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RÉSUMÉ. On obtient des formules asymptotiques pour les 2k-ièmes moments de quelques sommes
partiellement lissées de la fonction de Möbius sur les diviseurs d’un entier. Quand 2k est petit en
comparaison avec A, qui est le niveau de lissage, alors la contribution principale aux moments
provient des entiers ayant que de grands facteurs premiers, comme on l’espérait pour un poids de
crible. Cependant, si 2k est plus grand en comparaison avec A, alors la contribution principale aux
moments provient des entiers ayant beaucoup de facteurs premiers, ce qui n’est pas l’intention quand
on crée des poids de crible. La valeur seuil pour “petit” est A = 1

2k

(
2k
k

)
− 1.

On peut aussi poser des questions analogues pour les polynômes sur des corps finis et pour les
permutations, et dans ces cas les moments se comportent de façon assez différente, avec moins
d’annulations dans les sommes de diviseurs. On donne, on espère, une explication plausible pour
ce phénomène, en étudiant les sommes analogues pour les caractères de Dirichlet, et en obtenant
chaque type de comportement selon si le caractère est “exceptionnel” ou non.

ABSTRACT. We obtain asymptotic formulas for the 2kth moments of partially smoothed divisor
sums of the Möbius function. When 2k is small compared with A, the level of smoothing, then the
main contribution to the moments come from integers with only large prime factors, as one would
hope for in sieve weights. However if 2k is any larger, compared with A, then the main contribution
to the moments come from integers with quite a few prime factors, which is not the intention when
designing sieve weights. The threshold for “small” occurs when A = 1

2k

(
2k
k

)
− 1.

One can ask analogous questions for polynomials over finite fields and for permutations, and in
these cases the moments behave rather differently, with even less cancellation in the divisor sums.
We give, we hope, a plausible explanation for this phenomenon, by studying the analogous sums for
Dirichlet characters, and obtaining each type of behaviour depending on whether or not the character
is “exceptional”.
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1. INTRODUCTION

Sieve methods are a set of techniques which give upper and lower bounds for the number of
elements of a set of integers A which have no ‘small’ prime factors. Their key benefit is that they
are very flexible - one can obtain bounds of the correct order of magnitude for many interesting
sets A, even though obtaining asymptotic formulae looks completely hopeless. In particular, they
are typically very effective at obtaining upper bounds for the number of primes in setsA of interest
which are only worse than the conjectured truth by a constant factor.
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One of the most important sieves in the Selberg sieve. Selberg’s approach [21] starts with the
inequality ( ∑

d|n
P+(d)≤z

λd

)2

≥
∑
d|n

P+(d)≤z

µ(d) =

{
1, P−(n) ≥ z,

0, otherwise,(1.1)

which is valid for any real numbers λd with λ1 = 1. Here P+(n) and P−(n) are the largest and
smallest prime factors of n respectively. Summing (1.1) over n ∈ A gives

#{n ∈ A : P−(n) ≥ z} ≤
∑
n∈A

( ∑
d|n

P+(d)≤z

λd

)2

=
∑

P+(d1),P+(d2)≤z

λd1λd2 ·#{n ∈ A : [d1, d2]|n},

which is a quadratic form in the variables λd. Provided d1 and d2 are not too large, say at most
R, one can hope to get a reasonable estimate for the coefficients #{n ∈ A : [d1, d2]|n} of this
quadratic form. The best upper bound stemming from this method then comes from minimizing
the quadratic form over all choices of λd ∈ R with λ1 = 1 and λd = 0 for d > R.

For typical sets A that arise in arithmetic problems, one finds that the optimal choice for the λd
takes the form

λd ≈ µ(d) ·
(

log(R/d)

logR

)A
(d ≤ R),

where A is some positive constant. We note that the weights λd decay to 0, and the larger the
value of A, the higher the level of smoothness at the truncation point R. In the optimal choice, the
exponent A is taken to be κ, the dimension of the sieve problem. However, for a given dimension
κ, it is known [22, pg. 154] that any exponent A > κ − 1/2 yields weights λd whose dominant
contribution comes from numbers almost coprime to m, whereas this fails to be true for smaller A.
See [10, ch. 10] for further discussion.

More generally, one can consider the smoothed sieve weight

Mf (n;R) :=
∑
d|n

µ(d)f

(
log d

logR

)
,

where f : R → R is a function supported on (−∞, 1], which corresponds to taking λd =
µ(d)f(log d/ logR) for d ≤ R. In Selberg sieve arguments one typically chooses f to be a
polynomial in [0, 1], perhaps of high degree. Such an example is offered by the ‘GPY sieve’
of Goldston-Pintz-Yıldırım [13, 27]. In more recent developments on gaps between primes by the
third author [18] and Tao [24] one works with general smooth functions f .

The main motivation of this paper is to understand the exact role of the smoothing in the structure
of the Selberg sieve weights. To this end, we consider their moments∑

n≤x

Mf (n;R)k

as a tool of gaining additional insight on the distribution of the values ofMf (n;R). On the practical
side, higher moments naturally appear when applying Hölder’s inequality, so it would be useful to
know their behaviour1.

1For example, Lemma 3.5 in Pollack’s paper [23] is an example of a case where a fourth moment occurs because
of the use of Cauchy’s inequality, and a similar issue is encountered in Friedlander’s work [9] for the combinatorial
sieve instead of the Selberg sieve.
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From the discussion above, in the case f(x) = max(1 − x, 0)A and k = 2, we have seen that
if A is sufficiently large, then Mf (n;R)2 ‘behaves like a sieve weight’ in the sense that the sum∑

n<xMf (n;R)2 is Of (x/ logR) and the main contribution to this comes from numbers with few
prime factors less thanR. IfA is too small and so f is not smooth enough, however, thenMf (n;R)
exhibits qualitatively different behavior; the sum is larger than x/ logR, and the main contribution
is no longer from numbers with few prime factors ≤ R.

How smooth should f be so thatMf (n;R)2k behaves like a sieve weight when k varies, that is to
say the main contribution to the 2k-th moment2 of Mf (n;R) comes from integers a that have very
few prime factors ≤ R? What happens in the extreme case where f is the discontinuous function
1(−∞,1]? These are the types of questions that we will study in this paper.

1.1. Some smoothing is necessary to behave like a sieve weight. In order to gain a first under-
standing of the importance of smoothing, let us consider the sharp cut-off function

f0 := 1(−∞,1].

If n = 2m with m odd, then we have that

Mf0(n;R) =
∑
d|n
d≤R

µ(d) =
∑
d|m
d≤R

µ(d) +
∑
d|m

2d≤R

µ(2d) =
∑
d|m

R/2<d≤R

µ(d) = Mf̃0
(m;R),

(1.2)

where, with a slight abuse of notation, we have put

f̃0 := 1(1−log 2/ logR,1].(1.3)

In particular, if m is square-free and has exactly one divisor d ∈ (R/2, R], then Mf0(n;R) = ±1.
An easy generalization of a deep result of Ford [7, Theorem 4] implies that3 the proportion of such
m ≤ x/2 is� (logR)−δ(log logR)−3/2 with

δ = 1− 1 + log log 2

log 2
= 0.086071332 . . . ,

whence we conclude that

#{n ≤ x : Mf0(n;R) 6= 0} � x

(logR)δ(log logR)3/2
(x ≥ R1+ε).

In particular, we find that Mf0(n;R) is non-zero too often to behave like a sieve weight. This
indicates that part of the importance of smoothing is to reduce the contribution of isolated divisors
of n to Mf (n;R).

We will prove in Section 5 that

#{n ≤ x : Mf0(n;R) 6= 0} � x

(logR)δ(log logR)3/2
(x ≥ R5/2).(1.4)

This sharpens a result by Hall and Tenenbaum [12], who used a very similar argument and the best
results about divisors of integers available at that time.

2We are typically interested in how large sieve weights get. If we took odd powers there might be an irrelevant
cancellation, so we focus on even moments.

3The key estimates in the proof of the lower bound of Theorem 4 in [7] are the second part of Lemma 4.1, Lemma
4.3 (the parameters are z = R � R/2 = y), Lemma 4.5, Lemma 4.8 and Lemma 4.9. A key observation is that only
square-free integers are considered in Lemma 4.8, so that a stronger version of the lower bound of Theorem 4 of [7]
can be immediately deduced by the same proof, that counts square-free integers with exactly one divisor in (R/2, R].
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1.2. A heuristic argument. Going back to the study of Mf (n;R) for a smooth function f , it is
reasonable to believe that the smoother f is, the larger the k are for whichMf (n;R)2k behaves like
a sieve weight. One way to explain this phenomenon is by noticing that various integral transfor-
mations have faster decay for smooth weights, which can help to tame the arithmetic issues at play.
(See, for example, Section 6.) Nevertheless, we prefer to give a number theoretic explanation in
terms of the underlying sieve questions rather than an analytic one focused more on the technical
issues. Assume that n = pα1

1 · · · pαrr m, where p1 < · · · < pr, αi ≥ 1 and all of the prime divisors
of m are > pr. Then

Mf (n;R) =
∑

d|p2···prm

µ(d)f

(
log d

logR

)
+

∑
d|p2···prm

µ(p1d)f

(
log(p1d)

logR

)

=
∑

d|p2···prm

µ(d)

{
f

(
log d

logR

)
− f

(
log p1

logR
+

log d

logR

)}
.

(1.5)

Continuing as above, we find that

Mf (n;R) = (−1)r
∑
d|m

µ(d)∆(r)f

(
log d

logR
;
log p1

logR
, . . . ,

log pr
logR

)
,(1.6)

where ∆(r)f(x;h1, . . . , hr) denotes the multi-difference operator defined by

∆(1)f(x;h) = f(x+ h)− f(x)

and
∆(r)f(x;h1, . . . , hr) = ∆(r−1)(x+ hr;h1, . . . , hr−1)−∆(r−1)(x;h1, . . . , hr−1).

In particular, if f ∈ Cr(R), then

∆(r)f(x;h1, . . . , hr) =

∫ hr

0

∫ hr−1

0

. . .

∫ h1

0

f (r)(x+ t1 + t2 + . . .+ tr)dt1 . . . dtr,(1.7)

Returning to (1.6), we see that if f ∈ CA(R) and n = pα1
1 · · · pαrr m, r ≤ A, is as above, then

Mf (n;R) should heuristically be � Mf (r)(m;R)
∏r

j=1(log pj/ logR). Loosely, this indicates
each additional degree of smoothness of the weight function f cuts the average size of Mf (n;R)
by about a factor of 1/ logR.

The above discussion leads us to conjecture that if f ∈ CA(R) with f(0) 6= 0, then∑
n≤x

Mf (n;R)2k � max

{
x

logR
,

1

(logR)2kA

∑
n≤x

Mf0(n;R)2k

}
.(1.8)

Notice that the factor x/ logR is necessary because Mf (n;R) = f(0) for all integers n that are
free of prime factors ≤ R.

Naturally, for this relation to be useful, we need to understand the asymptotics of
∑

n≤xMf0(n;R)2k.
Recall the relation (1.9). Expanding the k-th power and swapping the order of summation, we find
that ∑

n≤x

Mf (n;R)k = x · Mf,k(R) +O((‖f‖∞R)k)

for any f : R→ R supported on (−∞, 1], where

Mf,k(R) :=
∑

d1,...,dk≥1

∏k
j=1 µ(dj)f(log dj/ logR)

[d1, . . . , dk]
=
∏
p≤R

(
1− 1

p

) ∑
p|n⇒ p≤R

Mf (n;R)k

n
.(1.9)
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We are generally interested in the situation when R is bounded by a small power of x, so that the
error term O((‖f‖∞R)k) is negligible. Thus our focus is on the main term Mf,k(R), which no
longer depends on x. When k = 1, Dress, Iwaniec and Tenenbaum [4] showed

Mf0,2(R) ∼ c1 (R→∞)(1.10)

for some constant c1 > 0, and when k = 2, Motohashi [19] showed that

Mf0,4(R) ∼ c2(logR)2 (R→∞)(1.11)

for some constant c2 > 0. In general, Balazard, Naimi, and Pétermann [1] proved that

Mf0,2k(R) = Pk(logR) +O(e−c(logR)3/5(log logR)−1/5

),

for some polynomial Pk and some constant c = c(k) > 0. This built on work of de la Bretèche [2],
who showed how a wide class of related sums can be evaluated asymptotically. However, when
applying his technique to this question, one would need some strong understanding of the growth
of ζ(s) near to s = 1 to recover the result of [1] (which, for example, follows from the Riemann
Hypothesis).

Notice that if Ek = deg(Pk), so that E1 = 0 and E2 = 2, then (1.8) becomes∑
n≤x

Mf (n;R)2k � max

{
x

logR
, x(logR)Ek−2kA

}
.(1.12)

This suggests that Mf (n;R)2k acts like a sieve weight as long as A > Ek/2k. The big issue with
the result of Balazard, Naimi and Pétermann is that the degree Ek is not determined for general k,
and that is essential if one wishes to gain a better understanding of how the Selberg sieve weights
work. Our attention thus turns to calculating Ek.

But first, we study seemingly analogous questions (in different settings), that one might guess
would be easier and indicate what kind of estimate we should be looking for

1.3. Analogous settings. It is well-known that many of the analytic properties of integers are
shared by both polynomials of finite fields (c.f. [20]), and by permutations (c.f. [11]). Moreover,
polynomials and permutations are usually easier objects to understand, so in order to gain an
understanding of the exponent Ek, it would be natural to consider what happens in these analogous
settings first.

Permutations. The easiest analogy to analyze concerns permutations. Every σ ∈ SN (the permu-
tations on N letters) can be decomposed in a unique way into a product of disjoint cycles. Those
cycles cannot be decomposed any further and play the role of irreducibles. Divisors of σ are pre-
cisely the set of possible products of cycles. If those cycles act on the subset T of [N ], then σ fixes
T . Moreover, if σ fixes T , then σ is a product of cycles, a subproduct of which fixes T . Hence
“divisors” correspond to sets T ⊂ [N ] for which σ(T ) = T

To “calibrate” our understandings of the properties of integers and permutations, we note that
for a typical integer n, its j-th largest prime factor is about eej , whereas for a typical permutation
σ ∈ SN , its j-th largest cycle has length about ej . Thus, the inequality R/2 < d ≤ R for a divisor
d of n corresponds to having a set T that is fixed by σ of size #T = logR+O(1). Hence we will
study

Perm(N,m; k) :=
1

N !

∑
σ∈SN

∣∣∣ ∑
T⊂[N ], #T=m,

σ(T )=T

µ(σ
∣∣
T

)
∣∣∣2k,

(1.13)
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where
[N ] := {1, . . . , N},

and if σ
∣∣
T

= C1C2 . . . C` is the product of ` disjoint cycles, then we have set µ(σ
∣∣
T

) = (−1)`.
We claim that Perm(N,m; k) is more natural than it appears at first sight. A usual function of
permutations is the signature ε(σ) which counts the number of transpositions (i.e. the number of
interchanges of two elements) needed to create σ. For a cycleC, one knows that ε(C) = (−1)#C−1

and hence ε(σ
∣∣
T

) = ε(C1)ε(C2) . . . ε(C`) = (−1)#T−` = (−1)mµ(σ|T ), since #T = m here.
Therefore ∑

σ∈SN , T⊂[N ],
#T=m, σ(T )=T

µ(σ
∣∣
T

) = (−1)m
∑

σ∈SN , T⊂[N ],
#T=m, σ(T )=T

ε(σ
∣∣
T

),

whence

Perm(N,m; k) =
1

N !

∑
σ∈SN

∣∣∣ ∑
T⊂[N ], #T=m,

σ(T )=T

ε(σ
∣∣
T

)
∣∣∣2k.

Arguing as in the work of Eberhard, Ford and Green [5] that establishes the analogue for permuta-
tions of Ford’s results [7] for integers, it is possible to show that the summands on the right hand
of (1.13) (and, hence, of the above formula) are non-zero for a proportion � 1/mδ(logm)3/2 of
the permutations in SN . The following theorem provides a formula and an asymptotic estimate for
Perm(N,m; k).

Theorem 1.1. For each integer k ≥ 1 and each integer m ≥ 1, if N ≥ 2mk then

Perm(N,m; k) = c(m, k),

where c(m, k) is the number of (22k − 1)-tuples (rI)∅6=I⊂{1,...,2k} of non-negative integers such that

• rI ∈ {0, 1} for #I odd;
•
∑

I: i∈I rI = m, for each i ∈ {1, . . . , 2k}.
Moreover, for fixed k ∈ Z≥1, the function c(m, k) is increasing in m and satisfies the estimate

c(m, k) �k m22k−1−2k−1 + 1.

Proof of the formula for Perm(N,m; k). Given sets T1, . . . , T2k, the sets

RI :=
(⋂
i∈I

Ti

)
\
( ⋃
i∈[2k]\I

Ti

)
(I ⊂ [2k])

form a partition of [N ]; that is to say [N ] equals tIRI , the disjoint union of the sets RI . Using this
with T1, . . . T2k fixed sets of σ (i.e. σ(Ti) = Ti, so the RI are all fixed by σ as well), we find

1

N !

∑
σ∈SN

∣∣∣ ∑
T⊂[N ], #T=m,

σ(T )=T

ε(σ
∣∣
T

)
∣∣∣2k =

∑
rI≥0 ∀I∑
I: i∈I rI=m

∑
[N ]=tIRI

#RI=rI ∀I

1

N !

∏
I⊂[2k]

( ∑
ρI∈SrI

ε(ρI)
#I
)
.

The inner sums are each rI ! unless #I is odd and rI > 1, in which case we get 0. Additionally, we
get that the number of choices of sets of the given sizes is N !/

∏
I rI !, and hence the above equals

c(m, k).
The bounds for c(m, k) will be proven in Section 3. �
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Evidently, the above results suggest that Ek = max{0, 22k−1 − 2k − 1}. Relation (1.10) implies
that E1 = 0, but relation (1.11) implies that E2 = 2 6= 23 − 5. This suggests that there is a
discrepancy between the integer and the permutation setting, a very rare exception.

Polynomials over finite fields. Positive integers are uniquely identifiable by their factorization into
primes (the Fundamental Theorem of Arithmetic). Note though that every non-zero integer equals
a unit (that is 1 or−1) times one of those positive integers. We will work with polynomials in Fq[t].
Monic polynomials in Fq[t] are uniquely identifiable by their factorization into monic irreducible
polynomials of degree ≥ 1. Again, note that every non-zero polynomial in Fq[t] equals a unit
(that is, any element a ∈ Fq \ {0}) times a monic polynomial. We will work only with monic
polynomials, for example when considering divisors of a given polynomial (rather like we only
consider positive integer divisors of a given integer). The Möbius function of a given polynomial
is a multiplicative function, where µ(P ) = −1, and µ(P k) = 0 if k ≥ 2, whenever P is irreducible.

To “calibrate” our understandings of the arithmetic properties of integers and polynomials, we
note that ∼ 1/ log x of integers around x are prime, whereas ∼ 1/m of monic polynomials of
degree m are irreducible in Fq[t]. Here the “∼” symbol means as q → ∞ running through prime
powers. Thus, wherever we see log x in an estimate about the integers, we try to replace it with m
in an estimate about degreem polynomials. Similarly a divisor d of n that is close toR is analogous
to a polynomial divisor of F (t) of degree m, where m replaces logR in estimates. Hence we will
study

Polyq(n,m; k) :=
1

qn

∑
monic N∈Fq [t]

degN=n

∣∣∣ ∑
monic M |N
degM=m

µ(M)
∣∣∣2k,

Here we have divided by qn because this is how many monic polynomials N of degree n are
contained in Fq[t], which is the analogue of

1

x

∑
n≤x

( ∑
d|n

R/2<d≤R

µ(d)
)2k

,

a quantity directly related to 1
x

∑
n≤xMf0(n;R)2k via (1.2). We will prove below the following

estimate:

Theorem 1.2. For integers k,m ≥ 1 and n ≥ 2mk, we have that

Polyq(n,m; k) = c(m, k)(1 +Ok(1/q)) �k 1 +m22k−1−2k−1.

We thus see that polynomials behave similarly to permutations (and thus differently than inte-
gers).

1.4. Two worlds apart and a bridge between them. Our discussion of the permutation and
polynomial analogues, rather than shedding more light on the value of the exponent Ek, gave rise
to even more questions. It turns out that the integer setting is substantially more complicated than
the permutation and polynomial settings. We now state our main results about integers. First, given
A ∈ Z≥1, we let

fA(t) :=

{
(1− t)A for t ≤ 1;

0 otherwise,

an extension of the definition of f0. Note that fA ∈ CA−1(R)\CA(R) for all A ≥ 1. We then have
the following result that determines the value of Ek:



SIEVE WEIGHTS AND THEIR SMOOTHINGS POIDS DE CRIBLE ET LEURS LISSAGES 9

Theorem 1.3. For fixed integers k ≥ 1 and A ≥ 0, there is a constant ck,A > 0 such that

MfA,2k(R) = ck,A(logR)Ek,A +O((logR)Ek,A−1),(1.14)

where

Ek,A := max

{(
2k

k

)
− 2k(A+ 1),−1

}
.

In particular, Ek = Ek,0 =
(

2k
k

)
− 2k. Additionally, we find that there is a constant c′k > 0 such that

for R2k ≤ x we have
1

x

∑
n≤x

( ∑
d|n

R/2<d≤R

µ(d)
)2k

= c′k(logR)(
2k
k )−2k +O

(
(logR)(

2k
k )−2k−1

)
.

(1.15)

All implied constants depend at most on k and A.

Remark 1.1. We have no nice formula for the constants ck,A and c′k appearing in Theorem 1.3; we
only know how to write them as an enormous rational linear combination of complicated integrals,
and leave it as a challenge to come up with an easy explicit description.

Remark 1.2. If the moments of a distribution grow slowly, then the distribution can be determined
via its Laplace transform. However, in our case the moments are of rapidly increasing magnitude,
indeed with different powers of logR, so one cannot immediately deduce from them the distribu-
tion of the weights MfA(n;R) as n varies over the integers.

Remark 1.3. In this paper we only consider integral A, but we would expect analogous results to
hold for all real A > 0.

Remark 1.4. In this paper we only consider Selberg-style sieve weights. We would expect some-
thing somewhat analogous to hold for combinatorial-style sieve weights (such as those used in the
β-sieve) but we do not consider such situations here.

For general functions f , we prove that Mf (n;R)2k behaves like a sieve weight as long f ∈
CA(R) with A >

(
2k
k

)
/2k = E2k/2k + 1. Notice that this confirms a weak version of the heuristic

estimate (1.12).

Theorem 1.4. Let k ∈ Z≥1, ε ∈ (0, 1) and f : R → R be supported in (−∞, 1]. Assume further
that for some integer A ≥ 2, f ∈ CA(R) and that all functions f, f ′, . . . , f (A) are bounded.

(a) If A > 1
2k

(
2k
k

)
, then for x ≥ R ≥ 2 and 1 ≥ η ≥ log 2/ logR, we have that∑

n≤x
∃p|n, p≤Rη

Mf (n;R)2k � ηx

logR
.

If, in addition, f(0) 6= 0, then there is a constant ck,f > 0 such that for x ≥ R2k log2R we
have that

1

x

∑
n<x

Mf (n;R)2k =
ck,f

logR
+O

(
1

(logR)2−ε

)
.

(b) If A ≤ 1
2k

(
2k
k

)
, then for x ≥ R ≥ 2 we have that∑

n≤x

Mf (n;R)2k � x(logR)(
2k
k )−2kA.
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All implied constants depend at most on f , k and ε.

The value of Ek =
(

2k
k

)
− 2k given by Theorem 1.3 is significantly smaller than the exponent

22k−1−2k−1 in the polynomial/permutation setting. So we see the usual analogy breaking down in
quite a severe way, something surprising. We devote Section 2 to the analysis of this discrepancy.
In particularly, we will see that the underlying reason is the relation∑

σ∈SN , T⊂[N ],
#T=m, σ(T )=T

µ(σ
∣∣
T

) = (−1)m
∑

σ∈SN , T⊂[N ],
#T=m, σ(T )=T

ε(σ
∣∣
T

)
(1.16)

that we saw before. Notice here that while µ(ρ) = −1 for all cycles ρ, we have that ε(ρ) takes
the values ±1 with equal probability as ρ ranges over cycles of all possible lengths. The simplest
example of a multiplicative function over Z demonstrating this kind of behaviour is that of a real
Dirichlet character. To this end, we consider

X2k(R) =
∏
p≤R

(
1− 1

p

) ∑
P+(n)≤R

1

n

( ∑
d|n

R/2<d≤R

χ(d)
)2k

,

which, as in (1.9), is the main term of
1

x

∑
n<x

∣∣∣ ∑
d|n

R/2<d≤R

χ(d)
∣∣∣2k.

We then have the following theorem, which shows that it is possible to bridge the gap between the
two worlds of integers and of permutations/polynomials. All implied constants below depend at
most on k, and we have set

S+(2k) := {I ⊂ {1, 2, . . . , 2k} : #I even} \ {∅}.

Theorem 1.5. Let χ (mod q) be a real non-principal character and k ∈ Z≥1.
(a) If k = 1, then

X2(R) =
1

2π

∫ ∞
−∞

P (t, χ)|L(1 + it, χ)|2 sin2(t(log 2)/2)

t2
dt+O

(
1

(logR)100

)
,

where P (·, χ) is a real-valued Euler product whose factors are 1 +O(1/p2). In particular,
P (t, χ) � 1 for all t, uniformly in χ.

(b) Assume that k ≥ 2. Let Vk(m) be the Lebesgue volume in R22k−1−1 given by

Vk(m) = vol{(xI)I∈S+(2k) : xI ≥ 0, m− log 2 ≤
∑
I3i

xI ≤ m},

and let Sk(χ) be the singular series

Sk(χ) =
∏
p

(
1− 1

p

)22k−1

fp,

where

fp =


∑

j≥0(j + 1)2k/pj, if χ(p) = 1,

(1− 1/p2)−1, if χ(p) = −1,

(1− 1/p)−1, if p|q.
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Then Vk(m) �k m22k−1−2k−1, Sk(χ) �k L(1, χ)22k−1
, and

X2k(R) = Sk(χ) · Vk(logR) +O
(

(logR)22k−1−2k−2(log(q logR))O(1)
)
.

