Fourier transform mod
q of the above sum (viewed as a function of j). These are given by

S+(a/q) =
∑

H<n�H+N

cne(an/q) and S×(χ) =
∑

H<n�H+N

cnχ(n),

with a running over Z/qZ and χ over all Dirichlet characters mod q.

For a general sequence (cn)n∈Z, we cannot obtain a non-trivial pointwise
bound for S+(a/q). Indeed, if cn = e(−na/q) for all n, then S+(a/q) = N . A
similar obstruction holds for S×(χ), by taking cn = χ(n) for some Dirichlet
character χ. However, we will prove non-trivial bounds on S+(a/q) and on
S×(χ) when we average over many a and q, or many χ.

With the above goal in mind, we consider the sums

(25.1)
∑
q�Q

∑
a∈(Z/qZ)∗

|S+(a/q)|2 and
∑ ∑∗

q�Q,χ (mod q)

q

ϕ(q)
|S×(χ)|2,

259
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260 25. Bilinear forms and the large sieve

where the notation
∑∗ means that the last sum runs over primitive charac-

ters. A few remarks are in order about the shape of these sums:

• The factor q/ϕ(q) is of order 1 most of the time, so it can be ignored.
We include it for normalization purposes that we will explain later.

• We sum only over reduced residues a (mod q) because we want the
fractions a/q to be distinct mod 1. To see why working with the
full sum T+ =

∑
q�Q

∑
a∈Z/qZ |S+(a/q)|2 is problematic, consider

the case when cn = e(−n/3), so that S+(1/3) = N . The sum T+

contains �Q/3� copies of |S+(1/3)|2; one for each q � Q that is a
multiple of 3. In particular, T+ � �Q/3� · N2. We thus see that
the fact that (cn)H<n�H+N is not well distributed with respect to
a single modulus causes T+ to be very large. For a similar reason,
we work exclusively with primitive characters instead of working
with the full sum

∑
q�Q

∑
χ (mod q)(q/ϕ(q))|S×(χ)|2.

• We consider a second moment of S+(a/q) and of S×(χ) (i.e., an
average of squares) because this gives us access to L2-techniques
coming from the theory of bilinear forms. We develop this theory
in the next section and use it to study the sums of (25.1) in the
subsequent section.

Bilinear forms

An M × N bilinear form over C is a function ψ : CM × CN → C that is
linear in both coordinates. This is equivalent to the existence of certain
coefficients am,n ∈ C such that

(25.2) ψ(�x, �y ) =
M∑

m=1

N∑
n=1

am,nxmyn

for all �x = (x1, . . . , xM ) ∈ CM and all �y = (y1, . . . , yN ) ∈ CN .

Before we go into more abstract matters, let us discuss a few examples
that illustrate the central role of bilinear forms in analytic number theory.

Example 25.1. (a) If we take am,n = 1mn�x ·e(mnα), then ψ(�x, �y ) is equal
to

∑
n�x(f ∗ g)(n)e(nα), where f(m) = 1[1,M ](m)xm and g(n) = 1[1,N ](n)yn

(see relation (23.31)).

(b) If {α1, . . . , αM} denotes the set of reduced fractions a/q with 1 �
a � q � Q (often called the Farey fractions of order � Q), H is some fixed
integer, and we set am,n = e(αm(n+H)), then

ψ(�x, �y ) =

M∑
m=1

xm

N∑
n=1

yne((n+H)αm).
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In particular, when xm =
∑N

n=1 ȳne(−(n+H)αm) for all m, we have

ψ(�x, �y ) =
M∑

m=1

∣∣∣∣ N∑
n=1

yne((n+H)αm)

∣∣∣∣2.
Letting yn = cn+H , we see that ψ(�x, �y ) is equal to the first average of
(25.1). Hence, pointwise bounds on ψ(�x, �y ) supply information about the
distribution of (cn)H<n�H+N in arithmetic progressions.

(c) We can state both of the above examples in unified notation: let
H ∈ Z, M,N ∈ Z�1 and {α1, . . . , αM} be a set of real numbers. In addition,
for each m ∈ [1,M ] ∩ Z, let Im be a subinterval of [1, N ]. We then consider
the bilinear form with am,n = e(αm(n+H)) · 1Im(n).

We immediately see that the bilinear form of part (b) can be recast in
this notation. On the other hand, if αm = mα and Im = [1, x/m] ∩ [1, N ],
then we recover the bilinear form of part (a). �

Example 25.2. Let C = {χ1 (mod q1), . . . , χM (mod qM )} be a set of Dirich-
let characters, and consider the bilinear form with coefficients am,n = χm(n+

H)
√
qm/ϕ(qm). (The factor

√
qm/ϕ(qm) normalizes the vectors (am,n)

N
n=1

to all have roughly the same �2-norm.) Arguing as in Example 25.1(b), we
see that this form is related to the second average of (25.1) (with C being
the set of primitive Dirichlet characters of conductor � Q). �

Example 25.3. Bilinear forms can be generalized to multilinear forms in
a straightforward way. For instance, given k ∈ Z, let am,n,q = 1(q,k)=1 ·
(1mn≡k (mod q) − 1(mn,q)=1/ϕ(q)) and consider the M ×N ×Q trilinear form

ψ(�x, �y, �z ) =
∑
m�M

∑
n�N

∑
q�Q

am,n,qxmynzq

=
∑
q�Q

(q,k)=1

zq

( ∑∑
m�M,n�N

mn≡k (mod q)

xmyn −
1

ϕ(q)

∑
m�M,n�N
(mn,q)=1

xmyn

)
.

This expression controls the distribution in certain arithmetic progressions of
the function f ∗g, where f(m) = 1[1,M ](m) ·xm and g(n) = 1[1,N ](n) ·yn. �

The norm of a bilinear form. The power of the method of bilinear forms
lies in its ability to produce pointwise bounds for ψ(�x, �y ) valid for general
vectors �x and �y. The key notion for doing so is the norm of ψ. It is defined
to be the smallest positive real number ‖ψ‖ such that

(25.3) |ψ(�x, �y )| � ‖ψ‖ · ‖�x‖2‖�y‖2 for all �x ∈ CM , �y ∈ CN ,

where ‖·‖2 denotes the usual Euclidean norm, defined by ‖�v‖22 = v21+· · ·+v2d
for a vector �v = (v1, . . . , vd) ∈ Cd. The emphasis should be put here on the
assumption that (25.3) is true for all vectors �x ∈ CM and �y ∈ CN .
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262 25. Bilinear forms and the large sieve

The existence of ‖ψ‖ is easy to establish: if �x = �0 or �y = �0, then
(25.3) is trivially true. Otherwise, we set �v = �x/‖�x‖2 and �w = �y/‖�y‖2, so
that �v ∈ SM and �w ∈ SN , where Sd denotes the d-dimensional complex
unit sphere. The bilinearity of ψ renders (25.3) equivalent to the inequality
|ψ(�v, �w)| � ‖ψ‖ for all �v ∈ SM , �w ∈ SN . We thus find that ‖ψ‖ is equal to
max{|ψ(�v, �w)| : �v ∈ SM , �w ∈ SN}, which exists by the compactness of SM

and SN , and by the continuity of ψ.

Example 25.4. In Theorem 23.6, we saw an instance of (25.3). Indeed, we
can reinterpret Theorem 23.6 as stating that the norm of the bilinear form
ψ of Example 25.1(a) is 
 (q +M +N +MN/q)1/2(log(2q))1/2, where a/q
is a reduced fraction such that |α− a/q| � 1/q2. In addition, the discussion

in Remark 23.7 implies that ‖ψ‖ � (M+N+MN/q)1/2 when α = a/q. �

A spectral interpretation of the norm. To gain some intuition about
what the norm of a bilinear form measures, we study the special case when
M = N and the coefficients of ψ form a Hermitian matrix (i.e., am,n = an,m).
We then know from the Spectral Theorem for Hermitian matrices that CN

admits an orthonormal basis of eigenvectors of A, say �ε1, . . . , �εN . Let λ1,
. . . , λN be the corresponding eigenvalues, which are real numbers. We claim
that

(25.4) ‖ψ‖ = max{|λ1|, . . . , |λN |}.
To see this identity, it is convenient to work with the Hermitian analogue of
ψ, defined by

φ(�x, �y ) =
∑∑
1�m,n�N

am,nxmyn.

A straightforward computation reveals that φ(�εm, �εn) = 1m=n ·λn. Hence, if

we express �x and �y with respect to the basis {�ε1, . . . , �εN}, say �x =
∑N

n=1 sn�εn
and �y =

∑N
n=1 tn�εn, then

φ(�x, �y ) =
∑∑
1�m,n�N

smtnφ(�εm, �εn) =
∑

1�n�N

λnsntn.

If L = max{|λ1|, . . . , |λN |}, then

|φ(�x, �y )| � L
∑

1�n�N

|sntn|.

We then apply the Cauchy-Schwarz inequality to the sum on the right side.
Since

∑N
n=1 |sn|2 = ‖�x‖22 and

∑N
n=1 |tn|2 = ‖�y‖22 from the orthonormality

of the vectors �ε1, . . . , �εN , we conclude that |φ(�x, �y )| � L · ‖�x‖2‖�y‖2 for all
�x, �y ∈ CN , whence ‖ψ‖ � L.

On the other hand, we have |φ(�εn, �εn)| � ‖ψ‖ for all n, as it can be seen
by the definition of ‖ψ‖ and the fact that ‖�εn‖2 = 1. Since φ(�εn, �εn) = λn,
we infer that ‖ψ‖ � |λn| for all n, thus completing the proof of (25.4).
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In conclusion, we may think of the norm of ψ as something like the size
of the large eigenvalue of a matrix with number-theoretic properties.

Approximate orthogonality. In practice, it is hard to get a handle on
the eigenvalues of the matrix of coefficients of ψ. Instead, we develop a
different method that has as its starting point the obvious relations

(25.5) ψ(�x, �y ) =
M∑

m=1

xm

N∑
n=1

am,nyn and ψ(�x, �y ) =
N∑

n=1

yn

M∑
m=1

am,nxm,

and which does not require M to equal N .

As we briefly explained in Chapter 23, the importance of the above
relations is that they express ψ(�x, �y ) as an average of averages. Applying
the Cauchy-Schwarz inequality to the first identity of (25.5), we find that

(25.6) |ψ(�x, �y )|2 � ‖�x‖22
M∑

m=1

∣∣∣ N∑
n=1

am,nyn

∣∣∣2.
This maneuver allows us to eliminate the unknown coefficients xm and
smoothen out the variable m, which is now weighted with the function 1.
Similarly, if we apply the Cauchy-Schwarz inequality to the second identity
of (25.5), we obtain the bound

(25.7) |ψ(�x, �y )|2 � ‖�y‖22
N∑

n=1

∣∣∣ N∑
m=1

am,nxm

∣∣∣2.
We open the square in (25.7) using the identity |z|2 = z · z to deduce that

(25.8)

|ψ(�x, �y )|2 � ‖�y‖22
N∑

n=1

M∑
m1=1

M∑
m2=1

am1,nxm1am2,nxm2

= ‖�y‖22
M∑

m1=1

M∑
m2=1

xm1xm2

N∑
n=1

am1,nam2,n.

In particular, if the sum
∑N

n=1 am1,nam2,n is “small” whenever m1 �= m2, we
hope to obtain a non-trivial bound for the sum in (25.8), and hence for ‖ψ‖.

There is a more conceptual way to interpret what we did above. We can
write the first identity of (25.5) as

(25.9) ψ(�x, �y ) =
M∑

m=1

xm · 〈�y,�vm〉, where �vm = (am,1, . . . , am,N ),

and the second identity of (25.5) as

(25.10) ψ(�x, �y ) =

N∑
n=1

yn · 〈�x, �wn〉, where �wn = (a1,n, . . . , aM,n).
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Similarly, (25.8) becomes

(25.11) |ψ(�x, �y )|2 � ‖�y‖22
M∑

m1=1

M∑
m2=1

xm1xm2 · 〈vm1 , vm2〉.

Hence, we see that ‖ψ‖ should be small when the inner products 〈vm1 , vm2〉
are small whenever m1 �= m2, that is to say, when the vectors �vm are ap-
proximately orthogonal to each other. The relevance of this property can
be seen more easily via relation (25.9): a fixed vector �y cannot correlate
strongly with many of the approximately orthogonal vectors �vm. Hence,
most of the inner products 〈�y,�vm〉 should be small compared to the trivial
bound ‖�y‖2‖�vm‖2 coming from the Cauchy-Schwarz inequality. This should
yield a non-trivial bound on the sum of (25.9).

Remark 25.5. It must be stressed that in order to exploit the approximate
orthogonality of the vectors �vm, we have to start with (25.10) that involves
the vectors wn rather than with (25.9). �

In order to get a sense of what to expect as a bound on ‖ψ‖ when the
vectors �vm are approximately orthogonal to each other, we study the ideal
case when they are truly orthogonal to each other. Essentially, the lemma
we prove below constitutes a generalization of (25.4) to non-square matrices.

Lemma 25.6. Let ψ,�vm be as above, and set L = max{‖�v1‖2, . . . , ‖�vM‖2}.
Then ‖ψ‖ � L. If, in addition, we assume that the vectors v1, . . . , vM are
orthogonal to each other, then ‖ψ‖ = L.

Proof. Let �e1, . . . , �eM denote the vectors of the standard basis of CM . For
any m � M , we have ψ(�em, �vm) = ‖�vm‖22. On the other hand, (25.3) implies
that ψ(�em, �vm) � ‖ψ‖ · ‖�vm‖. We thus conclude that ‖ψ‖ � ‖�vm‖2. Since
m can be chosen arbitrarily, the first part of the lemma follows.

For the second part, note that the set {�v1/‖�v1‖2, . . . , �vM/‖�vM‖2} is or-
thonormal when the vectors �v1, . . . , �vM are mutually orthogonal. Combining
(25.6) with Bessel’s inequality, we deduce that

|ψ(�x, �y )|2 � ‖�x‖22
M∑

m=1

|〈�y,�vm〉|2 � L2‖�x‖22
M∑

m=1

∣∣∣〈�y, �vm
‖�vm‖2

〉∣∣∣2
� L2‖�x‖22‖�y‖22.

In particular, ‖ψ‖ � L, which completes the proof. �

Remark 25.7. Working with the vectors �wn, and with relations (25.7) and
(25.10), we can show that ‖ψ‖ � max{‖�w1‖2, . . . , ‖�wN‖2}. Moreover, this
lower bound is sharp when the vectors �wn are mutually orthogonal. �
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We now return to the more general case when the vectors �vm are approx-
imately orthogonal to each other. In Theorem 23.6, we saw one example of
how to exploit the mutual quasi-orthogonality of the vectors �vm. Below, we
give another one that deals with Example 25.2 when C = {χ (mod q)}.

Example 25.8. Given q,N ∈ N, let ψ denote the bilinear form with coeffi-
cients am,n = χm(n)

√
q/ϕ(q), where χm ranges over all Dirichlet characters

mod q and n ∈ Z ∩ [1, N ]. We wish to bound the norm of ψ.

Note that

(25.12) |〈�vm1 , �vm2〉| =
q

ϕ(q)
·
{
O(

√
q log q) if m1 �= m2,

Nϕ(q)/q +O(2ω(q)) otherwise,

with the first case following by the Pólya-Vinogradov inequality and the
second one by Theorem 2.1. Inserting (25.12) into (25.11) implies that

|ψ(�x, �y )|2 � ‖�y‖22
( M∑

m=1

|xm|2 ·N +
M∑

m1=1

M∑
m2=1

|xm1xm2 | ·O
(q3/2 log q

ϕ(q)

))
.

Using the inequality |zw| � (|z|2 + |w|2)/2 and the symmetry of the above
double sum over m1 and m2, we find that

M∑
m1=1

M∑
m2=1

|xm1xm2 | �
M∑

m=1

|xm|2
M∑

m′=1

1 = M‖�x‖22 = ϕ(q)‖�x‖22.

As a consequence,

(25.13) |ψ(�x, �y )|2 � (N +O(q3/2 log q))‖�x‖22‖�y‖22
for all �x ∈ CM and �y ∈ CN , that is to say, ‖ψ‖2 � N + O(q3/2 log q).
Comparing this upper bound to the lower bound in Lemma 25.6 yields, we
see that it is sharp when N � q3/2 log q.

The bilinear form ψ of the present example has the special feature that
we can easily control the inner products of the dual vectors �wn too:

〈wn1 , wn2〉 =
q

ϕ(q)

∑
χ (mod q)

χ(n1)χ(n2) = q · 1(n1n2,q)=1 · 1n1≡n2 (mod q).

To exploit this identity, we start with (25.9). The analogue of (25.11) in
this setting is

|ψ(�x, �y )|2 � ‖�x‖22
N∑

n1=1

N∑
n2=1

yn1
yn2 · 〈wm1 , wm2〉

= ‖�x‖22 · q
N∑

n1=1

N∑
n2=1

yn1
yn2 · 1(n1n2,q)=1 · 1n1≡n2 (mod q).
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Since |yn1yn2 | � (|yn1 |2+|yn2 |2)/2 and #{n � N : n ≡ a (mod q) } � 1+N/q
for all a ∈ Z, we conclude that

(25.14) |ψ(�x, �y )|2 � (N + q)‖�x‖22‖�y‖22
for all �x ∈ CM and �y ∈ CN . Hence, ‖ψ‖2 � N + q, which improves upon
(25.13) and is sharp in view of Lemma 25.6. �

Duality. The discussion of the above example brings forward an impor-
tant notion that underlies the theory of bilinear forms. Consider the lin-
ear operators T : CM → CN and T ∗ : CN → CM , defined by T (�x) =

(
∑M

m=1 am,nxm)Nn=1 and T ∗(�y ) = (
∑N

n=1 am,nyn)
M
m=1. We then have

(25.15) ψ(�x, �y ∗) = 〈�x, T ∗(�y )〉 = 〈T (�x), �y 〉,

where �y ∗ = (y1, . . . , yn). This relation is an equivalent way of writing (25.5)
(with the coordinates of �y conjugated), and it implies that T ∗ is the adjoint
operator of T .

Now, note that applying the Cauchy-Schwarz inequality to the third
expression of (25.15) yields the upper bound |ψ(�x, �y ∗)| � ‖T (�x)‖2‖�y‖2.
Moreover, this is an equality when �y = T (�x). Consequently, ‖ψ‖ is equal to
the smallest positive number B such that ‖T (�x)‖2 � B · ‖�x‖2. This number
B is precisely the norm of the operator T , which we denote by ‖T‖.

We have thus proven that ‖ψ‖ = ‖T‖. Similarly, working with the
second expression of (25.15), we can show that ‖ψ‖ = ‖T ∗‖. In particular,
we see that T and T ∗ have the same norm, a well-known fact from functional
analysis called the duality principle[167, Proposition 5.4, p. 183].

To sum up, we have proved the following result.

Theorem 25.9. Let (am,n)m�M,n�N be some complex coefficients and let
Δ � 0. The following statements are equivalent:

(a)
∣∣∑M

m=1

∑N
n=1 am,nxmyn

∣∣ � Δ‖�x‖2‖�y‖2 for all �x ∈ CM , �y ∈ CN .

(b)
∑N

n=1

∣∣∑M
m=1 am,nxm

∣∣2 � Δ2‖�x‖22 for all �x ∈ CM .

(c)
∑M

m=1

∣∣∑N
n=1 am,nyn

∣∣2 � Δ2‖�y‖22 for all �y ∈ CN .

Remark 25.10. Assume that |am,n| = 1 for all m,n. In view of Lemma

25.6 and Remark 25.7, we have that ‖ψ‖ � max{
√
M,

√
N}. Assume for

simplicity that N � M . Hence, the best possible result we can hope for is
of the form ‖ψ‖ 


√
M . In view of Theorem 25.9, this would imply that

(25.16)
1

M

M∑
m=1

∣∣∣ N∑
n=1

ynam,n

∣∣∣2 
 N whenever max
1�n�N

|yn| � 1,
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since ‖�y‖2 �
√
N when |yn| � 1 for all n. If we let Sm =

∑N
n=1 ynam,n, we

can interpret (25.16) as saying that Sm 
 N1/2 on average over m � M .
Notice that this is approximately the square root of the trivial pointwise
bound |Sm| � N . We then say that Sm exhibits square-root cancellation on
average over m � M . Consequently, in the special case when yn = 1P (n)
and am,n = χm(n), with χm running over an appropriate family of Dirichlet
characters, relation (25.16) can be interpreted as an averaged version of the
Generalized Riemann Hypothesis (see Exercises 8.6, 11.2 and 11.3(b)). �

The large sieve

One of the most important applications of the theory of bilinear forms is
the large sieve. It was first discovered by Linnik [131] while studying sieve
problems with unbounded sifting dimension (hence the name “large sieve”).
We will present these arithmetic applications in the next section. First, we
develop the large sieve it in its abstract form, as an inequality for additive
and multiplicative characters.

Our goal is to bound the norms of the bilinear forms associated to the
sums in (25.1). We begin by studying the first of these forms. We consider a
slightly more general set-up: let {α1, . . . , αR} be a set of relation numbers.
We want to obtain bounds for the sum

(25.17)
∑

1�r�R

|S+(αr)|2,

where we have extended S+ to all real numbers by letting

S+(α) =
∑

H<n�H+N

cne(nα).

In view of Theorem 25.9, the underlying bilinear form has coefficients ar,n =
e(nαr) with r ∈ {1, . . . , R} and n ∈ {H + 1, . . . , H +N}. We then consider
the vectors

�vr = (e(−nαr))H<n�H+N

and note that

(25.18) 〈�vr, �vs〉 =
∑

H<n�H+N

e(n(αs − αr)) 

1

‖αs − αr‖

by arguing as in (23.34). Hence, if the set {α1, . . . , αR} is δ-spaced mod 1
(recall that this means that ‖αr − αs‖ � δ when r �= s) with δ−1 = o(N),
the vectors �v1, . . . , �vR are approximately orthogonal to each other.

The first average of (25.1) is of the form (25.17) with the set of points
αr being the Farey fractions of order � Q, which we denote by FQ. If a/q
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and a′/q′ are distinct elements of FQ written in lowest terms, then

(25.19)
∣∣∣a
q
− a′

q′
+ n

∣∣∣ = |aq′ − aq′ + nqq′|
qq′

� 1

qq′
� 1

Q2

for every integer n, that is to say, the set FQ is Q−2-spaced. Hence, we
can bound

∑
a/q∈FQ

|S+(a/q)|2 by working with the more general sum of

(25.17). For the latter, we prove the following fundamental theorem.

Theorem 25.11 (The additive large sieve inequality). Let {α1, . . . , αR}
be a set of real numbers that are δ-spaced mod1, H ∈ Z, N ∈ Z�1 and
�c = (cH+1, . . . , cH+N ) ∈ CN . We then have

(25.20)
R∑

r=1

∣∣∣ ∑
H<n�H+N

cne(nαr)
∣∣∣2 
 (N + δ−1)‖�c‖22.

Proof. Given any H ′ ∈ Z, we have∣∣∣ ∑
H<n�H+N

cne(nα)
∣∣∣ = ∣∣∣ ∑

H′<n�N+H′

cn−H′+He(nα)
∣∣∣,

by letting n = m−H ′ +H in the first sum and then noticing that e(nα) =
e((H − H ′)α) · e(mα). It thus suffices to prove the theorem for a special
choice of H, and it will automatically follow for all other values of H. We
shall take H = −�N/2� − 1 that (almost) symmetrizes the range of n.

Instead of proving (25.20), we use Theorem 25.9 which tells us that it
suffices to prove the dual inequality

(25.21)
∑

H<n�H+N

∣∣∣ R∑
r=1

bre(nαr)
∣∣∣2 
 (N + δ−1)‖�b‖22

for all �b = (b1, . . . , bR) ∈ CR. We will open the square and take advantage of
the mutual quasi-orthogonality of the vectors (e(nαr))H<n�H+N , but first
we smoothen the n variable a bit further. This will improve the quality of
the bound we obtain in terms of δ (see Remark 25.12).

Since we have assumed that H = −�N/2� − 1, we have that |n| � N/2
in the left-hand side of (25.21). Therefore,∑

H<n�H+N

∣∣∣ R∑
r=1

bre(nαr)
∣∣∣2 � 2

∑
|n|�N

(1− |n|/N)
∣∣∣ R∑
r=1

bre(nαr)
∣∣∣2.

Expanding the square on the right side as in (25.8), and bringing the sum
over n inside, we find that∑
H<n�H+N

∣∣∣ R∑
r=1

bre(nαr)
∣∣∣2 � 2

R∑
r=1

R∑
s=1

brbs
∑
|n|�N

(1− |n|/N)e(n(αr − αs)).
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The innermost sum is the Fejér kernel FN evaluated at αr − αs. Indeed,
recall the well-known identities

FN (α) =
1

N

N−1∑
n=0

∑
|m|�n

e(mα) =
∑
|n|�N

(1− |n|/N)e(nα) =
1

N

(
sin(Nπα)

sin(πα)

)2

.

In particular, we have

(25.22) |FN (α)| � min
{
FN (0),

1

N sin2(πα)

}
� N

max{1, 2N‖α‖}2 ,

since sin(πx) � 2x for x ∈ [0, 1/2]. Together with the inequality 2|brbs| �
|br|2+ |bs|2 and the symmetry of the summation in r and s, this implies that∑

H<n�H+N

∣∣∣ R∑
r=1

bre(nαr)
∣∣∣2 � N

R∑
r=1

R∑
s=1

|br|2 + |bs|2
max{1, 2N‖αr − αs‖}2

=

R∑
r=1

|br|2
R∑

s=1

2N

max{1, 2N‖αr − αs‖}2
.(25.23)

It remains to bound the innermost sum over s.

Let J = �1/(2Nδ)� and r ∈ {1, . . . , R}. There is an ordering αs1 , . . . , αsR

with s1 = r such that the sequence {‖αsj −αr‖}Rj=1 is increasing. Since the

points αs are δ-spaced mod 1, we have ‖αs2j −αr‖ � jδ when 1 � j � R/2,
as well as ‖αs2j+1 − αr‖ � jδ when 1 � j � (R− 1)/2. Consequently,

R∑
s=1

2N

max{1, 2N‖αr − αs‖}2
� 2N +

∑
1�j�R/2

4N

max{1, 2Nδj}2

� 2N + 4NJ +
∑

j�J+1

1

Nδ2j2

� 2N + 4NJ +
1

Nδ2
·min{1/J, π2/6},(25.24)

because
∑

j�J+1 j
−2 �

∫∞
J x−2dx = 1/J and

∑
j�1 j

−2 = π2/6.

If N > 1/(2δ), then J = 0, so the expression in (25.24) is 
 N ; on
the other hand, if N � 1/(2δ), then J � 1/(Nδ) � 1, so the expression in
(25.24) is � δ−1. In any case,

R∑
s=1

2N

max{1, 2N‖αr − αs‖}2

 N + δ−1.

Inserting the above estimate into (25.23) completes the proof of (25.21), and
hence of the theorem. �

Remark 25.12. Had we not smoothened the sum over n in (25.21), we
would have had to use (25.18) instead of (25.22) and, hence, to replace the
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innermost sum of (25.23) by
∑

s�R ‖αr−αs‖−1. This last sum is
 δ−1 logR
(and this estimate is best possible for general δ-spaced points αj). We would
have thus proven (25.20) with N + δ−1 logR in place of N + δ−1. �

Remark 25.13. Montgomery-Vaughan [146] and Selberg [163] proved inde-
pendently that the implicit constant in Theorem 25.11 can be taken to be 1.
They also showed that N+1/δ can be replaced by N+1/δ−1 [114, Theorem
7.7]. As Lemma 25.6 reveals, this is essentially best possible. �

As a direct corollary of Theorem 25.11 and of relation (25.19), we obtain
the following result.

Theorem 25.14 (The additive large sieve inequality, II). Let Q � 1, H ∈ Z,
N ∈ Z�1 and �c = (cH+1, . . . , cH+N ) ∈ CN . We then have∑

q�Q

∑
a∈(Z/qZ)∗

∣∣∣ ∑
H<n�H+N

cne(na/q)
∣∣∣2 
 (N +Q2)‖�c‖22.

We now turn to the second expression of (25.1).

Theorem 25.15 (The multiplicative large sieve inequality). Let Q � 1,
H ∈ Z, N ∈ Z�1 and �c = (cH+1, . . . , cH+N ) ∈ CN . We then have∑ ∑∗

q�Q,χ (mod q)

q

ϕ(q)

∣∣∣ ∑
H<n�H+N

cnχ(n)
∣∣∣2 
 (N +Q2)‖�c‖22,

where the notation
∑∗ means that the sum runs over primitive characters.

Proof. The associated bilinear form has coefficients am,n = χm(n), where
χm ranges over all primitive Dirichlet characters of conductor � Q, and
n ∈ Z ∩ (H,H + N ]. However, instead of working with this form, we will
show that

(25.25)
q

ϕ(q)

∑∗

χ (mod q)

|S×(χ)|2 �
∑

a∈(Z/qZ)∗
|S+(a/q)|2

for all q, and then invoke Theorem 25.11, where the functions S+ and S×

are defined as in the beginning of this chapter.

When χ is a primitive character mod q, Theorem 10.3 implies that

S×(χ) =
∑

H<n�H+N

cn ·
1

G(χ)
∑

a∈(Z/qZ)∗
χ(a)e(na/q)

=
1

G(χ)
∑

a∈(Z/qZ)∗
χ(a)S+(a/q).
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Since |G(χ)| = √
q for a primitive character χ (mod q) by Theorem 10.4, we

find that ∑∗

χ (mod q)

|S×(χ)|2 = 1

q

∑∗

χ (mod q)

∣∣∣ ∑
a∈(Z/qZ)∗

χ(a)S+(a/q)
∣∣∣2

� 1

q

∑
χ (mod q)

∣∣∣ ∑
a∈(Z/qZ)∗

χ(a)S+(a/q)
∣∣∣2

=
ϕ(q)

q

∑
a∈(Z/qZ)∗

|S+(a/q)|2,(25.26)

with the last relation following from Parseval’s identity (10.6) for multi-
plicative characters. This proves (25.25), thus completing the proof of the
theorem. �

The arithmetic form of the large sieve

The use of the term “sieve” in this chapter is not at all evident, since what
we have talked about so far bears no resemblance to the sieve theory we
developed in Part 4. However, it is possible to use the large sieve inequality
to deduce a rather strong sieve upper bound, thus justifying the terminology
“large sieve”.

The set-up is slightly different compared to the one we saw in Part 4 of
the book. To motivate it, consider a polynomial F (x) ∈ Z[x] and the sets
A = {F (n) : n � x } and P = {p � y}. Then, S(A,P) counts integers
n � x such that p � F (n) for all p � y. Equivalently, if we let

Rp = {m ∈ Z/pZ : F (m) ≡ 0 (mod p) },
then S(A,P) counts integers n � x such that n /∈ Rp (mod p) for all p � y.
(We then say that n “avoids” the set Rp for all p � y.) Notice that the set
A satisfies Axiom 1 with ν(p) = |Rp|. In particular, the function ϕ∗ we saw
in Chapter 21 and in Theorem 21.1 is given by

ϕ∗(n) = n
∏
p|n

(1− |Rp|/p).

With these remarks in mind, we now state the main result of this section.

Theorem 25.16 (The arithmetic large sieve inequality). Let y � 1, H ∈ Z
and N ∈ Z�1. In addition, for each prime p � y, let Rp ⊆ Z/pZ. If

N ⊆ {H < n � H +N : n /∈ Rp (mod p) for all p � y },
then

#N 
 (N + y2)
/ ∑

m�y

μ2(m)f(m), where f(m) =
∏
p|m

|Rp|
p− |Rp|

.
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Proof. The theorem is trivial if Rp = Z/pZ for some p � y, because N = ∅
and f(p) = ∞ in this case. So let us assume that Rp �= Z/pZ for all p � y.

The main idea is that if N avoids many residue classes modulo each
prime p � y, it must be unevenly distributed among residue classes of arith-
metic progressions of moduli � y. The large sieve inequality implies that
this can only happen if N is very sparse.

More concretely, let (cn)n∈Z be a sequence supported on N , and fix for
the moment a prime p � y. To study the distribution of (cn)n∈Z mod p, we
equip Z/pZ with the uniform counting measure (that is to say, P(A) = |A|/p
for A ⊆ Z/pZ) and consider the random variable X : Z/pZ → C defined by

X(a) =
∑

n≡a (mod p)

cn.

We will study the variance of X. On the one hand, V[X] must be large
because N avoids the set Rp, and thus X(a) = 0 whenever a ∈ Rp. On the
other hand, we will express V[X] in terms of the additive Fourier transform
of X, which will allow us to study it using the large sieve.

We start by recalling that

V[X] = E[|X − E[X]|2] = E[|X|2]− |E[X]|2.
To take advantage of the fact that X(a) = 0 when a ∈ Rp, we use the
Cauchy-Schwarz inequality: we have that

|E[X]|2 =
∣∣∣1
p

∑
a∈(Z/pZ)\Rp

X(a)
∣∣∣2 � p− |Rp|

p
· E[|X|2].

Since E[X] =
∑

n∈Z cn/p, we conclude that

(25.27) V[X] �
( p

p− |Rp|
− 1

)
|E[X]|2 = f(p)

p2

∣∣∣ ∑
n∈N

cn

∣∣∣2.
On the other hand, we can write V[X] in terms of the Fourier series

S(α) :=
∑
n∈Z

cne(αn).

Indeed, we have X(a) = p−1
∑

b (mod p) e(−ab/p)S(b/p), whence

E[|X|2] = 1

p3

∑
a (mod p)

∣∣∣ ∑
b (mod p)

e(−ab/p)S(b/p)
∣∣∣2 = 1

p2

∑
b (mod p)

|S(b/p)|2

by Parseval’s identity (10.6) for additive characters. Since we also have that
E[X] = S(0)/p, we infer that

V[X] =
1

p2

∑
b∈(Z/pZ)∗

|S(b/p)|2.
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Comparing the above identity with (25.27), we conclude that

(25.28)
∑

a∈(Z/pZ)∗

∣∣∣∑
n∈Z

cne(an/p)
∣∣∣2 � f(p)

∣∣∣∑
n∈Z

cn

∣∣∣2.
Notice that we have not assumed anything about the coefficients cn, other
than that they are supported on N .

More generally, we claim that

(25.29)
∑∗

a (mod q)

∣∣∣∑
n∈Z

cne(an/q)
∣∣∣2 � f(q)

∣∣∣∑
n∈Z

cn

∣∣∣2
for all q|P (y) =

∏
p�y p and all sequences (cn)n∈Z ⊂ C supported on N ,

where
∑∗ denotes here a sum running over integers coprime to q. We prove

(25.29) by induction on ω(q). When q = 1, it holds trivially; when ω(q) = 1,
it follows by (25.28). Finally, assume that (25.29) holds for all q|P (y) with
ω(q) � j, where j is some positive integer. Let q|P (y) with ω(q) = j + 1.

We may write q = q1q2 with ω(q1), ω(q2) � j, so that (25.29) holds for
the moduli q1 and q2. Note that (q1, q2) = 1 by the fact that q is square-free.
Consequently, when a1 ranges over (Z/q1Z)

∗ and a2 ranges over (Z/q2Z)
∗,

then a1q2 + a2q1 ranges over (Z/qZ)∗. We thus find that∑∗

a (mod q)

∣∣∣∑
n∈Z

cne
(an

q

)∣∣∣2 = ∑∗

a1 (mod q1)

∑∗

a2 (mod q2)

∣∣∣∑
n∈Z

cne
(a1n

q1
+

a2n

q2

)∣∣∣2.
We apply (25.29) with q2 in place of q, and with cne(a1n/q1) in place of cn.
Hence, ∑∗

a2 (mod q2)

∣∣∣∑
n∈Z

cne
(a1n

q1
+

a2n

q2

)∣∣∣2 � f(q2)
∣∣∣∑
n∈Z

cne
(a1n

q1

)∣∣∣2.
Summing the above inequality over a1 ∈ (Z/q1Z)

∗ and applying again
(25.29), this time with q1 in place of q, we deduce that∑∗

a (mod q)

∣∣∣∑
n∈Z

cne
(an

q

)∣∣∣2 � f(q1)f(q2)
∣∣∣∑
n∈Z

cn

∣∣∣2.
Since f is a multiplicative function, relation (25.29) follows. This completes
the inductive step, and hence the proof of (25.29).

Finally, applying (25.29) with cn = 1n∈N , and summing it over all
square-free q � y, we find that

|N |2
∑
q�y

μ2(q)f(q) �
∑
q�y

∑∗

a (mod q)

∣∣∣ ∑
n∈N

e(na/q)
∣∣∣2.

The right-hand side is 
 (N + y2)|N | by Theorem 25.14, thus completing
the proof of the theorem. �
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Theorem 25.16 is of comparable strength to Theorem 21.1. As a matter
of fact, if we use the improved large sieve inequality mentioned in Remark
25.13, we can obtain a new proof of Theorem 21.4 (see also [146] for a further
improvement of this result). However, the true strength of the large sieve is
revealed when the sets Rp have unbounded cardinality on average, in which
case the sifting dimension is also unbounded. We illustrate this point by
studying Vinogradov’s least quadratic nonresidue problem.

Given a prime p, we let np denote the least quadratic nonresidue, that
is to say, the smallest integer n � 1 for which (n|p) = −1. We know from
elementary number theory that for half of the integers n ∈ [1, p − 1] we
have (n|p) = −1. In fact, since the Legendre symbol (·|p) is a non-principal
Dirichlet character mod p, we have∑

n�N

(n
p

)
= O(

√
p log p)

by the Pólya-Vinogradov inequality. In particular, np = O(
√
p log p). Exer-

cise 25.6 establishes the improved bound

(25.30) np � p1/2
√
e+o(1) (p →∞).

Vinogradov conjectured that the stronger estimate

np = Oε(p
ε)

is true for each fixed ε > 0. We use the large sieve to show that Vinogradov’s
conjecture holds for the vast majority of primes.

Theorem 25.17. Fix ε > 0. For x � 3, we have

#{ p � x : np � pε } 
ε log log x.

Proof. For every y � 1, we will show that

(25.31) #{ p � y : np � yε } = Oε(1).

The theorem then follows by setting yj = ee
j
and noticing that

#{ p � x : np � pε } � O(1) +
∑

j�log log x

#{ yj−1 < p � yj : np � y
ε/e
j }.

To show (25.31), let

N = {m � y2 : P+(m) � yε }.
On the one hand, |N | �ε y

2 by Theorem 14.5. On the other hand, we can
use the large sieve to bound |N |: for each prime p with np > yε, we let

Rp = { a (mod p) : (a|p) ∈ {0,−1 }} ;
otherwise, we let Rp = ∅. We claim that N avoids the sets Rp.
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Indeed, let p be a prime and n ∈ N . If np � yε, then Rp = ∅, so we
naturally have n /∈ Rp (mod p). Assume now that np > yε. Since P+(m) �
yε < np, we have (p

′|p) = 1 for all p′|n. The multiplicativity of the Legendre
symbol thus implies that (n|p) = 1, that is to say, n /∈ Rp (mod p), as
claimed.

From the above discussion, we may apply Theorem 25.16 to find that

|N | 
 y2
/ ∑

m�y2

μ2(m)f(m),

where f(m) =
∏

p|m |Rp|/(p− |Rp|). Since |N | �ε y
2, we conclude that∑

m�N

μ2(m)f(m) = Oε(1).

But note that if p � 3 is a prime with np > yε, then f(p) = (p+ 1)/(p− 1)
by the definition of Rp. In particular,∑

m�N

μ2(m)f(m) � #{ p � y : np > yε }.

This proves that (25.31) holds, thus completing the proof of the theorem. �

Exercises

Exercise 25.1. Let C = {χ1, . . . , χM} be a set of Dirichlet characters, where χm

is a character to the modulus qm.

(a) We say that C is reduced if χm1
χm2

is non-principal when m1 �= m2. Show that
the following sets of characters are reduced: (i) any subset of {χ (mod q)}; (ii)
any set of primitive Dirichlet characters.

(b) Assume that C is reduced and let

Q = max{ [qm1
, qm2

] : 1 � m1,m2 � M, m1 �= m2 }.
Prove that∑

χ∈C

∣∣∣ ∑
H<n�H+N

cnχ(n)
∣∣∣2 � (N +O(M

√
Q logQ))‖�c‖22

for all N ∈ Z�1, H ∈ Z and �c = (cH+1, . . . , cH+N ) ∈ CN .

Exercise 25.2. Let χ (mod q) be a fixed non-principal Dirichlet character, and let
f, g : N → { z ∈ C : |z| � 1 } be supported on [1,M ] and [1, N ], respectively.
Explain why the method of bilinear forms cannot yield a general non-trivial bound
for the sum

∑
n�x(f ∗ g)(n)χ(n).

Exercise 25.3. Adapt the proof of Theorem 25.11 to show that the factor
√

log(2q)
can be removed from the statement of Theorem 23.6. Conclude that the exponent
of log x in Theorem 23.8 can be improved from 5/2 to 2.
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Exercise 25.4. Let N, J ∈ Z�1, and set N1 = �N/2�. Define the function g :
Z → [0, 1] by letting g(n) = 1 when |n| � N1, g(n) = 1 − (|n| − N1)/J when
N1 < |n| � N1 + J , and g(n) = 0 when |n| > N1 + J .

(a) Prove that 1|n|�N/2 � g(n) for all n ∈ Z and∑
n∈Z

g(n)e(nα) = J−1 ·
[
(N1 + J)FN1+J (α)−N1FN1

(α)
]
,

where Fk denotes the Fejér kernel.

(b) Choose an appropriate J to prove that the left-hand side of Theorem 25.11 is

� (N + 1 + π
√
6δ−1/3)‖�c‖22.

Exercise 25.5 (Gallagher).

(a) Given f ∈ C1([a, b]) and c ∈ [a, b], prove that

|f(c)| � 1

b− a

∫ b

a

|f(x)|dx+
max{c− a, b− c}

b− a

∫ b

a

|f ′(x)|dx.

[Hint: Note that
∫ c

a
(f(x) − f(c))dx =

∫ c

a
(a − x)f ′(x)dx and

∫ b

c
(f(x)

− f(c))dx =
∫ b

c
(b− x)f ′(x)dx.]

(b) If S(α) =
∑

H<n�H+N cne(nα) and the points α1, . . . , αR are δ-spaced mod 1,
prove that

R∑
r=1

|S(αr)|2 � 1

δ

∫ 1

0

|S(α)|2dα+

∫ 1

0

|S(α)S′(α)|dα.

(c) Prove that the left-hand side of 25.11 is � (πN + δ−1)‖�c‖22.
Exercise 25.6. Let p be an odd prime and let np be the least quadratic non-residue
mod p.

(a) Prove that if P+(m) < np, then (m|p) = 1.

(b) Deduce Vinogradov’s bound np � p1/2
√
e+o(1). [Hint: For all x � 1, show that∑

m�x, P+(m)<np
(m|p)�O(

√
p log p) +

∑
m�x, P+(m)�np

1.]

Exercise 25.7. Assume the Generalized Riemann Hypothesis.

(a) Let χ be a non-principal character mod q. In addition, let φ be a smooth
function supported on [1, 2] with Mellin transform Φ. Show that∑

n�1

Λ(n)χ(n)φ(n/x)
 x1/2 log q (x � 1).

[Hint: Exercise 11.4.]

(b) Prove that np 
 (log p)2 for all p.

(c) Use the Chinese Remainder Theorem to prove that if x is large enough, then
there is a prime p ∈ [x/2, x] such that (q|p) = 1 for all primes q � 0.49 log x.
In particular, there is an infinite sequence of primes p with np � 0.49 log p.
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Chapter 26

The Bombieri-
Vinogradov theorem

Having developed the large sieve, we present here one of its most impor-
tant applications: a proof of the celebrated Bombieri-Vinogradov theorem
(Theorem 18.9). Let us recall its statement: for each fixed A � 0 we have

(26.1)
∑
q�Q

max
y�x

max
a∈(Z/qZ)∗

∣∣∣∣π(y; q, a)− li(y)

ϕ(q)

∣∣∣∣ 
A
x

(log x)A+1

uniformly for x � 2 and 1 � Q � √
x/(log x)A+3.

This result is often called “the Riemann Hypothesis on average”. Indeed,
the Generalized Riemann Hypothesis implies that

(26.2) max
y�x

max
a∈(Z/qZ)∗

∣∣∣∣π(y; q, a)− li(y)

ϕ(q)

∣∣∣∣ 
 √
x log(qx)

for all q ∈ N and all x � 2 (see Exercise 11.2). Conversely, Theorem 6.1 and
Exercise 11.3(b) show that knowing (26.2) for all x � 2 and all q ∈ N implies
the Generalized Riemann Hypothesis. Now, observe that (26.2) implies
(26.1) with Q =

√
x/(log x)A+2, which is bigger only by a factor of log x

than the largest value of Q furnished by the Bombieri-Vinogradov theorem.
In comparison, note that the Siegel-Walfisz theorem (Theorem 12.1) provides
a much poorer range of validity of (26.1), allowing us to establish it only for
Q � (log x)C , where C is arbitrarily large but nevertheless fixed.

We thus see that if we need to estimate π(x; q, a)− li(x)/ϕ(q) on average
over q, the Bombieri-Vinogradov is just as good as the unproven Generalized
Riemann Hypothesis. And having access to such strong averaged estimates
is of crucial importance in sieve theory (see the discussion in Example 18.8).

277
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278 26. The Bombieri-Vinogradov theorem

Preliminaries

To prove the Bombieri-Vinogradov theorem, we will decompose von Man-
goldt’s function into type I and type II functions using Vaughan’s identity.
We will then examine the distribution of each type in arithmetic progressions
employing different arguments. But first we must perform some preparatory
steps.

Using a more natural main term. Throughout this chapter, we will
employ the notation

Δf (x; q, a) =
∑
n�x

n≡a (mod q)

f(n)− 1

ϕ(q)

∑
n�x

(n,q)=1

f(n),

where f is an arithmetic function, x ∈ R�1, q ∈ N and a ∈ (Z/qZ)∗. This
quantity will be small if f is well-distributed among reduced arithmetic
progressions. Moreover, it admits a convenient representation in terms of
Dirichlet characters: we have

(26.3) Δf (y; q, a) =
1

ϕ(q)

∑
χ (mod q)
χ 	=χ0

χ(a)
∑
n�y

f(n)χ(n).

Now, let 1P denote the indicator function of primes. We want to replace
li(y) in (26.1) with

∑
p�y, p�q 1, so that we can express the left-hand side of

(26.1) using the quantity Δ1P to which we can apply (26.3). We have∑
p�y, p�q

1 = π(y) +O(log q) = li(y) +O
(
ye−c

√
log y + log q

)
for y � 2 and q ∈ N, where c is the constant from Theorem 8.1 (the Prime
Number Theorem). This reduces (26.5) to proving that∑

q�Q

max
y�x

max
a∈(Z/qZ)∗

|Δ1P (x; q, a)| 
A
x

(log x)A+1

uniformly for x � 2 and 1 � Q � √
x/(log x)A+3.

Switching to von Mangoldt’s function. The next step, in preparation
for the application of Vaughan’s identity, is to switch from 1P to Λ. This is
accomplished by the following estimate.

Lemma 26.1. For x � 2, q ∈ N and a ∈ (Z/qZ)∗, we have

max
y�x

|Δ1P (y; q, a)| 

1

log x

(
max√
x�y�x

|ΔΛ(y; q, a)|+
√
x
)
.
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Proof. If y � √
x, we have |Δ1P (y; q, a)| 


√
x/ log x. Assume now that

y ∈ [
√
x, x]. Chebyshev’s estimate (Theorem 2.4) implies that

(26.4)
∑
p�√

x

1 +
∑
k�2

∑
pk�x

1 =
∑
p�√

x

∑
1�k� log x

log p

1 �
∑
p�√

x

log x

log p



√
x

log x
.