(c) Assume that k ≥ 2 and that L(β, χ) = 0 for some β > 1 − 1/(100 log q). If Q = e1/(1−β)

and e(log q)C ≤ R ≤ Q for some large enough C = C(k), then there is a constant ck(χ) =
(log q)O(1) such that

X2k(R) = ck(χ)(logR)(
2k
k )−2k

(
1 +O

(
(log(q logR))O(1)

logR

))
.

In the case of our polynomial and permutation models, we have an exponent of 22k−1 − 2k − 1
for the 2kth moment with k ≥ 2, whilst over the integers we have an exponent

(
2k
k

)
− 2k. We

see that our Dirichlet character model interpolates between these two settings. If the Dirichlet L-
function associated with the character has a zero very close to 1, then χ(p) = −1 for many small
primes p, and so by multiplicativity χ behaves similarly to µ (at least in appropriate ranges). This is
represented by our exponent of

(
2k
k

)
− 2k in this case. On the other hand, χ is a periodic character,

and if the L function does not have a zero very close to 1, we see that we have an exponent
22k−1 − 2k − 1, matching the exponent of our polynomial and permutation models. Notice that if
L(s, χ) does have an exceptional zero, then the asymptotic of case (c) for X2k(R) holds for small
R, and transitions into the asymptotic of case (b) as R grows.

Remark 1.5. Relation (1.16) has a polynomial analogue whose consequences are worth exploring
further. Given I ⊂ {F ∈ Fq[t] : deg(F ) = n}, we consider the sum∑

F∈I

µ(F ).

For example, we could take I = {F ∈ Fq[t] : deg(F ) = n}, or I = {F ∈ Fq[t] : deg(F − F0) ≤
h} for some F0 ∈ Fq[t] of degree n and for some integer h ∈ [1, n − 1], which can be seen as the
polynomial analogue of a short interval. Then∑

F∈I

µ(F ) = (−1)n
∑
F∈I

χ(F ),

where χ(F ) = (−1)deg(F )µ(F ), which is also a multiplicative function. However, we note that,
even though µ(P ) = −1 for all irreducibles, we have that χ(P ) = 1 for about half of the irre-
ducibles P , and χ(P ) = −1 for the other half, that is to say χ behaves on average much more like
a real Dirichlet character rather than the Möbius function.

This phenomenon is striking and sharply different than what happens over Z, where there is a
dichotomy between multiplicative functions that look like the Möbius functions and other ones
whose average prime value is 0, as is exemplified by Theorem 1.5 (see, also, [17]).

1.5. Further analysis of truncated Möbius divisor sums. As we saw in Theorem 1.4, if f ∈
CA(R) with A > 1

2k

(
2k
k

)
= Ek/2k + 1, then Mf (n;R)2k behaves like a sieve weight. When

f = fA, we can be more precise:
If A > 1

2k

(
2k
k

)
− 1 = Ek/2k, then Ek,A = −1 in Theorem 1.3, and soMfA,2k(R) � (logR)−1.

Since integers n ≤ x with no prime factors less than R contribute a total � x(logR)−1 to∑
n≤xMfA(n;R)2k, we see that MfA(n;R)2k is behaving like a sieve weight in this case.
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If A ≤ 1
2k

(
2k
k

)
− 1 = Ek/2k, then Ek,A ≥ 0, and soMfA,2k(R)� 1. In particular, MfA(n;R)2k

no longer behaves like a sieve weight, and the main contribution is from numbers with several
prime factors in [1, R].

The following theorem illustrates further this distinction.

Theorem 1.6. Let x ≥ R ≥ 2, k ∈ Z≥1 and A ∈ Z≥0. Moreover, let Ω(n;R) denote the number
of prime factors of n in [1, R], counted with multiplicity.

(a) If A > 1
2k

(
2k
k

)
− 1, then ∑

n<x
Ω(n;R)≥C

MfA(n;R)2k �k,A
x

C logR
.

(b) If A ≤ 1
2k

(
2k
k

)
− 1 and ε > 0 is fixed, then there is a δ = δ(ε, k) > 0 such that∑

n<x
|Ω(n;R)/ log logR−(2k

k )|≥ε

MfA(n;R)2k �k,A x(logR)(
2k
k )−2k(A+1)−δ.

In other words, if A > 1
2k

(
2k
k

)
− 1, then the main contribution to the sum definingMfA,2k(R)

comes from integers with a bounded number of prime factors≤ R; whereas ifA ≤ 1
2k

(
2k
k

)
−1, then

the main contribution to the sum comes from integers with
((

2k
k

)
+ o(1)

)
log logR prime factors

≤ R.
Analogous results hold with Ω(n;R) replaced by the function #{p|n : p ≤ R}. We note that

typically one requires x > R2k, as in Theorem 1.3, to estimate a 2kth moment of a sum of divisors
of size at most R, but the estimates of Theorem 1.6 hold in the much wider range x ≥ R. We can
show similar (but slightly weaker) results for general weights f :

Theorem 1.7. Let k ∈ Z≥1 and f : R → R be supported in (−∞, 1]. Assume further that
f ∈ CA(R) and that all functions f, f ′, . . . , f (A) are uniformly bounded for some integer A ≥ 2,
and fix some ε ∈ (0, 1).

(a) Assume that A > 1
2k

(
2k
k

)
. For x ≥ R ≥ 2 and C ≥ 1, we have that∑
n<x

Ω(n;R)≥C

Mf (n;R)2k �k,f
x

C logR
.

(b) If A ≤ 1
2k

(
2k
k

)
and ε > 0 is fixed, then there is a δ = δ(ε, k) > 0 such that∑

n<x
|Ω(n;R)/ log logR−(2k

k )|≥ε

Mf (n;R)2k �k,f,ε x(logR)(
2k
k )−2kA−δ (x ≥ R ≥ 2).

1.6. Outline of the paper. We start the paper in Section 2 with a discussion of the discrepancy
between the exponent of logR in (1.15) and the exponent ofm in Theorem 1.1, which is surprising
at first sight.

Sections 3 and 4 study the analogies for permutations and polynomials over finite fields, respec-
tively. These analogies are considerably easier to analyze than the integer case.

The main body of the paper is then dedicated to the study of moments of MfA(n;R) over Sec-
tions 5 – 10. Specifically, in Section 5 we establish relation (1.4) for the size of the support of
Mf0(n;R), and in Section 6 we study inversion formulas for our divisor sums Mf (n;R) that will
be essential when dealing with their moments. The proof of Theorem 1.3 is separated over three
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sections: in Section 7, we establish certain combinatorial inequalities that will be instrumental in
understanding the leading term in the asymptotics forMfA,2k(R). Then, in Section 8 we establish
Theorem 1.3 by a multidimensional contour shifting argument, except for showing the positivity
of the constants ck,A and c′k. The latter will be accomplished with a different argument in Section
9. Section 10 contains an analysis of the anatomy of the integers that give the main contribution to
moments of Mf (n;R). Specifically, we prove Theorems 1.4, 1.6 and 1.7 there.

Finally, in Sections 11 and 12 we study the moments of the sum weighted by Dirichlet charac-
ters, and establish Theorem 1.5, first for non-exceptional Dirichlet characters (where the proof is
similar to Theorem 1.2), and then for exceptional Dirichlet characters (where the proof is similar
to Theorem 1.3).

1.7. Notation. Given an integer N ≥ 1, we set throughout the paper

[N ] := {1, 2, . . . , N},

S+(N) := {∅ 6= I ⊂ [N ] : #I even}, S−(N) := {I ⊂ [N ] : #I odd},

S(N) := {I ⊂ [N ]} and S∗(N) := S+(N) ∪ S−(N).

Also, we recall that, given a integer n ≥ 1, we write P+(n) and P−(n) for its largest and smallest
prime divisors, respectively, with the convention that P+(1) = 1 and P−(1) =∞.

Finally, given 2k variables s1, . . . , s2k and I ⊂ [2k], we will use the notation sI =
∑

i∈I si.

2. THE DISCREPANCY BETWEEN INTEGERS AND POLYNOMIALS

The goal of this section is to analyze in detail why we have such a different behaviour when
considering integers vs. polynomials or permutations

2.1. Integer setting. Assume that k ≥ 2. We mimic the proof of Theorem 1.1. Recall the defini-
tion of f̃0 in (1.3). Given square-free integers d1, . . . , d2k and I ⊂ S∗(2k), we letDI be the product
of those primes p that divide each of the di’s with i ∈ I but do not divide

∏
i∈[2k]\I di. Then the

integers DI for I ∈ S∗(2k) are pairwise coprime and di =
∏

I: i∈I DI for each i, so that

Mf̃0,2k
(R) =

∑
R/2<d1,...,d2k<R

µ(d1) . . . µ(d2k)

[d1, . . . , d2k]

=
∑[

DI (I∈S∗(2k))
R/2<

∏
I3iDI≤R (1≤i≤2k)

 ∏
I∈S−(2k)

µ(DI)

DI

 ∏
I∈S+(2k)

1

DI

 ,

where the notation
∑[

means that the summation is running over squarefree and pairwise coprime

integers DI . Set L = e(log logR)3 . The contribution of those tuples with DI > L for some I odd
toMf̃0,2k

(R) can be seen to be� 1/ec(log logR)3/2 for some c = c(k) > 0, by the Prime Number
Theorem. So assume that DI ≤ L for all I odd. Then it is natural to write

Mf̃0,2k
(R) ∼

∑[

DI≤L (I∈S∗(2k))
D=

∏
I∈S−(2k)DI

µ(D)

D
· T2k(R1, . . . , R2k;D),
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where Ri = R/
∏

I3i, I∈S+(2k) DI and

T2k(R; a) =
∑[

(DI ,a)=1 (I∈S+(2k))
Ri/2<

∏
I∈S+(2k): i∈I DI≤Ri (1≤i≤2k)

∏
I∈S+(2k)

1

DI

.

When logRi = logR+O(logL) = logR+O((log logR)3/2), as it is here, we should be expecting
that T2k(R; a) has an asymptotic formula of the form

T2k(R; a) = g(a)(logR)22k−1−2k−1 +O
(

(logR)22k−1−2k−2(log logR)O(1)
)
,

since we have 22k−1−1 variables on a logarithmic scale and 2k multiplicative constraints in dyadic
intervals, where g(a) is a multiplicative function with g(p) = 1+O(1/p). Since

∑∞
n=1 µ(n)/n = 0,

we then find that the total contribution of the main terms toMf̃0,2k
(R) is

(logR)22k−1−2k−1
∑[

DI≤L (I∈S−(2k))
D=

∏
I∈S−(2k)DI

µ(D)g(D)

D
� e−c

′(log logR)3/2 .

for some c′ = c′(k) > 0, which is negligible. Consequently,

Mf̃0,2k
(R)� (log logR)O(1)(logR)22k−1−2k−2,

whereas the power of m in Theorem 1.1 is 22k−1 − 2k − 1. So this heuristic indicates that we
should get more cancellation in the integer setting than we will obtain in the analogous permutation
question, as established in Theorem 1.1.

2.2. Polynomial analogue. The reader might be sceptical of the argument presented above, be-
cause a direct analogue exists for polynomials over finite fields too. Specifically, expanding the
2k-th power in Polyq(n,m; k), we find that

Polyq(n,m; k) =
∑

G1,...,G2k

µ(G1) · · ·µ(G2k)

qdeg([G1,...,G2k])

for n ≥ 2mk. Given square-free, monic polynomials G1, . . . , G2k over Fq[t] and I ⊂ S∗(2k), we
let GI be the product of those monic irreducibles P that divide each of the Gi’s with i ∈ I but
do not divide

∏
i∈[2k]\I Gi. Then the polynomials GI for I ∈ S∗(2k) are pairwise coprime and

Gi =
∏

I: i∈I GI for each i, so that

Polyq(n,m; k) =
∑[

GI (I∈S∗(2k))∑
I3i deg(GI)=m (1≤i≤2k)

 ∏
I∈S−(2k)

µ(GI)

qdeg(GI)

 ∏
I∈S+(2k)

1

qdeg(GI)

 .

where the notation
∑[

means that the summation is running over squarefree and pairwise monic
polynomialsGI . As in the integer case, the contribution to Polyq(n,m; k) of those tuples (GI)I∈S∗(2k)

such that deg(GI) is large for some I ∈ S−(2k) is negligible, by the Prime Number Theorem over
Fq[t]. Hence, we may assume that deg(GI) ≤ logm for all I ∈ S−(2k). Then it is natural to write

Polyq(n,m; k) =
∑[

deg(GI)≤logm (I∈S−(2k))
G=

∏
I∈S−(2k)GI

µ(G)

qdeg(G)
· T̃q,2k(m1, . . . ,m2k;G),
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where mi = m−
∑

I3i, I∈S+(2k) deg(GI) and

T̃q,2k(m;A) :=
∑[

(GI ,A)=1 (I∈S+(2k))∑
I∈S+(2k): i∈I deg(GI)=mi (1≤i≤2k)

∏
I∈S+(2k)

1

qdeg(GI)
.

As before, when `i = m + O(logm), as above, we should be expecting that T̃q,2k(`;A) has an
asymptotic formula of the form

T̃q,2k(`;A) = g̃(A)m22k−1−2k−1 +O
(
m22k−1−2k−2(logm)O(1)

)
,(2.1)

where g̃(A) is a multiplicative function with g̃(P ) = 1 +O(1/qdeg(P )) for irreducibles P .
The above argument suggests that we should have an asymptotic behaviour of Polyq(n,m; k)

that is smaller than what Theorem 1.2 states, which is absurd. The problem is that if
∑

I3i deg(GI) =
m for all i, then we also have that

2km =
2k∑
i=1

∑
I: i∈I

deg(GI) =
∑
I

#I deg(GI).

Reducing this formula mod 2, we find that∑
I∈S−(2k)

deg(GI) ≡ 0 (mod 2),(2.2)

a local constraint that is not present in the integer analogue. In particular, we see that (2.1) is true
only when (2.2) is satisfied. We thus find that the main term for Polyq(n,m; k) equals

m22k−1−2k−1 ·
∑[

deg(GI)≤logm (I∈S−(2k))
G=

∏
I∈S−(2k)GI , 2| deg(G)

µ(G)g̃(G)

qdeg(G)

=
m22k−1−2k−1

2
·

∑[

deg(GI)≤logm (I∈S−(2k))
G=

∏
I∈S−(2k)GI

µ(G)(1 + (−1)deg(G))

qdeg(G)
+O

(1

q

)

� m22k−1−2k−1,

because
∑

F µ(F )/qdeg(F ) = 0 and
∑

F µ(F )(−1/q)deg(F ) =
∏

P (1−(−1/q)deg(P )) > 0. Thus we
see the local constraint associated to the discreteness of degrees in the polynomial setting means
we have genuinely different asymptotic behavior.

2.3. Further analysis. The above arguments suggest a possible route to proving Theorem 1.3,
by working out the full asymptotic expansion of T2k(x; a). Controlling the coefficients in this ex-
pansion is a highly non-trivial problem. Instead, we take another route, using a high-dimensional
contour shifting argument. Our starting point is Perron’s inversion formula which, ignoring con-
vergence issues, yields

T2k(x; a) ∼ 1

(2πi)2k

∫
· · ·
∫

Re(sj)=1/ logR
1≤j≤2k

∑[

(DI ,a)=1
I∈S+(2k)

∏
I∈S+(2k)

1

D1+sI
I

2k∏
j=1

x
sj
j (1− 2−sj)

sj
ds1 · · · ds2k,



16 A. GRANVILLE, D. KOUKOULOPOULOS, AND J. MAYNARD

with the notational convention that sI =
∑

j∈I sj . Therefore

Mf̃0,2k
(R) ∼ 1

(2πi)2k

∫
· · ·
∫

Re(sj)=1/ logR
1≤j≤2k

F (s)

∏
I∈S+(2k) ζ(1 + sI)∏
I∈S−(2k) ζ(1 + sI)

2k∏
j=1

1− 2−sj

sj
ds1 · · · ds2k,

where F (s) is analytic and non-zero when Re(sj) > −1/4k for all j. As we will see in Section 8,
shifting contours, we pick up poles any time sI = 0 for some I ∈ S+(2k). What is the difficulty in
proving Theorem 1.3 is that some of these poles can get annihilated by poles of the zeta factors in
the denominator, which is an analytic way of saying that the higher order terms in the asymptotic
expansions of T2k(x; a) are cancelled out.

It is clear from the above discussion that the underlying reason why we got a genuinely smaller
main term forMf̃0,2k

(R) is the identity
∑∞

n=1 µ(n)/n = 0, that is to say the fact that 1/ζ has a zero
at 1. This also explains the phenomenon we see in Theorem 1.5. If we replace µ by a real valued
multiplicative function f whose Dirichlet series F (s) =

∑∞
n=1 f(n)/ns which is not very small

at s = 1, then the behaviour of the respective divisor sums should be similar as the permutation
analogue, whilst if F (s) is close to 0 at s = 1 (which occurs if F has a zero very close to 1) the
behaviour is the same as in the original integer setting.

2.4. Further obstructions to the analogy. Is it possible that the local constraints at the prime
2 described above are the only thing separating integers and polynomials? In order to study this
question, we consider the variations

Polyq(n,m, h; k) :=
1

qn

∑
N∈Fq [t]
degN=n

∣∣∣∣∣ ∑
M |N

m−h<degM≤m

µ(M)

∣∣∣∣∣
2k

,

where h ∈ Z ∩ [1,m + 1]. If h ≥ 2, then the local problems at the prime 2 should be resolved.
However, we will see that this is not sufficient, and that the discrepancy between the integer and
the polynomial analogues goes even deeper.

First, let us consider the case h = m + 1 in order to convince the reader that resolving the
constraints at the prime 2 is not sufficient. It is known that a positive proportion of polynomials
N ∈ Fq[t] of degree at most r have a simple zero over Fq, and that the number of zeroes of such a
polynomial over Fq is, on average, bounded. So we should expect

Polyq(n,m,m+ 1; k) � 1

qn

∑
N∈Fq [t]
degN=n

∑
α∈Fq
N(α)=0
N ′(α)6=0

∣∣∣∣∣ ∑
M |N

degM≤m

µ(M)

∣∣∣∣∣
2k

.

If N has a simple zero at α, then we can factor N(x) = (x− α)Ñ(x), where Ñ(α) 6= 0, that is to
say x− α and Ñ are co-prime. Then∑

M |N
degM≤m

µ(M) =
∑
M |Ñ

degM≤m

µ(M) +
∑
M |Ñ

1+degM≤m

µ((x− α) ·M) =
∑
M |Ñ

degM=m

µ(M),
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so that

Polyq(n,m,m+ 1; k) � 1

qn

∑
α∈Fq

∑
Ñ∈Fq [t]

deg Ñ=n−1

Ñ(α) 6=0

∣∣∣∣∣ ∑
M |Ñ

degM=m

µ(M)

∣∣∣∣∣
2k

� m22k−1−2k−1 + 1

for n ≥ 2mk, by an easy variation of Theorem 1.2. This argument can be made rigorous; we leave
this task to the interested reader.

Let us now study Polyq(n,m, h; k) more generally. For any h ∈ Z≥1 and n ≥ 2mk, we note
that

Polyq(n,m, h; k) =
∑

G1,...,G2k
m−h<deg(Gi)≤m

1≤i≤2k

µ(G1) · · ·µ(G2k)

qdeg([G1,...,G2k])

=
∑[

GI (I∈S∗(2k))
m−h<

∑
I3i deg(GI)≤m (1≤i≤2k)

 ∏
I∈S−(2k)

µ(GI)

qdeg(GI)

 ∏
I∈S+(2k)

µ2(GI)

qdeg(GI)

 ,

as before. Applying Fourier inversion 2k times, we find that, for any r ∈ (0, 1),

Polyq(n,m, h; k) =
∑

m−h<`j≤m
1≤j≤2k

∑[

GI (I∈S∗(2k))

 ∏
I∈S−(2k)

µ(GI)

qdeg(GI)

 ∏
I∈S+(2k)

µ2(GI)

qdeg(GI)


×

2k∏
j=1

∫ 1

0

(re(θj))
−`j+

∑
I3j deg(GI)dθj.

So, if we set

Zq(w) =
∑

G∈Fq [t]

(
w

q

)deg(G)

=
∏
P

(1− (w/q)deg(P ))−1,

the Fq[t] analogue of the Riemann zeta function, then

Polyq(n,m, h; k) =
∑

m−h<`j≤m
1≤j≤2k

∫
[0,1]2k

F̃q((re(θj))j)

∏
I∈S+(2k)Zq(r#Ie(θI))∏
I∈S−(2k)Zq(r#Ie(θI))

2k∏
j=1

e(−`jθj)
r`j

dθ

=

∫
[0,1]2k

F̃q ((re(θj))j)

∏
I∈S+(2k)Zq(r#Ie(θI))∏
I∈S−(2k)Zq(r#Ie(θI))

2k∏
j=1

m∑
`=m−h+1

e(−`θj)
r`

dθ,

where θI =
∑

j∈I θj and F̃q(w) is a certain function that is analytic and non-zero when |wj| <√
q/2k for all j.
We take r = 1−1/m and note that the main contribution to Polyq(n,m, h; k) should come from

those values of θ for which there are many I ∈ S+(2k) such that θI ≡ 0 (mod 1). This is the key
difference with the integer case: before, we needed many I ∈ S+(2k) with sI = 0. So we see
two different linear algebra problems: one over the group R/Z, which has torsion, and one over R,
which does not. The presence of torsion in R/Z is a reflection of the discreteness of the polynomial
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setting (of the degree of the polynomials, more precisely), and the fact that R is a field reflects the
continuous nature of the integer problem (of the logarithms of integers, more precisely).

When h = 1, then the integrand is � 1/m when θj = O(1/m) mod 1 for all j, much like the
integer analogue. However, if we take θj = 1/2+O(1/m) for all j, then we see that θI = O(1/m)
mod 1 for I ∈ S+(2k), whereas θI = 1/2 + O(1/m) mod 1 for I ∈ S−(2k), so the integrand has
size m22k−1−1 for such θ. The volume of this region is � 1/m2k, leading to a contribution of size
m22k−1−2k−1 to Polyq(n,m, 1; k), which is precisely its order of magnitude for k ≥ 2. Note that
the fact the main contribution comes from when θj ≈ 1/2 and not when θj ≈ 0 is a reflection of
the local constraint at the prime 2 we noticed above.

Similarly to the above case, if h = 2 and θj = 1/2 +O(1/m), then the integrand becomes

F̃q (1/2, . . . , 1/2)
m22k−1−1(1 +O(1/m))

Zq(1/2)4k

2k∏
j=1

(1 + e(θj)).

By Taylor expansion, we have that

1 + e(θj) = 1− e(θj − 1/2) = −(θj − 1/2)− (θj − 1/2)2

2
− · · ·

By symmetry, we should then have that∫
· · ·
∫

|θj−1/2|≤1/m
1≤j≤2k

F̃q (1/2, . . . , 1/2)
m22k−1−1(1 +O(1/m))

Zq(1/2)4k

2k∏
j=1

(1 + e(θj))dθ

= (1 +O(1/m))

∫
· · ·
∫

|θj−1/2|≤1/m
1≤j≤2k

F̃q (1/2, . . . , 1/2)
m22k−1−1

Zq(1/2)4k

2k∏
j=1

(θj − 1/2)2

2
dθ,

which leads to a contribution of sizem22k−1−6k−1 to Polyq(n,m, 2; k). This should be the dominant
contribution for large k, even though for small k other regions can dominate. For example, if k = 2
and we take θ1, θ2 ∈ [0.33, 0.34], θ3, θ4 ∈ [0.66, 0.67], and θ1 + θ2, θ3 + θ4, θ1 + θ4 = O(1/m),
then the integrand becomes � m5, and we are integrating over a region of volume � 1/m3, so we
see that Polyq(n,m, 1; 2)� m2. In fact, this is the exact order of magnitude of Poly(n,m, 1; 2).

We conclude our discussion with another peculiar fact: if h = 3, then
m∑

`=m−h+1

e(`θ) = e(mθ)(1 + e(θ) + e(2θ)) = e(mθ) +O(1/m)

when θ = 1/2 + O(1/m). So Polyq(n,m, 3; k) should have the same size as Polyq(n,m, 1; k),
whereas Polyq(n,m, h; k) is a bit smaller, by a factor of size mO(k). In general, no matter how we
choose h, we cannot make the sum

∑m
`=m−h+1 e(`θ) small enough to cancel the contribution of the

factors Zq(r#Ie(θI)) for even I in the region θj ∼ 1/2, so the quantities Polyq(n,m, h; k) do not
behave in the same way asMf̃0,2k

(R) for k large.

3. THE ANALOGY FOR PERMUTATIONS

Completion of the proof of Theorem 1.1. It remains to prove the two claims for the quantity c(m, k),
which we recall is defined as the number of (22k − 1)-tuples (rI)∅6=I⊂[2k] of non-negative integers
such that rI ∈ {0, 1} for #I odd and such that

∑
I: i∈I rI = m, for each i ∈ [2k].
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Given any vector {rI : ∅ 6= I ⊂ [2k]} counted by c(m, k), the vector {r′I : ∅ 6= I ⊂ [2k]}
is counted by c(m + 1, k) where r′{1,2} = r{1,2} + 1 and r′{3,4,...,2k} = r{3,4,...,2k} + 1, and r′I = rI
otherwise. Since rI 7→ r′I is injective, we see c(m, k) ≤ c(m+ 1, k) for all m ≥ 0, as claimed.

We now estimate c(m, k). When k = 1, we find immediately that c(m, 1) = 2, so there is noting
to prove. Assume now that k ≥ 2. Since c(m, k) is increasing in m and c(0, k) = 1, we may
assume that m is even and large enough. We note that that there are �k 1 possibilities for the rI
for the odd-sized I . Otherwise we have to satisfy 2k equations with 22k−1− 1 variables. Hence the
number of solutions should be

�k m22k−1−2k−1 + 1,

as claimed. Certainly, this argument yields an appropriate upper bound. To prove the lower bound
for k ≥ 2 we will construct this number of solutions. Let

I = {{i, j} : 1 ≤ i < j ≤ 4} ∪ {{1, j} : 5 ≤ j ≤ 2k},

so that #I = 2k + 2. Set rI = 0 if I ∈ S−(2k) and, given δ > 0 to be chosen later, let rI be any
even integer from the range [0, δm/4k] if I ∈ S+(2k) \ (I ∪ {{5, 6, . . . , 2k}}). Finally, if k > 2,
let r{5,6,...,2k} be an even integer from the range [m − 2δm,m − δm]. There are �k,δ m22k−1−3−2k

such choices of rI , I ∈ S+(2k) \ I. Then select

r{1,j} := m−
∑

I∈S+(2k)\I, j∈I

rI (5 ≤ j ≤ 2k),

which is an even integer lying in the interval [0, 2δm], so that
∑

I∈S+(2k), j∈I rI = m for 5 ≤ j ≤
2k. Now set

I2 = {{i, j} : 1 ≤ i < j ≤ 4},

mj = m−
∑

I∈S+(2k)\I2, j∈I

rI (1 ≤ j ≤ 4).