Hence, if y ∈ [
√
x, x], we have

Δ1P (y; q, a) =
∑

√
x<n�y

n≡a (mod q)

Λ(n)

log n
− 1

ϕ(q)

∑
√
x<n�y

(n,q)=1

Λ(n)

logn
+O

( √
x

log x

)
.

Employing partial summation, we find that

Δ1P (y; q, a) =

∫ y

√
x

1

log t
dΔΛ(t; q, a) +O

( √
x

log x

)
=

ΔΛ(t; q, a)

log t

∣∣∣∣y
t=

√
x

+

∫ y

√
x

ΔΛ(t; q, a)

t log2 t
dt+O

( √
x

log x

)
.

Applying the triangle inequality and then bounding |ΔΛ(t; q, a)| by its max-
imum value over t ∈ [

√
x, x] completes the proof of the lemma. �

Lemma 26.1 reduces the Bombieri-Vinogradov theorem to showing that

(26.5)
∑
q�Q

max√
x�y�x

max
a∈(Z/qZ)∗

|ΔΛ(y; q, a)| 
A
x

(log x)A

uniformly for x � 2 and 1 � Q � √
x/(log x)A+3.

Applying Vaughan’s identity. The key to proving (26.5) is a combina-
torial decomposition of von Mangoldt’s function in terms of type I and type
II functions. We perform this decomposition by appealing to Vaughan’s
identity (Lemma 23.1): we have Λ = Λ� + Λ� + Λ�U for some U, V ∈ [1, x]
to be chosen later, where we recall that

Λ� = μ�V ∗ log − (Λ�U ∗ μ�V ) ∗ 1 and Λ� = (Λ>U ∗ 1) ∗ μ>V .

As we will see, we may work with any choice of U and V satisfying the
conditions

(26.6) UV �
√
x and U, V � e

√
log x.

The contribution of the term Λ�U is bounded trivially: we simply note
that

∑
n�U Λ(n) 
 U , whence ΔΛ�U

(y; q, a) 
 U � √
x for all q, a ∈ N and

all y � x. As a consequence,

(26.7)
∑
q�Q

max
y�x

max
a∈(Z/qZ)∗

|ΔΛ�U
(y; q, a)| 
 Q

√
x � x

(log x)A+2

for x � 2 and 1 � Q � √
x/(log x)A+3.
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It remains to study the distribution of Λ� and Λ� in reduced arithmetic
progressions. We start with the former.

Type I functions in arithmetic progressions

The study of type I functions in reduced arithmetic progressions is relatively
easy.1 We have the following general result, proven by a straightforward
application of the simplest version of Dirichlet’s hyperbola method.

Theorem 26.2. Let v � 0, and let f be an arithmetic function supported
on [1, y]. For x � 2, q ∈ N and a ∈ (Z/qZ)∗, we have

|Δf∗logv(x; q, a)| � 2(log x)v
∑
k�y

|f(k)|.

Proof. Given k ∈ (Z/qZ)∗, we write k for its multiplicative inverse mod q.
Notice that if n ≡ a (mod q), then (n, q) = 1. Therefore

Δf∗logv(x; q, a) =
∑
k�y

(k,q)=1

f(k)

( ∑
��x/k

�≡ak̄ (mod q)

(log �)v − 1

ϕ(k)

∑
��x/k
(�,q)=1

(log �)v
)
.

The expression inside the parentheses equals Δlogv(x/k; q, ak̄). Hence, the
theorem is reduced to proving that

(26.8) |Δlogv(t; q, j)| � 2(log t)v (t � 1, j ∈ (Z/qZ)∗).

We first prove (26.8) when v = 0. We start by noticing that

Δ1(t; q, j) =
1

ϕ(q)

∑
j′∈(Z/qZ)∗

( ∑
n�t

n≡j (mod q)

1−
∑
n�t

n≡j′ (mod q)

1

)
.

Now, fix b ∈ Z. Since each string of q consecutive integers contains exactly
one integer in the class b (mod q), the number of n ∈ Z ∩ [1, t] in the class
b (mod q) is either �t/q� or �t/q�+1. We deduce that |Δ1(t; q, j)| � 1, which
proves (a stronger former of) (26.8) when v = 0.

Finally, when v > 0, we use partial summation to find that

Δlogv(t; q, j) =

∫ t

1
(log s)vdΔ1(s; q, j).

Integrating by parts and using the already proven fact that |Δ1(s; q, j)| � 1
yields (26.8) in this case too, thus completing the proof of the theorem. �

1The distribution of functions of multiplicative nature can be significantly more complicated
over non-reduced progressions (see Exercise 26.1). Of course, focusing on reduced progressions is
sufficient for applications to the theory of prime numbers.
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As an immediate corollary, we have an estimate for the distribution of
Λ� in arithmetic progressions, which is the “structured” part of Λ.

Corollary 26.3. For U, V � 1, x � 2, q ∈ N and a ∈ (Z/qZ)∗, we have

max
y�x

max
a∈(Z/qZ)∗

|ΔΛ	(y; q, a)| 
 UV log x.

The above result readily implies the estimate

(26.9)
∑
q�Q

max
y�x

max
a∈(Z/qZ)∗

|ΔΛ	(y; q, a)| 
 QUV log x.

If Q � √
x/(log x)A+3 and UV � √

x (as we assumed in (26.6)), then the
right-hand side of (26.9) is � Q

√
x(log x) � x/(log x)A+2. Together with

(26.7), this reduces the Bombieri-Vinogradov theorem to proving that

(26.10)
∑
q�Q

max√
x�y�x

max
a∈(Z/qZ)∗

|ΔΛ
(x; q, a)| 

x

(log x)A

uniformly for x � 2 and 1 � Q � √
x/(log x)A+3.

Type II functions in arithmetic progressions

The main result we will use to study Λ� in arithmetic progressions to large
moduli is Theorem 25.15 (the multiplicative large sieve inequality). It turns
out that this result can only handle the contribution of Dirichlet characters
of large conductor to the sum in (26.10). To deal with characters of small
conductor, we need the following estimate.

Theorem 26.4. Fix A,C � 1. If x � 3, U ∈ [1, x], V ∈ [e
√
log x, x], r ∈ N�x

and χ is a character of modulus q � (log x)C , then

max√
x�y�x

∣∣∣∑
n�y

Λ�(n)χ(n)1(n,r)=1

∣∣∣ 
A,C
x

(log x)A
.

Proof. The result is proven by a modification of the second part of the
proof of Theorem 24.3. First, we open the convolution Λ�(n) =

∑
k�=n(1 ∗

Λ>U )(k)μ>V (�). Then, we fix the congruence class of � (mod q) and use
Corollary 13.4. We leave the details as an exercise. �

Remark 26.5. In Chapter 24, we noticed how the bilinear methods are
perfectly complemented by the Siegel-Walfisz theorem, thus yielding results
such as Theorem 24.3 that cover all possible values of α. We see this comple-
mentarity manifesting itself again in the proof of the Bombieri-Vinogradov
theorem: bilinear methods will handle characters of large conductor, but we
have to resort to the Siegel-Walfisz theorem (via an application of Corollary
13.4) to handle characters of small conductor.
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Finally, as a more technical remark, we mention that it is possible to
prove (a version of) (23.12) for non-principal characters by a direct appeal
to the Siegel-Walfisz theorem, thus circumventing the use of Corollary 13.4.

Indeed, when (a, q) = 1, r ∈ N�x and UV � x/e
√
log x, we claim that

max√
x�y�x

|ΔΛ

r
(y; q, a)| 
A,C x/(log x)A,

where Λ�
r(n) = Λ�(n)1(n,r)=1. This estimate is good enough for the purpose

of establishing the Bombieri-Vinogradov theorem. To prove it, we start by
writing Λ� = Λ−Λ�−Λ�U . After multiplying this identity with the indicator
function n → 1(n,r)=1, we apply the Siegel-Walfisz theorem (Theorem 12.1)
to the first function on the right side and Theorem 26.2 to the second one.
The details are left as an exercise. �

Reduction to character sums. We now show how to use Theorem 26.4
to reduce the proof of (26.10) to a certain large sieve estimate involving

sums of Λ� twisted by Dirichlet characters. It is convenient to introduce
some notation for these character sums: for the rest of this chapter, we let

Sr(x, χ) = max√
x�y�x

∣∣∣∑
n�y

Λ�(n)χ(n)1(n,r)=1

∣∣∣.
By (26.3) with f = Λ� and the triangle inequality, we find that

max√
x�y�x

max
a∈(Z/qZ)∗

|ΔΛ
(x; q, a)| �
1

ϕ(q)

∑
χ (mod q)
χ 	=χ0

S1(x, χ).

Now, let ξ (mod d) be the primitive character inducing χ, so that d is
the conductor of χ. We then have that d|q and χ(n) = 1(n,q)=1ξ(n) =
1(n,q/d)=1ξ(n), where the second equality follows by noticing that the copri-
mality of n and d is encoded in the definition of ξ(n). Hence,

max√
x�y�x

max
a∈(Z/qZ)∗

|ΔΛ
(x; q, a)| �
1

ϕ(q)

∑ ∑∗

d|q, d>1, ξ (modd)

Sq/d(x, ξ).

Fix C � 0 to be chosen later. When d � (log x)C , we use Theorem 26.4
with A+ 2C + 1 in place of A (recall that we have assumed (26.6)). There
are � (log x)2C pairs (d, ξ) with d � (log x)C . Consequently,

max√
x�y�x

a∈(Z/qZ)∗

|ΔΛ
(x; q, a)| �
∑ ∑∗

d|q, ξ (mod d)
d>(log x)C

Sq/d(x, ξ)

ϕ(q)
+O

( x

ϕ(q)(log x)A+1

)
.
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Since ϕ(q) � ϕ(d)ϕ(r) when q = dr, we infer that

(26.11)
∑
q�Q

max√
x�y�x

a∈(Z/qZ)∗
|ΔΛ
(x; q, a)| �

∑
r�Q

Tr(x,Q)

ϕ(r)
+O(x/(log x)A),

where

Tr(x,Q) :=
∑

(log x)C<d�Q/r

1

ϕ(d)

∑∗

ξ (mod d)

Sr(x, ξ).

A large sieve inequality. The next step is to bound Tr(x,Q) using the
large sieve in the form of Theorem 25.15. However, this result establishes a
bound for the mean square (also called the “second moment”) of character
sums

∑
n�x cnχ(n) when we average over primitive characters χ of conductor

� Q. To prove the Bombieri-Vinogradov theorem, we need to estimate
the first moment of

∑
n�x Λ

�(n)χ(n)1(n,r)=1. It turns out that the bilinear

structure of Λ� allows us to use the Cauchy-Schwarz inequality and pass
from the first moment of

∑
n�x Λ

�(n)χ(n)1(n,r)=1 to a product of two second
moments of two other character sums. As a matter of fact, we have the
following estimate for general type II functions.

Theorem 26.6. Let f and g be two arithmetic functions supported on [1,M ]
and [1, N ], respectively. For x,Q � 1 we have∑ ∑∗

q�Q,χ (mod q)

q

ϕ(q)
max
y�x

∣∣∣∑
n�y

(f ∗ g)(n)χ(n)
∣∣∣


 (
√
MN +

√
MQ+

√
NQ+Q2)(log x) ‖f‖2 ‖g‖2.

Proof. Since we are only considering integers n � x, we may assume that
x � M,N . Indeed, if for example x > M , then we replace f by f · 1[1,x].

Let S be the sum in the statement of the theorem, which we write

S =
∑ ∑∗

q�Q,χ (mod q)

q

ϕ(q)
max
y�x

∣∣∣ ∑∑
m�M,n�N

f(m)χ(m)g(n)χ(n)1mn�y

∣∣∣.
We want to apply the Cauchy-Schwarz inequality to S to separate the vari-
ables m,n and pass to a product of two second moments, so that we can
apply Theorem 25.15 to each variable separately. However, there are two
technical obstacles. First, the variables m and n are tangled in the indicator
function 1mn�y; second, we have to take the maximum over y � x. We take
care of both of these issues simultaneously by an application of Perron’s
inversion formula.

As a preparatory step, note that mn � y if and only if mn � �y�+ 1/2.
Hence, in the definition of S we may replace maxy�x by maxy=k+1/2, k∈N, k�x.
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284 26. The Bombieri-Vinogradov theorem

Now, let y = k+1/2 for some integer k ∈ [1, x]. Lemma 7.1 with α = 1/ log x,
T = x2 and mn/y in place of y implies that

1mn�y =
1

2πi

∫
Re(s)=α

| Im(s)|�x2

(y/mn)s

s
ds+O

(
(y/mn)α

x2| log(y/mn)|

)
.

We have |y − mn| � 1/2 for all integers m,n, by our assumption on y.
Therefore, | log(y/mn)| � 1/y � 1/x. Moreover, (y/mn)α 
 1 for y �
x+ 1/2 and m, n � 1. We thus conclude that∑∑

m�M,n�N

f(m)χ(m)g(n)χ(n)1mn�y =
1

2π

∫ x2

−x2

Ft(χ)Gt(χ)
yα+it

α+ it
dt

+O
(
x−1

∑
m�M

|f(m)|
∑
n�N

|g(n)|
)
,(26.12)

where

Ft(χ) =
∑
m�M

f(m)χ(m)

mα+it
and Gt(χ) =

∑
n�N

g(n)χ(n)

nα+it
.

The Cauchy-Schwarz inequality and our assumption that M,N � x imply
that ∑

m�M

|f(m)| � x1/2‖f‖2 and
∑
n�N

|g(n)| � x1/2‖g‖2.

In the main term of (26.12), we note that |yα+it| 
 1 for y � x + 1/2, as
well as that |α+ it| � max{α, |t|}. Therefore,∑∑

m�M,n�N

f(m)χ(m)g(n)χ(n)1mn�y 

∫ x2

−x2

|Ft(χ)Gt(χ)|
max{α, |t|} dt+ ‖f‖2‖g‖2.

The right-hand side no longer depends on y. Consequently,

S 

∫ x2

−x2

( ∑ ∑∗

q�Q,χ (mod q)

q

ϕ(q)
· |Ft(χ)| · |Gt(χ)|

)
dt

max{α, |t|} +Q2‖f‖2‖g‖2.

By the Cauchy-Schwarz inequality and two applications of Theorem 25.15,
one where we take cn = f(n)/nα+it for n ∈ [1,M ], and another one with
cn = g(n)/nα+it for n ∈ [1, N ], we conclude that∑ ∑∗

q�Q,χ (mod q)

q

ϕ(q)
· |Ft(χ)| · |Gt(χ)| 


√
(M +Q2)(N +Q2)‖f‖2‖g‖2.

Since
√

(M +Q2)(N +Q2) �
√
MN +

√
MQ+

√
NQ+Q2 and∫ x2

−x2

dt

max{α, |t|} =

∫
|t|�α

dt

α
+

∫
α�|t|�x2

dt

|t| 
 log x,

the theorem has been established. �
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Corollary 26.7. For x,Q � 2, U, V ∈ [1, x] and r ∈ N, we have∑ ∑∗

q�Q,χ (mod q)

q

ϕ(q)
Sr(y, χ) 


(
x+

Qx√
U

+
Qx√
V

+Q2√x
)
(log x)3.

Proof. We begin by writing Λ� using (23.12), which we also multiply with
the indicator function of integers coprime to r:

Λ�(n)1(n,r)=1 =
∑

U<2j�2x/V

(αj ∗ βj)(n) for n � x,

where we have set αj(k) = (Λ>U ∗ 1)(k)12j−1<k�2j1(k,r)=1 and βj(�) =

μ>V (�)1��x/2j−11(�,r)=1. Therefore, Theorem 26.6 with f = αj , M = 2j ,

g = βj and N = x/2j−1 implies that∑
q�Q

q

ϕ(q)

∑∗

χ (mod q)

max
y�x

∣∣∣∑
n�y

(αj ∗ βj)(n)χ(n)
∣∣∣


 (
√
x+ 2j/2Q+

√
x2−j/2Q+Q2)(log x)‖αj‖2‖βj‖2


 (x+ 2j/2
√
xQ+ x2−j/2Q+

√
xQ2)(log x)2,

where we bounded ‖αj‖2‖βj‖2 by O(
√
x log x) using the inequalities |αj| �

log and |βj | � 1. Summing the above estimate over 2j ∈ [U, 2x/V ] (there
are 
 log x such choices for j) completes the proof of the corollary. �

The easiest way to pass from the above estimate to a bound for Tr(x;Q)
is to use a dyadic decomposition trick: we have

Tr(x,Q) �
∑

(log x)C<2j�2Q/r

1

2j−1

∑
2j−1<d�2j

d

ϕ(d)

∑∗

ξ (mod d)

Sr(x, ξ).

Corollary 26.7 then implies that

Tr(x,Q) 

∑

(log x)C<2j�2Q/r

1

2j

(
x+

2jx√
U

+
2jx√
V

+ 4j
√
x
)
(log x)3


 x

(log x)C−3
+

x(log x)4√
U

+
x(log x)4√

V
+

Q
√
x(log x)3

r
,(26.13)

where we used the estimates∑
2j>(log x)C

2−j 
 (log x)−C ,
∑

1�2j�2Q/r

1 
 log x,
∑

1�2j�2Q/r

2j 
 Q/r.

Inserting (26.13) into (26.11) and executing the summation over r yields∑
q�Q

max√
x�y�x

a∈(Z/qZ)∗

|ΔΛ
(y; q, a)| 

x

(log x)C−4
+

x(log x)5√
min{U, V }

+Q
√
x(log x)3.
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We take C = A+4 and U = V = e
√
log x (which satisfy (26.6), at least when

x is large enough). This completes the proof of (26.10), and hence of the
Bombieri-Vinogradov theorem.

Exercises

Exercise 26.1. Let q ∈ N and a ∈ Z.

(a) If (a, q) = 1, prove that Δτ (x; q, a) 

√
x for x � 1, as well as∑

n�x
n≡a (mod q)

τ (n) ∼ ϕ(q)

q2
· x log x (x →∞).

(b) Let d = (a, q), r = q/d and c = τ (d)
∏

p|q, p�r(1− 1/[(p− 1)(vp(d) + 1)]), where

vp(d) denotes the p-adic valuation of d. Prove that∑
n�x

n≡a (mod q)

τ (n) ∼ c · ϕ(q)
q2

· x log x (x →∞).

[Hint: For each Dirichlet character χ (mod q), evaluate the partial sums of
m → χ(m)τ (dm)/τ (d) by appealing to Theorem 13.2.]

Exercise 26.2. Fix k ∈ N and A > 0. Show there is B = B(A, k) such that∑
q�Q

τk(q)max
y�x

max
a∈(Z/qZ)∗

∣∣∣∣π(y; q, a)− li(y)

ϕ(q)

∣∣∣∣ 
k,A
x

(log x)A

for x � 2 and 1 � Q � √
x/(log x)B. [Hint: Use the Brun-Titchmarsch and the

Cauchy-Schwarz inequalities to remove the weight τk(q).]

Exercise 26.3.∗ Let QA,B denote the set of integers q � 3 such that

max
a∈(Z/qZ)∗

∣∣∣∣π(x; q, a)− li(x)

ϕ(q)

∣∣∣∣ � li(x)

ϕ(q)(log x)A
for all x � q2(log q)B.

For each A > 0, show that there is B = B(A) such that

#QA,B ∩ [1, Q] = Q+OA(Q/(logQ)A).

Exercise 26.4.∗ Fix A � 1 and ε > 0. Using the combinatorial decomposition
(23.14) in place of Vaughan’s identity, show that (26.1) holds uniformly for x � 2
and 1 � Q � √

x/(log x)A+2+ε. [Hint: In the proof of the analogue of Theorem
26.7, with αj , βj defined appropriately, show that ‖αj‖2‖βj‖2 
 x log x/ log y.]

Exercise 26.5.∗ Prove the Bombieri-Vinogradov theorem by decomposing von
Mangoldt’s function using Heath-Brown’s identity from Exercise 23.5.
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Chapter 27

The least prime in an
arithmetic progression

We have proved that all reduced arithmetic progressions of a given mod-
ulus q get their fair share of primes. Since this is an asymptotic result, a
fundamental question is how far do we have to go to see the primes becoming
equidistributed among the different progressions mod q. A simpler version
of this question is how far do we have to go to locate the first prime p in
the reduced residue class a (mod q). We denote this prime by P (q, a).

The Siegel-Walfisz theorem tells us that π(x; q, a) ∼ li(x)/ϕ(q) as soon
as x �ε exp{qε}, so that P (q, a) 
ε exp{qε}. However, we expect that
π(x; q, a) ∼ li(x)/ϕ(q) in the much wider range x � q1+ε (see Exercise 17.6),
which would imply that P (q, a) 
ε q

1+ε. If we knew that
∏

χ (mod q) L(s, χ)

has no zeroes in the strip Re(s) > 1 − δ, we would immediately deduce

that P (q, a) 
ε q
1/δ+ε (for instance, see Exercise 11.2). Remarkably, Linnik

proved that such a strong bound on P (q, a) holds unconditionally.

Theorem 27.1 (Linnik). There is an absolute and effectively computable
constant L � 1 such that P (q, a) � qL for all q � 3 and a ∈ (Z/qZ)∗.

Linnik’s original proof relies on three ingredients:

1) the classical zero-free region given in Theorem 12.3;

2) a log-free zero-density estimate which, among others, implies that, for
each fixed C > 0, the product

∏
χ (mod q) L(s, χ) has O(1) zeroes in the

region { s ∈ C : σ � 1− C/ log(qT ), |t| � T };
3) the Deuring-Heilbronn phenomenon, stating that the classical zero-free

region can be enlarged when it contains an exceptional zero.

287
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288 27. The least prime in an arithmetic progression

A proof along these lines is presented in [10] and [114]. We will present
here an alternative proof. The three above ingredients are replaced by:

1′) the results of Chapter 22 that build on sieve methods and the theory of
pretentious multiplicative functions;

2′) the pretentious large sieve, as developed by Granville, Harper and Soun-
dararajan [66] building on ideas of Halász [84] and Elliott [40];

3′) an argument of Friedlander-Iwaniec [59, Chapter 24] that allows us to
count primes when there is an exceptional zero using a zero-dimensional
sieve.

The pretentious large sieve

Consider the bilinear form that has coefficients aχ,n = χ(n)
√
q/ϕ(q), where

χ runs over all Dirichlet characters mod q and n ∈ Z ∩ [1, N ]. In Example
25.8, we proved that this bilinear form has norm � N + q. Using Theorem
25.9, we deduce the bound

(27.1)
∑

χ (mod q)

∣∣∣ ∑
n�N

cnχ(n)
∣∣∣2 � ϕ(q)

q
(N + q)‖�c‖22

for all �c ∈ CN . If |cn| � 1 and N � q, the right-hand side is 
 N2ϕ(q)/q.
This bound could be as big as one term on the left-hand side if, say,
cn = χ(n). However, we should expect that the sequence (cn)

N
n=1 can cor-

relate strongly with only a few Dirichlet characters by the approximate or-
thogonality of the latter. Hence, if χ1, . . . , χr are the characters correlating
the most with the sequence (cn)n�N , it is reasonable to guess that∑

χ 	={χ1,...,χr}

∣∣∣ ∑
n�N

cnχ(n)
∣∣∣2 = o(N2ϕ(q)/q).

The pretentious large sieve proves such an estimate when cn = f(n) with f
multiplicative and bounded. Rather than presenting it in full generality, we
develop it in a rather special case that sidesteps many of the technicalities
of the general case (see Lemma 27.6(b) and Remark 27.7 below).

To simplify various details, we count the primes with a logarithmic
weight. As we will see shortly, this move allows us to bypass the use of
Perron’s inversion formula and instead relate prime sums to L-functions
using the simple idea behind the proof of Lemma 22.3.