We note that the mj are even integers lying in the interval [m− 2kδm,m]. It remains to choose rI ,
I ∈ I2, such that

∑
I∈I2, j∈I rI = mj for 1 ≤ j ≤ 4. Then, we select any even integers r{2,4}, r{3,4}

from [
√
δm− δm,

√
δm+ δm], and we set

r{1,4} = m4 − r{2,4} − r{3,4}.

Finally, we define r{1,2}, r{1,3}, r{2,3} such that

r{1,2} + r{1,3} = m1 − r{1,4} = m1 −m4 + r{2,4} + r{3,4};

r{1,2} + r{2,3} = m2 − r{2,4}; and
r{1,3} + r{2,3} = m3 − r{3,4}.

Note that the right-hand sides are all even so there is no parity problem, and the solutions we obtain
are non-negative integers for δ small enough. We have thus constructed�k m

22k−1−2k−1 solutions
counted by c(m, k). This completes the proof of the lemma. �

Remark 3.1. It should not be too difficult to determine c(m, k) exactly in some special cases. For
example, we have that c(m, 1) = 2 and c(m, 2) = 1

3
(64m3 − 135m2 + 182m− 66) for all m ≥ 1.
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Finally, we prove a probabilistic interpretation for c(m, k). In its statement, we have set with a
slight abuse of notation

M(c; r) :=
∑

0≤bj≤cj
1≤j≤m∑
j jbj=r

(−1)b1+···+bm

(3.1)

for an m-tuple of non-negative integers c = (c1, . . . , cm).

Proposition 3.1. LetX = (X1, X2, . . . , Xm) be a vector of pairwise independent Poisson random
variables, where Xj has parameter 1/j. For every k ∈ Z≥1, we have that

c(m, k) = E[M(X;m)2k].

In passing, we note that Proposition 3.1 is purely a statement about Poisson random variables
and not immediately related to permutations or polynomials over finite fields, but our proof makes
use of this connection.

Before we prove Proposition 3.1, we need a lemma.

Lemma 3.2. Let N ≥ m ≥ 1. The proportion of permutations σ ∈ SN that have no cycles of
length ≤ m is

m∏
j=1

e−1/j +O

(
m2

N

)
.

Proof. Note that this lemma was proven by the first author in [11] for large m, but here we are
mainly interested in the case when m is very small compared to N . We apply inclusion-inclusion.
If Cj denotes the j-cycles in SN , we write |π| = j for an element π of Cj , and we let C be the union
of C1, . . . , Cm. Then

#{σ ∈ SN : σ has no cycles of length ≤ m}

= N !−
∑
π∈C

(N − |π|)! +
∑

π1,π2∈C
π1,π2 disjoint

(N − |π1| − |π2|)!∓ · · ·

=
∑

c1,...,cm≥0
c1+2c2+·+mcm≤n

(−1)c1+···+cm(N − c1 − 2c2 · · · −mcm)!
∑

π1,π2,···∈C disjoint
#{i:|πi|=j}=cj ∀j

1.

In order to count the inner quantity, we note that if r = c1 + · · ·+ cm is the total number of disjoint
cycles we are choosing, and we have fixed our choice for π1, π2, . . . , πr−1, then there are

(N − |π1| − · · · − |πr−1|)!
|πr|!(N − |π1| − · · · − |πr−1| − |πr|)!

choices for the set of size |πr| fixed by πr, and then (|πr|−1)! possibilities for a cycle on |πr| given
elements. Inductively, we then find that the total number of possibilities for π1, . . . , πr should be

N !

(N − |π| − · · · − |πr|)!
· 1

|π1| · · · |πr|
=

N !

(N − c1 − 2c2 − · · · −mcm)!

m∏
j=1

1

jcj
.
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Note though we have overcounted: each possibility of j-cycles occurs cj! times, depending on the
order they are picked, so we must divide the above expression by c1! · · · cm!. We then find that

#{σ ∈ SN : σ has no cycles of length ≤ m}
N !

=
∑

c1,...,cm≥0
c1+2c2+·+mcm≤n

m∏
j=1

(−1/j)cj

cj!

=
m∏
j=1

e−1/j +O

(
m2

N

)
,

where the error term is obtained by noting that 1c1+2c2+···+mcm≤N ≤ (c1 +2c2 +· · ·+mcm)/N . �

Proof of Proposition 3.1. We recall that we have already proved that

c(m, k) =
1

N !

∑
σ∈SN

( ∑
T⊂[n]
σ(T )=T
#T=m

µ(σ
∣∣
T

)

)2k

for any N ≥ 2mk. We will now rewrite the right hand side for n much larger than m and k. Note
that if σ has cj cycles of length j for each j ∈ {1, . . . ,m}, then∑

T⊂[n]
σ(T )=T
#T=m

µ(σ
∣∣
T

) = M(c;m) =
∑

0≤bj≤cj
1≤j≤m∑
j jbj=m

(−1)b1+···+bm

where c = (c1, . . . , cm). Moreover, a generalization of Cauchy’s formula (see Lemma 2.2 in [5])
implies that if t := c1 + 2c2 + · · ·+mcm ≤ N , then

#{σ ∈ SN : σ has cj j-cycles of length j (1 ≤ j ≤ m)}
N !

=

(
m∏
j=1

1

jcjcj!

)
· #{σ ∈ SN−t : σ has no cycles of length ≤ m}

(N − t)!
.

Applying Lemma 3.2, it is then easy to conclude that

c(m, k) = lim
N→∞

1

N !

∑
σ∈SN

( ∑
T⊂[n]
σ(T )=T
#T=m

µ(σ
∣∣
T

)

)2k

=
∑

c1,...,cm≥0

M(c;m)2k

m∏
j=1

e−1/j

jcjcj!
.

Since P(Xj = cj) = e−1/j/(jcjcj!), this is E[M(X;m)2k], and so completes the proof. �
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4. THE ANALOGY FOR POLYNOMIALS OVER FINITE FIELDS

Proof of Theorem 1.2. Throughout this proof all polynomials we consider are monic, and P de-
notes a generic monic irreducible polynomial over Fq. Note that

Polyq(n,m; k) =
1

qn

∑
deg(F )=n

( ∑
G|F

deg(G)=m

µ(G)

)2k

=
∏

deg(P )≤m

(
1− q− deg(P )

) ∑
P |F ⇒ deg(P )≤m

1

qdeg(F )

( ∑
G|F

deg(G)=m

µ(G)

)2k

for n ≥ 2km, as can be proven by expanding the 2k-th power in both sides, and noticing that if
Gj|F for each j ≤ 2k, then we may write F = [G1, . . . , G2k]H for some monic polynomial H .

Next, note that if F = P n1
1 · · ·P nr

r is the factorisation of F into monic irreducible factors, and
we write cj = #{i : deg(Pi) = j} for 1 ≤ j ≤ m, then∑

G|F
deg(G)=m

µ(G) = M(c;m)

with M(c;m) defined by (3.1). In particular, we see that
∑

G|F, deg(G)=m µ(G) is a function of the
vector c(F ) := (c1, . . . , cm). Moreover, given a fixed vector c, we see that

∏
deg(P )≤m

(
1− q− deg(P )

) ∑
F : c(F )=c

P |F ⇒ deg(P )≤m

1

qdeg(F )
=

∏
deg(P )≤m

(
1− q− deg(P )

) m∏
j=1

(
Nj
cj

)
(qj − 1)cj

=
m∏
j=1

(
Nj
cj

)
(1− q−j)Nj

(qj − 1)cj
,

where
Nj := #{P ∈ Fq[t] : P irreducible, deg(P ) = j}.

(Note that we have (qj − 1)cj and not qjcj in the denominator because we have to sum over powers
of Pj too.) Galois theory implies that qj =

∑
j′|j j

′Nj′ , whence

Nj =
1

j

∑
j′|j

µ(j′)qj/j
′
=
qj

j

(
1 +O

(
1j≥2

(qj/j)1/2

))
(4.1)

and

q + jNj ≤ qj (j ≥ 2).(4.2)

Our next task is to control the quantity

m∏
j=1

(
Nj
cj

)
(1− q−j)Nj

(qj − 1)cj
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and remove the dependence on q. First, note that
m∏
j=1

(1− q−j)Nj = (1 +O(1/q))
m∏
j=1

e−1/j.

Furthermore,(
Nj
cj

)
(qj − 1)cj

=
N
cj
j (1 +O(cj/Nj))

cj

cj!(qj − 1)cj
=

1

cj!jcj

(
1 +O

(
1j≥2 · cj
(qj/j)1/2

+
1j=1cj
qj

))
,

provided that c1 ≤ q and that cj ≤
√
qj/j if j ≥ 2. Therefore, if c1 ≤ q and

∑
2≤j≤m cj ·

(j/qj)1/2 ≤ 1, then
m∏
j=1

(
Nj
cj

)
(1− q−j)Nj

(qj − 1)cj
=

(
1 +O

(
c1 + 1

q
+

m∑
j=2

cjj
1/2

qj/2

))
m∏
j=1

e−1/j

cj!jcj
.

Together with Proposition 3.1, this implies that

Polyq(n,m; k) = c(m, k) +O(R1 +R2 +R3) (n ≥ 2mk),

where

R1 =
∑

c1,...,cm≥0

M(c;m)2k

(
c1 + 1

q
+

m∑
j=2

cjj
1/2

qj/2

)
m∏
j=1

e−1/j

cj!jcj
,

R2 =
∑

c1,...,cm≥0
c1>q or

∑
j>1 cjj

1/2/qj/2>1

M(c;m)2k

m∏
j=1

e−1/j

cj!jcj

≤
∑

c1,...,cm≥0

M(c;m)2k

(
c1

q
+

m∑
j=2

cjj
1/2

qj/2

)
m∏
j=1

e−1/j

cj!jcj
≤ R1,

and

R3 =
∑

c1,...,cm≥0
c1>q or

∑
j>1 cjj

1/2/qj/2>1

M(c;m)2k

m∏
j=1

e−1/j
(
Nj
cj

)
(qj − 1)cj

.

For R3, we note that cj ≤ Nj in its range; otherwise,
(
Nj
cj

)
= 0. In particular, c1 ≤ N1 = q.

Moreover, (4.2) implies that

(
Nj

cj

)
≤
N
cj
j

cj!
≤


(qj − 1)cj

cj!jcj
if j ≥ 2,

qc1

c1

≤ (1− 1/q)−q · (q − 1)c1

c1!
if j = 1,

Therefore

R3 �
∑

c1,...,cm≥0

M(c;m)2k

(
m∑
j=2

cjj
1/2

qj/2

)
m∏
j=1

e−1/j

cj!jcj
≤ R1.
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We thus see that Theorem 1.2 is reduced to proving that R1 �k c(m, k)/q. It suffices to show
that

Ti :=
∑

c1,...,cm≥0

ciM(c;m)2k

m∏
j=1

e−1/j

jcjcj!
� c(m, k) (1 ≤ i ≤ m).

Indeed, we note that the term with ci = 0 does not contribute, and we replace ci by ci + 1 to find
that

Ti =
1

i

∑
c1,...,cm≥0

M(ei + c;m)2k

m∏
j=1

e−1/j

jcjcj!
,

where ei denotes the m-th dimensional vector all of whose coordinates are 0 except for the i-th
coordinate that equals 1. Note that

M(ei + c;m) =
∑

0≤bj≤cj ∀j 6=i
0≤bi≤ci+1∑

j jbj=m

(−1)b1+···+bm = M(c;m) + (−1)ci+1M(ci;m− i(ci + 1)),

where ci = (c1, . . . , ci−1, 0, ci+1, . . . , cm), so that

M(ei + c;m)2k ≤ 22k−1 (M(c;m) +M(ci;m− i(ci + 1)))2k ,

by Hölder’s inequality. We thus conclude that

Ti ≤
22k−1

i
c(m, k) +

22k−1

i

∞∑
ci=0

e−1/i

ci!ici

∑
(cj)j≤m, j 6=i

M(ci;m− i(ci + 1))2k
∏
j 6=i

e−1/j

cj!jcj

≤ 22k−1

i
c(m, k) +

22k−1

i

∞∑
ci=0

e−1/i

ci!ici
c(m− i(ci + 1), k),

since the M(ci;m − i(ci + 1))2k is independent of the value of the cj’s with j > m − i(ci + 1).
Recalling that c(`, k) is an increasing function of ` by Theorem 1.1, we arrive to the claimed bound
Ti �k c(m, k), whence Theorem 1.2 follows. �

5. THE SUPPORT OF Mf0(n;R)

We prove here (1.4), which we recall is the statement that

#{n ≤ x : Mf0(n;R) 6= 0} � x

(logR)δ(log logR)3/2
(x ≥ R4).

The lower bound was proven in the introduction, so we are left to show the upper bound. We recall
the relation (1.5)

Mf (n;R) =
∑

d|p2···prm

µ(d)

{
f

(
log d

logR

)
− f

(
log p1

logR
+

log d

logR

)}
,

where n = pα1
1 · · · pαrr m, where p1 < · · · < pr, αi ≥ 1 and all of the prime divisors of m are > pr.

Taking r = 2, letting q be the smallest prime dividing n and writing n = qjm with q - m, we see
that

Mf0(n;R) =
∑
d|m

R/q<d≤R

µ(d).
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Therefore,

#{n ≤ x : Mf0(n;R) 6= 0} ≤
∑
qj≤y

H(x/qj, q;R/q,R) +O

(
x

log y

)
,(5.1)

for any parameter y ≤ R1/3 to be chosen later, where

H(X, Y ;Z,W ) := #{n ≤ X : P−(n) > Y, ∃d|n with Z < d ≤ W}.

We have the following estimate, that is useful in its own right.

Proposition 5.1. Uniformly for 1 ≤ Y ≤ Z ≤ W ≤ X/(2Z) and 2Z ≤ W ≤ Z2, we have

H(X, Y ;Z,W )� X

log Y
· 1

λδ(1 + log λ)3/2
,

where λ is defined by the relation W = Z1+1/λ and δ = 1− 1+log log 2
log 2

= 0.086071 . . .

Remark. In the special case whenW = 2Z, Ford [8] used a more refined argument and determined
the exact order of magnitude of H(X, Y ;Z,W ). The exact statement is a bit complicated, so we
refer the interested reader to Ford’s paper.

Proof. We adapt the proof of Lemma 6.1 in Ford’s paper [7]. By a dyadic decomposition argument,
it suffices to upper bound the difference H(X, Y ;Z,W )−H(X/2, Y ;Z,W ). Let n being counted
by this difference, so that it can be written as n = n1n2 with n1 ∈ (Z,W ]. We thus have that
n2 ∈ (X/2W,X/Z]. If p = min{P+(n1), P+(n2)} ∈ (Y,W ], then we may write n = apb, where:

(i) all prime factors of a are in (Y, p);
(ii) all prime factors of b are ≥ p (and there is at least one such prime factor);

(iii) there is a divisor d|a such that pd ∈ (Z,W ] ∪ (X/2W,X/Z].
If we set L(a;σ) :=

⋃
d|a[log d−σ, log d) and η = log(W/Z), the last condition can be also written

as:
(iii’) either log(Z/p) ∈ L(a; η), or log(X/(2Wp)) ∈ L(a; η + log 2).

Let η′ = η + log 2, and note that η′ � η by our assumption that W ≥ 2Z. Moreover, let Z1 = Z
and Z2 = X/2W , so that condition (iii’) yields condition
(iii”) log(Zj/p) ∈ L(a; η′) for some j ∈ {1, 2}.

Finally, note that since there is d|a with dp > Zj , we must have that p > Zj/d ≥ Zj/a. We thus
conclude that we must have the condition

(iv) p > Qj(a) := max{P+(a), Zj/a}.
Given a and p satisfying conditions (i), (iii”) and (iv), the number of b ∈ (1, X/ap] such that

P−(b) > p is� X/(ap log p). Indeed, notice that if there is one such b, then X/ap ≥ b ≥ p, so
that the claimed estimated follows by a standard sieve bound, such as Theorem 4.3 of [10]. We
thus conclude that

H(X, Y ;Z,W )−H(X/2, Y ;Z,W )� X

2∑
j=1

∑
a∈P(Y,W )

1

a

∑
p>Qj(a)

log(Zj/p)∈L(a;η′)

1

p log p
,

where P(Y,W ) denotes the set of integers all of whose prime factors are in (Y,W ]. As in the
proof of Lemma 6.1 in [7], we have that the sum over p is� L(a; η′)/ log2Qj(a), where L(a;σ)
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denotes the Lebesgue measure of L(a;σ). We conclude that

H(X, Y ;Z,W )−H(X/2, Y ;Z,W )� X

2∑
j=1

∑
a∈P(Y,W )

L(a; η′)

a log2Qj(a)

� X

log Y

2∑
j=1

∑
P+(a′)≤Y

∑
a∈P(Y,W )

L(a; η′)

aa′ log2Qj(a)
.

Since Qj(a) ≥ Qj(aa
′) and L(a; η′) ≤ L(aa′; η′), we have the estimate

H(X, Y ;Z,W )−H(X/2, Y ;Z,W )� X

log Y

2∑
j=1

∑
P+(m)≤W

L(m; η′)

m log2Qj(m)
.

Since Z2 = X/2W ≥ Z = Z1, the contribution for j = 2 is bounded by the contribution from j =
1, and so it suffices to just consider Zj = Z. In this case the contribution is� 1/(λδ(1 + log λ)3/2

by Lemma 3.3, equation (3.8) and Lemma 3.7 of [7]. This completes the proof. �

Proposition 5.1 implies that

H(x/qj, q;R/q,R)� x

qj log q
·
(

log q

logR

)δ (
log

logR

log q

)−3/2

,

uniformly in 2 ≤ qj ≤ y ≤ R1/2 and x ≥ R5/2. Inserting this bound to (5.1), we deduce that

#{n ≤ x : Mf0(n;R) 6= 0} � x

(logR)δ(log logR)3/2
+

x

log y
.

Selecting y = exp((logR)δ(log logR)3/2) completes the proof of (1.4).

Remark 5.1. It is possible to construct integers n for which Mf0(n;R) is quite large. Indeed, let
y ≥ 3 and k ∈ Z≥1 be two parameters such that the interval (y, 21/ky) contains at least 2k primes,
and let q1 < · · · < q2k be the smallest such primes. Then we set n = 2q1 · · · q2k and R = 2yk. By
(1.5),

Mf0(n;R) =
∑

d|q1···q2k
R/2<d≤R

µ(d).

The choice of R implies that the above sum runs over all divisors d of q1, . . . , q2k with precisely k
prime factors, so that

Mf0(n;R) = (−1)k
(

2k

k

)
.

Optimizing the choice of k and y, and using the fact that there infinitely many y’s such that π(y +√
y log y) − π(y) �

√
y/ log y (see, for example, [14, Exercice 5, p. 266]), we find that there

exist arbitrarily large integers n such that |Mf (n;R)| � nc/ log logn, for any fixed c < log 2
2

with
R ≈ n1/2.

On the other hand, such extreme values of Mf0(n;R) are very rare, as Theorem 1.3 indicates.



SIEVE WEIGHTS AND THEIR SMOOTHINGS POIDS DE CRIBLE ET LEURS LISSAGES 27

6. INVERSION FORMULAS

Given f : R→ R, R ≥ 2 and s ∈ C, we set

f̂R(s) =

∫ ∞
0

f

(
log x

logR

)
xs−1dx = (logR)

∫ ∞
−∞

f(u)Rsudu,

provided that the above integral converges. If f is Lebesgue measurable, supported in (−∞, 1] and
bounded, which will always be the case for us, then f̂R defines an analytic function for Re(s) > 0.
If, in addition, f ∈ Cj(R) for some j ≥ 1 and the derivatives f ′, f ′′, . . . , f (j) are all bounded, then
integrating by parts j times yields the formula

f̂R(s) =
(−1)j

sj(logR)j−1

∫ ∞
−∞

f (j)(u)Rsudu.(6.1)

In particular, we see that ∣∣∣f̂R(s)
∣∣∣ ≤ ‖f (j)‖∞ ·

RRe(s)

Re(s)(|s| logR)j
(6.2)

for Re(s) > 0, where we used our assumption that supp(f) ⊂ (−∞, 1].
Now, for m ∈ Z≥1, the Mellin inversion formula implies that for c > 0

f

(
logm

logR

)
=

1

2πi

∫
Re(s)=c

f̂R(s)m−sds.(6.3)

In the proof of Theorem 1.3 with A ≥ 1 and of Theorem 1.6, our assumption that f is a few times
differentiable in R allows us to apply (6.2) and writeMf (a;R) in terms of an absolutely convergent
integral, which can easily be truncated at some appropriate height. However, when A = 0 in
Theorem 1.3, we have f0 = χ(−∞,1], so that (̂f0)R(s) = Rs/s. Truncating Perron’s formula is still
feasible but rather technical. Instead, we perform a technical manoeuvre and smoothen f0 a bit.
We consider a smooth function h : R→ R such that

h(x) = 1 if x ≤ 1− η,
0 ≤ h(x) ≤ 1 if 1− η ≤ x ≤ 1,

h(x) = 0 if x ≥ 1,

where η = 1/(logR)C for some constant C > 0 that will be chosen appropriately later. We choose
h so that h(j)(x) �j η

−j , for all j ∈ Z≥0. We claim that, for any fixed L > 0 and k ≥ 1, there is
C = C(k, L) such that

Mf0,2k(R) =Mh,2k(R) +O

(
1

(logR)L

)
.(6.4)

Indeed, we have that

|Mf0,2k(R)−Mh,2k(R)| ≤ 2k
∑

d1,...,d2k−1≤R
R1−η<d2k≤R

∏2k
j=1 µ

2(dj)

[d1, . . . , d2k]
≤ 2k

∑
m≤R2k

τ(m)2k−1

m

∑
d|m

R1−η<d≤R

1,
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by setting m = [d1, . . . , d2k] and d = d2k. We split the above sum according to whether τ(m) ≤
(logR)B or not, where B is some parameter. We then find that

|Mf0,2k(R)−Mh,2k(R)| ≤ 2k
∑

m≤R2k

τ(m)≤(logR)B

(logR)(2k−1)B

m

∑
d|m

R1−η<d≤R

1

+ 2k
∑

m≤R2k

τ(m)>(logR)B

τ(m)2k+1(logR)−B

m

�k (logR)(2k−1)B+2−C + (logR)22k+1−B.

We choose B = L+ 22k+1 and C ≥ (2k − 1)22k+1 + 2kL+ 2 to complete the proof of our claim.
For the purposes of Theorem 1.3, we may take L = 1, so that having C ≥ (2k− 1)22k+1 + 2k+ 2
suffices. We also note that

ĥR(s) = −1

s

∫ 1

1−η
h′(u)Rsudu = −R

s

s

∫ η

0

h′(1− u)R−sudu,

by (6.1) and the fact that h is constant outside [1 − η, 1]. In particular, this relation implies that
ĥR has a meromorphic continuation to C with only a simple pole at s = 0 of residue −

∫ η
0
h′(1 −

u)du = 1. We further note that

dj

dsj

(
sĥR(s)

Rs

)
= (−1)j−1

∫ η

0

h′(1− u)(u logR)jR−sudu

� η · η−1 · (η logR)j = (η logR)j (s ∈ C, Re(s) ≥ −1).

(6.5)

Moreover, we have that

ĥR(s) = (logR)

∫ 1

−∞
Rusdu+O(η(logR)RRe(s))

=
Rs

s
+O((logR)−C+1RRe(s)) (Re(s) ≥ 0),

(6.6)

a relation that we will use at the very end of the proof of Theorem 1.3.

7. A COMBINATORIAL PROBLEM IN LINEAR ALGEBRA

Recall the notations from Section 1.7. Consider the 2k-dimensional vector space (over Q) of
linear forms in the free variables s1, . . . , s2k, which we denote by Wk. Given a subspace V of Wk,
we define

A (V ) =
∑

J∈S∗(2k)
sJ∈V

(−1)#J .

(We recall that in our notation sJ =
∑

j∈J sj .) We will prove the following result.

Proposition 7.1. Let k ≥ 1 and V be a subspace of Wk containing the form s[2k] =
∑2k

i=1 si.

(a) If sj ∈ V for some j ∈ [2k], then A (V ) = −1.
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(b) If dim(V ) = 2k − 1, then

A (V )− dim(V ) ≤
(

2k

k

)
− 2k,

with equality if, and only if, there is a set J ⊂ [2k] such that #J = k, 1 ∈ J , and
V = SpanQ({sj − s1}j∈J , {sj + s1}j∈[2k]\J).

(c) If dim(V ) ≤ 2k − 2, then

A (V )− dim(V ) ≤
(

2k

k

)
− 2k − 2.

Proof. (a) If sj ∈ V , then we immediately see that A (V ) = −1 by pairing sJ with sJ∪{j} for each
J ⊂ [2k] \ {j}.

(b) We may assume that s1, . . . , s2k /∈ V , by part (a). Since dim(V ) = 2k − 1 and s1 /∈ V ,
for each j = 1, . . . , 2k we have that sj ≡ rjs1 (modV ), for some rj ∈ Q \ {0}. We may write
rj = bj/q for some bj ∈ Z \ {0} and q ∈ Z≥1, so that sJ ∈ V if, and only if, bJ =

∑
j∈J bj = 0.

Therefore

A (V ) = −1 +

∫ 1

0

2k∏
j=1

(1− e(bjθ))dθ ≤ −1 +

∫ 1

0

2k∏
j=1

|1− e(bjθ)|dθ.

Hölder’s inequality then implies that

A (V ) ≤ −1 +
2k∏
j=1

(∫ 1

0

|1− e(bjθ)|2kdθ
) 1

2k

= −1 +

(
2k

k

)
,

whence

A (V ) ≤
(

2k

k

)
− 1.(7.1)

Finally, we claim that (7.1) is an equality if, and only if, the multiset {b1, . . . , b2k} is of the form
{b,−b, . . . , b,−b} with b = b1 (which must equal q). This claim immediately implies (b) of the
Proposition.