By orthogonality, we have that∑
y<p�z

p≡a (mod q)

1

p
=

1

ϕ(q)

∑
χ (mod q)

χ(a)
∑

y<p�z

χ(p)

p
.
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We expect the principal contribution to come from the character χ = χ0.
However, in Chapters 12 and 22 we saw that there is potentially an addi-
tional exceptional character whose contribution we cannot control. If we
exclude these two characters, we can show that the total contribution of the
remaining characters is small.

Theorem 27.2. Let q � 3. There is a real, non-principal Dirichlet charac-
ter χ1 (mod q) such that for all z � y � q3 and all a ∈ (Z/qZ)∗ we have∑

y<p�z
p≡a (mod q)

1

p
=

1

ϕ(q)

( ∑
y<p�z

1 + χ1(ap)

p
+O(1)

)
.

Remark 27.3. In fact, if Rq denotes the set of real, non-principal Dirichlet
characters mod q, we will take χ1 such that Lq(1, χ1) = minχ∈Rq Lq(1, χ).
This choice is motivated by Theorem 22.6(b). �

The first step in the proof of Theorem 27.2 is to exploit the type I/II
structure of von Mangoldt’s function and pass to a second moment estimate
to which we can use the method of bilinear forms, much like we did in
the proof of the Bombieri-Vinogradov theorem. Due to the presence of
logarithmic weights, it suffices to use (23.14) with D = 1: we have

(27.2) Λ(n)1P−(n)>y = Λ�
sieve(n) + Λ�

sieve(n),

where

Λ�
sieve(n) = 1P−(n)>y logn and Λ�

sieve(n) =
∑∑

k�=n, k>y, �>y
P−(k�)>y

μ(k) log �.

If χ is a Dirichlet character and we let Ly(s, χ) be defined as in Chapter 22

(see (22.2)), then the Dirichlet series of Λ�
sieveχ factors as

(27.3)
∞∑
n=1

Λ�
sieve(n)χ(n)

ns
= −L′

y(s, χ)
(
L−1
y (s, χ)− 1

)
.

Using the above observations and Lemma 22.3, we prove the following
preliminary result.

Lemma 27.4. Let x � y � q3. In addition, let χ1 be any real non-principal
character mod q, and set Cq = {χ (mod q) : χ �= χ0, χ1 } and

Sq = −
∫ 1+1/ log y

1+1/ log z

∑
χ∈Cq

χ(a)L′
y(σ, χ)

(
L−1
y (σ, χ)− 1

)
dσ.

Then ∑
y<p�z

p≡a (mod q)

1

p
=

1

ϕ(q)

( ∑
y<p�z

1 + χ1(ap)

p
+ Sq +O(1)

)
.
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Proof. We may assume that q � 10. Set

(27.4) δ(n) = 1n≡a (mod q) −
1

ϕ(q)

∑
χ∈{χ0,χ1}

χ(a)χ(n) =
1

ϕ(q)

∑
χ∈Cq

χ(a)χ(n),

so that our goal is to estimate the sum∑
y<p�z

p≡a (mod q)

1

p
− 1

ϕ(q)

∑
y<p�z

1 + χ1(ap)

p
=

∑
y<p�z

δ(p)

p
.

First of all, with the notational convention that Λ(1)/ log(1) = 0, we
claim that∑

y<p�w
p≡a (mod q)

1

p
=

∑
P−(n)>y

n≡a (mod q)

Λ(n)/ logn

n1+1/ logw
+O(1/ϕ(q)) (w � y).

Indeed, this follows from a simple adaptation of the proof of Lemma 22.3.
The two needed estimates are∑

p>w
p≡a (mod q)

1

p1+1/ logw

 1

ϕ(q)
and

∑
y<p�w

p≡a (mod q)

log p

p

 logw

ϕ(q)

for w � y, which are both corollaries of the Brun-Titchmarsch inequality
(Theorem 20.1) and partial summation, since we have assumed that y � q3.

In addition, for any character χ (mod q), Lemma 22.3 implies that∑
y<p�w

χ(p)

p
=

∑
P−(n)>y

χ(n)Λ(n)/ logn

n1+1/ logw
+O(1) (w � y).

We thus find that∑
y<p�w

δ(p)

p
=

∑
P−(n)>y

δ(n)Λ(n)

n1+1/ logw logn
+O(1/ϕ(q)) (w � y).(27.5)

Next, we rewrite Λ(n)1P−(n)>y using (27.2) and show that the contri-

bution of Λ�
sieve to the right side of (27.5) is negligible. Indeed, Theorem

18.11(a) and our assumption that y � q3 imply that∑
n�x, P−(n)>y
n≡b (mod q)

1 =
x
∏

p�y(1− 1/p)

ϕ(q)
+O

(
x1−1/ log y

ϕ(q) log y

)
(x � y, b ∈ (Z/qZ)∗).

Note that δ is a q-periodic function supported on integers coprime to q. In
addition,

∑
n∈Z/qZ δ(n) = 0 and

∑
n∈Z/qZ |δ(n)| � 3. As a consequence,∑

n�x

δ(n)Λ�
sieve(n)

logn
=

∑
1<n�x

δ(n)1P−(n)>y 

x1−1/ log y

ϕ(q) log y
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for x � y. Together with partial summation, this implies that
∞∑
n=1

δ(n)Λ�
sieve(n)

nσ logn

 1

ϕ(q)
(σ � 1).

Combining the above estimate with (27.5) and (27.2), we conclude that

(27.6)
∑

y<p�w

δ(p)

p
=

∞∑
n=1

δ(n)Λ�
sieve(n)

n1+1/ logw logn
+O(1/ϕ(q)) (w � y).

We want to express the right-hand side of (27.6) as an integral. We do
this using a trick: we may trivially arrange the summation as

∑
y<p�z =∑

y<p�z −
∑

y<p�y. Hence, applying (27.6) with w ∈ {y, z} implies that∑
y<p�z

δ(p)

p
=

∞∑
n=1

δ(n)Λ�
sieve(n)

n1+1/ log z logn
−

∑
P−(n)>y

δ(n)Λ�
sieve(n)

n1+1/ log y logn
+O(1/ϕ(q))

= −
∫ 1+1/ log y

1+1/ log z

∞∑
n=1

Λ�
sieve(n)δ(n)

nσ
dσ +O(1/ϕ(q)),

by the Fundamental Theorem of Integral Calculus. Using (27.4) to rewrite
δ(n) in the integrand in terms of characters χ ∈ Cq, and then employing

(27.3) to factor the Dirichlet series of Λ�
sieveχ completes the proof. �

The next natural step is to apply the Cauchy-Schwarz inequality to the
sum Sq of Lemma 27.4 and use bounds like (27.1). But first, we exploit the
fact that we are summing over the restricted set of characters Cq.

Lemma 27.5. Let Cq = {χ (mod q) : χ �= χ0, χ1 } with χ1 defined as in
Remark 27.3. Then |Ly(σ, χ)| � 1 for all χ ∈ Cq, y � q and σ � 1.

Proof. If χ is a complex character, then |Lq(1, χ)| � 1 by Theorem 22.6(a).
On the other hand, if χ ∈ Cq is real, then Lq(1, χ) � Lq(1, χ1) by the choice
of χ1, and thus Lq(1, χ) � 1 by Theorem 22.6(b). In all cases, we have
|Lq(1, χ)| � 1. Combining this fact with Theorem 22.5 (applied with y = q
and t = 0) yields that

∑
u<p�v χ(p)/p = O(1) for all v � u � q. Finally, if

we insert this estimate into Lemma 22.3, we infer that |Ly(σ, χ)| � 1 for all
y � q and all σ � 1, as needed. �

By the above lemma, we have L−1
y (σ, χ)−1 
 1 for all χ ∈ Cq. However,

we do not want to remove the factor L−1
y (σ, χ)− 1 completely from the sum

Sq of Lemma 27.4 because this will destroy its bilinear structure. Instead,
we note that L−1

y (s, χ) = Fy(s, χ)
2, where

Fy(s, χ) =
∏
p>y

(
1− χ(p)

ps

)1/2

=
∑

P−(n)>y

τ−1/2(n)χ(n)

ns
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with τκ being defined by (13.3). Since |z2−1| 
 |z−1| for |z| 
 1, we have

Sq 

∫ 1+1/ log y

1+1/ log z

∑
χ∈Cq

|L′
y(σ, χ)| · |Fy(σ, χ)− 1|dσ

�
∫ 1+1/ log y

1+1/ log z

( ∑
χ∈Cq

|L′
y(σ, χ)|2

∑
χ∈Cq

|Fy(σ, χ)− 1|2
)1/2

dσ.

Noticing that |τ−1/2| � τ1/2, Theorem 27.2 follows from the following esti-
mate.

Lemma 27.6. Let κ > 0, y � q3 > 1 and 1 < σ � 1 + 1/ log y.

(a) Let f be an arithmetic function with |f | � τκ. We have∑
χ (mod q)

∣∣∣∣∑
n>1

1P−(n)>yf(n)χ(n)

nσ

∣∣∣∣2 
κ
1

[(σ − 1)(log y)]2κ
.

(b) In addition, we have ∑
χ (mod q)
χ 	=χ0

|L′
y(σ, χ)|2 
 (log y)2.

Remark 27.7. Part (b) exemplifies the idea of the pretentious large sieve:
we exclude the principal character from the summation because we know
that L′

y(σ, χ0) → ∞ when σ → 1+, whereas we know that we can control
the size of L′

y(σ, χ) for χ �= χ0 using ideas from Chapter 22. �

Proof. (a) Let fy(n) = 1P−(n)>yf(n). By the orthogonality of Dirichlet
characters, we have

(27.7)
∑

χ (mod q)

∣∣∣∣∑
n>1

fy(n)χ(n)

nσ

∣∣∣∣2 = ϕ(q)
∑
n1>1

(n1,q)=1

fy(n1)

nσ
1

∑
n2>1

n2≡n1 (mod q)

f̄y(n2)

nσ
2

.

Since fy is supported on integers free of primes � y, we may assume that
the above sum runs over integers n1, n2 > y.

For a ∈ (Z/qZ)∗ and x � y � q3, Theorem 20.3 and our assumption
that |f | � τκ with κ > 0 yield the bound∑

n�x
n≡a (mod q)

|fy(n)| 

x

q
exp

{ ∑
y<p�x

κ

p
−

∑
p�x
p�q

1

p

}

 x

ϕ(q)(log x)1−κ(log y)κ
.

Using this estimate and partial summation, we find that∑
n2>1

n2≡a (mod q)

|fy(n2)|
nσ
2


 1

ϕ(q)[(σ − 1) log y]κ
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uniformly for a ∈ (Z/qZ)∗ and σ ∈ (1, 1 + 1/ log y]. Together with (27.7),
this completes the proof of part (a).

(b) To prove the second part of the lemma, we combine the proof of part
(a) and of Theorem 22.1. We begin by splitting L′

y(σ, χ) as

L′
y(σ, χ) = −

∑
j�1

∑
yj<n�yj+1

P−(n)>y

χ(n) logn

nσ
.

Fix j for the moment and let λ±
j be as in Theorem 19.1 with D = yj/3 and

P = {p � y}. Moreover, set

δj(n) = (λ+
j ∗ 1)(n)− 1P−(n)>y, so that 0 � δj � (λ+

j − λ−
j ) ∗ 1.

Arguing as in the proof of (22.8), we find that∑
yj<n�yj+1

χ(n)(λ+
j ∗ 1)(n) logn
nσ

=
∑

d�yj/3

λ+
j (d)χ(d)

dσ

∑
yj/d<m�yj+1/d

χ(m) log(dm)

mσ



∑

d�yj/3

1

dσ
· q log(y

j)

(yj/d)σ
� jq log y

y2j/3
� j log q

q2j−1

for y � q3 and χ �= χ0. Consequently,

−L′
y(σ, χ) = O(1/

√
q ) +

∑
j�1

∑
yj<n�yj+1

χ(n)δj(n) logn

nσ
.

We then apply the Cauchy-Schwarz inequality twice to find that

|L′
y(σ, χ)|2 � O(1/q) + 2

∣∣∣∑
j�1

1

j
· j

∑
yj<n�yj+1

χ(n)δj(n) logn

nσ

∣∣∣2

 1

q
+

∑
j�1

j2
∣∣∣ ∑
yj<n�yj+1

χ(n)δj(n) logn

nσ

∣∣∣2.(27.8)

Summing over all non-principal characters χ (mod q), we infer the bound∑
χ (mod q)
χ 	=χ0

|L′
y(σ, χ)|2 
 1 +

∞∑
j=1

j2
∑

χ (mod q)

∣∣∣ ∑
yj<n�yj+1

χ(n)δj(n) logn

nσ

∣∣∣2

=: 1 +
∞∑
j=1

j2Sj .(27.9)
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Using the orthogonality of Dirichlet characters as in (27.7) and the inequality
0 � δj(n) logn 
 δj(n) log(y

j) for n � yj+1, we deduce that

Sj 
 ϕ(q)j2(log y)2
∑

yj<n1�yj+1

(n1,q)=1

δj(n1)

nσ
1

∑
yj<n2�yj+1

n2≡n1 (mod q)

δj(n2)

nσ
2

.

Now, since 0 � δj � λ+
j − λ−

j , Theorem 19.1 implies that

0 �
∑
n�x

n≡a (mod q)

δj(n) �
∑

d�yj/3

(d,q)=1

(λ+
j − λ−

j )(d) ·
( x

dq
+O(1)

)

 xe−j

ϕ(q) log y

for x � yj and a ∈ (Z/qZ)∗, where we used our assumption that y � q3.
Together with partial summation, this yields the bound Sj 
 j4e−2j(log y)2.
Inserting this estimate into (27.9) completes the proof of the lemma. �

Endgame

Having shown Theorem 27.2, we now pass to the proof of Linnik’s theorem.
Let us recall that we must prove that P (q, a) � qL if L is large enough. We
may assume that q � 10. Throughout, χ1 is as in Theorem 27.2.

The two following cases are easy to handle.

Case 1: χ1(a) = −1. Then, Theorem 27.2 and Corollary 22.4 imply that∑
y<p�z

p≡a (mod q)

1

p
=

1

ϕ(q)

( ∑
y<p�z

1− χ1(p)

p
+O(1)

)
� 1

ϕ(q)

( ∑
y<p�z

1

p
−O(1)

)

for all z � y � q3. We take z = qL and y = q3 to find that the right-hand
side of the above inequality is � (logL − O(1))/ϕ(q). Hence, if L is large
enough, we immediately deduce that P (q, a) � z = qL.

Case 2: χ1(a) = 1 and Lq(1, χ1) � L−0.99. In this case, we let y = qL
0.99

and
z = qL. Theorem 22.5 then implies that

∑
y<p�z χ1(p)/p = O(1). Together

with Theorem 27.2, this yields the estimate∑
y<p�z

p≡a (mod q)

1

p
=

1

ϕ(q)

( ∑
y<p�z

1

p
+O(1)

)
=

logL+O(1)

100ϕ(q)
.

If L is large enough, the above expression is positive. Hence, P (a, q) � z =
qL, as needed.

The last case remaining is thus:

Case 3: χ1(a) = 1 and Lq(1, χ1) � L−0.99. Under the second assumption,
Exercise 22.3 implies that L(s, χ1) has a zero β1 � 1−O(L−0.99/ log q). We

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



Endgame 295

do not need this fact, but it is useful to keep it in mind. We will use sieve
methods to detect primes in the arithmetic progression a (mod q). The key
observation is that if n is square-free, then (1 ∗ χ1)(n) = 0, unless n has no
prime factors p with χ1(p) = −1. Now, (22.15) implies that χ1(p) = −1 for

the vast majority of primes p ∈ [q, q1/Lq(1,χ1)]. This means that weighing
n with the function (1 ∗ χ1)(n) presieves it with most of the large primes.
Hence, if we let

S(x, y; q, a) =
∑

1<n�x, P−(n)>y
n≡a (mod q)

(1 ∗ χ1)(n)

and we choose x and y appropriately in terms of q, we expect that

(27.10)
∑

√
x<p�x

p≡a (mod q)

(1 + χ1(p)) = S(x,
√
x; q, a) ≈ S(x, y; q, a)

with y much smaller than x. On the other hand, the Fundamental Lemma
of Sieve Theory is very efficient at estimating S(x, y; q, a) for small y, as the
following result demonstrates.

Proposition 27.8. Assume the above notation. In addition, let q � 10,
b ∈ (Z/qZ)∗, x � q100, y ∈ [q, x] and u = log x/ log y. Then

S(x, y; q, b) =
(
1 + χ1(b) +O(x−1/ log y)

)xLy(1, χ1)

ϕ(q)

∏
p�y

(
1− 1

p

)
.

Proof. Note that S(x, y; q, b) = S(A,P), where A = (an)
∞
n=1 with

an = (1 ∗ χ1)(n) · 1n�x, n≡b (mod q)

and P = { p � y : p � q }. We will apply Theorem 18.11. We must first check
Axioms 1–3.

Fix, for the moment, d|P such that d � √
x. We have

Ad =
∑

n�x, d|n
n≡b (mod q)

(1 ∗ χ1)(n) =
∑

k��x, d|k�
k�≡b (mod q)

χ1(k).

Notice that χ1(�) = χ1(b)χ1(k) in the above sum. We then split Ad into
three subsums: in the first one k < �, in the second one � < k, and in the
third one k = �. Since χ1(�) = χ1(b)χ1(k), the second subsum equals χ1(b)
times the first subsum. Moreover, the third subsum is O(

√
x), since it has

� √
x terms all of magnitude � 1. Hence,

Ad = (1 + χ1(b))
∑
k<

√
x

χ1(k)
∑

k<��x/k, �≡k̄b (mod q)
�≡0 (mod d/(d,k))

1 +O(
√
x),
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where k̄ denotes the multiplicative inverse of k (mod q). Since d|P, we have
(d, q) = 1. Hence, the sum over � equals (x/k − k)/(dq/(d, k)) + O(1). We
thus infer that

Ad = (1 + χ1(b))
∑
k<

√
x

χ1(k) ·
x/k − k

dq
· (d, k) +O(

√
x).

Using the identity (d, k) =
∑

m|d,k ϕ(m), and letting k = mr, we find that

Ad =
1 + χ1(b)

dq

∑
m|d

ϕ(m)χ1(m)
∑

r<
√
x/m

χ1(r)
( x

mr
−mr

)
+O(

√
x).

The Pólya-Vinogradov inequality (Theorem 10.6) and partial summation
yield that∑
r<

√
x/m

χ1(r)mr 
 √
xq log q and

∑
r>

√
x/m

χ1(r) ·
x

mr

 √

xq log q.

Consequently,

Ad =
(1 + χ1(b))xL(1, χ1)

dq

∑
m|d

ϕ(m)χ1(m)

m
+O(

√
xq log q).

We thus conclude that the pair (A,P) satisfies Axiom 1 with X = (1 +
χ1(b))xL(1, χ1)/q, ν(d) =

∑
m|d ϕ(m)χ1(m)/m and rd = O(

√
xq log q). Ax-

iom 2 also holds with κ = 2. Finally, since xL(1, χ1)/q � x/(q3/2 log2 q)
by Theorem 12.8 and we have assumed that x � q100 and y � 10, we have∑

d|P, d�x1/100 |rd| 
 x1−1/ log yL(1, χ1)/(q log
2 y). Noticing that 1−ν(p)/p =

(1−χ1(p)/p)(1−1/p) for p � q, the lemma follows from Theorem 18.11(a). �

We also need a stronger version of the first part of Theorem 22.5.

Lemma 27.9. Let χ (mod q) be a real, non-principal character. Then∑
y<p�z

1 + χ(p)

p

 log z

logQ
+ y−1/(100 log q) for q � y � z � Q := q1/Lq(1,χ).

Proof. We may assume that q � 10, as well as that y � q1 := q100, since∑
q<p�q1

1/p = O(1). The non-negativity of 1 ∗ χ implies that

(27.11)
∑

y<p�z

1 + χ(p)

p
�

∑
y<n�z

P−(n)>q1

(1 ∗ χ)(n)
n

.

If we let α = Lq1(1, χ)
∏

p�q1
(1− 1/p) � 1/ logQ, we have

(27.12)
∑

n�x, P−(n)>q1

(1 ∗ χ)(n) = αx+O

(
x1−1/ log q1

log q

)
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for x ∈ [y, z]. Indeed, this follows by breaking the summation according to
the congruence class of n (mod q) and by applying Proposition 27.8 to each
subsum with χ in place of χ1, while noticing that Lq1(1, χ) 
 1 from The-
orem 22.1. Inserting (27.12) into (27.11) via partial summation completes
the proof. �

Proof of Theorem 27.1 in Case 3. Our starting point is the first equal-

ity in (27.10). We take x = qL
0.49

and y = q50 logL. Since 1/Lq(1, χ1) � L0.99,
Lemma 27.9 implies that

(27.13)
∑

y<p�x

1 + χ1(p)

p

 1√

L
,

that is to say, χ1(p) = −1 for most p ∈ (y, x]. We then use a variation of
Buchstab’s identity (19.12) to find that

S(x,
√
x; q, a) = S(x, y; q, a)−

∑
y<p�√

x

∑
n�x, P−(n)=p
n≡a (mod q)

(1 ∗ χ1)(n)

= S(x, y; q, a)−
∑∑

m�1, y<p�√
x

(1 ∗ χ1)(p
m)S(x/pm, p; q, p̄ma),

where b̄ denotes the inverse of b (mod q). When m � 2, we use the trivial
bound S(x/pm, p; q, p̄ja) �

∑
n�x/pm τ(n) 
 x(log x)/pm. For the sum-

mands with m = 1, we note that (1 ∗ χ1)(p) = 2 · 1χ1(p)=1. Consequently,

S(x,
√
x; q, a) = S(x, y; q, a)− 2

∑
y<p�√

x
χ1(p)=1

S(x/p, p; q, p̄a) +O
(x log x

y

)
.

Assuming that L is large enough, we may apply Proposition 27.8 to all terms
of the right side. This yields the estimate

S(x,
√
x; q, a) =

(
2− 4

∑
y<p�√

x
χ1(p)=1

1

p
+O(1/L)

)
xLy(1, χ1)

ϕ(q)

∏
p�y

(
1− 1

p

)

+O(x(log x)/y).

Employing (27.13) and the lower bound L(1, χ) � 1/(
√
q log2 q) from The-

orem 12.8, we conclude that

S(x,
√
x; q, a) =

{
2 +O

(
L−1/2 + x−1/2

)}xLy(1, χ1)

ϕ(q)

∏
p�y

(
1− 1

p

)
.

If we take L and x large enough, we have S(x,
√
x; q, a) > 0. This completes

the proof of Theorem 27.1 in Case 3 too. �
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Exercises

Exercise 27.1.∗ Assume the set-up of Lemma 27.6(a) and fix r ∈ R�0.

(a) For all T ∈ R, prove that∑
χ (mod q)

∫ T+1

T

∣∣∣∣ ∑
n>1

P−(n)>y

f(n)(logn)rχ(n)

nσ+it

∣∣∣∣2dt 
κ,r
(σ − 1)1−2r

[(σ − 1)(log y)]2κ
.

[Hint: First, reduce to the case T = −1/2. Then, for any smooth function
g : R → R�0 majorizing 1[−1/2,1/2], show that the above sum is

� ϕ(q)
∑

n1,n2>1, P−(n1n2)>y
n1≡n2 (mod q)

τκ(n1)τκ(n2)(logn1)
r(log n2)

r|ĝ(log(n1/n2))|
(n1n2)σ

.

To estimate this new sum, show that ĝ(ξ) 
 1/(1 + |ξ|r+κ+2), and then split
the range of n1, n2 into intervals of the form (ej , ej+1].]

(b) Deduce that∑
χ (mod q)

∫ ∞

−∞

∣∣∣∣ ∑
n>1

P−(n)>y

f(n)χ(n)(logn)r

nσ+it

∣∣∣∣2 dt

1 + t2

κ,r

(σ − 1)1−2r

[(σ − 1)(log y)]2κ
.

Exercise 27.2.∗ For each q � 3, show that there is a real, non-principal Dirich-
let character χ1 (mod q) such that for any fixed smooth and compactly supported
function g : R�0 → R and any fixed ε > 0 we have∑

n≡a (mod q)

Λ(n)g(n/x) =
x

ϕ(q)

∫ ∞

0

g(t)dt+
χ1(a)

ϕ(q)

∑
n�1

χ(n)Λ(n)g(n/x)

+Og,ε(xu
−1+ε/ϕ(q))

uniformly for x = qu with u � 1. [Hint: The case u � 100 is trivial. For the case
when u � 100, decompose Λ using (23.14) with D = 1 and y = max{q3, (log x)100}.
To control the contribution of Λ�

sieve, use the Fundamental Lemma of Sieve Theory.

To control the contribution of Λ�
sieve, use Mellin inversion to find that∑

χ∈Cq

∣∣∣∑
n�1

Λ�
sieve(n)g(n/x)

∣∣∣ 
g x
∑
χ∈Cq

∫
σ=α
t∈R

|(1− L−1
y (s, χ))L′

y(s, χ)|
1 + t100

dt,

where Cq = {χ (mod q) : χ �= χ0, χ1 } and α = 1+1/ log x. After applying Cauchy-
Schwarz, the integrals must be split into two ranges: when |t| � y, the bound
L−1
y (s, χ) 
 1, Exercise 27.1 and a suitable adaptation of Lemma 27.6(b) can be

used. When |t| > y � (log x)100, Exercise 27.1 suffices.]
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Local aspects of the
distribution of primes
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Chapter 28

Small gaps between
primes

The Prime Number Theorem establishes important global aspects of
the distribution of primes but it does not reveal much about their statistical
properties at a microscopic scale. We dedicate this last part of the book to
the study of the local behavior of the sequence of primes. Firstly, we study
how close successive members of this sequence can get.

There are ∼ x/ log x primes � x, so the average gap between them is
∼ log x. On the other hand, the twin prime conjecture predicts that the gap
equals 2 infinitely often. Given that this conjecture is out of reach, we set a
more modest goal: if p1 < p2 < p3 < · · · are the primes in increasing order,
we want to show that lim infn→∞(pn+1− pn) < ∞. Note that if this is true,
then we immediately deduce the existence of some s ∈ N such that there
are infinitely many primes p with p + 2s also being prime. Hence, there is
at least one even number satisfying Polignac’s conjecture.

Remarkably, an even stronger result can be proved.

Theorem 28.1. For each m ∈ N, we have

lim inf
n→∞

(pn+m − pn) 
 e4mm5.

The case m = 1 of Theorem 28.1 is due to Zhang [188], whereas the
case m > 1 was proven independently by Maynard [138] and Tao [171].
Granville’s article [65, Section 1.4] contains an extended account of the fas-
cinating developments that led to this major breakthrough.

The main goal of this chapter is to give a proof of Theorem 28.1.

300
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The GPY sieve 301

The GPY sieve

The basic strategy to detect small gaps between primes is due to Goldston,
Pintz and Yıldırım. They used their method, now called the GPY sieve
after them, to prove that the normalized gap (pn+1 − pn)/ logn becomes
arbitrarily small infinitely often. The main idea is to find weights wn � 0
such that

(28.1)
∑

N�n�2N

wn

( ∑
1�s�H

1P (n+ s)−m
)
> 0

for H that is as small as possible, where 1P denotes the indicator function
of the set of primes as usually. Indeed, if this is the case, then there must
exist some n ∈ [N, 2N ] for which at least m + 1 of the “shifts” n + 1, . . . ,
n+H are primes.

To conceptualize the above task, it is helpful to assume a more proba-
bilistic point of view. The weights wn naturally induce a probability measure
on Z ∩ [N, 2N ] via the relation

P[N,2N ](m) :=
wm∑

N�n�2N wn
.

In this notation, (28.1) becomes

(28.2) EN�n�2N

[ ∑
1�s�H

1P (n+ s)
]
> m.

Hence, our goal is to find a probability measure on Z ∩ [N, 2N ] that is
sufficiently concentrated on integers n for which many of the shifts n + 1,
n+ 2, . . . , n+H are primes.

As we saw in the discussion of Cramér’s model in the end of Chapter 17,
the numbers n+1, n+2, . . . , n+H have strong multiplicative dependencies
stemming from their reduction modulo small primes. To this end, we con-
sider integers 1 � s1 < s2 < · · · < sk � H forming an admissible1 k-tuple
(s1, . . . , sk) and aim to show that

(28.3) EN�n�2N

[ ∑
1�j�k

1P (n+ sj)
]
> m.

The weights wn must be chosen in a way that achieves simultaneously
two things: (i) they correlate strongly enough with the indicator function of
the event that many of the shifts n+s1, . . . , n+sk are prime; (ii) they allow
the estimation of the left-hand side of (28.3) unconditionally. Condition (i)
rules out choices such as wn = 1, and condition (ii) rules out choices such

as wn =
∏k

j=1 1P (n + sj). Instead, we use sieve theory to “interpolate”
between these two extremal examples.

1Recall that this means that, for each prime p, the reductions sj (mod p) do not cover Z/pZ.
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The Maynard-Tao weights

The original choice of wn by Goldston, Pintz and Yıldırım was to consider
the Selberg-type sieve weights

(28.4) wGPY
n =

( ∑
d|Q(n)

λ(d)
)2

with Q(n) :=

k∏
j=1

(n+ sj)

and λ an arithmetic function to be determined. However, Maynard and Tao
discovered that it is much more efficient to work with a multidimensional
version of the above weights: given λ : Nk → R, they defined

(28.5) wMT
n =

( ∑
dj |n+sj ∀j

λ(d1, . . . , dk)
)2

.

For both of the above choices, the left-hand side of (28.3) can be computed
under rather general assumptions on λ. As in the study of Selberg’s sieve,
the goal is then to optimize the choice of λ.

Various technical details are simplified if we “presieve” the support of
the weights wn with all primes � y. There are two main ways of accom-
plishing this. The first one is to restrict the support of wn to integers
n ≡ a (modP (y)) for some slowly growing y and an appropriate congruence
class a (modP (y)). This is the approach taken in [138,170]. The second one,
which we opt for here, is to modify slightly the weights of (28.5) by applying
what is called a “preliminary sieve”. By this we mean that the small prime
factors of Q(n) will be handled separately, using a simpler sieve.

To define the weights wn we will use, we introduce the parameters

D = N1/4e−
√
logN , y = exp{(log logN)2}, Y = exp{(log logN)3}.

We then set

(28.6) wn =
( ∑

m|Q(n)

μ+(m)
)( ∑

dj |n+sj ∀j
λ(d1, . . . , dk)

)2
,

where:

• μ+ is the sieve weight2 λ+ constructed in Theorem 19.1 with κ = k,
P = {p � y} and u = log logN . In particular, |μ+| � 1 and μ+ is
supported on { d � Y : d|P (y) }.

• λ : Nk → R is a uniformly bounded function supported on

D :=
{
(d1, . . . , dk) ∈ Nk : d1 · · · dk � D, P−(dj) > y (1 � j � k)

}
.

2We use the letter μ+ instead of λ+ to avoid confusion with the function λ.
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Remark 28.2. What is important in the definition of the parametersD,Y, y
is that y and N1/4/(DY 2) are both bigger than any fixed power of logN ,

D grows polynomially in N and log Y/ log y is larger than log logN
log log logN by a

factor going to infinity. A good exercise is to check that any such choice of
D,Y, y is sufficient for the proof of Theorem 28.1 to go through. �

Calculations

Assuming that the weights wn are given by (28.6), our task is to estimate
the quantity

(28.7) EN�n�2N [1P (n+ s�)] =

∑
N−s��p�2N−s�

wp−s�∑
N�n�2N wn

for each � = 1, . . . , k. All implicit constants in this section might depend on
k, the choice of the k-tuple (s1, . . . , sk) and the supremum norm B := ‖λ‖∞.
We will also make use of the following notation:

ν(d) = #{n ∈ Z/dZ : Q(m) ≡ 0 (mod d) } and V =
∏
p�y

(
1− ν(p)

p

)
.

Lemma 28.3. Assume the above set-up and define

ξ(a1, . . . , ak) =
∑

(m1,...,mk)∈D

λ(a1m1, . . . , akmk)

m1 · · ·mk
.

For any fixed A > 0, we have∑
N�n�2N

wn = V N
∑

(a1,...,ak)∈D

ξ(a1, . . . , ak)
2

a1 · · · ak
+OA(N/(logN)A).

Proof. For brevity, we write d to denote the k-tuple of integers (d1, . . . , dk).
If d, e ∈ D are such that di, ei|n + si for each i, then (die, djej)|si − sj for
i �= j. Since the numbers diei and djej have no prime factors � y, they
must be coprime as soon as y � sk − s1 � |si − sj |, which we assume from
now on. Consequently,∑

N�n�2N

wn =
∑
m

μ+(m)
∑

d, e∈D
(diei,djej)=1 ∀i	=j

λ(d)λ(e)
∑

N�n�2N, m|Q(n)
[dj ,ej ]|n+sj ∀j

1.

By assumption, μ+ is supported on integers m|P (y) =
∏

p�y p, whereas λ

is supported on tuples (d1, . . . , dk) with (dj, P (y)) = 1 for all j. Since we
also know that (diei, djej) = 1 for i �= j, the Chinese Remainder Theorem

implies that there are precisely ν(m) values of n modulo m
∏j

j=1[dj, ej ] such

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



304 28. Small gaps between primes

that m|Q(n) and [dj, ej ]|n+ sj for j = 1, . . . , k. Therefore,

(28.8)
∑

N�n�2N, m|Q(n)
[dj ,ej ]|n+sj ∀j

1 =
ν(m)N

m
∏j

j=1[dj, ej]
+O(ν(m)).

We thus arrive at the estimate∑
N�n�2N

wn = V +N
∑

d, e∈D
(diei,djej)=1 ∀i	=j

λ(d)λ(e)∏k
j=1[dj , ej]

+O(R),

where

V + =
∑
m

μ+(m)ν(m)

m
and R =

∑
m

∑
d, e∈D

|μ+(m)λ(d)λ(e)|ν(m).

We have R = O(N2/3). Indeed, to see this, we use that ν(m) � τk(m)
for square-free m, |μ+| � 1, ‖λ‖∞ = B = O(1), μ+ is supported on [1, Y ]
and λ is supported on tuples (d1, . . . , dk) with d1 · · · dk � D � N1/4.

In addition, we have V + = V (1+OA(1/(logN)A+3k)) by Theorem 19.1,
as well as

(28.9)
∑

d, e∈D

|λ(d)λ(e)|∏k
j=1[dj, ej ]

� B2
∑

m1···mk�
√
N

τ3(m1) · · · τ3(mk)

m1 · · ·mk

 (logN)3k,

where we set mj = [dj, ej ] and used the fact that the equation mj = [dj, ej ]
has

∏
pν‖mj

(2ν + 1) � τ3(mj) solutions.

Putting everything together, we conclude that∑
N�n�2N

wn = V N
∑

d, e∈D
(diei,djej)=1 ∀i	=j

λ(d)λ(e)∏k
j=1[dj, ej]

+OA(N/(logN)A).

Next, we remove the conditions that (diei, djej) = 1 for i �= j. Since
d, e ∈ D , we have (diei, djej, P (y)) = 1. Hence, if (diei, djej) > 1 for some
i �= j, there must exist a prime p > y dividing [di, ei] and [dj, ej ]. Setting
mr = [dr, er] for r = 1, . . . , k, we conclude that∑

d, e∈D
(diei,djej)>1

|λ(d)λ(e)|∏k
j=1[dj, ej ]

� B2
∑
p>y

∑
mr�D2 ∀r
p|mi,mj

τ3(m1) · · · τ3(mk)

m1 · · ·mk

 (logN)3k

y
.

Hence, we have arrived at the estimate

(28.10)
∑

N�n�2N

wn = V N
∑

d, e∈D

λ(d)λ(e)∏k
j=1[dj , ej]

+OA(N/(logN)A).
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The next step is to rewrite the terms 1/[dj, ej ]. To do so, we use that

1

[d, e]
=

(d, e)

de
=

1

de

∑
a|(d,e)

ϕ(a),

just like we did when we studied Selberg’s sieve. We thus deduce that∑
N�n�2N

wn = V N
∑
a∈D

ϕ(a1) · · ·ϕ(ak)
a21 · · · a2k

· ξ(a)2 +OA(N/(logN)A).

Finally, we remove the factors ϕ(aj)/aj =
∏

p|aj (1 − 1/p). Note that

ω(aj) 
 log aj � logN , as well as (aj , P (y)) = 1 for all j. Consequently,

(28.11) 1 � ϕ(a)/a � (1− 1/y)O(logN) � 1−O((logN)/y)

by our choice of y. Bounding the total contribution of the error terms using
(28.9) comletes the proof of the lemma. �

Lemma 28.4. Assume the above set-up and define

ζ�(a1, . . . , ak) = 1a�=1

∑
(m1,...,mk)∈D

m�=1

λ(a1m1, . . . , akmk)

m1 · · ·mk
.

If we let X =
∫ 2N
N dt/ log t, then for any fixed A > 0 we have∑

N−s��p�2N−s�

wp−s� =
V X∏

p�y(1− 1/p)

∑
(a1,...,ak)∈D

ζ�(a1, . . . , ak)
2

a1 · · · ak

+OA(N/(logN)A).

Proof. To simplify the notation, we consider the case � = 1; the proof of
the other cases follows mutatis mutandis.

Since wn = no(1) from the divisor bound (see Exercise 2.9(f)), we have

(28.12)
∑

N−s1�n�2N−s1

wp−s1 =
∑

N�p�2N

wp−s1 +O(No(1)).

If W denotes the sum on the right side of (28.12), then

W =
∑
m

μ+(m)
∑

d, e∈D

λ(d)λ(e)
∑

N�p�2N, m|Q(p−s1)
[dj ,ej ]|p−s1+sj ∀j

1.

As in Lemma 28.3, we can only have dj , ej|p − s1 + sj for all j when
(diei, djej) = 1 for all i �= j. Notice though that there is something special
that takes place when j = 1: we then have d1, e1|p − s1 + s1 = p. Since a
prime number p has only trivial factors and d1, e1 � N1/4 < p, we conclude
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that d1 = e1 = 1. Similarly, if m|Q(p − s1) =
∏k

j=1(p + sj − s1), then

m|Q∗(p), where

Q∗(x) =
k∏

j=2

(x+ sj − s1).

As a consequence,

(28.13) W =
∑
m

μ+(m)
∑

d,e∈D , d1=e1=1
(diei,djej)=1 ∀i	=j

λ(d)λ(e)
∑

N<p�2N, m|Q∗(p)
[dj ,ej ]|p+sj−s1 ∀j�2

1.

To evaluate the innermost sum, we adapt the argument leading to (28.8).

If q = m
∏k

j=2[dj, ej ], then the Chinese Remainder Theorem implies that

the number of x (mod q) such that m|Q∗(x) and [dj, ej]|x + sj − s1 equals
#{x (modm) : m|Q∗(x)}. However, since p is prime, we must only count so-
lutions that are reduced residues mod q. Whenever x ≡ s1−sj (mod [dj, ej]),
we also have (x, [dj, ej]) = 1 because (djej , P (y)) = 1 and y > |s1 − sj | for
each j. In conclusion, the number of reduced solutions mod q is

ν∗(m) := #{x ∈ (Z/mZ)∗ : m|Q∗(x) }.
Hence, the innermost sum in (28.13) equals

(28.14)
ν∗(m)

ϕ(q)
X +O(ν∗(m)E(N, q)),

where

E(N, q) := max
(a,q)=1

∣∣π(2N ; q, a)− π(N ; q, a)−X/ϕ(q)
∣∣.

The modulus q here is an integer

� Q := Y D2 = N1/2 exp
(
(log logN)3 − 2

√
logN

)
by our assumptions on the support of μ+ and of λ. Moreover, if we are
given such an integer q, there are � τk−1(q)τ3(q) ways to write it in the

form m
∏k

j=2[dj, ej ] with m, d2, . . . , dk, e2, . . . , ek as in the right-hand side

of (28.13). Since we also have ν∗(m) � (k− 1)ω(q), we arrive at the formula

W = XV ∗
∑

d,e∈D , d1=e1=1
(diei,djej)=1 ∀i	=j

λ(d)λ(e)∏k
j=2 ϕ([dj, ej])

+O(R∗)

with

V ∗ =
∑
m

μ+(m)ν∗(m)

ϕ(m)
and R∗ =

∑
q�Q

τk−1(q)
2τ3(q)E(N, q).

We use the Bombieri-Vinogradov theorem (see also Exercise 26.2) to find
that R∗ = OA(N/(logN)A). In addition, we note that ν∗(p) = p−1 and use
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Theorem 19.1 to find that V ∗ = [1 +OA(1/(logN)A+3k)]V/
∏

p�y(1− 1/p).
As a consequence,

W =
V X∏

p�y(1− 1/p)

∑
d,e∈D , d1=e1=1
(diei,djej)=1 ∀i	=j

λ(d)λ(e)∏k
j=2 ϕ([dj, ej ])

+OA

( N

(logN)A

)
,

where the error term from the estimation of V ∗ was handled using (28.9).

Next, as in the proof of Lemma 28.3, we may remove the conditions
(diei, djej) = 1 when i �= j at the cost of an error of size 
 N(logN)3k/y.
Finally, we may replace ϕ([dj, ej]) by [dj, ej] using (28.11) at the cost of an

error term of size N(logN)O(1)/y. Hence, we arrive at the formula

W =
V X∏

p�y(1− 1/p)

∑
d,e∈D

d1=e1=1

λ(d)λ(e)∏k
j=2[dj , ej]

+OA

( N

(logN)A

)
,

which is analogous to (28.10). It is now straightforward to adapt the argu-
ment from the proof of Lemma 28.3 that estimates the right-hand side of
(28.10), and to complete the proof of the lemma. �

A change of variables à la Selberg

Motivated by the theory of the Selberg sieve, we will switch from the function
λ to the function ξ defined in Lemma 28.3. We must write ζ� in terms of
this new function.

Lemma 28.5. For each (a1, . . . , ak) ∈ D and each � ∈ {1, . . . , k}, we have

ζ�(a1, . . . , ak) = 1a�=1

∑
b

μ(b)ξ(a1, . . . , a�−1, b, a�+1, . . . , ak)

b
.

Proof. To ease the notation, we demonstrate the calculation when � = 1.
As in the proof of Theorem 21.1 (see the argument leading to relation (21.5)),
we have the inversion formula

(28.15) λ(d1, . . . , dk) = 1(d1,...,dk)∈D

∑
b1,...,bk

μ(b1) · · ·μ(bk)ξ
(
b1d1, . . . , bkdk)

b1 · · · bk
.

Consequently, if (a1, . . . , ak) ∈ D with a1 = 1, then

ζ1(a1, a2, . . . , ak) =
∑

d2,...,dk

λ(1, a2d2, . . . , akdk)

d2 · · · dk

=
∑

d2,...,dk

∑
b1,...,bk

μ(b1) · · ·μ(bk)ξ(b1, a2b2d2, . . . , akbkdk)
d2 · · · dkb1 · · · bk

.
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Making the change of variables mj = bjdj for all j > 1 implies that

ζ1(a1, a2, . . . , ak) =
∑

b1,m2,...,mk

μ(b1)ξ(b1, a2m2, . . . , akmk)

b1m2 · · ·mk

k∏
j=2

∑
bjdj=mj

μ(bj).

The innermost sum vanishes unless mj = 1, thus completing the proof. �

Choosing the function ξ

Motivated by Lemma 28.5, we set

ξ(a1, . . . , ak) :=
1P−(a1···ak)>y(−1)Ω(a1···ak)

(logD)k
∏

p�y(1− 1/p)k
· f

(
log a1
logD

, . . . ,
log ak
logD

)
,

where f is a smooth function supported on the simplex

Δk := {(x1, . . . , xk) ∈ [0, 1]k : x1 + · · ·+ xk � 1},
and the factor (−1)Ω(a1···ak) is introduced to annihilate the sign changes
caused by μ(b) in the expression for ζ� in Lemma 28.5. Lastly, the denomi-
nator (logD)k

∏
p�y(1− 1/p)k is introduced for normalization purposes, so

that ‖λ‖∞ = O(1) by (28.15), as needed. With this choice of ξ, we have the
following result.

Lemma 28.6. Let � ∈ {1, . . . , k}, and set

I�(f) =

∫
Rk−1

(∫
R
f(x1, . . . , xk)dx�

)2

dx1 · · ·dx�−1dx�+1 · · ·dxk

and

J(f) =

∫
Rk

f(x1, . . . , xk)
2dx1 · · ·dxk.

If ξ and f are as above, and we assume that J(f) � 1, then

EN�n�2N

[
1P (n+ s�)

]
=

I�(f)

4J(f)
+O

(
1/

√
logN

)
.

The proof of Lemma 28.6 rests on the following result, which we will
eventually apply with w = y so that u � (logN)/(log logN)2.

Lemma 28.7. If r ∈ Z�1, g : Rr → R is a smooth function supported on
Δr and u,w � 2 are such that D = wu, then∑
P−(nj)>w

1�j�r

g( logn1

logD , . . . , lognr

logD )

n1 · · ·nr
= (logD)r

∏
p�w

(
1− 1

p

)r(∫
Δr

g +O
( log u

u

))
,

where the implied constant depends at most on r, and on the supremum
norm of g and of its partial derivatives.
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Proof. All implied constants might depend on g and on r as described in
the statement of the lemma. Throughout the proof, we set

z := wlog u = D
log u
u and G(x1, . . . , xr) :=

g( log x1

logD , . . . , log xr

logD )

x1 · · ·xr
.

Note that

(28.16) G(x1, . . . , xr) 

1

x1 · · ·xr
,

∂G

∂xj
(x1, . . . , xr) 


1

xj
· 1

x1 · · ·xr
.

We will often denote the r-tuple (x1, . . . , xr) by the bold letter x.

Given a parameter X � 1, let

DX := {(x1, . . . , xr) ∈ [X,+∞)r : x1 · · ·xr � D}.

We first show we may restrict our attention to tuples (n1, . . . , nr) ∈ Dz.
Indeed, for each fixed j ∈ {1, . . . , r}, the contribution to the sum of the
statement of the lemma of those summands with nj � z is



∑

· · ·
∑

nj�z, ni�D ∀i	=j

P−(n1···nr)>w

1

n1 · · ·nr

 (logD)r−1(log z)

∏
p�w

(
1− 1

p

)r

,

which is of admissible size by our choice of z.

Next, we treat the part of the sum over (n1, . . . , nr) ∈ Dz by splitting
it into small rectangles. We set z0 = z and, having defined za, we set
za+1 = za +

√
za. Moreover, let I denote the set of rectangles of the form

I =
∏r

j=1(xj, xj +
√
xj], where x1, . . . , xr ∈ {z0, z1, . . . }. Finally, we write

D′
z for the union of all such rectangles that lie entirely within Dz, that is to

say, D′
z is the union of I of the above form for which

∏r
j=1(xj +

√
xj) � D.

In particular, if (x1, . . . , xr) ∈ Dz \D′
z, then D/(1+z−1/2)r � x1 · · ·xr � D.

Combining this with the first bound of (28.16), we find that

(28.17)
∑
n∈Dz

P−(n1···nr)>w

G(n) =
∑
n∈D′

z

P−(n1···nr)>w

G(n) +O(N/D),

whereN := #{ (n1, . . . , nr) ∈ Nr : n1 · · ·nr ∈ [D/(1+z−1/2)r, D] }. Exercise
3.10 implies that N 
 D(logD)r−1/

√
z +D1−1/r, so that the error term in

(28.17) is of admissible size.

Now, fix I =
∏r

j=1(xj , xj +
√
xj ] ⊆ Dz. Since I has volume

√
x1 · · ·xr,

we have

G(n) =
1√

x1 · · ·xr

∫
I
G(n)dt.