If the multiset {b1, . . . , b2k} is of the form {b,−b, . . . , b,−b}, then the integral formula for A (V )

becomes A (V ) = −1 +
∫ 1

0
|1 − e(bθ)|2kdθ =

(
2k
k

)
− 1. Conversely, we know that Hölder’s

inequality above is an equality if, and only if, there exist real numbers λ1, . . . , λ2k such that |1 −
e(bjθ)| = λj|1 − e(b1θ)| for θ ∈ [0, 1] and j ∈ {1, . . . , 2k}. Since

∫ 1

0
|1 − e(bθ)|dθ = 4/π for

b 6= 0, we must have that λj = 1 for all j. Moreover, taking θ close enough to 0, we find that the
condition |1− e(bjθ)| = |1− e(b1θ)| implies that |bj| = |b1| for all j. So {b1, . . . , b2k} has ` copies
of b1 and 2k − ` copies of −b1, for some ` ∈ {1, . . . , 2k}. Since b[2k] = 0 by our assumption that
s[2k] ∈ V , we must have that ` = k, which completes the proof of our claim.

(c) Write dim(V ) = 2k − n, where n ≥ 2. By part (a), we may assume that s1, . . . , s2k /∈ V .
We first deal with the case n = 2, k = 2 by direct computation. In this case, we have s1 + s2 +

s3 + s4 ∈ V and s1, . . . , s4 /∈ V , by assumption. It is thus easy to see that either V ∩ {sI : I ∈
S∗(2k)} = {s1 + · · ·+ s4} or V ∩{sI : I ∈ S∗(2k)} = {s1 + · · ·+ s4, sJ}, for some J containing
two elements. (Here we recall that S∗(2k) = {I ⊆ [2k] : I 6= 0}.) In any case, A (V ) ≤ 2, as
required. This completes the proof of part (c) when n = 2 and k = 2.

We now assume that either n > 2 or k > 2. Choose a maximal subset of linear forms
{sj1 , . . . , sjn′} that are linearly independent when reduced mod V . Clearly, n′ = n. Moreover,
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a permutation of the variables s1, . . . , s2k allows to assume without loss of generality that ji = i
for each i. Then

sj ≡
n∑
i=1

ri,jsi (modV ) (1 ≤ j ≤ 2k),

for certain ri,j ∈ Q. We write ri,j = bi,j/q, where bi,j ∈ Z and q ∈ Z≥1, so that sJ ∈ V if, and
only if, bi,J :=

∑
j∈J bi,j = 0 for each i ∈ [n]. Thus

A (V ) + 1 =

∫
[0,1]n

2k∏
j=1

(1− e(b1,jθ1 + · · ·+ bn,jθn))dθ1 · · · dθn.

We set

Jm = {1 ≤ j ≤ 2k : bn−m+1,j = · · · = bn,j = 0} (0 ≤ m ≤ n)

to be the set of j such that sj is in the span of {s1, . . . , sn−m} (modV ). In particular, J0 = [2k]
and Jn = ∅. By construction, si is a basis vector of Wk/V for 1 ≤ i ≤ n, so for 0 ≤ m ≤ n − 1
we have n −m ∈ Jm but n −m /∈ Jm+1. In particular, #(Jm \ Jm+1) ≥ 1 for 0 ≤ m ≤ n − 1.
Then

A (V ) + 1 ≤
∫

[0,1]n−1

∏
j∈J1

|1− e(b1,jθ1 + · · ·+ bn−1,jθn−1))|

×

∫ 1

0

∏
j∈[2k]\J1

|1− e(b1,jθ1 + · · ·+ bn,jθn)|dθn

 dθ1 · · · dθn−1.

By Hölder’s inequality, the innermost integral is bounded by

∏
j∈[2k]\J1

(∫ 1

0

|1− e(b1,jθ1 + · · ·+ bn,jθn)|2k−#J1dθn

) 1
2k−#J1

.

Since bn,j 6= 0 for j /∈ J1, we make the change of variables θn → b1,jθ1 + · · · + bn,jθn and use
periodicity to find that∫ 1

0

|1− e(b1,jθ1 + · · ·+ bn,jθn)|2k−#J1dθn =
1

|bn,j||

∫ |bn,j |
0

|1− e(θ)|2k−#J1dθ

=

∫ 1

0

|1− e(θ)|2k−#J1dθ.

We set

M(λ) =

∫ 1

0

|1− e(θ)|λdθ = 2λ
∫ 1

0

| sin(πθ)|λdθ.

Note that M(2k) =
(

2k
k

)
. Thus we find that

A (V ) + 1 ≤M(2k −#J1)

∫
[0,1]n−1

∏
j∈J1

|1− e(b1,jθ1 + · · ·+ bn−1,jθn−1))|dθ1 · · · dθn−1.
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We repeat the same process to obtain

A (V ) + 1 ≤M(2k −#J1)M(#J1 −#J2)

×
∫

[0,1]n−1

∏
j∈J2

|1− e(b1,jθ1 + · · ·+ bn−1,jθn−1))|dθ1 · · · dθn−2

≤M(2k −#J1)M(#J1 −#J2) · · ·M(#Jn−2 −#Jn−1)M(#Jn−1).

Thus

A (V ) + 1 ≤ sup{M(λ1) · · ·M(λn) : λ1 + · · ·+ λn = 2k, λj ≥ 1 (1 ≤ j ≤ n)}.(7.2)

By Cauchy-Schwarz, for any positive reals x, y we have

2(xy)(A+B)/2 = 2(xy)B(xy)(A−B)/2 ≤ (xy)B(xA−B + yA−B) = xAyB + xByA.

Thus, applying this with x = | sin θ1|, y = | sin θ2| we find

M(λ1)M(λ2) =
2λ1+λ2

2

∫ 1

0

∫ 1

0

(
| sin(πθ1)λ1 sin(πθ2)λ2|+ | sin(πθ1)λ1 sin(πθ2)λ2|

)
dθ1dθ2

≥ 2λ1+λ2
(∫ 1

0

| sin(πθ)|(λ1+λ2)/2dθ
)2

= M
(λ1 + λ2

2

)2

.

In particular, logM(λ) is a convex function. It is then easy to see that supremum in (7.2) is attained
when λj = 1 for n− 1 of the indices j ∈ [n], and with the remaining λj being equal to 2k−n+ 1.
Indeed, without loss of generality λ1, . . . , λn−1 ≤ λn, and if λj 6= 1 for some j < n, then we can
increase the size of M(λ1) . . .M(λn) by replacing λj with λj − 1 and λn with λn + 1. So

A (V ) ≤M(1)n−1M(2k − n+ 1)− 1.

Thus, it suffices to show that

M(1)n−1M(2k − n+ 1) <

(
2k

k

)
− n = M(2k)− n(7.3)

for 2 ≤ n ≤ 2k − 1 and k ≥ 2.
Firstly, consider n = 2 and k ≥ 3. The function k 7→ M(1)M(2k − 1)/M(2k) is decreasing in

k by the convexity of logM(λ). Thus

M(1)M(2k − 1) ≤ M(1)M(3)

M(4)
M(2k) =

64

9π2

(
2k

k

)
<

(
2k

k

)
− 2.

Here we have used the fact M(1) = 4/π, M(3) = 32/3π and performed a quick computation to
verify 64

(
2k
k

)
/(9π2) <

(
2k
k

)
− 2 for all k ≥ 3.

Now consider 3 ≤ n ≤ 2k − 1. The function n 7→ M(1)n−1M(2k − n+ 1) is decreasing in m
since

M(1)n−1M(2k − n+ 1)

M(1)n−2M(2k − n+ 2)
=
M(1)M(2k − n+ 1)

M(2k − n+ 2)
≤ M(1)2

M(2)
< 1.
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Similarly k 7→ M(2k − 2)/M(2k) is decreasing in k respectively by the convexity of logM(λ).
Thus we have

M(1)n−1M(2k − n+ 1) ≤M(1)2M(2k − 2)

≤ M(1)2M(2)

M(4)
M(2k)

=
16

3π2

(
2k

k

)
<

(
2k

k

)
− 2k + 1 = M(2k)− 2k + 1.

Here we have performed a short computation to verify the final inequality. This completes the
proof of the proposition. �

8. CONTOUR INTEGRATION

In this section we begin our attack on Theorem 1.3. All implied constants might depend on k
and on A. We will actually prove a result that is a little weaker than Theorem 1.3: we will show
that there exist constants ck,A and c′k for which

MfA,2k(R) = ck,A(logR)Ek,A +O((logR)Ek,A−1),(8.1)

and

Mf̃0,2k
(R) = c′k(logR)(

2k
k )−2k +O((logR)(

2k
k )−2k−1).(8.2)

Here we recall that Ek,A = max(
(

2k
k

)
− 2k(A + 1),−1), and we have defined f̃0(x) = f0(x) −

f0(x+ log 2
logR

), so that

Mf̃0
(n;R) =

∑
d|n

R/2<d≤R

µ(d).

Notice that we do not claim here that ck,A 6= 0 and ck 6= 0, as is required in order to prove Theorem
1.3. We do obtain a very complicated expression for these constants, but we are unable to prove
they are non-zero (or evaluate them at all). Showing that ck,A > 0 and c′k > 0 is the objective of
Section 9.

8.1. Initial preparations. We will first prove relation (8.1). The proof of relation (8.2) is very
similar, and we indicate the necessary changes in the end of Section 8.

We note that

(̂fA)R(s) =
A!Rs

(logR)AsA+1
.(8.3)

This function is absolutely integrable on vertical lines Re(s) = c 6= 0 when A ≥ 1, but this is not
the case when A = 0. However, recall from relation (6.4) that

Mf0,2k(R) =Mh,2k(R) +O

(
1

(logR)2

)
,



SIEVE WEIGHTS AND THEIR SMOOTHINGS POIDS DE CRIBLE ET LEURS LISSAGES 33

where h is a smooth function such that h(x) = 1 for x ≤ 1− 1/(logR)C and h(x) = 0 for x ≥ 1,
for some constant C ≥ (2k − 1)22k+1 + 2k + 2 to be chosen later. Therefore relation (8.1) is
reduced to showing that

Mg,2k(R) = ck,A(logR)Ek,A +O
(
(logR)Ek,A−1

)
,(8.4)

where g = h when A = 0, and g = fA when A ≥ 1.
For any λ > 1, which will be chosen to be sufficiently large in terms of k, relation (6.3) implies

that

Mg,2k(R) =
∑

mj∈Z≥1

1≤j≤2k

∏2k
j=1 µ(mj)

[m1, . . . ,m2k]
· 1

(2iπ)2k

∫
· · ·
∫

Re(sj)=λ
j/ logR

1≤j≤2k

2k∏
j=1

m
−sj
j

(
2k∏
j=1

ĝR(sj)

)
ds2k · · · ds1.

To this end, we introduce the multiple Dirichlet series

D(s) :=
∑

mj∈Z≥1

1≤j≤2k

∏2k
j=1 m

−sj
j µ(mj)

[m1, . . . ,m2k]
,

which converges absolutely when Re(sj) > 0 for all j as can be seen, for example, by the Euler
product expansion

D(s) =
∏
p

( ∑
ν1,...,νk∈{0,1}

(−1)ν1+···+νk

pν1s1+···+νksk
· 1

[pν1 , . . . , pνk ]

)

=
∏
p

1 +
1

p

∑
∅6=I⊂[2k]

(−1)#I

psI

(8.5)

=
∏
p

(
1− 1

p
+

1

p

2k∏
j=1

(
1− 1

psj

))
,(8.6)

where we have used the notation sI =
∑

i∈I si. (Similar computations are performed in [1].) We
thus see that

Mg,2k(R) =
1

(2iπ)2k

∫
· · ·
∫

Re(sj)=λ
j/ logR

1≤j≤2k

D(s)

(
2k∏
j=1

ĝR(sj)

)
ds2k · · · ds1.

for any λ > 1.
We shall truncate all variables of integration at height

T := exp{(log logR)2}.

To do so, we notice that ĝR(s) � (logR)O(1)/|s|2 for Re(s) = λj/ logR, a consequence of (6.2)
whenA = 0 and of (8.3) whenA ≥ 1, as well as thatD(s)� (logR)O(1), an estimate that follows
by formula (8.5) and the Prime Number Theorem. We conclude that

Mg,2k(R) = Ig,2k(R) +O

(
1

(logR)2

)
,
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where

Ig,2k(R) :=
1

(2iπ)2k

∫
· · ·
∫

Re(sj)=λ
j/ logR

|Im(sj)|≤T
1≤j≤2k

D(s)

(
2k∏
j=1

ĝR(sj)

)
ds2k · · · ds1.

Motivated by (8.5) and (8.6), we set

P (s) := D(s)
∏

I∈S∗(2k)

ζ(1 + sI)
(−1)1+#I

=
∏
p


(

1− 1

p
+

1

p

2k∏
j=1

(
1− 1

psj

)) ∏
I∈S∗(2k)

(
1− 1

p1+sI

)(−1)#I
 ,

which is analytic when Re(sj) > −1/(4k) for all j, as well as

F (s) := P (s)
2k∏
j=1

(logR)AĝR(sj)

Rsjζ(1 + sj)A+1

and

eI :=

{
A if #I = 1,

(−1)#I if #I ≥ 2,

so that

Ig,2k(R) =
1

(2iπ)2k

∫
· · ·
∫

Re(sj)=λ
j/ logR

|Im(sj)|≤T
1≤j≤2k

F (s)Rs1+···+s2k

(logR)2kA

∏
I∈S∗(2k)

ζ(1 + sI)
eIds2k · · · ds1.

Given ` ∈ N, we now let

Ω` := {s ∈ C` : |Re(sj)| < 2/(log T )4/3, |Im(sj)| < T + 1 (1 ≤ j ≤ `)}
and define C` to be the class of complex-valued functions f such that: (a) f is defined over a
complex domain containing Ω`; (b) f is analytic in Ω`; (c) the derivatives of f satisfy the bound

∂j1+···+j`f

∂sj11 · · · ∂s
j`
`

(s)�j1,...,j`

(log logR)O(j1+···+j`)

(|s1|+ 1) · · · (|s`|+ 1)
(8.7)

for all j1, . . . , j` ≥ 0 and all s = (s1, . . . , s`) ∈ Ω`.
We claim that F ∈ C2k. Indeed, there are absolute constants δ, c0 > 0 such that ζ(s)(s − 1) is

analytic and non-vanishing for |s− 1| ≤ δ and

ζ(j)(s),

(
1

ζ

)(j)

(s)�j logj+1(|t|+ 2) when σ ≥ 1− c0

log(|t|+ 2)
, |s− 1| ≥ δ,(8.8)

with (8.8) being a consequence4 of the classical zero-free region for ζ . Moreover,

dj

dsj

(
sA+1ĝR(s)

Rs

)
� 1

(logR)A
(Re(s) ≥ −1, j ∈ Z≥0),(8.9)

4The claimed bound follows by [26, Theorems 3.8 and 3.11] and the fact that if f is analytic in a neighbourhood of
the circle |z| ≤ r, then f (j)(z0) =

1
2πi

∮
|z|=r f(z)dz/z for any z0 with |z0| < r.
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an estimate that follows from (6.5) when A = 0 and from the formula (8.3) for (̂fA)R otherwise.
Our claim that F ∈ C2k then follows.

8.2. Contour shifting. We will simplify Ig,2k(R) and prove (8.1) by a 2k-dimensional contour
shifting argument that we will demonstrate in an iterative fashion. The general idea is to move the
variables sj to the left in a certain order. When we move the contour corresponding to the variable
sj , we will pick up contributions from poles of the integrand (coming from solutions to linear
equations of the form sI = 0, I ∈ S∗(2k) with eI > 0), and be left with a residual contour (which
will be negligible in size). Thus we only need to consider the contributions from the poles, and
these contributions will all be multi-integrals similar to Ig,2k(R) but involving one fewer variable.
By iterating this, we show that Ig,2k(R) is (up to a small error term) given by the total contribution
of all the successive poles we have encountered having shifted all 2k variables. We will show that
provided one moves the contours in a suitable order, all the contributions from all the multi-poles
and all the residual integrals give a contribution ck,A(logR)Ek,A +O

(
(logR)Ek,A−1

)
.

When we consider poles we encounter equations of the form sI = 0, where we think of sI =∑
i∈I si as a linear form in the variables s1, . . . , s2k. To avoid any ambiguity when we consider

multiple such equations, we will let L0,I ∈ Q[x1, . . . , x2k] be the linear form corresponding to sI ,
that is to say

L0,I(x) :=
∑
i∈I

xi.

Before we setup the necessary notation to keep track of all the terms we encounter when performing
the multiple contour shifting, we first describe the first two contour shifting steps to help motivate
the basic idea.

The first variable we move to the left is s2k. When doing so, we pick up the contribution from
some poles in the integrand. Such a pole must occur when L0,I1(s) = 0 for some I1 ⊂ [2k]
with eI1 > 0 and 2k ∈ I1 (a possible pole from

∏
I∈S∗(2k) ζ

eI (1 + L0,I(s)).) Having fixed such
a pole and the corresponding set I1, we use this equation L0,I1(s) = 0 to rewrite s2k in terms of
sj , j ∈ [2k] \ {2k}. Imposing the same condition on the xj’s, we find that for each I ⊂ [2k], the
linear form L0,I(x1, . . . , x2k) becomes a linear form L1,I in the variables xj for j ∈ [2k] \ {2k}.
Trivially, L1,I = 0 if, and only if, I ∈ I1 := {∅, I1}. This pole contribution can be written as an
integral over s1, . . . , s2k−1, with an integrand that has poles only when L1,I(s) = 0.

Next, for this integral over s1, . . . , s2k−1, we choose some other variable sj2 (precisely how we
choose sj2 will be specified later), and move the sj2 contour. This produces a residual contour
(which will be negligible) and contributions from further poles in the integrand which occur only
when sj2 satisfies a linear equation L1,I2(s) = 0 for some I2 ∈ S∗(2k) \ I1 with eI2 > 0 and with
L1,I2(x) having a non-zero xj2 coefficient. We use this to write sj2 in terms of sj , j ∈ [2k]\{2k, j2}.
Imposing the corresponding condition on the variables xj makes L1,I a linear form L2,I in the
variables xj , j ∈ [2k] \ {2k, j2}. Some of these new linear forms will vanish identically, and the
total number will determine the order of this pole.

Continuing in this manner, we eventually write our original integral Ig,2k(R) in terms of O(1)
contributions from repeatedly encountered poles (all of which will be of the form c(logR)m for
some c,m) or from terms which correspond to encountering a residual integral (which will always
be small). In order to control this process, we need to keep track of which poles we encounter, the
order of the poles, and the integrands of the new multi-integrals corresponding to these poles. To
do this we introduce some notation and terminology.
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• Let us be given an integer N ∈ {0, 1, . . . , 2k}, which we shall often refer to as the level.
It describes how many iterations we have performed (i.e. how many variables sj we have
shifted). The case N = 0 corresponds to the initial integral Ig,2k(R).
• Let us be given sets I1, . . . , IN ⊂ [2k] and indices j1, . . . , jN such that:

(i) jn ∈ In for each 1 ≤ n ≤ N .
(ii) j1, . . . , jN are distinct.

(iii) eIn > 0 for each 1 ≤ n ≤ N .
Here the sets I1, . . . IN correspond to the sequence of poles which we have encountered
from performing N contour shifts, and the indicex jn corresponds to the variable we have
chosen to use to shift the nth contour.

Since the ji are distinct, the linear forms L0,I1 , . . . , L0,IN are linearly independent over Q. We
let VN be their Q-span and IN to be those forms that vanish identically subject to the conditions
L0,I1 = · · · = L0,IN = 0. More generally, for 0 ≤ n ≤ N let

Vn = SpanQ(L0,I1(x), . . . , L0,In(x)) and In = {I ∈ S(2k) : L0,I(x) ∈ Vn},(8.10)

with the conventions that V0 = {0} and I0 = {∅}. Since jr ∈ Ir for all r, and j1, . . . , jn are
distinct integers, if we impose the conditions

∑
i∈In xi = 0 on the variables xi, then we may write

xj1 , . . . , xjn as Q-linear combinations of the other variables. Hence the linear form L0,I becomes
a linear form Ln,I in the variables xj , j ∈ [2k] \ {j1, . . . , jn}. Clearly, L0,I ∈ Vn if and only if
L0,I = 0 after we have “quotiented” the space of linear forms in the variables xj with the relations
L0,I1 = · · · = L0,In = 0, if and only if Ln,I = 0.

Remark. We will show later on that the variables s1, . . . , s2k can be permuted in a way that allows
us to assume that jn = 2k − n+ 1 for all n.

Definition 8.1. Let N be a level. The triplet (I,h, d) is called a type of level N if:

(a) I = (I1, . . . , IN) is an N -tuple of sets such that 2k − n + 1 ∈ In and eIn > 0 for all
n = 1, 2, . . . , N .

(b) h = (hn,I)0≤n≤N, I∈S∗(2k) is a tuple of non-negative integers such that:
(i) hn,I = 0 for 0 ≤ n ≤ N if eI = 0 (i.e. if A = 0 and #I = 1);

(ii) 0 = h0,I ≤ h1,I ≤ · · · ≤ hN,I for I ∈ S∗(2k);
(iii) If I ∈ In \ In−1 for some n ∈ [N ], then hm,I = hn,I for all m ≥ n.
The integers hn,I will describe the different terms coming up in poles of high order, corre-
sponding to taking many derivatives of different parts of the integrand. (The hthN,I derivative
of ζeI (1 + LN,I(s)) will occur in the integrand of the term we are considering.)

(c) d is a non-negative integer.

We will further say that the triplet (I,h, d) is an admissible type of level N if

HN ≥ N + d,

where

HN = HN(h, IN , A) :=
∑

I∈IN\{∅}

(−1)#I −
∑

I∈S(2k)\IN

hN,I + (A+ 1)
∑

j∈[2k], {j}∈IN

1.

Remark 8.1. We must have that HN ≥ N if (I,h, d) is an admissible type of level N . We will see
that the quantity HN is related to the total order of a the poles we have picked up from the first N
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contour shiftings. We further note that, in the notation of Section 7, it can be written as

HN = A (VN)−
∑

I∈S(2k)\IN

hN,I + (A+ 1)
∑

j∈[2k], {j}∈IN

1.

The data in a type of levelN will keep track of all the relevant information on terms we encounter
from poles having shifted N contours. Given a type, we can now define the key objects we wish to
consider:

Definition 8.2. Let (I,h, d) be a type of levelN . A function J : R≥2 → C is called a fundamental
component of level N and of type (I,h, d) if:

• the type (I,h, d) is admissible, that is to say, we have HN ≥ N + d;
• when N = 2k, we have J(R) = (logR)HN−N−d−2kA;
• when N < 2k, we have

J(R) =
(logR)HN−N−d−2kA

(2iπ)2k−N

∫
· · ·
∫

Re(sj)=λj/ logR
|Im(sj)|≤T
1≤j≤2k−N

G(s)REN (s)

×
∏

I∈S(2k)\IN

(ζeI )(hN,I) (1 + LN,I(s))ds2k−N · · · ds1

where λj/λj−1 ≥ λ,

EN(s1, . . . , s2k−N) := LN,[2k](s1, . . . , s2k−N),

andG is a function in the variables s1, . . . , s2k−N that belongs to the class C2k−N . Moreover,
if we have additionally that d = 0, then G is given by

G(s) = F (LN,{1}(s), . . . , LN,{2k}(s)).

We note that when d = 0, we have that G is non-vanishing in Ω2k−N by (8.8) and the preceding
discussion.

Definition 8.3. A fundamental component of level N and type (I,h, d) is called irreducible if
either N = 2k or EN = 0. Otherwise, it is called reducible.

With the above notation, the integral Ig,2k(R) is a reducible fundamental component of level 0
and of type (∅, ∅, 0).

If we say that J(R) is a fundamental component of level N , we mean that there exists an ad-
missible type (I,h, d) of level N such that J(R) is a fundamental component of level N and type
(I,h, d).

We begin with a lemma that justifies the terms irreducible vs. reducible, showing how reducible
components are a linear combination of irreducible ones (up to a very small error term). First, we
need to introduce a last piece of notation. Notice that if EN 6= 0, then we may uniquely write

EN(x) = γ1x1 + γ2x2 + · · ·+ γjN+1
xjN+1

for some γj ∈ Q with γjN+1
6= 0. If λ is big enough, then the sign of Re(EN(s)) throughout

the region of integration is constant and equal to the sign of γjN+1
. The behaviour of reducible

fundamental components differs according to this sign:
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Lemma 8.4. Assume the above setup. Let J(R) be a reducible fundamental component of level
N < 2k and type (I,h, d), and let γ1, . . . , γjN+1

be as above. Assume that λ is large enough in
terms of (I,h, d).

(a) If γjN+1
> 0, then J(R) is a linear combination of O(1) fundamental components of level

N + 1 with coefficients of size O(1), up to an error term of size� T−1+o(1). Each of these
fundamental components has (admissible) type (I ′,h′, d′) that depends only on N, I,h, d.

(b) If γjN+1
< 0, then J(R)� T−1+o(1).

The implied constants depend at most on (I,h, d), A and the function G in the definition of J , and
are independent of R.

We iterate the above lemma until all the fundamental components we are dealing with are irre-
ducible. For such components, we have the following asymptotic formula.

Lemma 8.5. Assume the above setup. If J(R) is an irreducible fundamental component, then there
is some c ∈ C such that

J(R) = c(logR)Ek,A +O((logR)Ek,A−1),

where we recall that Ek,A = max(
(

2k
k

)
− 2k(A+ 1),−1). The implied constant and the constant c

are independent of R.

Since Ig,2k(R) is a reducible fundamental component of level 0, we apply Lemma 8.4 repeatedly
to write it as a linear combination of O(1) irreducible fundamental components, and then estimate
these components by Lemma 8.5. This establishes (8.4). We now prove the above two key lemmas.

8.3. Proof of the auxiliary Lemmas 8.4 and 8.5.

Proof of Lemma 8.4. Note that if EN 6= 0, then we must have that either N = 0, either k ≥ 2 or
A ≥ 1: when N = k = 1 and A = 0, the only I ⊂ {1, 2} with eI > 0 is I = {1, 2}. But if
x{1,2} = 0, we must have that E1 = 0, a contradiction.