When n, t ∈ I, the Mean Value Theorem and the second bound of (28.16)
imply that G(n)−G(t) = O(z−1/2/(t1 · · · tr)), since 1/(1+1/

√
z) � tj/nj �
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1 + 1/
√
z for all j. We thus conclude that

G(n) =
1√

x1 · · ·xr

∫
I

(
G(t) +

O(z−1/2)

t1 · · · tr

)
dt

for all n ∈ I. In addition, applying Theorem 18.11(a) r times, we find that

#{ (n1, . . . , nr) ∈ I ∩ Zr : P−(n1 · · ·nr) > w }

= (1 +O(1/u))
√
x1 · · ·xr

∏
p�w

(
1− 1

p

)r

,

since xj � z = wlog u for each j. Putting the above estimates together yields
the formula ∑

n∈I
P−(n1···nr)>w

G(n) =
∏
p�w

(
1− 1

p

)r ∫
I

(
G(t) +

O(1/u)

t1 · · · tr

)
dt.

Finally, we sum the above estimate over all rectangles I ∈ I ; they are
all subsets of Dz by definition. The lemma then follows by combining the
resulting formula with (28.17) and the fact that∫

E
G(t1, . . . , tr)dt1 · · · dtr 


∫
E

dt1 · · ·dtr
t1 · · · tr


 (logD)r−1 log z,

where E = (D1 \ Dz) ∪ (Dz \ D′
z). �

Proof of Lemma 28.6. To ease the notation, we give the proof when � =
1; the other cases are similar. Let us begin by recalling relation (28.7).
Together with Lemmas 28.3 and 28.4, it implies that

EN�n�2N

[
1P (n+ s1)

]
=

V XS1/
∏

p�y(1− 1/p) +OA(N/(logN)A+1)

V NT +OA(N/(logN)A)

for any A, where

S1 =
∑

(a1,...,ak)∈D
a1=1

ζ1(a1, . . . , ak)
2

a1 · · · ak
and T =

∑
(a1,...,ak)∈D

ξ(a1, . . . , ak)
2

a1 · · · ak
.

The choice of ξ and Lemma 28.7 (applied with g = f2, r = k, w = y
and u � (logN)/(log logN)2) implies that

(28.18) T = L−k
(
J(f) +O(1/

√
logN)

)
,

where

L := (logD)
∏
p�y

(1− 1/p) � logN

log y
.

In addition, note that V � 1/(log y)k. Therefore, if take A = k + 2,
then O(N/(logN)A) = O(V NL−k/ logN). Since we also have that X/N =
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1/ logN + O(1/ log2 N) and logN = 4 logD + O(
√
logN), the lemma will

follow as long as we can show that

(28.19) S1 = L1−k
(
I1(f) +O(1/

√
logN)

)
.

For any a = (a1, . . . , ak) ∈ D with a1 = 1, Lemma 28.5 and our choice
of ξ imply that

ζ1(a) =
(−1)Ω(a2···ak)

Lk

∑
P−(b)>y

μ2(b)f( log b
logD , log a2logD , . . . , log aklogD )

b
.

We remove the weight μ2(b), by noticing that if μ2(b) = 0 and P−(b) > y,
then there is a prime p > y such that p2|b. Hence, the total error produced
by replacing μ2(b) with 1 is 
 L−k/y. To the rest of the sum, we apply
Lemma 28.7 with r = 1, w = y and u � (logN)/(log logN)2. This yields
the estimate

ζ1(a) =
(−1)Ω(a2···ak)

Lk−1

(∫
R
f
(
x1,

log a2
logD

, . . . ,
log ak
logD

)
dx1 +O

(
1/

√
logN

))
.

Therefore

S1 = L2−2k
∑

P−(a2···ak)>y

( ∫
R f

(
x1,

log a2
logD , . . . , log aklogD

)
dx1

)2
a2 · · · ak

+O

(
L1−k

√
logN

)
,

where we used an upper bound sieve to control the contribution of the
remainder terms. Finally, we apply again Lemma 28.6, this time with r =
k − 1, to deduce (28.19). This completes the proof of the lemma. �

Optimizing the function f

In view of Lemma 28.6, our goal is to choose f supported on Δk and maxi-
mizing the ratio

ρk(f) :=
k∑

�=1

I�(f)

J(f)
.

If we can show that ρk(f) > 4m for k large enough in terms of m, we
automatically conclude that lim infn→∞(pn+m − pn) � sk − s1 < ∞.

As a warm-up exercise, we study ρk(f) using calculus of variations. Note
that we may drop the assumption that f is smooth, since the integral of any
measurable function over a compact region can be approximated arbitrarily
closely by integrals of smooth functions. Consider the linear operator

(Lkf)(x1, . . . , xk) :=
k∑

�=1

∫
R
f(x1, . . . , x�−1, t, x�+1, . . . , xk)dt,
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acting on Cc(R), the space of compactly supported, continuous functions
f : Rk → R. Letting 〈f, g〉 =

∫
Rk fg, we find that

k∑
�=1

I�(f) = 〈Lkf, f〉,

whereas J(f) = 〈f, f〉. If, now, f is a maximizer of the function ρk(·) over
all f supported on Δk, then the function ε → ρk(f + εg) has a maximum at
ε = 0 for any continuous g : Rk → R supported on Δk. So its derivative at
ε = 0 must vanish, which implies that

〈Lkf, g〉+ 〈Lkg, f〉 = 2ρk(f)〈f, g〉.

It is easy to see that Lk is a self-adjoint operator, so we find that

(28.20) 〈Lkf, g〉 = ρk(f)〈f, g〉.

Lastly, a standard continuity argument allows us to extend (28.20) to all
bounded measurable functions g that are supported on Δk.

We apply (28.20) for a special choice of g. Let (Bn)
∞
n=1 be a shrink-

ing family of cubes centered at a given point (x1, . . . , xk) in the interior
of the simplex Δk, and take g = 1Bn/Vol(Bn) with n → ∞. Applying
(28.20) to this family of functions g, we deduce that (Lkf)(x1, . . . , xk) =
ρ(f)f(x1, . . . , xk). Since (x1, . . . , xk) is arbitrary and f is continuous, this
implies that (Lkf)|Δk

= ρ(f) · f . In particular, f is an eigenfunction of the

operator L̃kg := (Lkg)|Δk
that acts on continuous functions g : Δk → R.

The corresponding eigenvalue is ρk(f).

Now, note that if f is an eigenfunction of the operator L̃k of eigenvalue
ρk(f), so is its symmetric version

f̃(x1, . . . , xk) :=
∑
σ∈Sk

f(xσ(1), . . . , xσ(k)).

In light of this observation, we may restrict our attention to symmetric
functions f , in which case

(28.21) ρk(f) = kI1(f)/J(f).

To this end, we define

Rk := sup{ ρk(f) : f : Δk → R, f symmetric and continuous }.

An asymptotic estimation for Rk is given in Proposition 28.8 below. In
addition, explicit bounds on Rk can be found [138, 151].

Proposition 28.8. For large integers k, we have that

log k − 4 log log k +O(1) � Rk � log k + log log k +O(1).
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Proof. For the lower bound, we consider functions of the form

f(x1, . . . , xk) = 1(x1,...,xk)∈Δk
· g(kx1) · · · g(kxk),

where g : R → R�0 is a function supported on the interval [0, δk] with
δ ∈ (0, 1) to be chosen later, and such that

∫ ∞
0 g(t)2dt = 1. Then

J(f) =

∫
Rk

f(x1, . . . , xk)
2dx1 · · ·dxk �

(∫
R
g(kx)2dx

)k
=

1

kk
.

Together with (28.21) and the change of variables tj = kxj, this implies that

ρk(f) �
∫
Rk−1

g(t2)
2 · · · g(tk)2

(∫ k−(t2+···+tk)

0
g(t1)dt1

)2
dt2 · · · dtk

�
(∫ ∞

0
g(t)dt

)2
∫
t2+···+tk�(1−δ)k

g(t2)
2 · · · g(tk)2dt2 · · · dtk

=
(∫ ∞

0
g(t)dt

)2
P
(
X2 + · · ·+Xk � (1− δ)k

)
.

where X2, . . . , Xk are independent random variables with density function
g2. Let

μ = E[X2] =

∫ ∞

0
tg(t)2dt

and Yi = Xi − μ, 2 � i � k, so that Y2, . . . , Yk are mean-zero independent
random variables that are identically distributed.

If we assume that δ < 1− μ, then

P
(
X2 + · · ·+Xk > (1− δ)k

)
� P

(
Y2 + · · ·+ Yk > (1− δ − μ)k

)
� V[Y2 + · · ·+ Yk]

(1− δ − μ)2k2
� V[Y2]

(1− δ − μ)2k

by Chebyshev’s inequality and the independence of the Yi’s. Furthermore,

V[Y2] � E[X2
2 ] =

∫ ∞

0
t2g(t)2dt � δk

∫ ∞

0
tg(t)2dt = δkμ

by our assumption that g is supported on [0, δk]. In conclusion, we have

(28.22) Rk � ρk(f) �
(∫ ∞

0
g(t)dt

)2(
1− δμ

(1− δ − μ)2

)
for any measurable function g � 0 supported on [0, δk] with

∫
R g2 = 1 and

μ =
∫
ug(u)2dt < 1− δ. We choose

g(t) = c ·
1[0,δk](t)

1 +At
,

where the parameters δ, c, A will be determined shortly.
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First of all, note that the hypothesis that
∫
R g2 = 1 implies that

c−2 =

∫ δk

0

dt

(1 +At)2
=

1

A · (1 + 1/(Aδk))
.

Hence

μ =

∫ δk

0

c2t

(1 +At)2
dt =

1 + 1/(Aδk)

A

(
log(1 +Aδk)− 1 +

1

1 +Aδk

)
.

To force μ to be close to 1 and δ to be smaller than 1−μ, we take A = log k
and δ = 1/(log k)3, so that

μ =
1

log k

(
log(k/(log k)2) +O(1)

)
= 1− 2 log log k

log k
+O(1/ log k)

� 1− δ − 1/ log k

for k large enough. Since
∫∞
0 g(t)dt = c log(1+Aδk)/A, the above inequality

and (28.22) imply the lower bound

Rk � c2 log2(1 +Aδk)

A2
(1− 1/ log k)

=
log2(k/(log k)2)

log k
(1− 1/ log k) +O(1)

= log k − 4 log log k +O(1),

as claimed.

Finally, we prove the upper bound on Rk. Let f be a symmetric, mea-
surable function supported on Δk. Motivated by the shape of f yielding our
lower bound on Rk, we use the Cauchy-Schwarz inequality in the following
fashion:(∫

R
f(x)dx1

)2
=

(∫ 1

0
f(x)dx1

)2
�

∫ 1

0
(1 + kAx1)f(x)

2dx1

∫ 1

0

dx1
1 + kAx1

=
log(1 + kA)

kA

∫ 1

0
(1 + kAx1)f(x)

2dx1.

Therefore

I1(f) � log(1 + kA)

kA

∫ 1

0
(1 + kAx1)f(x)

2dx.

By symmetry,

ρk(f)

∫
Rk

f(x)2dx =
k∑

�=1

I�(f) � log(1 + kA)

kA

k∑
�=1

∫ 1

0
(1 + kAx�)f(x)

2dx.

Since x1 + · · · + xk � 1 in the support of f , we conclude that ρk(f) �
(1 + kA) log(1 + kA)/(kA). Taking A = log k completes the proof. �
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We may now complete the proof of the main result of this chapter.

Proof of Theorem 28.1. Combining Lemma 28.6 and Proposition 28.8,
we find that there is a choice of weights wn such that

EN�n�2N

[ ∑
1���k

1P (n+ s�)
]

� log k

4
− log log k +O(1).

We take k = �Cm4e4m	 for a large enough constant C so that the right-
hand side becomes > m. In particular, there must exist n ∈ [N, 2N ] such
that n + sj is prime for at least m + 1 values of j. Since N can be taken
to be arbitrarily large, we conclude that lim infn→∞(pn+m − pn) � sk − s1.
We take sj to be the jth prime that is > k. We may easily check that the
tuple (s1, . . . , sk) is admissible. Since sk � k log k 
 e4mm5 by the Prime
Number Theorem, we have completed the proof of Theorem 28.1. �

Exercises

Exercise 28.1. (a) Fix coprime a, q ∈ N and let p′1 < p′2 < · · · be the sequence of
primes ≡ a (mod q). Show that limn→∞(p′n+1 − p′n) < ∞.

(b) Let q1 < q2 < · · · be an infinite sequence of primes. Find necessary conditions
so that lim infn→∞(qn+1 − qn) < ∞.

Exercise 28.2. Let S be the set of integers s � 1 for which there are infinitely
many primes p such that p + 2s is also prime. For every x that is sufficiently
large, show that #S ∩ [1, x] � x. [Hint: Show that there is some H such that
S ∩ (m,m+H] �= ∅ for all m � 1.]

Exercise 28.3. (a) If f(x1, . . . , xk) = F (x1+ · · ·+xk)1x1,...,xk�0 with F : [0, 1] →
R continuous,3 then show that

(28.23) ρk(f) = ρ̃k(F ) := k(k − 1) ·
∫ 1

0
uk−2(

∫ 1

u
F )2du∫ 1

0
uk−1F (u)2du

.

(b) (Goldston-Pintz-Yıldırım [63]) Show that supF ρ̃k(F ) � 4 − ok→∞(1). [Hint:
Take F (u) = (1− u)m.]

(c) Assuming the Bombieri-Vinogradov theorem (Theorem 18.9) holds for Q � xθ

with θ > 1/2, deduce that lim infn→∞(pn+1 − pn) < ∞.

(d) (Soundararajan) Integrate by parts to show that

ρ̃k(F ) = 2k ·
∫ 1

0
uk−1F (u)(

∫ 1

u
F )du∫ 1

0
uk−1F (u)2du

� 2k ·
(∫ 1

0
uk−1(

∫ 1

u
F )2du∫ 1

0
uk−1F (u)2du

)1/2

.

Generalize this argument to conclude that ρ̃k(F ) � 4k/
∏∞

j=1(k+2j−2)1/2
j

< 4
for all F �= 0.

3This corresponds essentially to the definition (28.4) of the GPY weights. There, one must
also assume that F is smooth enough, but this is not needed when optimizing the quantity ρk(f).
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Remark 28.9. Exercise 28.3(d) proves that the original GPY weights cannot
prove that limn→∞(pn+1 − pn) < ∞ without access to an improved version of
the Bombieri-Vinogradov theorem. Zhang’s breakthrough was to supply this nec-
essary improvement. In contrast, in the more general Maynard-Tao weights the
quantity ρk(f) can become arbitrarily large when k → ∞, thus sidestepping the
need for an improved Bombieri-Vinogradov theorem. �
Exercise 28.4 (Conrey).∗ Define ρ̃(F ) by (28.23) and let λ = k(k−1)/ supF ρ̃k(F ).

(a) If there is G ∈ C([0, 1]) such that ρ̃(G) = k(k− 1)/λ, then show that G(x) � 0
for all x ∈ [0, 1]. In addition, use calculus of variations to show that G must
satisfy the integral equation

(28.24) xk−1G(x) = λ

∫ x

0

uk−2

∫ 1

u

G(t)dtdu (0 � x � 1).

(b) Conversely, let G be a continuous and non-negative function satisfying (28.24)
and whose set of roots has null measure. Show that ρ̃k(G) = k(k − 1)/λ and
that ρ̃k(F ) � ρ̃k(G) for any continuous F : [0, 1] → R. [Hint: For the second
part, use the Cauchy-Schwarz inequality.]

(c) Show that any continuous solution to (28.24) must be smooth on [0, 1] and
satisfy the differential equation xG′′(x) + kG′(x) + λG(x) = 0. In addition,
a solution to this differential equation that is analytic around 0 must be a
multiple of the function x → A(λx), where

A(x) =
∑
r�0

(−x)r

r!(r + k − 1)!
=

Jk−1(2
√
x)

x(k−1)/2

with Jk−1 denoting the (k − 1)th Bessel function of the first kind (see [183]).

(d) Let An(x) =
∑n

r=0(−x)r/[r!(r + k − 1)!]. Show that a solution to (28.24)
normalized so that G(0) = 1/(k − 1)! must satisfy

(28.25) λ

∫ 1

0

G(t)dt =
1

(k − 2)!
.

In addition, for x ∈ [0, 1] and n ∈ Z�0, we must have

G(x)−An(λx) = −λ

∫ 1

0

uk−2

∫ ux

0

[
G(t)−An−1(λt)

]
dtdu.

(e) Show that if there is a continuous and non-negative solution to (28.24) with
λ > 0, then A2n+1(λx) � G(x) � A2n(λx) for x ∈ [0, 1] and n ∈ Z�0, and thus
G(x) = A(λx) for x ∈ [0, 1].

(f) When G(x) = A(λx), show that (28.25) is equivalent to Jk−2(
√
2λ)

= 0.

Remark 28.10. When m ∈ N, it is known that Jm has infinitely many positive
real zeros. If zm denotes the smallest such zero, we also know that z1 < z2 < · · ·
and zm > m+ π − 1/2 [36,110]. Hence, if λ = z2k−2/4, we infer that A(λx) > 0 for
x ∈ [0, 1) . In particular, (28.24) has a non-negative and continuous solution G for
which supF ρ̃k(F ) = ρ̃k(G) = 4k(k − 1)/z2k−2 < 4. Thus, we recover the conclusion
of Exercise 28.3(d). �
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Chapter 29

Large gaps between
primes

In the previous chapter, we demonstrated gaps in the sequence of primes
p1 < p2 < · · · that are much smaller than the expected size of pn+1 − pn,
which is logn. We now turn to the opposite question: does the gap pn+1−pn
get large compared to logn? The answer should be affirmative. To see why,
we turn again to Cramér’s model.

Recall that (Xk)
∞
k=1 is a sequence of independent Bernoulli random vari-

ables such that X1 = 0, X2 = 1, and with P(Xk = 1) = 1/ log k for k � 3.
Let Pn be the random variable that equals the nth smallest index k such
that Xk = 1 (that is to say, Pn models the nth smallest prime number).

Proposition 29.1. With probability 1, we have

lim sup
n→∞

Pn+1 − Pn

(logn)2
= 1.

The above result is a simple consequence of the Borel-Cantelli lemma
from probability theory [7, Theorems 4.3 and 4.4].

Lemma 29.2 (Borel-Cantelli). Let E1, E2, . . . be some events in a proba-
bility space, and let E be the event that infinitely many of the Ej ’s occur.

(a) If
∑

j�1 P(Ej) < ∞, then P(E) = 0.

(b) If the events E1, E2, . . . are mutually independent and
∑

j�1 P(Ej)

= ∞, then P(E) = 1.

317
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Proof of Proposition 29.1. For each k ∈ N, r � 0 and λ > 0, let Ek(r, λ)
be the event that Xj = 1 for at most r integers j ∈ (k, k+λ log2 k]. We will
use the Borel-Cantelli lemma to prove two key facts about these events:

Claim 1. If λ > 1 is fixed, then with probability 1 at most finitely many
of the events Ek(1, λ) occur.

Claim 2. If λ < 1 is fixed, then with probability 1 infinitely many of the
events Ek(0, λ) occur.

We leave it as an exercise on Cramér’s model to verify how these two
claims can be combined to complete the proof of the proposition.

Now, let us prove Claims 1 and 2. If we let Jk = Z ∩ (k, k + λ log2 k],
then the independence of the Xj ’s implies that

P(Ek(0, λ)) =
∏
j∈Jk

(
1− 1

log j

)
= k−λ+o(1)

and

P(Ek(1, λ) \ Ek(0, λ)) �
∑
i∈Jk

1

log i

∏
j∈Jk\{i}

(
1− 1

log j

)
= k−λ+o(1)

as k →∞. In particular, Claim 1 follows immediately from Lemma 29.2(a).

Finally, let us fix λ < 1 and prove Claim 2. If kj = �j log3 j�, then
we may easily check that the events Ekj (0, λ) are mutually independent for
large enough j, as well as that

∑
j�1 P(Ekj (0, λ)) = ∞. Thus, Claim 2

follows from Lemma 29.2(b). �

Proposition 29.1 leads us to guess that

lim sup
n→∞

pn+1 − pn
(logn)2

= 1.

However, Granville’s refinement of Cramér’s model suggests the lower bound

lim sup
n→∞

pn+1 − pn
(logn)2

� 2e−γ = 1.12291 . . .

(see Exercise 29.2). It is not clear what the true value of this lim sup is
(though see Exercise 30.1). In this chapter, we will prove a weaker result. A
simple corollary of it is that the normalized gap (pn+1 − pn)/ logn can get
arbitrarily large.

Theorem 29.3. We have that

lim sup
n→∞

pn+1 − pn
L(n)

= ∞ with L(n) =
logn log2 n log4 n

(log3 n)
2

,

where logj denotes the jth iteration of the logarithmic function.
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This theorem was proven independently by Ford, Green, Konyagin and
Tao [46], and by Maynard [139]. Here, we follow Maynard’s argument which
is more in tune with the ideas we have developed thus far. Ford, Green,
Konyagin and Tao used a different technique, building on the work of Green
and Tao on long arithmetic progressions in the sequence of primes [77].

The Erdős-Rankin construction

All constructions of long strings of composite numbers are based on the
concept of a covering system of congruences. We say that the system of
congruences {aj (mod qj)}kj=1 covers the set of integers N if for each n ∈ N
there is some j such that n ≡ aj (mod qj).

Recall the notation P (z) =
∏

p�z p. Our strategy for proving Theorem
29.3 is based on the following simple lemma.

Lemma 29.4. Let H � 1 and z � 2. Assume that there is a system of
congruences {ap (mod p)}p�z that covers Z ∩ [1, H]. Then there exists some
n ∈ (P (z), 2P (z)] for which there are no primes in (n, n+H].

Proof. Let n be the unique integer in (P (z), 2P (z)] satisfying the con-
gruences n ≡ −ap (mod p) for all primes p � z. If h ∈ [1, H] ∩ Z, then
h ≡ ap (mod p) for some p � z, that is to say, there exists a prime p � z
that divides n+ h. In particular, n+ h cannot be a prime number. �

In preparation for our proof of Theorem 29.3, we first show the weaker
result due to Rankin that

(29.1) lim sup
n→∞

pn+1 − pn
L(n)

> 0.

Even though the gap between (29.1) and Theorem 29.3 seems small, making
this leap was a long-standing open problem due to Erdős.1

To prove (29.1), we fix a small constant c > 0 to be chosen later. In
addition, we let z � 2 be a parameter tending to infinity, X = P (z) and

(29.2) H =
cz log z log3 z

(log2 z)
2

, whence z ∼ H(log2 H)2

c logH log3H
.

We will show that we can pick congruence classes ap (mod p) with p � z
covering the integers � H. Assuming that this is indeed possible, we can
then apply Lemma 29.4 to find that maxX<pn�2X(pn+1 − pn) � H. Since
logX ∼ z by the Prime Number Theorem, we deduce that

1Paul Erdős had a legendary knack for asking very hard questions with deceptively simple
statements. Occasionally, he would offer a monetary award for their solution. The award he
offered for proving Theorem 29.3 was $10,000, the largest “Erdős prize” ever.
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(29.3) lim sup
n→∞

pn+1 − pn
L(n)

� c,

which establishes (29.1).

Let us now explain how to construct the classes ap (mod p). We will
select them in three stages, determined by two parameters y and Y to be
chosen so that (logH)3 � y � Y � H/2. Throughout, the letters p and q
denote prime numbers.

Stage 1: Intermediate primes. When p ∈ (y, Y ], we select ap = 0.
This choice is the key to the success of the Erdős-Rankin method because
it leaves uncovered few integers � H. Specifically, if N is the set of integers
n � H not covered by the classes 0 (mod p) for p ∈ (y, Y ], then either n is
y-smooth, or n = mq with q > Y prime and m � H/Y . Writing y = H1/u

and applying Theorems 16.4 and 20.1, we find that

|N | � Ψ(H, y) +
∑

m�H/Y

π(H/m) 
 H

uu
+

∑
m�H/Y

H

m log Y


 H

uu
+

H log(H/Y )

log Y
.

Stage 2: Small primes. For the primes p � y, we select the progressions
ap (mod p) “greedily”.

We begin by letting a2 (mod 2) be any class a (mod 2) maximizing the
quantity #{n � N : n ≡ a (mod 2) }. Having chosen a2, we set N2 = {n ∈
N : n �≡ a2 (mod 2) } and note that |N2| � |N |/2.

Next, we let a3 (mod 3) be any class a (mod 3) maximizing the quantity
#{n ∈ N2 : n ≡ a (mod 3) }. If we set N3 = {n ∈ N2 : n �≡ a3 (mod 3) },
then |N3| � (1− 1/3)|N2|.

Continuing this way, we find that there are progressions ap (mod p) in-
dexed by the primes p � y, such that the set

N ′ := {n ∈ N : ∃p � y for which n �≡ ap (mod p) }

has cardinality

(29.4) |N ′| � |N | ·
∏
p�y

(
1− 1

p

)

 H

uu log y
+

H log(H/y)

log y log Y
.

Stage 3: Large primes. Due to the nature of the second stage, we have
completely lost control of the residual set N ′. Hence, we will apply a trivial
argument in the third and final stage of the argument. For it to work, we
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must guarantee that the remaining primes (i.e., the primes in (Y, z]) are
more than the number of integers in N ′. We thus choose

(29.5) y = H log3 H/(3 log2 H) and Y =
z log3 z

log2 z
∼ H log2 H

c logH
.

Indeed, with this choice of parameters, we have uu log y = (logH)4+o(1), as
well as that H log(H/Y )/(log y log Y ) � H(log2H)2/(logH log3H). Apply-
ing (29.4), and taking c small enough and z large enough in (29.2), implies
that |N ′| � z/(3 log z) < #{Y < p � z}.

Since there are more primes than integers left to cover, we can easily
complete the proof: if q1, . . . , qk are the primes in (Y, z] and n1, . . . , n� are
the integers inN ′, we let aqj = nj for each j � �, and choose aqj for � < j � k
arbitrarily. This concludes the construction of the claimed covering system
of congruences, and thus the proof of (29.1).

A more efficient covering system

We now turn to the proof of Theorem 29.3. As before, we wish to find a
system of congruences {ap (mod p)}p�z that covers [1, H], but with c being
arbitrarily large. In view of (29.3), this suffices to prove Theorem 29.3.

To find this more efficient covering system, we will improve upon Stage 3.
Specifically, we will show that it is possible to choose the ap’s for p ∈ (z/2, z]
in a way that each congruence class covers many elements of the residual
set N ′ and not just one.

Throughout, y and Y are defined by (29.5). However, the first stage of
the selection of the covering system has an extra auxiliary part that deals
with very small primes and helps simplify the situation in the last two stages.

Stage 1a: Intermediate primes. We again choose ap = 0 for the primes
p ∈ (y, Y ]. We are then left with integers n � H such that either n is
y-smooth or n = qm with q > Y prime and m � H/Y � log z.

Stage 1b: Very small primes. We also select ap = 0 when p � log z.
The effect of this auxiliary stage is a simplification of the residual set, which
now equals {n � H : p|n ⇒ log z < p � y } ∪ {Y < q � H}. Its first
component has small size by Theorem 16.4. We will cover it trivially at the
end of Stage 3. We thus focus on the set of primes in (Y,H].

Stage 2: Small primes. Next, we choose ap for p ∈ (log z, y]. In the
previous section, we selected these congruence classes greedily. Here, we
simply take ap = 1. This has essentially the same effect as choosing the ap’s
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greedily. The reason is that q− 1 looks a lot like a “random” integer, so the
chance that it has no prime factors in

P := {log z < p � y}
is about

∏
p∈P(1 − 1/p). The advantage of having ap = 1 for all p ∈ P is

that it allows for an explicit description of the residual set: indeed, after
Stage 2, we are left with certain y-smooth integers n � H and with the
set of primes {Y < q � H : (q − 1,P) = 1 }. We must cover them using
congruence classes ap (mod p) with p ∈ (Y, z].

Stage 3a: Large primes. This stage will be the most delicate and will
take most of the remaining chapter to be completed. We summarize it in
the following proposition whose proof is postponed till the next section.

Proposition 29.5. Fix ε > 0. Let z, H and y be as above. There is a
choice of congruence classes ap (mod p), p ∈ (z/2, z], covering � (100− ε)%
of the set of primes Q := { z < q � H : (q − 1,P) = 1 }.

Assuming the above result for now, let us see how to use it to complete
the proof of Theorem 29.3.

Stage 3b: Large primes – cleaning up. Let Q be the set of primes de-
fined in Proposition 29.5. A simple application of Theorem 18.11(a) (with
the required level of distribution supplied by the Bombieri-Vinogradov the-
orem) implies that

|Q| ∼ H

logH

∏
p∈P

(
1− 1

p− 1

)
∼ 3cz

log z
.

Now, from the above discussion, we know there are congruence classes
ap (mod p) with p ∈ [1, Y ] ∪ (z/2, z] that cover all of [1, H] ∩ Z, except
perhaps the set R := {n � H : P+(n) � y } ∪ Q1 ∪ Q2, where Q1 = { q �
z : (q − 1,P) = 1 } and Q2 ⊆ Q has � |Q|/(4c) ∼ z/(4 log z) elements.

Since Ψ(H, y) � H/(logH)3+o(1) by Theorem 16.4, and |Q1| = o(z/ log z)
by Theorem 18.11(a) (see also Exercise 20.3(a)), we conclude that |R| �
z/(3 log z) < #{Y < p � z/2} as long as z is large enough. Hence, arguing
as in Stage 3 of the previous section, we may trivially cover R using residues
ap (mod p) with p ∈ (Y, z/2]. This completes the proof of Theorem 29.3.

Random covering systems of congruences

We now turn to the proof of Proposition 29.5. The main idea is to construct
for each p ∈ (z/2, z] a probability measure δp on Z/pZ such that

(29.6)
∑

z/2<p�z

δp(q) � − log(ε/100) for all primes q ∈ Q.
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Before explaining how to do this, let us see how such a construction yields
Proposition 29.5.

Naturally, the measures δp with p ∈ (z/2, z] induce a product measure δ
on the space G :=

∏
z/2<p�z Z/pZ by taking

δ(a) :=
∏

z/2<p�z

δp(ap)

for each a = (ap)z/2<p�z ∈ G. Given any q ∈ Q, the probability that it is
not covered by a random tuple a ∈ G equals

∏
z/2<p�z(1− δp(q)). Thus

Ea∈G
[
#

{
q � Q : q /∈

⋃
z/2<p�z

ap (mod p)
}]

=
∑
q�Q

∏
z/2<p�z

(1− δp(q)).

Hence, (29.6) and the inequality 1−x � e−x imply that the right-hand side
is � ε|Q|/100. In particular, there must exist a choice of a ∈ G such that
the number of q ∈ Q not covered by a is � ε|Q|/100, which is precisely what
we claimed in Proposition 29.5.

To construct measures δp satisfying (29.6), we go back to the ideas of
Chapter 28: we set

s1 = 0 and sj = pπ(Ck)+j−1

∏
p�Ck

p for j = 2, . . . , k,

where Ck is an auxiliary integer that will be taken to be large enough and,
as usual, pn denotes the nth prime. In particular, if Ck > k, then the k-tuple
(s1, . . . , sk) is admissible. We also set

ν(d) = #{n (mod d) : (n− s1) · · · (n− sk) ≡ 0 (mod d) }.

Next, we consider two upper bound sieve weights. We let μ+
1 be the

function λ+ supplied by Theorem 19.1 when applied with κ = k, set of
primes {p � log z} and level of distribution D1 = ylog3 H . We also let μ+

2

be the function λ+ from Theorem 19.1 applied with κ = 2k, set of primes
P = {log z < p � y} and level of distribution D2 = ylog3 H .

In addition, we let λ : Nk → R be the function constructed in Chapter
28 with z in place of N . In particular, λ is supported on the set

D := {d ∈ Nk : d1 · · · dk � D, P−(dj) > y ∀j } with D = z1/4e−
√
log z

and it has bounded supremum norm. Note that logD/ log y � log2H/ log3H.
Hence, if ξ is as in Lemma 28.3, ζ� is as in Lemma 28.4, and I�(f) and J(f)
are as is in Lemma 28.6, then λ satisfies the asymptotic estimates

(29.7)
∑

(a1,...,ak)∈D

ξ(a1, . . . , ak)
2

a1 · · · ak
=

J(f) +O((log3H)2/ log2H)

(logD)k
∏

p�y(1− 1/p)k
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and

(29.8)
∑

(a1,...,ak)∈D
a�=1

ζ�(a1, . . . , ak)
2

a1 · · · ak
=

I�(f) +O((log3H)2/ log2H)

(logD)k−1
∏

p�y(1− 1/p)k−1

for � = 1, . . . , k by adapting the proof of Lemma 28.6 (the only difference is
that we must apply Lemma 28.7 with w = y and u � log2H/ log3 H).

Finally, we let

Q(n, n′) =
∏

1�j�k

(n− sjn
′),

which is the homogeneous version of the polynomial
∏k

j=1(x − sj), and we
introduce the sieve weights

wn,p =

( ∑
a|Q(n,p)

μ+
1 (a)

)( ∑
b|Q(n,p)Q(n−1,p)

μ+
2 (b)

)( ∑
dj |n−psj , p�dj

1�j�k

λ(d)

)2

.

The probability measure δp is then defined by

δp(a) :=

∑
n�2H,n≡a (mod p)wn,p∑

n�2H wn,p

for each a ∈ Z/pZ. It is designed to be biased towards the progressions
a (mod p) containing many elements of Q. In particular, note that if n =
q+ ps� with q ∈ Q, then the sum over (d1, . . . , dk) in the definition of λ can
be restricted to those k-tuples with d� = 1, analogously to the situation in
Lemma 28.4.

Because of this nature of the weights δp, we ignore all summands but
those of the form q + ps� in the numerator. This yields the inequality

δp(q) �
∑k

�=1wq+ps�/
∑

n�2H wn,p, whence

(29.9)
∑

z/2<p�z

δp(q) �
k∑

�=1

∑
z/2<p�z wq+ps�,p∑

n�2H wn,p
.

Calculations

The next step is to estimate the right-hand side of (29.9) by adapting the
methods of Chapter 28. This is accomplished in Lemmas 29.6 and 29.7
below. A very good (albeit tough) exercise on the methods on Chapter 28
is to demonstrate these lemmas without consulting their proofs.

All implied constants from now on might depend on k.
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Lemma 29.6. Assume the above notation and let p0 ∈ (z/2, z]. Then

∑
n�2H

wn,p0 =
2V H ·

(
J(f) +O(1/

√
log2H)

)
(logD)k

∏
p�y(1− 1/p)k

,

where V = (log2 z/ log y)
2k

∏
p�log z(1− ν(p)/p).

Proof. Let d, e ∈ D be such that dj , ej|n + p0sj and p0 � djej for each
j. Arguing as in the beginning of the proof of Lemma 28.3, we find that
(diei, djej) = 1 for all i �= j, provided that y � sk − s1 = sk. Therefore∑

n�2H

wn,p0 =
∑

a,b,d,e
(diei,p0djej)=1∀i	=j

μ+
1 (a)μ

+
2 (b)λ(d)λ(e)N(a, b,d, e),

where N(a, b,d, e) denotes the cardinality of integers n ∈ [1, 2H] such that
a|Q(n, p0), b|Q(n, p0)Q(n− 1, p0) and [dj , ej]|n− p0sj for all j.

By our assumptions on the support of μ+
1 , μ

+
2 and λ, the numbers a, b and

[d1, e1], . . . , [dk, ek] can be assumed to be mutually coprime. The Chinese
Remainder Theorem then implies that

N(a, b,d, e) = 2H · ν1(a)ν2(b)

ab
∏k

j=1[dj, ej]
+O(ν1(a)ν2(b)),

where ν1(a) counts the number of solutions n ∈ Z/aZ to the congruence
Q(n, p0) ≡ 0 (mod a) and, similarly, ν2(b) counts the number of solutions
n ∈ Z/bZ to the congruence Q(n, p0)Q(n−1, p0) ≡ 0 (mod b). (In particular,
these functions might depend on p0.) Consequently,∑

n�2H

wn,p0 = V1V2HS +O(H1/10),

where

Vj =
∑
d

μ+
j (d)νj(d)

d
and S =

∑
d,e

(diei,p0djej)=1∀i	=j

λ(d)λ(e)∏k
j=1[dj, ej]

.

We now estimate S. Firstly, we remove the condition from its summands
that p0 � d1e1 · · · dkek. The error produced is

�
k∑

j=1

∑
d,e∈D
p0|djej

|λ(d)λ(e)|∏k
j=1[dj, ej]


 (logH)3k

p0
� (logH)3k

z
.
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The remaining sum over d and e is estimated as in Lemma 28.3, as well as
using (29.7). In conclusion,

S =
∑
a∈D

ξ(a)2

a1 · · · ak
+O

(
(logH)3k

y

)
=

J(f) +O((log3 H)2/ log2H)

(logD)k
∏

p�y(1− 1/p)k
.

Finally, we estimate V1 and V2 using Theorem 19.1. If we let ε =
1/ log2H, then we have

V1 = (1 +O(ε))
∏

p�log z

(
1− ν1(p)

p

)
, V2 = (1 +O(ε))

∏
log z<p�y

(
1− ν2(p)

p

)
.

Since p �= p0 when p � log z, we have ν1(p) = ν(p). On the other hand, we
have ν2(p) = 2k, unless p|p0(si − sj)(p0(si − sj) + 1) for some i �= j. There
are O(log z/ log2 z) such p by Exercise 2.8(c). Therefore,

V2 = (1 +O(ε))(1 +O(1/ log z))O(log z/ log2 z)
∏

log z<p�y

(1− 2k/p)

= (1 +O(ε))(log2 z/ log y)
2k,(29.10)

where we used Mertens’ third estimate (Theorem 3.4(c)). This completes
the proof of the lemma. �

Lemma 29.7. For each � ∈ {1, . . . , k} and each q0 ∈ Q, we have∑
z/2<p�z

wq0+ps�,p =
V z log y

8 log2 z
· I�(f) +O(1/

√
log2 H)

(logD)k
∏

p�y(1− 1/p)k

with V as in Lemma 29.6.

Proof. To ease the notation, we consider the case � = 1, in which case
s1 = 0. The other values of � are treated similarly.

Since q0 > z, any integer d1 � D that divides q0 must equal 1. Hence,

wq0,p =

( ∑
a|G0(p)

μ+
1 (a)

)( ∑
b|G0(p)G1(p)

μ+
2 (b)

)( ∑
dj |q0−sjp, p�dj

d1=1

λ(d)

)2

,

where we have set

Gh(n) =
∏

2�j�k

(q0 − h− sjn).

As in the proof of Lemma 29.6, we have∑
z/2<p�z

wq0,p =
∑

a,b,d,e, d1=e1=1
(diei,djej)=1 ∀i	=j

μ+
1 (a)μ

+
2 (b)λ(d)λ(e) · P (a, b,d, e),

where P (a, b,d, e) counts the number of primes p ∈ (z/2, z] such that p �
d1e1 · · · dkek, a|G0(p), b|G0(p)G1(p) and [dj, ej ]|q0 − sjp for all j � 2. The

Author’s preliminary version made available with permission of the publisher, the American Mathematical Society.



Calculations 327

number of primes p dividing one of d1, e1, . . . , dk, ek is O(log z). Hence,
adapting the argument leading to (28.14) implies that

P (a, b,d, e) =
ν∗1(a)ν

∗
2(b)X

ϕ(r)
+O(ν∗1(a)ν

∗
2(b)E(z; r) + log z),

where r = ab
∏k

j=2[dj, ej ], the functions ν∗1(m) and ν∗2(m) count the num-

ber of solutions t ∈ (Z/mZ)∗ to the congruences G0(t) ≡ 0 (modm) and
G0(t)G1(t) ≡ 0 (modm), respectively,

X = li(z)− li(z/2) = z/(2 log x) +O(z/(log z)2),

and

E(z; r) = max
t∈(Z/rZ)∗

∣∣π(z; r, t)− π(z/2; r, t)−X/ϕ(r)
∣∣.

Together with the Bombieri-Vinogradov theorem, this implies that∑
z/2<p�z

wq+ps�,p = V ∗
1 V

∗
2 XT +OA(z/(log z)

A)

for any fixed A > 0, where

V ∗
j =

∑
m

μ+
j (m)ν∗j (m)

ϕ(m)
and T =

∑
d,e∈D , d1=e1=1
(diei,djej)=1 ∀i	=j

λ(d)λ(e)∏k
j=2 ϕ([dj, ej])

.

Next, we estimate the sum over d and e exactly as in the proof of Lemma
28.4, and then use (29.8). This yields that

T =
∑
a∈D
a1=1

ζ1(a)
2

a1 · · · ak
+O

(
(logH)3k

y

)
=

I1(f) +O((log3 H)2/ log2H)

(logD)k−1
∏

p�y(1− 1/p)k−1
.

As a consequence,∑
z/2<p�z

wq+ps�,p = zV ∗
1 V

∗
2 · I1(f) +O((log3H)2/ log2H)

8(logD)k
∏

p�y(1− 1/p)k−1
.

Finally, we apply Theorem 19.1 to deduce that

V ∗
1 = (1+O(ε))

∏
p�log z

(
1− ν∗1(p)

p− 1

)
, V ∗

2 = (1+O(ε))
∏

log z<p�y

(
1− ν∗2(p)

p− 1

)
,

where ε = 1/ log2H. We note that ν∗1(p) = ν(p) − 1 for all p � log z < q0.
Indeed, ν∗1(p) equals #{n ∈ (Z/pZ)∗ : ∃sj �≡ 0 (mod p), sjn ≡ q0 (mod p) },
which also equals ν(p)− 1 because s1 = 0. We thus conclude that

V ∗
1 =

∏
p�log z

(
1− ν(p)

p

)(
1− 1

p

)−1

.
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Moreover, we have ν∗2(p) = 2k − 2, unless p|q0(q0 − 1)s1 · · · sk or p|(si −
sj)(q0(si − sj) + sj) for some i �= j. Arguing as in (29.10), we find that

V ∗
2 = (1 +O(1/ log2H))

( log2 z
log y

)2k−1 ∏
log z<p�y

(
1− 1

p

)−1
.

This completes the proof of the lemma. �

We are now ready to prove (29.6). We estimate the right-hand side of
(29.9) using Lemmas 29.6 and 29.7. Assuming that J(f) � 1, we infer that∑

z/2<p�z

δp(q) � (1 + o(1))
z log y

16H log2 z

k∑
�=1

I�(f)

J(f)
∼ 1

48c

k∑
�=1

I�(f)

J(f)

for all q ∈ Q as z → ∞. Choosing the function f as in Chapter 28, we
find that the sum over � is � log k − 4 log log k + O(1). Taking k to be
large enough in terms of c and ε completes the proof of (29.6), and hence of
Theorem 29.3.

Exercises

Exercise 29.1. For each fixed λ > 0, it is believed that

#{ pn � x : pn+1 − pn > λ log x } ∼ e−λx

log x
(x →∞).

Use Cramér’s model to give evidence in support of this conjecture.

Exercise 29.2 (Granville [64]). Let (Yn)
∞
n=1 be the Cramér-Granville model of

parameter y, as defined in (17.13). Let Ek(λ) be the event that Yj = 0 for all

integers j ∈ (k, k + λ log2 k]. In addition, let M = P (y)�log logP (y)�.

(a) Let λ > 0 be fixed. Prove that

P(Ek(λ)) = k−λeγ/2+o(1)

for k = P (y), 2P (y), . . . ,MP (y) as y →∞.

(b) If 0 < λ < 2e−γ , show that the probability that none of the events of part (a)
occurs is o(1) as y →∞.
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Chapter 30

Irregularities in the
distribution of primes

So far we concentrated our efforts on proving that the primes behave in
the “expected way”. In this last chapter, we will show that their distribution
has subtle irregularities that can be seen when zooming in on certain short
intervals.

As we discussed in Chapter 29, we expect that pn+1 − pn = O(log2 n).
Therefore, it seems reasonable to expect that the interval (x, x+y] contains
the expected number of primes, namely ∼ y/ log x, as soon as y � (log x)2+ε.
Assuming the validity of the Riemann Hypothesis, Selberg [161] proved in
1943 that this is indeed true for almost all x.

Theorem 30.1 (Selberg). Assume that the Riemann Hypothesis is true.
Fix ε > 0 and δ > 0. For all but oX→∞(X) integers x ∈ [2, X], we have

(1− ε)
y

logx
� π(x+ y)− π(x) � (1 + ε)

y

logx
with y = (log x)2+δ.

However, in 1985 Maier [134] arrived at the groundbreaking conclusion
that the asymptotic formula π(x+ y)− π(x) ∼ y/ log x fails infinitely often
for y a fixed but arbitrarily large power of log x.

Theorem 30.2 (Maier). For every fixed C > 1, we have that

lim inf
x→∞

π(x+ (log x)C)− π(x)

(log x)C−1
< 1 < lim sup

x→∞

π(x+ (log x)C)− π(x)

(log x)C−1
.

The goal of this chapter is to establish Maier’s theorem. On the contrary,
we will not show Selberg’s theorem because its proof lies beyond the scope
of this book.

329
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Maier matrices

The starting point for proving Theorem 30.2 is the observation we made
in Chapter 17 that Cramér’s model has to be adjusted by presieving the
integers under consideration with small primes. Indeed, if (log x)2 < h � x,
then the more accurate Cramér-Granville model suggests that1

#{x < p � x+ h} ∼ #{x < n � x+ h : (n, P (w)) = 1 }
log x

·
∏
p�w

(
1− 1

p

)
∼ eγ logw

log x
·#{x < n � x+ h : (n, P (w)) = 1 }

with w a slowly growing function of x. We strategically choose x = P (w). In
this case, we have w ∼ log x. In addition, the Chinese Remainder Theorem
implies that the number of integers in [x+1, x+h] that are coprime to P (w)
is exactly equal to the number of integers in [1, h] that are coprime to P (w).
In particular, if h = (log x)u with u, then

#{x < n � x+ h : (n, P (w)) = 1 } ∼ h ·B(u)

logw

as x → ∞, where B is Buchstab’s function. Putting everything together,
we arrive at the guess that

#{x < p � x+ h} ∼ eγB(u) · h

log x
.

However, as we saw in Exercise 14.11, the difference B(u) − e−γ changes
signs infinitely often (but with the amplitude of its oscillations tending to 0).
Hence, we may choose u arbitrarily large such that the number of primes in
(x, x+h] is a bit larger than expected. Similarly, we can also find arbitrarily
large u for which the number of primes in (x, x+h] is smaller than expected.

In order to make the above heuristic rigorous, Maier averaged over many
intervals (x, x + h] with x a multiple of P (w). It is convenient to display
these intervals in the form of a matrix. To this end, given positive integers
k, �, q and h, with � � 2k and h � q, we define the Maier matrix

M(k, �; q, h) :=

⎛⎜⎜⎜⎝
1 + (k + 1)q 2 + (k + 1)q · · · h+ (k + 1)q
1 + (k + 2)q 2 + (k + 2)q · · · h+ (k + 2)q

...
...

...
1 + �q 2 + �q · · · h+ �q

⎞⎟⎟⎟⎠ .

We will eventually take q = P (w) for some convenient choice of w.

1We have presented matters in reverse chronological order. Granville’s modification of
Cramér’s model was inspired by Maier’s work on irregularities in the distribution of primes.
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Note that the ith row of M(k, �; q, h) contains all integers in the short
interval ((k+ i)q, h+ (k + i)q], whereas its jth column contains all integers
in the arithmetic progression

(30.1) {n ≡ j (mod q) : j + kq < n � j + �q }.