(a) Here γjN+1
> 0. For notational simplicity, we make the change of variables

s′j = sj (1 ≤ j < jN+1), s′j = sj+1 (jN+1 ≤ j < 2k −N), s′2k−N = sjN+1
,

which corresponds to a cyclic permutation of the variables sjN+1
, . . . , s2k−N . We similarly define

the linear forms x′j , using the corresponding permutation of the forms xj , as well as the parameters
λ′j . We shift the s′2k−N contour to the line Re(s′2k−N) = −1/(log T )3/2. The contribution of
the horizontal integrals is � (logR)O(1)/T . Moreover, when Re(s′2k−N) = −1/(log T )3/2 and
Re(s′j) = O(1/ logR) for j < 2k −N , we have that

Re(EN(s′)) = −
γjN+1

(log T )3/2
+O

(
1

logR

)
.

It thus follows that the contribution of the integral with Re(s′2k−N) = −1/(log T )3/2 is� e−
√

logR,
say, which is of negligible size. So we need only worry about the poles that the contour shifting
introduces.

The poles occur when LN,IN+1
(s′) = 0 for some IN+1 ∈ S(2k)\IN with eIN+1

> 0 such that the
coefficient of s′2k−N in LN,IN+1

is non-zero. As we discussed in Section 8.2, imposing the relation
LN,IN+1

(x′) = 0 allows us to write x′2k−N as a linear combination of the forms x′1, . . . , x
′
2k−N−1,

say x′2k−N = C(x′1, . . . , x
′
2k−N−1). We then define the sets VN+1 and IN+1 as in (8.10), and

similarly let EN+1 = LN+1,[2k].
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We need to understand the order of the pole at s′2k−N = C(s′1, . . . , s
′
2k−N−1). We only look

at generic points (s′1, . . . , s
′
2k−N−1): it could be the case that for some measure-zero subset of

points, we get a different pole order. For example, for fixed s1 ∈ C, the function s2 7→ s1/s2 has
generically a pole of order 1 at s2 = 0, unless s1 = 0, when there is no pole. This reduced pole
order however would not affect an integral over s1, because it only occurs for a measure-zero set
of s1 values.

With the above discussion in mind, we note that the generic order of the zero of the analytic
function ∏

I∈S(2k)\IN+1

(ζeI )(hN,I)(1 + LN,I(s
′))

at s′2k−N = C(s′1, . . . , s
′
2k−N−1) is 0. Indeed, for this product to vanish we must have that

LN+1,I(s
′) = 0, which happens non-generically when I ∈ S(2k) \ IN+1.

Next, let ν be the generic order of the zero of the analytic function

G(s′)
∏

I∈IN+1\IN
eI=−1, hN,I≥2

(
1

ζ

)(hN,I)

(1 + LN,I(s
′))(8.11)

at s′2k−N = C(s′1, . . . , s
′
2k−N−1). If d = 0 and hN,I = 0 for all I ∈ S−(2k) ∩ (IN+1 \ IN), then

the function in (8.11) equals F (LN,{1}(s
′), . . . , LN,{2k}(s

′)), which does not vanish in Ω2k, so that
ν = 0.

From the above discussion, we conclude that the generic order of the pole of the integrand of
J(R) at s′2k−N = C(s′1, . . . , s

′
2k−N−1) is

m =
∑

I∈IN+1\IN
#I=even

(hN,I + 1)−
∑

I∈IN+1\IN
eI=−1, hN,I=0

1 +
∑

1≤j≤2k
{j}∈IN+1\IN

(hN,{j} + A)− ν

=
∑

I∈IN+1\IN

(hN,I + (−1)#I) + (A+ 1)
∑

j∈[2k], {j}∈IN+1\IN

1

− ν −
∑

I∈S−(2k)∩(IN+1\IN )
hN,I≥2,#I≥3

(hN,I − 1).

(8.12)

Note that it could be the case that m ≤ 0, in which case there is no pole contribution to J(R) from
the pole with LN,IN+1

(s′) = 0.
Assume, now, that m ≥ 1. Then, m + HN ≥ 1 + N + d by our assumption that HN ≥ N + d.

Moreover,

m+HN =
∑

I∈IN+1\{∅}

(−1)#I −
∑

I∈S(2k)\IN+1

hN,I + (A+ 1)
∑

j∈[2k], {j}∈IN+1

1

− ν −
∑

I∈S−(2k)∩(IN+1\IN )
hN,I≥1,#I≥3

(hN,I − 1).
(8.13)

In order to continue, we separate two subcases depending on whether N = 2k− 1 or N ≤ 2k− 2.

Case 1 of the proof of Lemma 8.4: N = 2k − 1. In this case, we have that s′j = L2k−1,{j}(s
′
1) =

ajs
′
1 for all j, where aj ∈ Q. Thus, the only potential pole is at s′1 = 0. If m ≥ 1, so that there
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a genuine pole at s′1 = 0, then we obtain an evaluation of J(R) as a finite linear combination of
powers of logR (up to an error term of size O((logR)O(1)/T )), the highest of which has exponent

H2k−1 +m− 2k − 2kA− d =
∑

I∈S∗(2k)

(−1)#I − ν −
∑

I∈S−(2k)\I2k−1
h2k−1,I≥2,#I≥3

(h2k−1,I − 1)− d ≤ −1,

since I2k = S(2k) in this case. We have thus written J(R) as a linear combination of irreducible
fundamental components of level 2k and suitable type (taking h2k,I = h2k−1,I and I2k = {1}), up
to a small error term. This proves Lemma 8.4 in this case.

As an amusing remark, we note that the above exponent equals Ek,A only when A > 1
2k

(
2k
k

)
− 1,

d = 0, ν = 0, h2k−1,I ∈ {0, 1} for I ∈ S−(2k) \ I2k−1, and G(s) = F (a1s, . . . , a2ks), in which
case the residue is

G(0) = A!2kF (0, . . . , 0) = A!2k.

Otherwise, these poles contribute towards the error term of Ig,2k(R).

Case 2 of the proof of Lemma 8.4: N ≤ 2k − 2. Then the contribution of the pole s′2k−N =
C(s′1, . . . , s

′
2k−N−1) to J(R) equals

(logR)HN−N−d−2kA

(2iπ)2k−N−1m!

∫
· · ·
∫

Re(s′j)=λ
′
j/ logR,

|Im(s′j)|≤T
1≤j≤2k−N−1

dm−1

d(s′2k−N)m−1

∣∣∣∣
s′2k−N=C(s′1,...,s

′
2k−N−1)

(Z(s′))ds′2k−N−1 · · · ds′1,

where

Z(s′) := G(s′)REN (s′)(s′2k−N − C(s′1, . . . , s
′
2k−N−1))m

∏
I∈S(2k)\IN

(ζeI )(hN,I) (1 + LN,I(s
′)).

Applying the generalized product rule and writing sj in place of s′j , we claim that the above integral
can be expressed as a finite sum of terms of the form

c · (logR)HN+m−h−N−1−d−2kA

(2iπ)2k−N−1

∫
· · ·
∫

Re(s′j)=λ
′
j/ logR, |Im(s′j)|≤T

1≤j≤2k−N−1

G̃(s)REN+1(s)

×
∏

I∈S(2k)\IN+1

(ζeI )(hN+1,I) (1 + LN+1,I(s))ds2k−N−1 · · · ds1,

where:
• c� 1;
• h ∈ {0, . . . ,m− 1};
• hN+1,I ≥ hN,I with equality if I ∈ IN+1 \ {∅};
•
∑

I∈S(2k)\IN+1
(hN+1,I − hN,I) ≤ h;

• G̃ is in the class C2k−N−1.

The first four claims are easy to verify, but our claim about G̃ requires some justification. To
simplify the notation, we make the change of variables s′2k−N = τ + C(s′1, . . . , s

′
2k−N−1). Let

δN,I denote the coefficient of x′2k−N in the linear form LN,I . If I ∈ IN+1, so that LN+1,I = 0,
we find that LN,I(s′1, . . . , s

′
2k−N) = δN,Iτ . So, if I ∈ IN+1 \ IN , then δN,I 6= 0. Finally, we let

G1(s′1, . . . , s
′
2k−N−1, τ) to be the function G(s′1, . . . , s

′
2k−N) after our change of variables. If ν1
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denotes the generic order of the zero of G1(s′1, . . . , s
′
2k−N−1, τ) at τ = 0, then the function G̃ will

simply be a linear combination the functions

∂j

∂τ j

∣∣∣∣
τ=0

(τ−ν1G1(s′1, . . . , s
′
2k−N−1, τ)) =

j!

(j + ν1)!
· ∂

j+ν1G1

∂τ j+ν1
(s′1, . . . , s

′
2k−N−1, 0).

Since G is in the class C2k−N , the above functions are in the class C2k−N−1, which proves our claim
about G̃.

It is straightforward to verify that h′ and I ′ satisfy the required properties. Thus it remains to
show that there is a suitable d′.

Now, relation (8.13) implies that the exponent of logR is HN+1 − (N + 1)− d′ − 2kA, with

d′ = d+ ν +
∑

I∈S−(2k)∩(IN+1\IN )
hN,I≥2,#I≥3

(hN,I − 1) + h−
∑

I∈S(2k)\IN+1

(hN+1,I − hN,I) ≥ 0.

Moreover, we have that

HN+1 − d′ = HN − d+m− h ≥ N + 1 =⇒ HN+1 ≥ d′ +N + 1,

as needed. Finally, if d′ = 0, it is easy to check that G(s) = F (LN+1,{1}(s), . . . , LN+1,{2k}(s)).

(b) Here γjN+1
< 0. We then shift the contours of s2k−N , s2k−N−1, . . . , sjN+1

in this order to the
lines Re(sj) = λj/(log T )3/2, jN+1 ≤ j ≤ 2k−N . If λ is large enough, then we do not encounter
any poles and the horizontal lines contribute� (logR)O(1)/T when we make this shift. Finally,
when Re(sj) = λj/(log T )3/2 for jN+1 ≤ j ≤ 2k−N , and Re(sj) = λj/ logR for 1 ≤ j < jN+1,
then we have that

Re(E(s)) = −
|γjN+1

|λjN+1
(1 +O(1/λ))

(log T )3/2
,

so that our integrand is� e−
√

logR if λ is large enough. We thus find that in this case

J(R)� T−1+o(1),

as needed. �

Remark 8.2. Case 1 is feasible for some choice of I1, . . . , I2k−1. Indeed, if k = 1 and A ≥ 1, so
that N = 1, then we note that at least one of the zeta factors must have survived in the numerator
after shifting the s2 contour, and there are none in the denominator, so there is a pole at s′1 = 0. On
the other hand, if k ≥ 2, then if I1 = {2k − 1, 2k}, I2 = {2k − 1, 2k − 2} and I3 = {2k − 2, 2k},
then a2k = a2k−1 = a2k−2 = 0, and a1 6= 0. Taking h2k−1,I = 0 for all I , we see that

m =
∑

I∈S(2k)\I2k−1

(−1)#I + (A+ 1)
∑

j∈[2k], aj 6=0

1 = (A+ 1)
∑

j∈[2k], aj 6=0

1 ≥ 1,

where we used Proposition 7.1(a). Thus we see indeed that there is a genuine pole at s′1 = 0.

It remains to prove the second intermediate step in the proof of (8.4):

Proof of Lemma 8.5. We separate into three cases depending on whether N = 2k, N = 2k − 1 or
N ≤ 2k − 2.

Case 1 of the proof of Lemma 8.5: N = 2k. Here there is no integral and we have that J(R) =
c(logR)H2k−2k(A+1)−d. Since I2k = {I ⊂ [2k]}, we find that H2k = −1 + 2k(A + 1), whence
J(R) = (logR)−d−1. If d = 0 and Ek,A = −1, the lemma follows with c = 1; otherwise, we take
c = 0.
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Case 2 of the proof of Lemma 8.5: N = 2k− 1. In this case J(R) is given by a one-dimensional
integral over s1. Moreover, there exist coefficients aj ∈ Q such that xj = L2k−1,{j}(x1) = ajx1 for
all j. Therefore the only possible pole of the integrand in J(R) is when s1 = 0. If there is such a
pole, then it means that {1} /∈ I2k−1. In this case, the order of this potential pole, say m, would be
given by (8.12) with N = 2k − 1, I2k = S(2k) and ν defined analogously, so that (8.13) implies
that

m+H2k−1 − (2k − 1)− 2kA = 1 +
∑

I∈S∗(2k)

(−1)#I −
∑

I∈S−(2k)\I2k−1
#I≥3, h2k−1,I≥2

(h2k−1,I − 1)− ν

≤ 0,

(8.14)

First, let us assume m ≥ 1 (i.e. there is a genuine pole at s1 = 0). We find that H2k−1 + 1 −
2k(A + 1) ≤ −1. We then move the line of integration of s1 = σ1 + it1 to the contour σ1 =
1/(log(2 + |t1|))3/2, |t1| ≤ T . No poles are encountered and the horizontal integrals contribute
� (logR)O(1)/T . Moreover, the integral converges fast enough now (even when A = 0) that we
may remove the condition |t1| ≤ T at the cost of an error term of size� (logR)O(1)/T . We thus
conclude that

J(R) = c · (logR)H2k−1−2k(A+1)+1−d +O(T−1+o(1)),

where

c =

∫
σ1=1/(log(2+|t1|))3/2

G(s1)
∏

I∈S(2k)\Isk−1

(ζeI )(h2k−1,I) (1 + aIs1)ds1

is some constant. This contributes towards the error term if m ≥ 2, d ≥ 1 or A ≤ 1
2k

(
2k
k

)
− 1, and

towards the main term if m = 1, d = 0, A > 1
2k

(
2k
k

)
−1 and h2k−1,I ∈ {0, 1} for each I ∈ S−(2k),

in which case H2k−1 − 2k(A+ 1) + 1 = −1 by (8.14).
Alternatively, assume that m ≤ 0, so that there is no pole at s1 = 0. We move s1 to the line

Re(s1) = 0. The horizontal lines contribute� (logR)O(1)/T . Furthermore, we note that we may
extend the range of integration to all s1 ∈ C with Re(s1) = 0 at the cost of an error term of size
� (logR)O(1)/T . Consequently,

J(R) = c · (logR)H2k−1+1−2k(A+1)−d +O((logR)O(1)/T ),

where

c =
1

2π

∫ ∞
−∞

G(it)
∏

I∈S(2k)\I2k−1

(ζeI )(h2k−1,I) (1 + iaIt)dt

with aI :=
∑

j∈I aj . The power of logR is

H2k−1 + 1− 2k(A+ 1)− d = 1 +
∑

I∈S2k−1\{0}

(−1)#I −
∑

I∈S(2k)\I2k−1

h2k−1,I

− (A+ 1) ·#{1 ≤ j ≤ 2k : aj 6= 0} − d

= 1 + A (V2k−1)−
∑

I∈S(2k)\I2k−1

h2k−1,I

− (A+ 1) ·#{1 ≤ j ≤ 2k : aj 6= 0} − d
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in the notation of Proposition 7.1. Clearly, this is maximized when h2k−1,I = 0 for all I ∈
S(2k) \ I2k−1 and d = 0, in which case

G(s) = F (a1s, . . . , a2ks) =
P (a1s, . . . , a2ks)∏2k

j=1(ajsζ(1 + ajs))A+1
+O

(
(log(2 + |s|))O(1)

(1 + |s|)(2k−1)(A+1)

)
(8.15)

when Re(s) = 0, by (6.6).
Now, if aj = 0 for some j ∈ [2k], then A (V2k−1) = −1, by Proposition 7.1(a). Note that there

is at least one j such that aj 6= 0; otherwise, the dimension of V2k−1 would be 2k, as it would
contain the independent forms s1, . . . , s2k, which is a contradiction. We conclude that the power
of logR is ≤ −(A+ 1) ·#{1 ≤ j ≤ 2k : aj 6= 0} ≤ −A− 1. Consequently,

J(R)� (logR)−A−1

in this case, which contributes towards the error term (i.e. c = 0 in this case).
Finally, assume that aj 6= 0 for all j ∈ [2k]. Since dim(V2k−1) = 2k − 1, Proposition 7.1(b)

implies that the power of logR is

H2k−1 + 1− 2k(A+ 1)− d ≤ A (V2k−1)− dim(V2k−1)− 2kA ≤
(

2k

k

)
− 2kA,

with the second inequality being an equality when half of the aj’s equal +1 and the other half −1.
Even though this not needed for the proof, we remark that when aj 6= 0 for all j, we can give an

asymptotic formula for J(R). For simplicity, let as assume that aj = 1 for j ≤ k and aj = −1 for
j > k. Then aI = #(I ∩ [1, k])−#(I ∩ (k, 2k]), which has the same parity as #I . In particular,
I−(2k) ∩ I2k−1 = ∅, so that h2k−1,I = 0 for all I ∈ S−(2k). Moreover, given ` ∈ Z, we have that
aI = ` for exactly

(
2k
k+|`|

)
sets I ⊂ [2k]. Therefore

J(R) =
(logR)(

2k
k )−2kA

2π

∫ ∞
−∞

P (it,−it, . . . , it,−it)
t2k(A+1)

·
∏

` even,≥2 |ζ(1 + i`t)|2(
2k
k+`)∏

` odd,≥1 |ζ(1 + i`t)|2(
2k
k+`)

dt

+O(T−1+o(1)).

This completes the study of Case 2.

Case 3 of the proof of Lemma 8.5: N ≤ 2k− 2. We shift the contours of s2k−N , s2k−N−1, . . . , s1

in this order to the lines Re(sj) = λj/(log T )3/2, 1 ≤ j ≤ 2k − N . If λ is large enough in terms
of k (but independently of R), then the functions Re(LN,I(s)) with I ∈ S(2k) \ IN have constant
sign in the entire domain where the contour shifting is performed, so that no poles are encountered.
The horizontal lines contribute � (logR)O(1)/T . Finally, we note that the integrand on the new
lines of integration is� (log logR)O(1)/[(1 + |s1|) · · · (1 + |s2k−N |)], by (8.8) and our assumption
that G is in the class C2k−N . We thus find that

J(R)� (logR)HN−N−2kA−d(log logR)O(1)

in this case. We need to understand the power of logR. Firstly, note that

HN −N − 2kA− d ≤ 2k −N +
∑

I∈IN\{∅}

(−1)#I − (A+ 1) ·#{1 ≤ j ≤ 2k : {j} /∈ IN}.

To continue, we separate two cases.
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If there is {j} ∈ IN , then
∑

I∈IN\{∅}(−1)#I = −1 by Proposition 7.1(a). Since dim(VN) = N

by construction, there are ≤ N integers j with {j} ∈ IN . The power of logR is thus

≤ 2k −N − 1− (A+ 1)(2k −N) = −1− A(2k −N) ≤ −1− 2 · 1A≥1,

and we can see that J(R) satisfies the conclusion of the lemma with no main term (i.e. c = 0). So
assume that there is no {j} ∈ IN . Then we find that

HN −N − 2kA ≤ 2k −N +
∑

I∈IN\{0}

(−1)#I − 2k(A+ 1) ≤
(

2k

k

)
− 2k(A+ 1)− 2,

by Proposition 7.1(c), which again means that the lemma holds with c = 0. �

8.4. Dyadic intervals. We conclude this section with a brief explanation of the proof of (8.2). We
have that

Mf̃0,2k
(R) =Mh̃,2k(R) +O

(
1

logR

)
,

where h̃(x) = h(x)− h(x+ log 2
logR

), by the argument leading to (6.4). We then note that

(̂h̃)R(s) = ĥR(s)(1− 2−s),

so that Perron’s inversion formula and relation (6.2) imply that

Mf̃0,2k
(R) =

1

(2iπ)2k

∫
· · ·
∫

Re(sj)=λ
j/ logR

1≤j≤2k

D(s)

(
2k∏
j=1

ĥR(sj)(1− 2−sj)

)
ds2k · · · ds1 +O

(
1

logR

)
,

where λ and T are as before. We thus find that

Mf̃0,2k
(R) =

1

(2iπ)2k

∫
· · ·
∫

Re(sj)=λ
j/ logR

1≤j≤2k

F̃ (s)Rs1+···+s2k
∏

I∈S∗(2k)

ζ(1 + sI)
(−1)#Ids1 · · · ds2k

+O

(
1

logR

)
,

(8.16)

where

F̃ (s) := P (s)
2k∏
j=1

ĥR(sj)(1− 2−sj)

Rsj

and P is defined as above. The function F̃ is in the class C2k, since the factor 1− 2−sj annihilates
the pole of ĥR(sj) at sj = 0. We thus see that the above integral has the same shape as the integral
Ig,2k(R) with A = 0, with the difference that eI = −1 when #I = 1. We thus follows the
argument leading to (8.1) when A = 0 with the obvious modifications. The only difference is that
in the analogue of (8.12) we have instead

m = −ν +
∑

I∈IN+1\IN
#I=even

(hN,I + 1)−
∑

I∈IN+1\IN
#I=odd, hN,I=0

1

= −ν +
∑

I∈IN+1\IN

(hN,I + (−1)#I)−
∑

I∈S−(2k)∩(IN+1\IN )
hN,I≥2,#I≥3

(hN,I − 1),



SIEVE WEIGHTS AND THEIR SMOOTHINGS POIDS DE CRIBLE ET LEURS LISSAGES 45

with ν defined as in the proof of Lemma 8.4. We thus find that m has the same expression as when
A = −1, and relation (8.2) follows by the proof of (8.4) when A = −1. An important remark is
that when A = −1 there is a power of (logR)−2k in the denominator of the integrand of Ig,2k(R)
that is not present in the denominator of the right hand side of (8.16).

9. LOWER BOUNDS

In this section we complete our proof of Theorem 1.3 by showing that, for fixed k ∈ Z≥1,
A ∈ Z≥0 and ε > 0, there are positive constants c′k,A > 0 and c′′k > 0 such that

MfA,2k(R) ≥ c′k,A(logR)Ek,A−ε +Oε((logR)Ek,A−1),(9.1)

and

Mf̃0,2k
(R) ≥ c′′k(logR)Dk,0−ε +Oε((logR)Dk,0−1),(9.2)

where f̃0(x) = f0(x)−f0(x+ log 2
logR

), as before. Evidently, this completes the proof of Theorem 1.3,
since if the constants in the leading terms in (8.1) or (8.2) were 0, we would obtain a contradiction
to the above lower bounds by letting R→∞.

As in the previous section, there is some smooth smooth function h such that h(x) = 1 for
x ≤ 1− 1/(logR)C and h(x) = 0 for x ≥ 1, with C = (2k − 1)22k+1 + 2k + 2, so that

Mf0,2k(R) =Mh,2k(R) +O

(
1

logR

)
and Mf̃0,2k

(R) =Mh̃,2k(R) +O

(
1

logR

)
,

where h̃(x) = h(x)− h(x+ log 2
logR

). So, it suffices to prove that

Mg,2k(R) ≥ c′k,A(logR)Ek,A−ε +O((logR)Ek,A−1),(9.3)

where g ∈ {h, h̃} when A = 0, and g = fA when A ≥ 1.
Positivity is a key to this proof: we will consider the sum restricted to those integers with a

convenient prime factorization, which clearly provides a lower bound. The fact that these integers
have a convenient prime factorization means the corresponding sum is technically easier to analyze.

9.1. First manipulations. To ease notation, let

ΠR :=
∏
p≤R

(
1− 1

p

)
We start by observing that

Mg,2k(R) = ΠR

∑
P+(n)≤R

1

n

∑
d|n

µ(d)g

(
log d

logR

)2k

,

since supp(g) ⊂ (−∞, 1]. So (9.1) follows immediately when A > −1 + 1
2k

(
2k
k

)
by noticing that

Ek,A = −1 in this case and that we always have thatMg,2k(R) ≥ ΠR � 1/ logR.
For the rest of the proof, we assume that A ≤ −1 + 1

2k

(
2k
k

)
, so that

Ek,A =

(
2k

k

)
− 2k(A+ 1) ≥ 0.
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Let q1 < q2 < · · · be the sequence of all prime numbers and set

Q =
A+1∏
j=1

qj.

If A ≥ 1, or if A = 0 and g = h, then we restrict our attention to integers of the form Qn with
P−(n) > Q, so that

Mg,2k(R) ≥ ΠR

Q

∑
p|n⇒ qA+1<p≤R

1

n

 ∑
J⊂[A+1]

(−1)#J
∑
d|n

µ(d)g

(
log(qJd)

logR

)2k

,

where qJ :=
∏

j∈J qj . We define

w(x) :=
∑

J⊂[A+1]

(−1)#Jg

(
x+

log qJ
logR

)
,(9.4)

so that

Mg,2k(R) ≥ ΠR

Q

∑
p|n⇒ qA+1<p≤R

1

n

∑
d|n

µ(d)w

(
log d

logR

)2k

.(9.5)

We further note that w = h̃ when A = 0, so that the right hand side of (9.5) is a trivial lower bound
forMh̃,2k(R). Therefore, relation (9.3) will follow in all cases if we can show that

W := ΠR

∑
p|n ⇒ qA+1<p≤R

1

n

∑
d|n

µ(d)w

(
log d

logR

)2k

≥ c′′k,A(logR)Ek,A−ε +Oε((logR)Ek,A−1)

(9.6)

for some c′′k,A > 0, where w is defined by (9.4) with g = h if A = 0 and g = fA if A ≥ 1.

Next, observe that

ŵR(s) = (logR)
∑

J⊂[A+1]

(−1)#J

∫ ∞
−∞

g

(
u+

log qJ
logR

)
Rsudu = ĝR(s)

A+1∏
j=1

(1− q−sj ).(9.7)

In particular, we see that ŵR has an analytic continuation to C and it satisfies the bound

ŵR(s)� RRe(s)

(|s|+ 1)(logR)A
(Re(s) ≥ −1),(9.8)

which follows by the definition of fA when A ≥ 1 and by (6.5) otherwise. Finally, we note that we
also have the bound

ŵR(s)� RRe(s)(logR)O(1)

1 + |s|2
(Re(s) ≥ 1/ logR),(9.9)

which follows from (6.2) when A = 0. (This bound can be shown to hold in a larger range, but the
above range is good enough for our purposes.)

Before we apply Perron’s inversion formula to write the right hand side of (9.5) in terms of ŵR,
we use positivity again to focus on integers n of a certain convenient form. We set

y = exp{(logR)1−ε′} and Y = exp{(logR)1−ε′/2},
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where ε′ > 0 will be taken to be small enough in terms of ε, and write

N = {n ∈ Z≥1 : p|n ⇒ qA+1 < p ≤ y}.

We then focus on integers of the form n = mp1 · · · pk, where m ∈ N with m ≤ Y , and p1, . . . , pk
are distinct primes from the interval (R1/2, R]. For such an integer n, if d|n, then either d = d′ or
d = d′p`, for some d′|m and some ` ∈ {1, . . . , k}. So, we conclude that

W ≥ ΠR

k!

∑
m∈N
m≤Y

∑
√
R<p1,...,pk≤R
distinct primes

1

mp1 · · · pk

×

 k∑
`=1

∑
d|m

µ(d)w

(
log(p`d)

logR

)
−
∑
d|m

µ(d)w

(
log d

logR

)2k

.

Note that the condition that m ≤ Y = Ro(1) certainly implies that d < R/(2qA+1) for all divisors
d of m (since qA+1 �A 1), so that∑

d|m

µ(d)w

(
log d

logR

)
=

∑
J⊂[A+1]

(−1)#J
∑
d|m

µ(d)

(
1− log(qJd)

logR

)A

=
∑
d|Qm

µ(d)

(
1− log d

logR

)A
= 0

by observing that ∆(A+1)(1 − x)A = 0 by (1.7), and by applying (1.6) with r = A + 1, since
ω(Qm) ≥ ω(Q) ≥ A+ 1 here. We thus conclude that

W ≥ ΠR

k!

∑
m∈N
m≤Y

∑
√
R<p1,...,pk≤R
distinct primes

1

mp1 · · · pk

 k∑
`=1

∑
d|m

µ(d)w

(
log(p`d)

logR

)2k

≥ ΠR

k!(logR)k

∑
m∈N
m≤Y

∑
√
R<p1,...,pk≤R
distinct primes

∏k
j=1 log pj

mp1 · · · pk

 k∑
`=1

∑
d|m

µ(d)w

(
log(p`d)

logR

)2k

.

We note that ∑
n∈N , n>Y

τr(n)

n
≤ Y −1/ log y

∑
n∈N

τr(n)

n1−1/ log y
� 1

(logR)B
,

for any fixed B ≥ 1 and r ∈ Z≥1. Therefore, we may drop the conditions that m ≤ Y and that the
p`’s are distinct at the cost of an admissible error term, finding that

W ≥ ΠR

k!(logR)k

∑
m∈N

∑
√
R<p1,...,pk≤R

∏k
j=1 log pj

mp1 · · · pk

 k∑
`=1

∑
d|m

µ(d)w

(
log(p`d)

logR

)2k

+O

(
1

(logR)100

)
.
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Next, we expand the 2k-th power as follows: k∑
`=1

∑
d|m

µ(d)w

(
log(p`d)

logR

)2k

=
∑

J1∪···∪Jk=[2k]
Ji∩Jj=∅ for i 6=j

k∏
`=1

∏
j∈J`

∑
dj |m

µ(dj)w

(
log(p`dj)

logR

)
,

with the convention that if J` = ∅, then the corresponding factor equals 1. Clearly, the summands
corresponding to those k-tuples J = (J1, . . . , Jk) all of whose components have an even number
of terms are non-negative. We write J for the set of k-tuples J such that (J1, . . . , Jk) is a partition
of [2k] and either #J` = 2 for all `, or there is some ` such that #J` is an odd number. Then k∑

`=1

∑
d|m

µ(d)w

(
log(p`d)

logR

)2k

≥
∑
J∈J

k∏
`=1

∏
j∈J`

∑
dj |m

µ(dj)w

(
log(p`dj)

logR

)
.

Moreover, if D ∈ N , then∑
m∈N
D|m

1

m
=

1

D

∏
qA+1<p≤y

(
1− 1

p

)−1

=
c1

∏
p≤y(1− 1/p)−1

D

with c1 =
∏

p≤qA+1
(1− 1/p) � 1. So, we conclude that

W ≥
c1

∏
y<p≤R(1− 1/p)

k!(logR)k

∑
J∈J

∑
d1,...,d2k∈N

µ(d1) · · ·µ(d2k)

[d1, . . . , d2k]

×
k∏
`=1

∑
√
R<p`≤R

log p`
p`

∏
j∈J`

w

(
log(p`dj)

logR

)
−O

(
1

(logR)100

)
.

(9.10)

For the convenience of notation, set

W (J) =
1

(logR)k

∑
d1,...,d2k∈N

µ(d1) · · ·µ(d2k)

[d1, . . . , d2k]

k∏
`=1

∑
√
R<p`≤R

log p`
p`

∏
j∈J`

w

(
log(p`dj)

logR

)
,

so that

W ≥
c1

∏
y<p≤R(1− 1/p)

k!

∑
J∈J

W (J)−O
(

1

(logR)100

)
.

We will show that the dominant contribution comes from the terms J with #J` = 2 for all `.

9.2. Mellin transformation. Fix a choice of sets J = (J1, . . . , Jk) ∈ J and let

L = {1 ≤ ` ≤ k : J` 6= ∅}.

For ` /∈ L, the sum over p` is∑
√
R<p`≤R

log p`
p`

=
logR

2
+O

(
e−c
√

logR
)
.
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So

W (J) =
2#L−k

(logR)#L

∑
d1,...,d2k∈N

µ(d1) · · ·µ(d2k)

[d1, . . . , d2k]

∏
`∈L

∑
p`>
√
R

log p`
p`

∏
j∈J`

w

(
log(p`dj)

logR

)

+O

(
1

(logR)100

)
,

where the condition that p` ≤ R was dropped because it is implied by the fact that supp(w) ⊂
(−∞, 1].

Next, we use Perron’s formula 2k times to write each appearance of w as an integral of ŵR. We
thus find that

W (J) =
2#L−k(logR)−#L

(2πi)2k

∫
· · ·
∫

Re(sj)=1/ logR
1≤j≤2k

∑
d1,...,d2k∈N

∏2k
j=1 µ(dj)d

−sj
j

[d1, . . . , d2k]

∏
`∈L

∑
p`>
√
R

log p`

p
1+sJ`
`



×

(
2k∏
j=1

ŵR(sj)

)
ds1 · · · ds2k +O

(
1

logR

)
,(9.11)

with the notational convention that sJ :=
∑

j∈J sj . By possibly re-indexing the variables s1, . . . , s2k,
we may assume that L = {1, . . . , L}, where L = #L, and that max J` = 2k − L + ` for all
` ∈ {1, . . . , L}. We want to move the variables s2k−L+1, . . . , s2k to the left. First, we need some
bounds on the sum over p`. We note that∑

p>
√
R

log p

p1+s
= −ζ

′

ζ
(1 + s) +O(1)−

∑
p≤R1/2

log p

p1+s

for Re(s) ≥ −1/3. Using standard bounds on the Riemann zeta function (see, for example,
Titchmarsch [26, Theorem 3.11]), we find that∑

p>
√
R

log p

p1+s
� 1

|s|
+ log(2 + |t|) +Rmax{0,−σ}/2

∑
p≤
√
R

log p

p

� Rmax{0,−σ}/2 log(R + |t|),

where s = σ + it, as usual. Moreover, note that if σj ≥ −1/ log y for all j ∈ {1, . . . , 2k}, then∣∣∣∣∣ ∑
d1,...,d2k∈N

∏2k
j=1 µ(dj)d

−sj
j

[d1, . . . , d2k]

∣∣∣∣∣ ≤ ∑
d1,...,d2k∈N

∏2k
j=1 µ

2(dj)d
1/ log y
j

[d1, . . . , d2k]

≤
∏
p≤y

(
1 +

p1/ log y(4k − 1)

p

)
� (log y)4k−1,

using the estimate p1/ log y = 1 +O(log p/ log y) for p ≤ y.
We are now ready to move the variables s2k−L+1, . . . , s2k in (9.11) to the left. First, we move

the variable s2k to the line Re(s2k) = −1/ log y. (Here we can use (9.9) to justify the convergence
required for this manoeuvre.) We pick up a simple pole from the sum over p2k when sJL = 0. The



50 A. GRANVILLE, D. KOUKOULOPOULOS, AND J. MAYNARD

integrand when Re(s2k) = −1/ log y is

� (log y)4k−1(logR)L−1 log(R+|t|)R1/(2 log y)

2k∏
j=1

|ŵR(sj)| �
(logR)O(1) log(2 + |t|)R−1/(2 log y)

(|s1|2 + 1) · · · (|s2k|2 + 1)

by (9.9). So we find that

W (J) =
2L−k(logR)−L

(2πi)2k−1

∫
· · ·
∫

Re(sj)=1/ logR
1≤j≤2k−1
sJL=0

∑
d1,...,d2k∈N

∏2k
j=1 µ(dj)d

−sj
j

[d1, . . . , d2k]

L−1∏
`=1

∑
p`>R1/2

log p`

p
1+sJ`
`



×

(
2k∏
j=1

ŵR(sj)

)
ds1 · · · ds2k−1 +O

(
1

(logR)100

)
.

Now the product
∏L−1

`=1

∑
p`>R1/2(log p`)p

−1−sJ`
` doesn’t depend on the variables sj ∈ JL \ {2k},

and so we encounter no poles if we move all of these variables to the lines Re(sj) = 0. Having
done this, by (9.8) the growth of ŵR(sj) only depends weakly on R.

Then we repeat the same argument by moving s2k−1 to the left, then s2k−2, and so on and so
forth, until all the sums over primes have been removed and replaced by contributions coming from
poles. Writing sj = itj , we conclude that

W (J) =
2L−k(logR)−L

(2π)2k−L

∫
· · ·
∫

t1,...,t2k∈R
tJ`=0 (1≤`≤L)

∑
d1,...,d2k∈N

∏2k
j=1 µ(dj)d

−itj
j

[d1, . . . , d2k]

(
2k∏
j=1

ŵR(itj)

)
dt1 · · · dt2k−L

+O

(
1

(logR)100

)
.(9.12)

We note that, for any t1, . . . , t2k, we have

∑
d1,...,d2k∈N

∏2k
j=1 µ(dj)d

−itj
j

[d1, . . . , d2k]
=

∏
qA+1<p≤y

(
1 +

λp(t)

p

)
,

where

λp(t) :=
∑

I∈S∗(2k)

(−1)#Ip−itI = −1 +
2k∏
j=1

(1− p−itj).(9.13)

9.3. An auxiliary result. Before we continue with the estimation of W (J), we establish a pre-
liminary (and fairly standard) result.
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Lemma 9.1. For z ≥ y ≥ 3 and t ∈ R, we have that

∑
y<p≤z

1

p1+it
=



log

(
log z

log y

)
+O(1) if |t| ≤ 1/ log z,

log

(
1

|t| log y

)
+O(1) if 1/ log z < |t| ≤ 1/ log y,

O(1) if y ≥ |t| ≥ 1/ log y.

Finally, if |t| ≥ y, then ∣∣∣∣∣ ∑
y<p≤z

1

p1+it

∣∣∣∣∣ ≤ log

(
log(min{|t|, z})

log y

)
+O(1).

Proof. If |t| ≤ 1/ log z, then we note that p−it = 1 +O(log p/ log z) for p ≤ z, so that∑
y<p≤z

1

p1+it
=
∑
y<p≤z

1

p
+O(1) = log

(
log z

log y

)
+O(1),

as claimed. For |t| ≥ 1/ log y and y ≥ |t|, then we note that∑
y<p≤z

1

p1+it
� 1

by relation (4.4) in [16]. Next, if 1/ log z ≤ |t| ≤ 1/ log y, then we apply the results we just proved
to deduce that ∑

y<p≤e1/|t|

1

p1+it
= log

(
log e1/|t|

log y

)
+O(1) = log

(
1

|t| log y

)
+O(1)

and that ∑
e1/|t|<p≤z

1

p1+it
� 1.

Finally, if |t| ≥ y, then we note that ∑
|t|<p≤z

1

p1+it
� 1,

so that ∣∣∣∣∣ ∑
y<p≤z

1

p1+it

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

y<p≤min{|t|,z}

1

p1+it

∣∣∣∣∣∣+O(1) ≤
∑

y<p≤min{|t|,z}

1

p
+O(1)

≤ log

(
log(min{|t|, z})

log y

)
+O(1). �
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9.4. Lower bound for the main term. We now return to the study of the quantity W (J), defined
by (9.12). First, we show that the term when #J` = 2 for all ` contributes what we claim to be
our main term. In this case L = #L = k and, by possibly permuting the tj’s, we may assume that
J` = {`, k+ `} for all ` ∈ {1, . . . , k}. Thus for these terms we have tk+` = −t`. We want to show
that the integrand in (9.12) is non-negative for all choices of t1, . . . , tk. We have that

2k∏
j=1

ŵR(itj) =
k∏
j=1

ŵR(itj)ŵR(−itj) =
k∏
j=1

|ŵR(itj)|2 =
k∏
j=1

∣∣tA+1
j ĝR(itj)

∣∣2 A+1∏
a=1

|1− q−itja |2

t2j
,

which is clearly non-negative for all t1, . . . , tk. Moreover, if tj � 1 for all j, then relations (9.7)
and (6.6) imply that

2k∏
j=1

ŵR(itj) ≥
c2

(logR)2kA

for some c2 > 0. Furthermore, the definition (9.13) implies that in this case we have

λp(t) = −1 +
k∏
j=1

|1− p−itj |2 ≥ −1,

so ∑
d1,...,d2k∈N

∏2k
j=1 µ(dj)d

−itj
j

[d1, . . . , d2k]
=

∏
qA+1<p≤y

(
1 +

λp(t)

p

)
≥ 0

for such t.
Since the integrand in (9.12) is non-negative, we may obtain a lower bound by restricting the

range of integration to any region we wish. We restrict to t1 ∈ [1, 2] and tj ∈ [t1, t1 + 1/ log y] for
2 ≤ j ≤ k. The volume of this region is � 1/(log y)k−1. Moreover, in this region we find that

λp(t) = −1 + |1− pit1|2k +O

(
log p

log y

)
.

Therefore∑
d1,...,d2k∈N

∏2k
j=1 µ(dj)d

−itj
j

[d1, . . . , d2k]
= exp

{∑
p≤y

−1 + |1− pit1|2k

p
+O

( 1

p2

)
+O

( log p

p log y

)}

� 1

log y
exp

{∑
p≤y

|1− pit1|2k

p

}
.

By binomial expansion

|1− pit1|2k =
∑

j+j′=2k

(
2k

k

)
(−1)j

′
pi(j−j

′)t1 .

The terms with j = j′ contribute a factor

exp
(∑
p≤y

(
2k

k

)
1

p

)
� (log y)(

2k
k ).
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By the final part of Lemma 9.1, since t1 ∈ [1, 2] the terms with j 6= j′ contribute a factor

exp
(
O
(

sup
|j|≤2k

∣∣∣∑
p≤y

pijt1

p

∣∣∣)) � 1.

Thus we obtain a lower bound of� (log y)(
2k
k )−1 for our sum over d1, . . . d2k. Since the region of

integration has volume� (log y)−(k−1), this gives

W (J)� (log y)(
2k
k )−k

(logR)k+2kA

in this case. So we find that the total contribution to the right hand side of (9.10) from such J is
≥ c2(log y)(

2k
k )−k+1/(logR)(2A+1)k for some c2 > 0, which is greater than the claimed main term

in (9.6) if ε′ is small enough in terms of ε and k.

9.5. Upper bound for the error term. It remains to show that the contribution of the J ’s for
which at least one of the #Ja’s is odd, is smaller than what we have above. Before we get started,
we note that

λp(t) = −1 +
2k∏
j=1

(1− p−itj) = −1 +
2k∏
j=1

(pitj/2 − p−itj/2) = −1 + (−4)k
2k∏
j=1

sin

(
tj log p

2

)
whenever t1 + · · ·+ t2k = 0, which is the case here. In particular, −4k ≤ λp(t) + 1 ≤ 4k, whence∣∣∣∣∣ ∑

d1,...,d2k∈N

∏2k
j=1 µ(dj)d

−itj
j

[d1, . . . , d2k]

∣∣∣∣∣ =

∣∣∣∣∣∣
∏

qA+1<p≤y

(
1 +

λp(t)

p

)∣∣∣∣∣∣�
∏

4k<p≤y

(
1 +

λp(t)

p

)
.

Next, we split the region of integration in (9.12) into various subsets. First, we note that, by a
dyadic decomposition argument and (9.9), we have that

W (J)� (log T )2k

(logR)L+2kA
max

1≤T1,...,T2k≤T

Λ(T )

T1 · · ·T2k−L
+

(logR)O(1)

T
,

where

Λ(T ) :=

∫
· · ·
∫

Tj≤|tj |+1≤2Tj
1≤j≤2k−L
tJ`=0 (`∈L)

∏
4k<p≤y

(
1 +

λp(t)

p

)
dt1 · · · dt2k−L.

We take
T = exp{(log logR)2},

and fix a choice of T1, . . . , T2k−L as above. We will further break the region of integration accord-
ing to which sums tJ =

∑
j∈J tj are small. Indeed, by Lemma 9.1 the product

∏
qA+1<p≤y(1 +

λp(t)/p) can become large only if there are such configurations. Note that if tJ1 and tJ2 are both
small, so is any linear combination of tJ1 and tJ2 . Thus, we are naturally led to the following
definition: given free variables x1, . . . , x2k and J ⊂ [2k], we define the linear form

LJ(x1, . . . , x2k) :=
∑
j∈J

xj,
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(thinking of the linear form as acting on the space Q2k) and, given I ⊂ S(2k), we set

VB(I) :=

{∑
I∈I

aI
qI
· LI : aI , qI ∈ Z ∩ [−B,B]

}
(thought of as a subspace in the dual of Q2k.) For the simplicity of notation, we also set

V (I) := V∞(I) = SpanQ({LI : I ∈ I}).
Since there are only finitely many linear forms LI , I ⊂ [2k], there is some finite B0 = B0(k) such
that, for any I, if LJ ∈ V (I), then LJ ∈ VB(I) for all B ≥ B0. We assume that B ≥ B0 from
now on (we will eventually choose B to be large enough in terms of k).

We set m = blog log yc and, to each t, we associate the sets

Ij = Ij(t) := {I ⊂ [2k] : em|tI |+ 1 ≤ ej+1} (0 ≤ j ≤ m).

Note that if LI /∈ VB(Im), then |tI | > 1. Since tI � T for all I , Lemma 9.1 implies that∏
4k<p≤y

(
1 +

λp(t)

p

)
= exp

( ∑
I∈S∗(2k)

(−1)#I
∑

4k<p≤y

(
p−1−itI +O

( 1

p2

)))
= exp

( ∑
I∈S∗(2k)
|tI |≤1

(−1)#I min
{

log log y, log
( 1

|tI |

)})
(log logR)O(1)

� (log logR)O(1)
∏

I∈S∗(2k)
LI∈VB(Im)

min

{
log y,

1

|tI |

}(−1)#I

.

If LI ∈ VB(Ij) \ VB(Ij−1), where I−1 = {∅} so that VB(I−1) = {0}, then I /∈ Ij−1, which
means that em|tI | + 1 > ej . On the other hand, since LI ∈ VB(Ij), then we find that em|tI | ≤
B ·#Ij · ej−m. We thus conclude that

min

{
log y,

1

|tI |

}
� em−j for LI ∈ VB(Ij) \ VB(Ij−1), 0 ≤ j ≤ m.

Therefore ∏
4k<p≤y

(
1 +

λp(t)

p

)
� (log logR)4k

m∏
j=0

e(m−j)Fj ,

where
Fj :=

∑
I⊂[2k]

LI∈VB(Ij)\VB(Ij−1)

(−1)#I .

(Here we use the fact that there are only finitely many indices j for which Ij 6= Ij−1.) Summing
over the� (log logR)O(1) choices for I0, I1, . . . , Im, we conclude that

Λ(T )� (log logR)O(1) max
Im⊃···⊃I0⊃{J1,...,JL}

(
ν(T ,I) ·

m∏
j=0

e(m−j)Fj

)
,

where ν(T ,I) denotes the (2k − L)-dimensional Lebesgue measure of (t1, . . . , t2k−L) ∈ R such
that Tj ≤ |tj|+ 1 ≤ 2Tj for j ≤ 2k − L and

{I ⊂ [2k] : em|tI |+ 1 < ej+1} = Ij (0 ≤ j ≤ m),
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where the variables t2k−L+1, . . . , t2k are defined via the equations tJ` = 0 for ` ∈ {1, . . . , 2k}. (In
particular, I0 ⊃ {J1, . . . , JL}.)

Next, we use linear algebra to understand ν(T ,I). If

Dj = dimV (Ij),
then we may find sets I1, . . . , IDm such that, for each j ≤ m, {LI1 , . . . , LIDj } is a basis of V (Ij).
We may also assume that {J` : 1 ≤ ` ≤ L} is contained in {I1, . . . , ID1}.

Eliminating variables from linear combinations of the asymptotic formulas

tI = O(ej−m) (I ∈ {I1, . . . , IDj})
(for example, as in Gaussian elimination), yields Dj of the variables ti, say the variables {ti : i ∈
Dj} (where #Dj = Dj), in terms of linear combinations of the other variables, up to an error
of O(ej−m). We can also arrange the sets D0, . . . ,DL to satisfy D0 ⊂ · · · ⊂ DL. (Recall that
Ij 6= Ij−1 for only finitely many j’s.) We may therefore prove that

ν(T , I)� (log y)L

(
m∏
j=0

e(Dj−Dj−1)(j−m)

)( ∏
1≤j≤2k

j /∈D0∪···∪DL

Tj

)
,

where the extra factor (log y)L is included because we are not integrating over the variables
t2k−L+1, . . . , t2k, which are fixed via the conditions tJ` = 0, 1 ≤ ` ≤ L. By the above discus-
sion, we find that

Λ(T )� T1 · · ·T2k−L(log y)L(log logR)O(1) max
Im⊃···⊃I0⊃{J1,...,JL}

m∏
j=0

e(m−j)(Fj−(Dj−Dj−1)).

We note that
m∑
j=0

(m− j)(Fj − (Dj −Dj−1)) =
m−1∑
j=0

m−j∑
i=1

(Fj − (Dj −Dj−1))

=
m∑
i=1

m−i∑
j=0

(Fj − (Dj −Dj−1))

=
m∑
i=1

(A (V (Im−i))− dim(V (Im−i)))

in the notation of Section 7, provided that B is large enough. Since exp is a convex function, we
have that

e
∑m
j=0(m−j)(Fj−(Dj−Dj−1)) ≤ 1

m

m−1∑
j=0

em(A (V (Ij))−dim(V (Ij)) � 1

m

m−1∑
j=0

(log y)A (V (Ij))−dim(V (Ij))

We then conclude that

W (J)� (log logR)O(1)(log y)L

(logR)L+2kA
max

I⊃{J1,...,JL}
(log y)A (V (I))−dim(V (I)).

The above discussion reduces (9.6) to proving that

A (V (I))− dim(V (I)) ≤
(

2k

k

)
− 2k − 1(9.14)
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whenever I contains the sets J1, . . . , JL and at least one of the Ji’s has an odd number of elements.
This follows directly by Proposition 7.1, thus completing the proof of (9.1) and, hence, of Theorem
1.3.

10. ON THE ANATOMY OF INTEGERS CONTRIBUTING TOMf,2k(R)

This section is devoted to establishing Theorems 1.6 and 1.4. Throughout this section, given
n ∈ Z≥1 and R ≥ 1, we adopt the notations

Ω(n;R) :=
∑

pα‖n, p≤R

α and Ω(n; r, R) :=
∑

pα‖n, r<p≤R

α.

A key observation, that we will use several times, is that that if (a, b) = 1, then

MfA(ab;R) =
∑
d|a

∑
d′|b

µ(d)µ(d′)fA

(
log d

logR
+

log d′

logR

)

=
∑
d′|b
d≤R

µ(d′)

(
log(R/d′)

logR

)A∑
d|a

µ(d)fA

(
log d

log(R/d′)

)(10.1)

by the definition of fA.

10.1. An estimate for the logarithmic means. We start by proving a preliminary result, where
the integer n is weighted by 1/n. The transition to the uniform weights will be accomplished in
the subsequent section.

Theorem 10.1. Let R ≥ 2, k ∈ Z≥1 and A ∈ Z≥0.

(a) If A > 1
2k

(
2k
k

)
− 1 and η ∈ [log 2/ logR, 1], then∏

p≤R

(
1− 1

p

) ∑
P+(n)≤R

Ω(n;Rη)MfA(n;R)2k

n
�k,A

η2k

logR
+ (logR)(

2k
k )−2k(A+1) log logR.

(b) If A ≤ 1
2k

(
2k
k

)
− 1 and 1− 1/

(
2k
k

)
≤ v ≤ 2− ε, then∏

p≤R

(
1− 1

p

) ∑
P+(n)≤R

vΩ(n)MfA(n;R)2k

n
�ε,k,A (logR)v(

2k
k )−2k(A+1)(log logR)Ok(1).

Proof. To ease notation, for this proof we let all implied constants depend on k,A and ε without
explicitly stating this.