Now, if each arithmetic progression of the form (30.1) contains the ex-
pected number of primes, and we write p ∈ M(k, �; q, h) to denote that p
appears among the entries of M(k, �; q, h), then

#{p ∈M(k, �; q, h)} ∼
∑

1�j�h
(j,q)=1

1

ϕ(q)

∫ j+�q

j+kq

dt

log t
∼ (�− k)q

ϕ(q) log(�q)

∑
1�j�h
(j,q)=1

1.

On the other hand, if all short intervals (mq, h + mq] with m ∈ (k, �]
contain the expected proportion of primes, then

#{p ∈ M(k, �; q, h)} ∼
∑

k<m��

h

log(mq)
∼ (�− k)h

log(q�)
.

Comparing the above estimates, we see that if we can find a sequence of
q and h going to infinity in a way that

(30.2)
#{ 1 � j � h : (j, q) = 1 }

hq/ϕ(q)
� c > 1,

then we obtain a contradiction. A similar conclusion holds if the left-hand
side can be made � c′ < 1 for an infinite sequence of q and h.

Calibrating the parameters

As we explained above, we will let q = P (w), so that w ∼ log q and q/φ(q) ∼
eγ logw, as well as h = wu with u to be chosen later in a way that the
difference B(u)−e−γ has a predetermined sign. In order to deduce Theorem
30.2, we need to be able to show that each arithmetic progression of the
form (30.1) contains the expected number of primes. We will take k = q2

and � = qL for some large L. Theorem 12.1 cannot be used in this range.
However, we can apply Theorem 27.1 (so we will eventually weigh primes
logarithmically). Firstly, we claim that we may choose w in such a way
that rules out the existence of the exceptional character χ1 for an infinite
sequence of moduli of the form q = P (w).

Lemma 30.3. There are infinitely many w ∈ N such that if q = P (w), then∑
y<p�z

p≡a (mod q)

1

p
=

log(log z/ log y) +O(1)

ϕ(q)

uniformly for z � y � q3 and a ∈ (Z/qZ)∗.
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Proof. For each q � 3, we let Rq denote the set of real non-principal char-
acters. In view of Theorem 27.1, it suffices to show we can choose infinitely
many values of q = P (w) such that

(30.3)
∑

y<p�z

χ(p)

p
= O(1) (z � y � q, χ ∈ Rq).

Recall the definition of the sifted L-function Ly(s, χ) from Chapter 22.

If Qχ = q1/min{1,Lq(1,χ)}, then Theorem 22.5 implies that

(30.4)
∑

y<p�z

χ(p)

p
= O(1) (z � y � Qχ, χ ∈ Rq).

Now, let w ∈ N. We will show that either (30.3) holds for q = P (w), or
we can find w′ � w such that (30.3) holds for q′ = P (w′).

Fix an auxiliary large constant M to be chosen later, and let q = P (w).
Firstly, we consider the case when Lq(1, χ) � 1/M2 for all χ ∈ Rq. Since∑

q<p�qM
2 1/p = O(logM), (30.3) follows from (30.4) in this case, with the

implicit constant depending on M .

Assume now there is some χ1 ∈ Rq such that Lq(1, χ1) � 1/M2. We will
show that if M is sufficiently large, then we may construct another modulus
q′ = P (w′) satisfying (30.3). Precisely, we take w′ = M−1 logQχ1 , so that
log q′ ∼ M−1 logQχ1 . Note that w′ < ∞ by Theorem 12.8.

Consider χ ∈ Rq′ . If χ is induced by χ1, then the fact that log q′ ∼
M−1 logQχ1 and (30.4) imply that∑
y<p�z

χ(p)

p
=

∑
max{Qχ1 ,y}<p�z

χ1(p)

p
+O(logM) = OM (1) (z � y � q′).

Assume now that χ is not induced by χ1. We then know from Theorem
22.6(b) that there is an absolute constant c > 0 such that

max{Lq′(1, χ), Lq′(1, χ1)} � c.

On the other hand, we claim that if M is large enough, then Lq′(1, χ1) < c.

Indeed, for all σ = 1 + 1/ log x with x � Qχ1 , we have

logLq′(σ, χ) =
∑

q′<p�x

χ1(p)

p
+O(1)

by Lemma 22.3. Applying (22.16) from Theorem 22.5, followed by (22.15),
we can rewrite the right side of the above formula as

logLq′(σ, χ) =
∑

q′<p�Qχ1

χ1(p)

p
+O(1) = −

∑
q′<p�Qχ1

1

p
+O(1).
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Hence, Mertens estimate implies that logLq′(σ, χ) = − logM + O(1). Let-
ting x → ∞ implies that Lq′(1, χ1) 
 1/M , so that Lq′(1, χ1) < c by
choosing a sufficiently large M . Hence, for this choice of M , we have
Lq′(1, χ) � c > 0. Combining this relation with (30.4) proves that (30.3)
holds for χ in this case too. This completes the proof of the lemma. �

Proof of Theorem 30.2. Let q = P (w) be as in Lemma 30.3. In addition,
let h = wu, and let L be a large constant to be chosen later. For brevity, we
write M to denote the Maier matrix M(q2, qL; q, h).

One the one hand, Lemma 30.3 implies that∑
p∈M

1

p
=

∑
1�j�h

(j,P (w))=1

∑
j+q3<p�j+qL+1

p≡j (mod q)

1

p
=

∑
1�j�h

(j,P (w))=1

logL+O(1)

ϕ(q)
.

Hence, applying Theorem 14.4 and noticing that q/ϕ(q) = eγ logw + O(1)
by Mertens’s third estimate (Theorem 3.4(c)), we conclude that

(30.5)
∑
p∈M

1

p
= eγB(u) · h

q
· (1 +Ou(1/ logw)) · (logL+O(1)).

On the other hand, for each fixed u and for w →∞, we have

(30.6)
∑
p∈M

1

p
=

∑
q2<m�qL

∑
mq<p�h+mq

1

p
∼

∑
q2<m�qL

π(h+mq)− π(mq)

mq
,

since q/h →∞ when w →∞.

Now, we select u such that eγB(u) > 1 and set δ = eγB(u)− 1 > 0. We
have ∑

q2<m�qL

1

m log(qm)
= logL+O(1)

by partial summation. Together with (30.5), this implies that there are
constants L0 = L0(δ) and w0 = w0(δ, u) such that

(30.7)
∑
p∈M

1

p
� (1 + δ/2)

∑
q2<m�qL

h/ log(mq)

mq

whenever L � L0 and w � w0. From now on, we suppose that L = L0, so
that L is fixed in terms of δ.

Comparing (30.7) with (30.6), and assuming w is large enough in terms
of δ and u, we find that there must exist some m ∈ Z ∩ (q2, qL] such that

(30.8) π(h+mq)− π(mq) � (1 + δ/3) · h

log(mq)
.

Recall that h = wu, so that h ∼ (log q)u �u,δ (log(mq))u for all m ∈
(q2, qL]. Hence, if 1 < C � u− 1 and we let w be large enough in terms of δ
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and u, then (30.8) and the pigeonhole principle imply the existence of some
x ∈ [mq, h+mq] such that π(x+ (log x)C)− π(x) � (1 + δ/4)(log x)C−1.

The above discussion proves the rightmost inequality in Theorem 30.2
for 1 < C � u− 1. Since u can be taken to be arbitrarily large by Exercise
14.11(e), we have established that for each fixed C > 1, the lim sup of
(π(x+ (log x)C−1)− π(x))/(logx)C−1 is > 1 as x →∞.

An obvious modification of the above argument, where we work with a
sequence of u for which B(u) < e−γ , proves that the leftmost inequality in
the statement of Theorem 30.2 is also true for all C > 1. This concludes the
proof of Maier’s theorem. �

Exercises

Exercise 30.1 (Banks-Ford-Tao [6]). For y � 3 and u > 2, let

β+(y, u) = max
s∈N

#{ s < n � s+ yu : (n, P (y)) = 1 }
yu/ log y

and

β−(y, u) = min
s∈N

#{ s < n � s+ yu : (n, P (y)) = 1 }
yu/ log y

.

(a) Let 2 < v � u. Show that β+(y, u) � (1 + oy→∞(1))β+(y, v) and β−(y, u) �
(1 + oy→∞(1))β−(y, v). [Hint: Use the pigeonhole principle.]

(b) Give a heuristic argument that justifies the following claims:
(i) maxpn�x(pn+1 − pn) ∼ (log x)2

/[
eγ · β−(log x, 2)

]
as x →∞.

(ii) Fix u > 2. If X →∞, then

(30.9) max
X1/ log log X�x�X

π(x+ (log x)u)− π(x)

(log x)u−1
∼ eγβ+(logX, u)

and

(30.10) min
X1/ log log X�x�X

π(x+ (log x)u)− π(x)

(log x)u−1
∼ eγβ−(logX, u).

(c) Assume that for all u > 2 and ε > 0, there are y0 � 3 and δ > 0 such that
|β±(y′, u′)− β±(y, u)| � ε when | log(y′/y)| � δ, y � y0 and |u′ − u| � δ.

Prove that the ratio of the left over the right side of (30.9) is � 1 + o(1),
and that the ratio of the left over the right side of (30.10) is � 1 + o(1).
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Appendix A

The Riemann-Stieltjes
integral

The Riemann-Stieltjes integral is a generalization of the Riemann inte-
gral that is very useful in analytic number theory, because it allows us to
transform discrete sums into integrals and thus easily manipulate them using
our intuition from integral calculus. We present here the basic definitions
and properties of this theory following the treatment in [3, Chapter 7]. The
basic theory is also presented in [158, Chapter 6] and [146, Appendix A].

Consider two functions f, α : [a, b] → R, a partition P = {x0, x1, . . . , xn}
of [a, b], and a selection of points ξ = {ξ1, . . . , ξn} with ξj ∈ [xj−1, xj] for
each j. We then define the Riemann-Stieltjes sum of f with respect to α,
P and ξ by

S(f, α;P, ξ) =
n∑

j=1

f(ξj) · (α(xj)− α(xj−1)).

Assume there is a real number I with the property that, given any ε > 0,
there is a partition Pε such that

|S(f, α;P, ξ)− I| < ε

whenever P is a refinement of Pε (i.e., P ⊇ Pε). We then say that f is
integrable with respect to α (over [a, b]) and write symbolically f ∈ R(α).
The number I is called the Riemann-Stieltjes integral of f with respect to
α and it is denoted by

I =

∫ b

a
fdα =

∫ b

a
f(x)dα(x).

336
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The following theorem establishes the needed properties of the Riemann-
Stieltjes integral for the purposes of this book. Its proof is contained in [3]
(see Theorems 7.2, 7.3, 7.27, 7.6, 7.8 and 7.11 there, respectively).

Theorem A.1. Let f, g, α, β : [a, b] → R and λ, μ ∈ R.

(a) If f, g ∈ R(α), then λf + μg ∈ R(α). We further have∫ b

a
(λf + μg)dα = λ

∫ b

a
fdα+ μ

∫ b

a
gdα.

(b) If f ∈ R(α) ∩R(β), then f ∈ R(λα+ μβ). We further have∫ b

a
fd(λα+ μβ) = λ

∫ b

a
fdα+ μ

∫ b

a
fdβ.

(c) If f is continuous and α is of bounded variation, then f ∈ R(α).

(d) If f ∈ R(α), then α ∈ R(f) and∫ b

a
fdα = f(x)α(x)

∣∣∣b
x=a

−
∫ b

a
αdf.

(e) If f ∈ R(α) and α is continuously differentiable on [a, b], then the Rie-

mann integral
∫ b
a f(x)α′(x)dx exists and we have∫ b

a
f(x)dα(x) =

∫ b

a
f(x)α′(x)dx.

(f) Assume that α is a step function whose only discontinuities are at the
finitely many points x1, . . . , xn ∈ [a, b], with corresponding jumps Δαj

:= α(x+j )− α(x−j ).
Assume further that, at each point xj, at least one of f and α is

continuous from the right, and at least one of them is continuous from
the left.

Then f ∈ R(α) and we have∫ b

a
fdα =

n∑
j=1

f(xj)Δαj.
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Appendix B

The Fourier and the
Mellin transforms

We write L1(R) for the space of Lebesgue integrable functions f : R → C.

Given such a function, we define its Fourier transform f̂ : R → C via the
formula

(B.1) f̂(ξ) :=

∫ ∞

−∞
f(x)e−2πiξxdx.

We then have the Fourier inversion formula [45, (7.16), p. 218].

Theorem B.1. If f is continuous and such that f, f̂ ∈ L1(R), then

f(x) =

∫ ∞

−∞
f̂(ξ)e2πixξdξ.

The condition that f̂ ∈ L1(R) is not always easy to verify. The simplest
way to guarantee it is by assuming that f is smooth enough. Indeed, if
the derivatives f, f ′, . . . , f (j) exist, are in L1(R) and tend to 0 at ±∞, then
integrating by parts j times in (B.1) yields that

(B.2) f̂(ξ) =
1

(2πiξ)j

∫ ∞

−∞
f (j)(x)e−2πiξxdx 
j,f

1

|ξ|j .

In particular, if we can take j = 2, then f̂ ∈ L1(R), so the hypotheses of
Theorem B.1 are met.

Sometimes, we want to know that the Fourier inversion formula holds
under even weaker conditions. Such a result is provided by the following
theorem [45, Theorem 7.6, p. 220].

338
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Theorem B.2. Let f : R → C be piecewise continuously differentiable1 and
Lebesgue integrable over R. For each x ∈ R, we have

f(x+) + f(x−)

2
= lim

R→∞

∫ R

−R
f̂(ξ)e2πixξdξ.

Finally, a very useful property of the Fourier transform is the Poisson
summation formula. This formula states that

(B.3)
∑
n∈Z

f(n) =
∑
n∈Z

f̂(n)

for all “nice” functions f : R → C. There are various ways to define what
we mean by “nice”. An easy way is to assume that f is continuously differ-
entiable twice and that we have f (j)(x) 
 1/x2 for j ∈ {1, 2} and |x| � 1,
that is to say, f, f ′ and f ′′ decay at infinity at least as fast as the inverse
of a quadratic polynomial. We then use relation (B.2) to obtain the bound

f̂(ξ) 
 1/ξ2 for |ξ| � 1. In particular, both sides of (B.3) are well-defined.

In order to prove (B.3), we define g(x) =
∑

n∈Z f(x + n), which is a

1-periodic function in C2(R). Thus, Theorem 2.1 in [45, p. 35] implies that

g(x) =
∑
m∈Z

cme2πimx,

where cm =
∫ 1
0 g(x)e−2πimxdx. We then note that

cm =

∫ 1

0

∑
n∈Z

f(x+ n)e−2πimxdx =
∑
n∈Z

∫ 1

0
f(x+ n)e−2πimxdx

by Lebesgue’s Dominated Convergence Theorem, since f(x+n) 
 1/(1+n2)
for all x ∈ [0, 1] and all n ∈ Z. Setting y = x + n and noticing that
e2πimn = 1, we conclude that

cm =
∑
n∈Z

∫ n+1

n
f(y)e−2πimydy = f̂(m).

Consequently ∑
n∈Z

f(x+ n) = g(x) =
∑
m∈Z

f̂(m)e2πimx.

Taking x = 0 proves (B.3). To sum up, we have shown the following result.

Theorem B.3. Let f ∈ C2(R). Assume further that f (j)(x) 
 1/x2 for

j ∈ {0, 1, 2} and |x| � 1. Then f̂(ξ) 
 1/ξ2 for |ξ| � 1 and∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

1This means that f and f ′ are piecewise continuous over R, that is to say, they both have a
discrete set of discontinuities (i.e., with no accumulation points) that are all of the first kind (i.e.,
“jump discontinuities”).
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The Mellin transform

Given a function g : R>0 → C, we define its Mellin transform to be

(B.4) G(s) =

∫ ∞

0
g(x)xs−1dx

for all s ∈ C that this integral converges. An important example of a Mellin
transform is the Gamma function that we studied at the end of Chapter 1.

The Mellin transform is a close relative of the Fourier transform. Indeed,
if we make a change of variables x = eu, we immediately see that G(s) =

ĥ(−s/2πi) with h(u) = g(eu). In particular, we have the Mellin inversion
formula as a consequence of Fourier inversion:

Theorem B.4. Let g and G be as above, with g piecewise continuously
differentiable. Assume further that there are α1 < α2 such that the function
x → |g(x)|xσ−1 is in L1(R�0) for all σ ∈ (α1, α2).

Then G is a holomorphic function in the strip α1 < Re(s) < α2. In
addition, the inversion formula

g(x+) + g(x−)

2
=

1

2πi

∫
(α)

G(s)x−sds :=
1

2πi
lim
T→∞

∫
Re(s)=α
| Im(s)|�T

G(s)x−sds

holds for all x > 0 and all α ∈ (α1, α2).

Proof. Let ε be positive and smaller than (α2 − α1)/2. By the hypotheses
of the theorem, the integrals∫ 1

0
|g(x)|xα1+ε−1dx and

∫ ∞

1
|g(x)|xα2−ε−1dx

converge. Hence, the integral defining G(s) converges absolutely and uni-
formly in the strip α1 + ε � Re(s) � α2 − ε. The holomorphicity of
G then follows. For the Mellin inversion formula, note that the function
ξ → G(α − 2πiξ) is the Fourier transform of the function u → g(eu)eαu.
Applying Theorem B.2 completes the proof. �
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Appendix C

The method of
moments

We prove here a generalized theorem of Theorem 15.2, which is the main
probabilistic tool needed in the proof of the Erdős-Kac theorem.

Given a constant c > 0 and a random variable X (defined on some am-
bient probability space), we write X ∈ E(c) if P(|X| > u) 
 e−cu uniformly
for u � 0. In addition, we write X ∈ E(∞) if X ∈ E(c) for each fixed c > 0.
Clearly, the standard normal distribution is in the class E(∞), as well as
any compactly supported distribution.

We will prove the following generalization of Theorem 15.2.

Theorem C.1. Let X be a random variable in the class E(∞), and let
(Xj)

∞
j=1 be a sequence of random variables.

(a) Assume that

(C.1) lim
j→∞

E[Xk
j ] = E[Xk] for all k ∈ N.

Then (Xj)
∞
j=1 converges in distribution to X.

(b) Conversely, assume that (Xj)
∞
j=1 converges in distribution to X. If, in

addition, supj�1 E[X
2k
j ] < ∞ for all k ∈ N, then (C.1) holds.

Before we embark on the proof of Theorem C.1, we make a few remarks.

Remark C.2. (a) The condition that X ∈ E(c) is closely related to having
that E[|X|k] 
 k!/ck uniformly for k ∈ Z�1. Indeed, if X ∈ E(c), then

(C.2) E[|X|k] =
∫ ∞

0
kuk−1P(|X| > u)du 
 k

∫ ∞

0
uk−1e−cudu = k!/ck.

341
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Conversely, if the moments of X satisfy the uniform bound E[|X|k] 
 k!/ck,
then Markov’s inequality implies that

P(|X| > u) � u−kE[|X|k] 
 (cu)−kk! �
√
k · e−k(k/cu)k

for all k ∈ Z�1. Taking k = �cu� + 1 proves that P(|X| > u) 
c u1/2e−cu

for all u � 1. In particular, X ∈ E(c′) for all c′ < c.

(b) Theorem C.1 holds even if X ∈ E(c) with 0 < c < ∞. (See Theorems
29.3 and 30.1 in Billingsley’s book [7].) �

Proof of Theorem C.1. We start with part (b) that is simpler. Conver-
gence in distribution is equivalent to weak convergence, that is to say,

(C.3) lim
j→∞

E[f(Xj)] = E[f(X)]

for any bounded f ∈ C(R) [7, Theorem 25.8]. Hence, if we let φ(x) = 1 for
|x| � 1, and φ(x) = max{0, 2− |x|} for |x| > 1, then

lim
j→∞

E[Xk
j φ(Xj/M)] = E[Xkφ(X/M)]

for any M > 0. In addition, we have∣∣∣E[Xk
j ]− E[Xk

j φ(Xj/M)]
∣∣∣ � E[|Xj|k1|Xj |>M ] � M−kE[X2k

j ] 
k 1/M

uniformly in j ∈ Z�1 and M � 1. Similarly, E[Xkφ(X/M)] = E[Xk] +
Ok(1/M). We thus infer the validity of (C.1).

We now prove part (a), where we assume that (C.1) holds. It suffices to
prove that if f is a smooth function supported on [a, b], then (C.3) holds. We
will employ an explicit version of Weierstrass’s approximation theorem using
Chebyshev polynomials of the first kind, defined by Tn(cos θ) = cos(nθ).
Using the formula eiθ = cos θ + i sin θ, we may easily deduce that

Tn(x) =
∑

0�j�n/2

(
n

2j

)
xn−2j(x2 − 1)j.

In particular, we have

(C.4) |Tn(x)| � 2nxn � 2nx2n+2 for |x| � 1.

Now, fix M to be a large enough parameter so that [a, b] ⊆ (−M,M)
and consider the function α → f(M cos(2πα)), which is 1-periodic, even and
smooth. We may thus develop it in its Fourier series, say

f(M cos(2πα)) =
∑
n�0

an,M cos(2πnα),

where

an,M = (1 + 1n>0)

∫ 1

0
f(M cos(2πα)) cos(2πnα)dα.
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Integrating by parts twice, we find that

an,M = −1 + 1n>0

n2

∫ 1

0
gM (α) cos(2πnα)dα,

where gM (α) = M2 sin2(2πα)f ′′(M cos(2πα))−M cos(2πα)f ′(M cos(2πα)).
Since f has bounded support, gM is supported on α ∈ [0, 1] such that
cos(2πα) = Of (1/M) (we think of M as big in terms of a and b). This set
has measure Of (1/M). Thus an,M = Of (M/n2). We conclude that

(C.5) f(M cos(2πα)) =
∑

0�n�M/ε

an,M cos(2πnα) +Of (ε)

uniformly for M � 1 and 0 < ε � 1.

We use (C.5) to write f in terms of the Chebyshev polynomials. If
|x| � M , then x = M cos(2πα) for some α ∈ [0, 1] and thus

(C.6) f(x) =
∑

0�n�M/ε

an,MTn(x/M) +Of (ε).

On the other hand, when |x| > M , the left-hand side of (C.6) is 0, whereas
the right-hand side is 
f ε+

∑
0�n�M/ε(2x/M)2n+2 by (C.4) and the trivial

bound an,M = Of (1). This proves that for all x ∈ R we have

f(x) =
∑

0�n�M/ε

an,MTn(x/M) +Of

(
ε+

∑
0�n�M/ε

(2x/M)2n+2
)
.

Applying the above formula twice, we deduce that

E[f(Xj)]− E[f(X)] =
∑

0�n�M/ε

an,M
(
E[Tn(Xj/M)]− E[Tn(X/M)]

)
+Of

(
ε+

∑
0�n�M/ε

(2/M)2n+2
(
E[X2n+2

j ] + E[X2n+2]
))

.

When j →∞, the main term goes to 0 by assumption of (C.1). Thus

(C.7) lim sup
j→∞

∣∣E[f(Xj)]− E[f(X)]
∣∣ 
f ε+

∑
0�n�M/ε

(2/M)2n+2E[X2n+2].

Let k = n+ 1. Since X ∈ E(4), we use (C.2) with 2k in place of k to find∑
1�k�

√
M

(2/M)2kE[X2k] 

∑

1�k�
√
M

(k/M)2k �
∑

1�k�
√
M

M−k 
 1/M.

For larger k we use that X ∈ E(4ε−3/2). Hence,∑
√
M<k�M/ε

(2/M)kE[X2k] 
ε

∑
√
M<k�M/ε

(ε3/2k/M)2k 
 ε
√
M .

Thus, lettingM →∞ in (C.7) yields lim supj→∞ |E[f(Xj)]−E[f(X)]| 
f ε.

Finally, we let ε → 0+ to deduce (C.3). This completes the proof. �
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Lindelöf hypothesis, 67
Linnik’s theorem, 287
logarithmic integral, xii, 1
lower bound sieve, 200, 203
LSD method, 132
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