(a) First of all, we claim we may restrict our attention to small enough η. To see this, it suffices
to show that ∑

P+(n)≤R

Ω(n;Rδ, R)MfA(n;R)2k

n
�δ 1,(10.2)

for any fixed δ > 0. Now, Hölder’s inequality applied to (10.1) yields

MfA(ab;R)2k ≤ τ(b)2k−1
∑
d′|b
d′≤R

µ2(d′)

(
log(R/d′)

logR

)2kA

MfA(a;R/d′)2k.(10.3)
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Therefore, writing n = ab, where b =
∏

pv‖n,Rδ<p≤R p
v, we find that∑

P+(n)≤R

Ω(n;Rδ, R)MfA(n;R)2k

n

≤
∑

p|b⇒Rδ<p≤R

τ(b)2k−1Ω(b)

b

∑
d′|b
d′≤R

µ2(d′)

(
log(R/d′)

logR

)2kA ∑
P+(a)≤R

MfA(a;R/d′)2k

a

�
∑

p|b⇒Rδ<p≤R

τ(b)2k−1Ω(b)

b

∑
d′|b
d′≤R

µ2(d′)

(
log(R/d′)

logR

)2kA
logR

log(R/d′)
�δ 1

by Theorem 1.3, since A > 1
2k

(
2k
k

)
− 1 and so Ek,A = −1 and A ≥ 1. This proves (10.2), so for

the rest of the proof, we may assume that η is sufficiently small.
Expanding Ω(n,Rη), we have that

S :=
∏
p≤R

(
1− 1

p

) ∑
P+(n)≤R

Ω(n;Rη)MfA(n;R)2k

n

=
∏
p≤R

(
1− 1

p

) ∑
q≤Rη
j≥1

j

qj

∑
P+(m)≤R

q-m

MfA(mqj;R)2k

m

≤
∏
p≤R

(
1− 1

p

) ∑
q≤Rη

q

(q − 1)2

∑
P+(m)≤R

(∑
d|m µ(d)

{
fA

(
log d
logR

)
− fA

(
log(qd)
logR

)})2k

m
.

where we used (10.1) with a = qj and b = m. Expanding the 2kth power, we find that

S ≤
∑
q≤Rη

q

(q − 1)2

∑
P+(dj)≤R

1≤j≤2k

∏2k
j=1 µ(dj)

{
fA

(
log dj
logR

)
− fA

(
log(qdj)

logR

)}
[d1, . . . , d2k]

,

Here A ≥ 1, so that (̂fA)(s) = A!Rs/(sA+1(logR)A) decays fast, and Perron inversion implies
that

S ≤
∑
q≤Rη

q

(q − 1)2

∫
· · ·
∫

Re(sj)=1/ logR
1≤j≤2k

∑
d1,...,d2k≥1

∏2k
j=1 µ(dj)d

−sj
j

[d1, . . . , d2k]

2k∏
j=1

A!Rsj(1− q−sj)
(logR)AsA+1

j

ds1 · · · ds2k.

(10.4)

The above integral is amenable to the methods of Section 8. Precisely, we note that the integrand
is of the form

A!2k
(

log q

logR

)2k
P (s)Rs[2k]

(logR)2k(A−1)

∏
I∈S∗(2k)

ζeI (1 + sI)
2k∏
j=1

(1− q−sj)/(sj log q)

(sjζ(1 + sj))A
,

where P (s) is as in Section 8, eI = +1 for I ∈ S+(2k), eI = −1 for I ∈ S−(2k) with #I > 1,
and eI = A − 1 ≥ 0 for #I = 1. If q ≤ Rδ with δ small enough, then the argument leading to
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(8.1) yields that∫
· · ·
∫

Re(sj)=1/ logR
1≤j≤2k

∑
d1,...,d2k≥1

∏2k
j=1 µ(dj)d

−sj
j

[d1, . . . , d2k]

2k∏
j=1

A!Rsj(1− q−sj)
(logR)AsA+1

j

ds1 · · · ds2k

� (log q)2k

(logR)2k+1
+ (logR)(

2k
k )−2k(A+1),

(10.5)

with the first term coming from Case 1a and the second one from Case 2. Inserting the above
inequality into (10.4) completes the proof of part (a).

(b) We will use a variation of the argument of Section 9. The fact that Proposition 7.1 requires
s[2k] = 0 complicates the proof; otherwise, a direct application of the method of Section 9.5 would
be possible.

Call S ′ the sum in question. As usual, we may replace replace f0 by a sufficiently smooth
function h. So write g = h if A = 0, and g = fA otherwise. Note that, since Mg(n;R) depends
only on the square-free kernel of n, we have that

S ′ =
∏
p≤R

(
1− 1

p

) ∑
P+(n)≤R

µ2(n)vω(n)

ϕv(n)
MfA(n;R)2k

with ϕv(n) =
∏

p|n(p− v). Set y = Rc/ log logR for a small enough but fixed c. Given an integer n,
we decompose it as n = ab with P+(a) ≤ y < P−(b). If ω(a) ≤ A+1, then MfA(n;R)� 4kω(b),
and we immediately find that such n’s contribute at most� (log logR)O(1)/ logR. Otherwise, we
sum over all possible choices a = qa′ with ω(q) = A+ 1 to deduce that

S ′ ≤ vA+1
∑

P+(q)≤y
ω(q)=A+1

µ2(q)

ϕv(q)
S ′(q) +O

(
(log logR)O(1)

logR

)
,

(10.6)

where

S ′(q) :=
∏
p≤R

(
1− 1

p

) ∑
P+(a′)≤y<P−(b)≤R

(a′,q)=1

µ2(a′b)vω(a′b)

ϕv(a′b)
MfA(qa′b;R)2k.

Next, we apply (10.3) with a = a′q to find that

S ′(q) ≤
∏
p≤R

(
1− 1

p

) ∑
P+(a′)≤y
y<P−(b)≤R

(a′,q)=1

µ2(a′b)vω(a′b)τ(b)2k−1

ϕv(a′b)

∑
d|b
d≤R

(
log(R/d)

logR

)2kA

MfA(a′q;R/d)2k.

We write b = cd and note that the sum over c is ≤ (log logR)O(1) by our choice of y. Moreover,
ϕv(n)� n/(log log n)v. Thus,

S ′(q)� (log logR)O(1)
∑
d≤R

P−(d)>y

4kΩ(d;y,R)

d
S ′′(d, q) ≤ (log logR)O(1)

∑
d≤R

P−(d)>y

S ′′(d, q)

d1−2k/ log y
,
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where

S ′′(d, q) :=
∏
p≤R

(
1− 1

p

) ∑
P+(a′)≤y
(a′,q)=1

µ2(a′)vω(a′)

ϕv(a′)

(
log(R/d)

logR

)2kA

MfA(a′q;R/d)2k

≤
∏
p≤R

(
1− 1

p

) ∑
P+(a)≤y
(a,q)=1

vΩ(a)

a

(
log(R/d)

logR

)2kA

MfA(aq;R/d)2k.

Before we proceed to the estimation of S ′′(d, q), we note that

S ′(q)� (log logR)O(1)
∑
d≤R

(λ+ ∗ 1)(d)

d1−2k/ log y
S ′′(d, q),(10.7)

where (λ+(m))m≤Rδ is an upper bound sieve with δ small enough, constructed using the funda-
mental lemma of sieve methods, taking κ = 1 in [14, Lemma 6.3, p. 159]. Then the Dirichlet series∑

d(1 ∗ λ+)(d)/ds has a simple pole at s = 1 of residue
∑

m λ
+(m)/m � (log logR)O(1)/ logR.

Next, if q = pr11 · · · p
rA+1

A+1 is the prime factorisation of q, then (10.1) implies that(
log(R/d)

logR

)A
MfA(aq;R/d) =

∑
d′|aq

µ(d′)fA

(
log(dd′)

logR

)
=
∑
d′′|a

µ(d′′)wq

(
log(dd′′)

logR

)
with

wq(x) :=
∑

J⊂[A+1]

(−1)#JfA

(
x+

∑
j∈J log pj

logR

)
.

As usual, if A = 0, we may replace replace f0 by a sufficiently smooth function h at the cost of
a small error. Letting g = h when A = 0 and g = fA otherwise, and letting Wq have the same
definition as wq with g in place of fA, we find that

S ′′(d, q) ≤
∏
p≤R

(
1− 1

p

) ∑
P+(a)≤y
(a,q)=1

vΩ(a)

a

∑
f |a

µ(f)Wq

(
log(df)

logR

)2k

+O

(
1

logR

)

=

∏
p≤R(1− 1/p)∏

p≤y, p-q(1− v/p)
∑

(fj ,q)=1
1≤j≤2k

vΩ([f1,...,f2k])

[f1, . . . , f2k]

2k∏
j=1

µ(fj)Wq

(
log(dfj)

logR

)
+O

(
1

logR

)
.

We apply Mellin inversion 2k times to find that

S ′′(d, q) ≤
∏

p≤R(1− 1/p)

(2πi)2k
∏

p≤y, p-q(1− v/p)

∫
· · ·
∫

Re(sj)=4k/ log y
|Im(sj)|≤T

1≤j≤2k

∑
P+(fj)≤y, (fj ,q)=1

1≤j≤2k

vΩ([f1,...,f2k])
∏2k

j=1 µ(fj)f
−sj
j

[f1, . . . , f2k]

×
2k∏
j=1

ĝR(sj)

dsj

A+1∏
a=1

(1− p−sja )dsj +O

(
1

logR

)
.
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Together with (10.7), this implies that

S ′(q) ≤
(log logR)O(1)

∏
p≤R(1− 1/p)

(2πi)2k
∏

p≤y, p-q(1− v/p)

∫
· · ·
∫

Re(sj)=4k/ log y
|Im(sj)|≤T

1≤j≤2k

∑
P+(fj)≤y, (fj ,q)=1

1≤j≤2k

vΩ([f1,...,f2k])
∏2k

j=1 µ(fj)f
−sj
j

[f1, . . . , f2k]

×P (1 + s[2k] − 2k/ log y)
2k∏
j=1

ĝR(sj)
A+1∏
a=1

(1− p−sja )dsj +O

(
1

logR

)
,

where

P (s) :=
∞∑
d=1

(λ+ ∗ 1)(d)

ds
= ζ(s)

∑
m≤Rδ

λ+(m)

ms
.

We fix s1, . . . , s2k−1 and move s2k to the line Re(s2k) = −8k/ log y to pick up the pole at s[2k] =
2k/ log y. If c is small enough in the definition of y, and the same is true for δ, the complementary
contours contribute� 1/ logR. There are no other poles, since the factors 1−p−sja are annihilating
the poles of ĝR(sj). We conclude that

S ′(q)� (log logR)O(1)

(logR)2kA+2−v

∫
· · ·
∫

Re(sj)=4k/ log y
|Im(sj)|≤T

1≤j≤2k
s[2k]=2k/ log y

∣∣∣∣∣ ∑
P+(fj)≤y
1≤j≤2k

vΩ([f1,...,f2k])
∏2k

j=1 µ(fj)f
−sj
j

[f1, . . . , f2k]

∣∣∣∣∣
(

2k∏
j=1

1

|sj|A+1

)
|ds1 · · · ds2k−1|+

1

logR
.

Recall the notation λp(t) defined in (9.13), and combine the above with (10.6) to find that

S ′ � (log logR)O(1)

(logR)2kA+2−v

∫
· · ·
∫

−T≤tj≤T (1≤j<2k)
t[2k]=0

(
1 +

v · λp(t) + (A+ 1)
∑2k

j=1 cos(tj log p)

p

)

×

(
2k∏
j=1

(log(2 + |tj|))2k(A+1)

(1 + |tj|)A+1

)
dt1 · · · dt2k−1 +

(log logR)O(1)

logR
,

where we used the fact that sζ(1 + s) � 1/ log(2 + |t|) for Re(s) > 1. Then, following the
arguments of Section 9.5 (with L = 1), and recalling the notations V (I) and A (V (I)), we find
that

S ′ � max
I⊂I(2k)

(logR)v(1+A (V (I)))−dim(V (I))+(A+1)U(I)−2kA−1(log logR)O(1),

where
U(I) := #{1 ≤ j ≤ 2k : L{j} ∈ V (I)}.

If U(I) ≥ 1, then Proposition 7.1(a) implies that A (V (I)) = −1, and the exponent of logR is
then

(A+ 1) · U(I)− dim(V (I))− 2kA− 1 ≤ A · U(I)− 2kA− 1 ≤ −1,

since we clearly have that 2k ≥ dim(V (I)) ≥ U(I). Assume now that U(I) = 0. If A (V (I)) =(
2k
k

)
− 1 and dim(V (I)) = 2k− 1, then the exponent of logR is v

(
2k
k

)
− 2k(A+ 1). Finally, if this
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is not the case, then Proposition 7.1 (together with the argument in the end of Section 9.5) implies
that

v(1 + A (V (I)))− dim(V (I))− 1 ≤ max{0, v − 1}
(

2k

k

)
+ A (V (I))− dim(V (I))

≤ max{0, v − 1}
(

2k

k

)
+

(
2k

k

)
− 2k − 1

≤ v

(
2k

k

)
− 2k,

by our assumption that v ≥ 1− 1/
(

2k
k

)
. This completes the proof of the theorem. �

10.2. From logarithmic weights to uniform weights. In this section, we show how to go from
Theorem 10.1 to the analogous result for the regular mean value and then prove Theorem 1.6.

Theorem 10.2. Let x ≥ R ≥ 2, k ∈ Z≥1, A ∈ Z≥0 and ε ∈ (0, 1/2).

(a) Assume that A > 1
2k

(
2k
k

)
− 1. Then uniformly for η ∈ [log 2/ logR, 1], we have

1

x

∑
n≤x

Ω(n;Rη)MfA(n;R)2k �k,A
η

logR
.

(b) If A ≤ 1
2k

(
2k
k

)
− 1 and 1− 1/

(
2k
k

)
+ ε · 1k=1 ≤ v ≤ 2− ε, then

1

x

∑
n≤x

vΩ(n;R)MfA(n;R)2k �k,A,ε (logR)v(
2k
k )−2k(A+1)(log logR)O(1).

Proof. We start by proving a preparatory estimate. Our goal is to show that there is some constant
C = C(k) such that ∑

n≤x

MfA(n;R)2k ≤ Cx

logR
(x ≥ R > 1).(10.8)

When x ≤ 2H for some fixedH ∈ Z≥1 that will be taken large enough in terms of k andA, relation
(10.8) trivially holds by taking C to be large enough in terms of H . Assume now that (10.8) holds
for all x ≤ 2h, where h ≥ H . We wish to prove that (10.8) is also true when x ∈ (2h, 2h+1].

We follow a variation of the argument leading to Theorem III.3.5 in [25, p.308]: note that∑
n≤x

MfA(n;R)2k =
∑
n≤x

MfA(n;R)2k log(x/n)

log x
+
∑
n≤x

MfA(n;R)2k log n

log x
.(10.9)

For the first sum, we bound log(x/n) by x/n to give∑
n≤x

MfA(n;R)2k log(x/n)

log x
≤
∑
n≤x

MfA(n;R)2k x

n log x

� x

logR

∑
P+(n)≤R

MfA(n;R)2k

n

� x

logR
,

(10.10)
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by Theorem 1.3. In the second sum, we write log n =
∑

pj‖n j log p to find that∑
n≤x

MfA(n;R)2k log n

log x
=
∑
pj≤x

j log p

log x

∑
m≤x/pj
p-m

MfA(mpj;R)2k.

Since

MfA(mpj;R) = MfA(m;R)− 1p<R

(
log(R/p)

logR

)A
MfA(m;R/p)

by (10.1), Minkowski’s inequality implies that∑
n≤x

MfA(n;R)2k log n

log x
≤
(
S

1
2k
1 + S

1
2k
2

)2k

,

where

S1 :=
∑
pj≤x

j log p

log x

∑
m≤x/pj

MfA(m;R)2k.

and

S2 :=
∑
pj≤x
p<R

j log p

log x

(
log(R/p)

logR

)2kA ∑
m≤x/pj

MfA(m;R/p)2k.

For S1, we note that

S1 =
∑
m≤x

MfA(m;R)2k
∑

pj≤x/m

j log p

log x
� x

log x

∑
m≤x

MfA(m;R)2k

m
� x

logR
,

by (10.10). Finally, we need to bound S2. First, we bound its subsum with j ≥ 2. We have that∑
pj≤x
j≥2
p<R

j log p

log x

(
log(R/p)

logR

)2kA ∑
m≤x/pj

MfA(m;R/p)2k

≤
∑
pj≤x
j≥2
p<R

j log p

log x

(
log(R/p)

logR

)2kA ∑
m≤x/pj

MfA(m;R/p)2k x

pjm

� x
∑
pj≤x
j≥2
p<R

j log p

pj log x

(
log(R/p)

logR

)2kA

· log x

log(R/p)
,

by (10.10) with R replaced by R/p. Since A ≥ 1 here, we find that the above is

�
∑
pj≤x
j≥2

j log p

pj
· x

logR
� x

logR
,

where the implied constant is independent of C.
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Finally, we need to bound the part of S2 with j = 1. We note that x/p ≤ 2h and thatR/p ≤ x/p,
so we may apply the induction hypothesis. This gives a bound

≤
∑
p<R

log p

log x

(
log(R/p)

logR

)2kA

· Cx

p log(R/p)
≤ Cx

(log x)(logR)2

∑
p<R

(log p)(log(R/p))

p

≤ 2C

3
· x

logR
,

provided that H (and hence x) is big enough, where we used our assumptions that A ≥ 1 and
x ≥ R. Combining the above, and assuming that C is big enough in terms of k and A completes
the inductive step and hence the proof of (10.8).

We now turn to proving part (a), that is bounding the sum

S(x,R,Q) :=
∑
n≤x

Ω(n;Q)MfA(n;R)2k.

The proof is similar to the proof of (10.8), so we only give the main technical twists: we use
induction on the dyadic interval in which x lies to prove that there is some constant C ′ = C ′(k, ε)
such that

S(x,R,Q) ≤ C ′x logQ

(logR)2
(x ≥ R ≥ Q ≥ 2).(10.11)

When x ≤ 2H , for some fixed H ∈ Z≥1 that will be taken large enough in terms of k, A and ε, this
trivially holds by taking C ′ to be large enough in terms of H . Assume now that (10.8) holds for all
x ≤ 2h, where h ≥ H . We will prove that it also holds for x ∈ (2h, 2h+1]. Note that the analogues
of (10.9) and (10.10) hold here as well, so let us focus on understanding the sum

T :=
∑
n≤x

Ω(n;Q)MfA(n;R)2k log n

log x
.

Fix a large integer N and call T1 the portion of this sum with Ω(n;Q) > 2N and T2 the remaining
sum. Writing log n =

∑
pj‖n j log p, we find that

T1 =
∑
pj≤x

j log p

log x

∑
m≤x/pj , p-m

Ω(mpj ;Q)>2N

Ω(mpj;Q)MfA(mpj;R)2k.
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If T ′1 is the part with Ω(mpj;Q) ≤ 2j and T ′′1 is the rest, then

T ′1 ≤
∑
pj≤x
j>N

2j2 log p

log x

∑
m≤x/pj
p-m

MfA(mpj;R)2k x

pjm

� x
∑

pj≤x, p≤e
√
logR

j>N

j2 log p

pj logR

∑
P+(m)≤R

p-m

MfA(mp;R)2k

m
+
x(logR)O(1)

e
√

logR

�N x
∑

pj≤x, p≤e
√

logR

j>N

j2 log p

pj logR
·

{(
log p

logR

)2k

+ (logR)1+(2k
k )−2k(A+1)

}

� x

(logR)2k+1
+ x(logR)(

2k
k )−2k(A+1),

where the second to last bound follows from (10.5). Finally, in the range of T ′′1 , we note that
Ω(m;Q) ≥ (Ω(m;Q)+j)/2 > N , so that Ω(mpj;Q) ≤ j(1+Ω(m;Q)) ≤ (1+1/N)·j ·Ω(m;Q).
Therefore,

T1 ≤
N + 1

N

∑
pj≤x

j2 log p

log x

∑
m≤x/pj , p-m

Ω(mpj ;Q)>2N

Ω(m;Q)MfA(mpj;R)2k

+O

(
x

(logR)2k+1
+ x(logR)(

2k
k )−2k(A+1)

)
.

(10.12)

Next, we need to bound

T2 =
∑
n≤x

Ω(n;Q)≤2N

Ω(n;Q)MfA(mpj;R)2k log n

log x
.

If Q > R1/(2N2), then we simply note that

T2 ≤ 2N
∑
n≤x

MfA(n;R)2k �N
x

logR
�N

x logQ

(logR)2
.

by (10.8). Here the implied constant depends on N but does not depend on C ′.
On the other hand, if Q ≤ R1/2N2 , then we have that

∑
pj‖n, p≤Q j log p ≤ (log x)/N , so that

T2 ≤
S(x,R,Q)

N
+

∑
n≤x

Ω(n;Q)≤2N

Ω(n;Q)MfA(n;R)2k
∑

pj‖n, p>Q

j log p

log x

≤ S(x,R,Q)

N
+
∑
pj≤x
p>Q

j log p

log x

∑
m≤x/pj , p-m

Ω(mpj ;Q)≤2N

Ω(m;Q)MfA(mpj;R)2k.

Combining the above inequality and (10.12), we deduce that

T ≤ S(x,R,Q)

N
+
N + 1

N

∑
pj≤x

j2 log p

log x

∑
m≤x/pj , p-m

Ω(m;Q)MfA(mpj;R)2k +ON

(
x logQ

(logR)2

)
.
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We thus conclude that

S(x,R,Q) ≤ N + 1

N − 1

∑
pj≤x

j2 log p

log x

∑
m≤x/pj , p-m

Ω(m;Q)MfA(mpj;R)2k +ON

(
x logQ

(logR)2

)
.

We can bound the sum on the right hand side in an entirely analogous way to the proof of (10.8).
Choosing N sufficiently large, and then C ′ large enough in terms of N completes the inductive
step and thus the proof of (10.11). This proves part (a) of the theorem.

(b) The proof of part (b) is, for the most part, similar to the proof of (10.8). An important detail
is that, after applying the induction hypothesis, we use the fact that∑

p<R

v log p

log x

(
log(R/p)

logR

)2kA

· (log(R/p))v(
2k
k )−2k(A+1)(log log(R/p))D

p

∼ v

v
(

2k
k

)
− 2k + 1

· logR

log x
· (logR)(

2k
k )−2k(A+1)(log logR)D

(10.13)

for any fixed D ≥ 0, as R→∞. This is sufficient when k ≥ 2, because

v

v
(

2k
k

)
− 2k + 1

≤
1− 1/

(
2k
k

)(
2k
k

)
− 2k

≤ 1

2

in this case.
However, when k = 1, the situation is more tricky. First of all, we note that the above argument

allows to establish the theorem for x ≥ R2v/(2v−1). (Note that if p < R and x ≥ R2v/(2v−1), then
we also have that x/p ≥ (R/p)2v/(2v−1), so that the inductive hypothesis can be applied.) Finally,
it remains to treat the case when x ≤ R2v/(2v−1). We then observe that Ω(n;Rδ, R)�ε,δ 1, for any
fixed δ. It would thus suffice to prove that∑

n≤x

vΩ(n;Rδ)δΩ(n;Rδ,R)Mf0(n;R)2 ≤ C ′′x(logR)2v−2(log logR)D (x ≥ R ≥ 2),(10.14)

for some appropriate constants C ′′, D > 0. Then, in place of (10.13), we note that∑
p<R

(v · 1p≤Rδ + δ · 1Rδ<p≤R) log p

log x

(
log(R/p)

logR

)2kA

· (log(R/p))v(
2k
k )−2k(A+1)(log log(R/p))D

p

<
1

2
· (logR)(

2k
k )−2k(A+1)(log logR)D

as R → ∞, as long as δ is small enough. This allows us to complete the inductive step and
establish (10.14), thus completing the proof of the theorem. �

Given the above result, proving Theorem 1.6 is quite easy:

Proof of Theorem 1.6. (a) This an immediate consequence of Theorem 10.2(a).

(b) We use Rankin’s trick: Given a small α > 0 and 1 ≤ v ≤ 3/2, we have that∑
n≤x

Ω(n;R)>(2k
k )(1+α) log logR

MfA(n;R)2k ≤
∑
n≤x

vΩ(n;R)−(2k
k )(1+α) log logRMfA(n;R)2k.
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Theorem 10.2(b) then implies that∑
n≤x

Ω(n;R)>(2k
k )(1+α) log logR

Mf (n;R)2k � (logR)(
2k
k )−2k(A+1)+(2k

k )(v−1−(1+α) log v),

provided that v is close enough to 1. We optimize this by choosing v = 1 +α, so that 1− v+ (1 +

α) log v =
∫ 1+α

1
(log t)dt > 0.

Similarly, we have that∑
n≤x

Ω(n;R)<(2k
k )(1−α) log logR

MfA(n;R)2k ≤
∑
n≤x

vΩ(n;R)−(2k
k )(1−α) log logRMfA(n;R)2k,

for any 1− 1/
(

2k
k

)
+ ε · 1k=1v ≤ 1. Applying Theorem 10.2(b) and choosing v = 1− α for small

enough α completes the proof of the theorem. �

10.3. Estimates for general weight functions. It is not so hard to go from estimates for the
moments ofMfA(n;R) to the moments ofMf (n;R) for a general weight function f . The following
lemma provides the key link.

Lemma 10.3. Let f : R→ R be supported in (−∞, 1]. Assume further that f ∈ CA(R) and that
all functions f, f ′, . . . , f (A) are uniformly bounded for some integer A ≥ 1. Then

Mf (n;R)2k �A,k,f

∫ 1

log 2
logR

u2k(A−1)MfA−1
(n;Ru)2kdu+

1

(logR)2kA
.

Proof. Since f(x) = 0 for x > 0 and f ∈ CA(R), we must have that f (j)(1) = 0 for j ≤ A.
Taylor’s theorem with the integral form of the remainder term implies that

f(x) =

∫ x

1

f (A)(u)

(A− 1)!
(x− u)A−1du =

(−1)A

(A− 1)!

∫
[x,1]

f (A)(u)(u− x)A−1du,

for all x, since both sides vanish if x > 1. Therefore,

Mf (n;R) =
(−1)A

(A− 1)!

∑
d|n

µ(d)

∫
log d
logR

≤u≤1

f (A)(u)

(
u− log d

logR

)A−1

du

=
(−1)A

(A− 1)!

∫ 1

0

f (A)(u)
∑
d|n
d≤Ru

µ(d)

(
u− log d

logR

)A−1

du

=
(−1)A

(A− 1)!

∫ 1

log 2
logR

f (A)(u)uA−1MfA−1
(n;Ru)du+O

(
1

(logR)A

)
,

by noting that d = 1 if d ≤ Ru < 2. Hölder’s inequality then completes the proof. �

We use the above lemma to show the analogue of Theorem 10.2 for general weight functions f .

Theorem 10.4. Let k ∈ Z≥1, x ≥ R ≥ 2 and f : R → R be supported in (−∞, 1]. Assume
further that f ∈ CA(R) and that all functions f, f ′, . . . , f (A) are uniformly bounded for some
integer A ≥ 1, and fix some ε ∈ (0, 1).
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(a) Let A > 1
2k

(
2k
k

)
. Uniformly for η ∈ [log 2/ logR, 1], we have

1

x

∑
n≤x

Ω(n;Rη)Mf (n;R)2k � η

logR
.

(b) If A ≤ 1
2k

(
2k
k

)
and 1− 1/

(
2k
k

)
+ ε · 1k=1 ≤ v ≤ 2− ε, then

1

x

∑
n≤x

vΩ(n;R)Mf (n;R)2k � (logR)v(
2k
k )−2kA(log logR)O(1).

All implied constants depend at most on k, f and ε.

Proof. (a) Lemma 10.3 implies that∑
n≤x

Ω(n;Rη)Mf (n;R)2k �
∫ 1

log 2
logR

u2k(A−1)
∑
n≤x

Ω(n;Rη)MfA−1
(n;Ru)2kdu

+O

(
x log logR

(logR)2kA

)
,

(10.15)

When u ≥ η, Theorem 10.2(a) implies that∫ 1

η

u2k(A−1)
∑
n≤x

Ω(n;Rη)MfA−1
(n;Ru)2kdu� ηx

logR
.(10.16)

Finally, we consider the integral over u ∈ [log 2/ logR, η]. Observe that∑
n≤x

Ω(n;Ru)MfA−1
(n;Ru)2k � x

u logR
,

by Theorem 10.2(a). If x ≤ R100, then we also have that Ω(n;Ru, Rη) ≤ 100/u for each n ≤ x,
so that ∑

n≤x

Ω(n;Ru, Rη)MfA−1
(n;Ru)2k � x

u2 logR

by Theorem 10.2. We thus find that∫ η

log 2
logR

u2k(A−1)
∑
n≤x

Ω(n;Rη)MfA−1
(n;Ru)2kdu�

∫ η

log 2
logR

u2k(A−1)−2x

logR
du� ηx

logR
.

Together with (10.15) and (10.16), this proves part (a) in the case when x ≤ R100.
Finally, let us consider the case when x > R100. Then∑

n≤x

Ω(n;Ru, Rη)MfA−1
(n;Ru)2k ≤

∑
pj≤x

Ru<p≤Rη

j
∑

m≤x/pj
MfA−1

(m;Ru)2k.

When pj−1 ≥
√
x, then we bound the inner sum trivially by� (x/pj)(logR)O(1), so that the total

contribution of such summands is�
√
x(logR)O(1). Finally, when pj−1 ≤

√
x, then we see that

x/pj ≥
√
x/R ≥ x0.499 ≥ Ru, so that the sum over m is� (x/pj)/ log(Ru), by Theorem 10.2(a).

We thus conclude that∑
n≤x

Ω(n;Ru, Rη)MfA−1
(n;Ru)2k � x log(η/u)

u logR
+

x

(u logR)2
� x

u logR
.
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Therefore, ∫ η

log 2
logR

u2k(A−1)
∑
n≤x

Ω(n;Rη)MfA−1
(n;Ru)2kdu� ηx

logR
.

in this case as well, thus completing the proof of part (a) of the theorem.

(b) This proof of this part is similar. We start again with Lemma 10.3 to find that Lemma 10.3
implies that

∑
n≤x

vΩ(n;R)Mf (n;R)2k �
∫ 1

log 2
logR

u2k(A−1)
∑
n≤x

vΩ(n;R)MfA−1
(n;Ru)2kdu

+O
(
x(logR)v−1−2kA

)
,

(10.17)

where we also used Theorem III.3.5 in [25, p.308]. Next, if w = max{v, 1} and log 2/ logR ≤
u ≤ 1, then note that∑

n≤x

vΩ(n;R)MfA−1
(n;Ru)2k ≤

∑
a≤x

P+(a)≤Ru

vΩ(a;Ru)MfA−1
(a;Ru)2k

∑
b≤x/a

P−(b)>Ru

wΩ(b;Ru,R).

When x/a ≥ Ru, the sum over b is � u1−wx/(a log(Ru)) by Theorem III.3.5 in [25, p.308].
Hence, ∑

n≤x

vΩ(n;R)MfA−1
(n;Ru)2k � u1−wx

log(Ru)

∑
a≤x

P+(a)≤Ru

vΩ(a;Ru)MfA−1
(a;Ru)2k

a

+
∑
a≤x

P+(b)≤Ru

vΩ(a;Ru)MfA−1
(a;Ru)2k.

We bound the first sum by Theorem 10.1(b) and the second one by Theorem 10.2(b) to find that∑
n≤x

vΩ(n;R)MfA−1
(n;Ru)2k � xu1−w+v(2k

k )−2kA(logR)v(
2k
k )−2kA.

Inserting the above bound into (10.17) completes the proof of the theorem. �

We conclude this section with the proof of Theorem 1.4. We need a preliminary lemma.

Lemma 10.5. If m ∈ Z≥1, g ∈ C1(Rm) and z ≥ y ≥ 3, then there is a positive constant c > 0
such that ∑

y<p1<···<pm≤z

g(log p1, . . . , log pm)

(p1 − 1) · · · (pm − 1)
=

1

m!

∫
[log y,log z]m

g(t1, . . . , tm)

t1 · · · tm
dt1 · · · dtm

+O

(
‖g‖∞ + ‖∇g‖∞

ec
√

log y
·

(
∑

y<p≤z 1/p)m−1 + (
∫ z
y

dt/t log t)m−1

m!/m2

)
.
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Proof. First of all, note that∑
y<p1<···<pm≤z

g(log p1, . . . , log pm)

(p1 − 1) · · · (pm − 1)
=

1

m!

∑
y<p1,...,pm≤z

distinct

g(log p1, . . . , log pm)

(p1 − 1) · · · (pm − 1)

=
1

m!

∑
y<p1,...,pm≤z

g(log p1, . . . , log pm)

p1 · · · pm

+O

(
m2‖g‖∞(

∑
y<p≤z 1/p)m−1

m!y

)
.

So, if we can show that∑
y<p1,...,pm≤z

g(log p1, . . . , log pm)

p1 · · · pm
=

∫
[log y,log z]m

g(t1, . . . , tm)

t1 · · · tm
dt1 · · · dtm

+O

 m∑
j=1

‖g‖∞ + ‖∂g/∂xj‖∞
ec
√

log y

(∫ z

y

dt

t log t

)j−1
( ∑
y<p≤z

1

p

)m−j
 ,

then the lemma will follow. But this estimate can be easily proved by induction on m and the
Prime Number Theorem, and the proof is completed. �

Let us now see how we can deduce Theorem 1.4 from the above results:

Proof of Theorem 1.4. The first estimate of part (a) follows by 10.4(a) and part (b) follows by
Theorem 10.2(b). It remains to prove the second estimate of part (a). Note that it suffices to prove
that ∏

p≤R

(
1− 1

p

) ∑
P+(n)≤R

Mf (n;R)2k

n
=

ck,f
logR

+O

(
1

(logR)2−ε

)
,

since x ≥ R2k log2R here. Fix η ∈ [log 2/ logR, 1] to be chosen later. Then Theorem 10.4(a)
implies that ∑

P+(n)≤R
P−(n)≤Rη

Mf (n;R)2k

n
≤

∑
P+(n)≤R

Ω(n;Rη)Mf (n;R)2k

n
� η.

Moreover, for each positive integer m, we have that∑
p|n⇒Rη<p≤R

ω(n)=m

Mf (n;R)2k

n
=

∑
Rη<p1<···<pm≤R

Mf (p1 · · · pm;R)

(p1 − 1) · · · (pm − 1)

We note that

Mf (p1 · · · pm;R) = gm

(
log p1

logR
, . . . ,

log pm
logR

)
,

where

gm(t1, . . . , tm) :=
∑

J⊂{1,...,m}

(−1)#Jf

(∑
j∈J

tj

)
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which is a smooth function satisfying the estimates ‖g2k
m ‖∞ ≤ 4km‖f‖2k

∞ and ‖∇g2k
m ‖∞ ≤ 2k4km‖f ′‖∞‖f‖2k−1

∞ .
Therefore Lemma 10.5 implies that

∑
p|n⇒Rη<p≤R

ω(n)=m

Mf (n;R)2k

n
=

1

m!

∫
[η,1]m

gm(t1, . . . , tm)2k

t1 · · · tm
dt1 · · · dtm +O

(
(4k log(1/η) +O(1))m

ec
√

log(Rη)m!/m2

)

for all m ∈ Z≥1. We thus conclude that

∑
P+(n)≤R

M(n;R)2k

n
= F (η) +O

(
η +

log2(1/η)

η4kec
√

log(Rη)

)
(0 < η ≤ 1, Rη ≥ 2),(10.18)

where

F (η) := 1 +
∞∑
m=1

1

m!

∫
[η,1]m

gm(t1, . . . , tm)2k

t1 · · · tm
dt1 · · · dtm.

Completing the proof is now an exercice in real analysis. We start by proving that limη→0+ F (η)
exists. Indeed, applying (10.18) twice, we deduce that

F (η1)− F (η2)� max
j∈{1,2}

ηj +
log2(1/ηj)

η4k
j e

c
√

log(Rηj )


whenever 0 < η1 ≤ η2 ≤ 1 and Rη1 ≥ 2. Letting R→∞, we find that

F (η1)− F (η2)� η2 (0 < η1 ≤ η2 ≤ 1).(10.19)

In particularly, Cauchy’s convergence criterion implies that limη→0+ F (η) exists. Call F this limit,
which clearly equals F (0), and note that letting η1 → 0+ in (10.19) implies that

F (η) = F +O(η) (0 < η ≤ 1).

Together with (10.18), this yields the estimate

∑
P+(n)≤R

M(n;R)2k

n
= F +O

(
η +

log2(1/η)

η4kec
√

log(Rη)

)
(0 < η ≤ 1, Rη ≥ 2).

Selecting η such that

Rη = e(log logR)3

completes the proof of Theorem 1.4. �

We conclude this section with the proof of Theorem 1.7.

Proof of Theorem 1.7. The first estimate of part (a) can be proven following mutatis mutandis the
proof of Theorem 1.6(a) above, using Theorem 10.4 in place of Theorem 10.2. Similarly, part (b)
follows from the proof of Theorem 1.6(b). �
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11. THE ANALOGY FOR NON-EXCEPTIONAL DIRICHLET CHARACTERS

In the section, we study the sum

X2k(R) =
∏
p≤R

(
1− 1

p

) ∑
P+(n)≤R

1

n

 ∑
d|n

R/2<d≤R

χ(d)


2k

when k ≥ 2 and L(1, χ) is not very small and prove Theorem 1.5(b).
We have that

X2k(R) =
∑

R/2<d1,...,d2k≤R

χ(d1)χ(d2) · · ·χ(d2k)

[d1, . . . , d2k]
.

We want to introduce new variables DI , I ∈ S∗(2k), as in Section 2, but first we perform a
technical manoeuvre to simplify the situation. We write di = d′id

′′
i , where P+(d′i) ≤ y < P−(d′′i ),

where

y := (logR)4k+1.

The contribution to X2k(R) of d’s for which d′′i is not square-free for some i is� (logR)4k−1/y
by a crude upper bound, and so is the contribution of those d’s with maxi d

′
i > B, where

B := e(log logR)3 ,

by Rankin’s trick. Then we let DI , I ∈ S∗(2k), be the product of those primes that divide d′′i when
i ∈ I , and are coprime to the other d′′i ’s. The numbers DI are pairwise coprime and square-free,
and d′′i =

∏
I∈S∗(2k), I3iDI , so that

χ(d′′1)χ(d′′2) · · ·χ(d′′2k)

[d′′1, . . . , d
′′
2k]

=

∏
I∈S+(2k) χ0(DI)

∏
I∈S−(2k) χ(DI)∏

I∈S∗(2k) DI

.

We may now drop the condition that the DI’s are square-free and coprime, since the contribution
to I2k(R) of the DI’s not satisfying these conditions is� (logR)4k−1/y. Finally, we may drop the
condition that (DI , q) = 1 for I ∈ S+(2k), encoded in the notation χ0(DI), since the contribution
of DI’s with P−(DI) > y and (DI , q) > 1 is � (logR)4k−1

∑
p|q, p>y 1/p � (logR)4k/y. The

above discussion implies that

X2k(R) =
∑

P+(d′i)≤y, d′i≤B
1≤i≤2k

χ(d′1) · · ·χ(d′2k)

[d′1, . . . , d
′
2k]

∑
P−(DI)>y (I∈S∗(2k))

R/(2d′i)<
∏
I∈S∗(2k), I3iDI≤R/d′i

1≤i≤2k

∏
I∈S−(2k) χ(DI)∏
I∈S∗(2k) DI

+O

(
1

logR

)
.

Next, we note that ∑
n≤x

P−(n)>y

χ(n)� x1−1/(30 log y) (x ≥ max{q4, y}),
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by Lemma 2.4 in [16]. Therefore, ∑
n>q4B
P−(n)>y

χ(n)

n
� 1

y
.

(11.1)

This implies that the contribution toX2k(R) withDI > q4B for some I ∈ S−(2k) is� (logR)4k−1/y.
To conclude, we have shown

X2k(R) =
∑

P+(d′i)≤y, d′i≤B
1≤i≤2k

∑
DI≤q4B
P−(DI)>y
I∈S−(2k)

χ(d′1) · · ·χ(d′2k)

[d′1, . . . , d
′
2k]

·
∏

I∈S−(2k) χ(DI)∏
I∈S−(2k) DI

· T (R1, . . . , R2k)

+O

(
1

logR

)
.

(11.2)

where Ri = R/(d′i
∏

I∈S−(2k), I3iDI) and

T (R) :=
∑

P−(DI)>y (I∈S+(2k))
Ri/2<

∏
I∈S+(2k), I3iDI≤Ri

1≤i≤2k

1∏
I∈S∗(2k) DI

.

Our task now becomes estimating T (R). Let d = 22k−1 − 2k and recall the definition of Vd(·)
from the statement of Theorem 1.5(b). The proof of Theorem 1.1 shows that Vk(m) � md. We
claim that

T (R) = Vk(logR)

(
1 +O

(
logB

logR

))∏
p≤y

(
1− 1

p

)22k−1−1

(11.3)

whenever R/B ≤ Ri ≤ R for all i, as is the case here. Proving (11.3) can be accomplished easily
using a lattice point count and the fundamental lemma of sieve methods. First of all, note that the
part of T (R) whereDI ≤ B for some I ∈ S+(2k) is trivially� (ϕ(P )/P )22k−1−1(logR)d−1 logB
by an upper bound sieve, where we have set P :=

∏
p≤y p for simplicity. In the rest of the range,

we set ρ = 1 + 1/ logR and divide the variables DI into boxes of the form (ρmI , ρmI+1], mI ≥ 0.
Replacing DI by ρmI in the conditions Ri/2 <

∏
J∈S+(2k), J3iDJ ≤ Ri creates a total error of size

� (ϕ(P )/P )22k−1−1(logR)d−1. In addition, if ρmI ≥ B = e(log logR)3 , then we have that∑
ρmI<DI≤ρmI+1

P−(DI)>y

1

DI

= (log ρ)
ϕ(P )

P
+OC

(
1

(logR)C

)

for any fixed C, by the fundamental lemma of sieve methods (see, for example, [25, Theorem
I.4.3]). We thus conclude that

T (R) = ((log ρ)ϕ(P )/P )22k−1−1
∑

mI≥logB/ log ρ (I∈S+(2k))
log(Ri/2)

log ρ
<
∑
I∈S+(2k), I3imI≤

logRi
log ρ

1

+O
(

(ϕ(P )/P )22k−1−1(logR)d−1 logB
)
.
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A straightforward lattice point counting argument implies that the sum on the right hand side equals

Wk(logR1, . . . , logR2k)

(log ρ)22k−1−1

(
1 +O

(
logB

logR

))
,

where Wk(m) is the volume of the polytope {(xI)I∈S+(2k) : xI ≥ 0 ∀I, mi − log 2 ≤
∑

I3i xI ≤
mi ∀i}. Sincemi = logRi = logR+O(logB) here, we may show using the Mean Value Theorem
that Wk(m) = Vk(m) +O((logR)d−1 logB). Relation (11.3) then follows.

We are now ready to complete the proof of Theorem 1.5(a): inserting the estimate (11.3) into
(11.2), we conclude that

X2k(R) =
Vk(logR)

(P/ϕ(P ))22k−1−1

∑
P+(d′i)≤y, di≤B

1≤i≤2k

∑
DI≤q4B
P−(DI)>y
I∈S−(2k)

χ(d′1) · · ·χ(d′2k)

[d′1, . . . , d
′
2k]

·
∏

I∈S−(2k) χ(DI)∏
I∈S−(2k) DI

+O((logR)d−1(log(q logR))O(1)).

We now remove the conditions DI ≤ q4B and d′i ≤ B via (11.1) and Rankin’s trick, respectively.
We conclude that

X2k(R) =
Vk(logR)

(P/ϕ(P ))22k−1−1

∑
P+(d′i)≤y
1≤i≤2k

∑
P−(DI)>y
I∈S−(2k)

χ(d′1) · · ·χ(d′2k)

[d′1, . . . , d
′
2k]

·
∏

I∈S−(2k) χ(DI)∏
I∈S−(2k)DI

+O((logR)d−1(log(q logR))O(1)).

Finally, we note that

∑
P+(d′i)≤y
1≤i≤2k

χ(d′1) · · ·χ(d′2k)

[d′1, . . . , d
′
2k]

=
∏
p≤y

1 +
∞∑
j=1

∑
j1,...,j2k≥0

max{j1,...,j2k}=j

χ(p)j1+···+j2k

pj

 .

The coefficient of 1/p is (22k−1 − 1)χ0(p) + 22k−1χ(p). We thus conclude that

(ϕ(P )/P )22k−1−1
∑

P+(d′i)≤y
1≤i≤2k

∑
P−(DI)>y
I∈S−(2k)

χ(d′1) · · ·χ(d′2k)

[d′1, . . . , d
′
2k]

·
∏

I∈S−(2k) χ(DI)∏
I∈S−(2k) DI

=
∏
p≤y

1 +
∞∑
j=1

∑
j1,...,j2k≥0

max{j1,...,j2k}=j

χ(p)j1+···+j2k

pj

(1− 1

p

)22k−1−1∏
p>y

(
1− χ(p)

p

)−22k−1

=
∏
p

1 +
∞∑
j=1

∑
j1,...,j2k≥0

max{j1,...,j2k}=j

χ(p)j1+···+j2k

pj

(1− 1

p

)22k−1−1

+O

(
1

y

)
.

An easy calculation then completes the proof of Theorem 1.5(b).
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12. THE ANALOGY FOR EXCEPTIONAL DIRICHLET CHARACTERS

In this section, we consider the quantity X2k(R) when k = 1, or when when χ(p) = −1 for
most primes p ≤ R, and complete the proof of Theorem 1.5. Our arguments here resemble closely
the ones of Section 8, so we only highlight the key points here. Throughout the proof, we assume
that R ≥ q2c1 , the complimentary case being trivial.

12.1. Initial preparations. Arguing as in Section 8.4, we find that

X2k(R) =
1

(2iπ)2k

∫
· · ·
∫

Re(sj)=λ
j/ logR

|Im(sj)|≤T
1≤j≤2k

∑
d1,...,d2k≥1

∏2k
j=1 χ(dj)d

−sj
j

[d1, . . . , d2k]

2k∏
j=1

ĥR(sj)(1− 2−sj)ds1 · · · ds2k

+O

(
1

(logR)100

)
,

where h is a smooth function with h(x) = 1 for x ≤ 1− 1/(logR)(2k−1)22k+1+200k+2 and h(x) = 0
for x > 1, T = exp{(log logR)2}, and λ is some large parameter > 1 to be chosen later.

By expanding as an Euler product, we find that for Re(s1), . . .Re(s2k) ≥ −1/4k we have

∑
d1,...,d2k≥1

∏2k
j=1 χ(dj)d

−sj
j

[d1, . . . , d2k]
=
∏
p

1 +
∑

I∈S∗(2k)

χ(p)#I

p1+sI
+O

(
1

p2−2k/4k

)
= P (s)

∏
I∈S∗(2k)

L(1 + sI , χ
#I),

where P (s) is given by an Euler product which converges absolutely in the region Re(sj) > −1/4k
for all j. Next, we set

F (s) = P (s)
2k∏
j=1

ĥR(sj)(1− 2−sj)

Rsj

and

ζq(s) := L(s, χ0) = ζ(s)
∏
p|q

(
1− 1

ps

)
,

so that

X2k(R) =
1

(2iπ)2k

∫
· · ·
∫

Re(sj)=λ
j/ logR

|Im(sj)|≤T
1≤j≤2k

F (s)Rs[2k]
∏

I∈S−(2k)

L(1 + sI , χ)

×
∏

I∈S+(2k)

ζq(1 + sI)ds1 · · · ds2k +O

(
1

(logR)100

)
.

(12.1)

Similarly to Section 8, we let C̃` denote the class of complex-valued functions f defined in a
domain containing

Ω̃` := {s ∈ C` : |Re(sj)| < 1/5k, |Im(sj)| < T + 1 (1 ≤ j ≤ `)},
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it is analytic in Ω̃`, and its derivatives satisfy the bound

∂j1+···+j`f

∂sj11 · · · ∂s
j`
`

(s)�j1,...,j`

∏̀
m=1

[(1 + (qT )−Re(sm))(log logR)jm ]O(1)

|sm|+ 1
(12.2)

for all j1, . . . , j` ≥ 0 and all s = (s1, . . . , s`) ∈ Ω̃`.
Since there is an absolute constant c1 > 0 such that

L(j)(s, ψ)�m (1 + (q + |t|)c1(1−σ)) logj+1(q + |t|) +
1ψ=χ0

|s− 1|j+1
(12.3)

for j ∈ Z≥0, ψ ∈ {χ, χ0} and j ∈ {0, 1}, a standard consequence of bounds on the exponential
sum

∑
n≤N, n≡a (mod q) n

it (see, for example, Lemma 4.1 in [16]), we have that F is in the class C̃2k.

12.2. The case k = 1. We first deal with the case k = 1 that is easy and will help us clarify some
of the technical details of the argument. When k = 1, we move the variable s2 to the line Re(s2) =
−ε, for a sufficiently small ε. The contribution of the horizontal contours is� (logR)O(1)/T , and
the contribution of the contour Re(s2) = −δ is� R−δ, for some positive δ = δ(ε) by (12.3), and
by our assumptions that F ∈ C2 and that R ≥ q2c1 . In conclusion,

X2(R) =
1

2iπ

∫
Re(s1)=λ/ logR
|Im(s1)|≤T

1≤j≤2k

F (s1,−s1)L(1 + s1, χ)L(1− s1, χ)ds1 +O

(
1

(logR)100

)
.

Finally, we move s1 to the line Re(s1) = 0. No poles are encountered, and the contribution of the
horizontal lines is easily seen to be� (logR)O(1)/T , so that

X2(R) =
1

2π

∫ T

−T
F (it,−it)|L(1 + it, χ)|2dt+O

(
1

(logR)100

)
=

1

2π

∫ (logR)102

−(logR)102
P (it,−it)

∣∣∣L(1 + it, χ)ĥR(it)(1− 2it)
∣∣∣2 dt+O

(
1

(logR)100

)
,

since ĥR(it)(1− 2it)� 1/(1 + |t|). Finally, using 6.6 to replace ĥR(s) by Rs/s, choosing C to be
large enough, and then extending the range of integration to R yields the estimate

X2(R) =
1

2π

∫ ∞
−∞

P (it,−it)
∣∣∣∣L(1 + it, χ) · sin(t(log 2)/2)

t

∣∣∣∣2 dt+O

(
1

(logR)100

)
,

which proves Theorem 1.5(a). (Obviously, we can obtain a much stronger error term, but we have
chosen to content ourselves with a more qualitative result.)

12.3. Contour shifting. Next, we focus on the case k ≥ 2 and prove Theorem 1.5(c). From now
on, we will always be working under the assumptions and notations

L(β, χ) = 0, β > 1− 1/(100 log q), Q = e1/(1−β).

As it is well-known, we have that
∑

q<p≤Q(1 + χ(p))/p � 1 and
∑

p>Q χ(p)/p � 1 (see, for
example, Theorems 2.1 and 2.4 in [17]). As a consequence, we note once and for all that

L(1, χ) � 1

logQ

∏
p≤q

(
1 +

1 + χ(p)

p

)
.(12.4)
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As in Section 8, we shift the contours of the variables s1, . . . , s2k in a certain order. As in that
section, to describe the general contour shifting argument after N steps, 0 ≤ N ≤ 2k, we fix sets
I1, . . . , IN , and distinct integers jn ∈ In for each n. Recall, also, that sj denotes a variable and xj
denotes a linear form. We then define

Vn = SpanQ(xI1 , . . . , xIn) and IN = {I ∈ S(2k) : xI ∈ Vn} (0 ≤ n ≤ N).

Imposing the conditions xI1 = · · · = xIn = 0, we may write xj1 , . . . , xjn in terms of the variables
sj with j ∈ [2k] \ {j1, . . . , jN}. Hence xI becomes a linear form LN,I in the variables sj with
j ∈ [2k] \ {j1, . . . , jN}. Moreover, xI ∈ VN if and only if LN,I = 0.

As we will see, we will always be able to assume that jn = 2k − n+ 1. Let d ∈ Z≥0 and Given
the above set-up with jn = 2k − n + 1, an integer d ∈ Z≥0 and h = (hn,I)0≤n≤N, I∈S∗(2k) be a
vector of non-negative integers such that:
• 0 = h0,I ≤ h1,I ≤ · · · ≤ hN,I for I ∈ S∗(2k);
• If I ∈ In \ In−1 for some n ∈ {1, . . . , N}, then hm,I = hn,I for all m ≥ n;
• XN ≥ N + d, where

XN := #(IN ∩ S+(2k))−
∑

I∈S−(2k)∪(S+(2k)\IN )

hN,I .

A function J : R≥2 → C is a called a fundamental component of levelN and of type (I,h, d)
if:
• when N = 2k, it equals

J(R) = (logR)XN−N−d
∏

I∈S−(2k)

L(hN,I)(1, χ) ;

• when N < 2k, it is of the form

J(R) =

(
ϕ(q)

q

)MN (logR)XN−N−d

(2iπ)2k−N

∏
I∈S−(2k)∩IN

L(hN,I)(1, χ)

×
∫
· · ·
∫

Re(sj)=λj/ logR
|Im(sj)|≤T
1≤j≤2k−N

G(s)REN (s)
∏

I∈S−(2k)\IN

L(hN,I)(1 + LN,I(s), χ)

×
∏

I∈S+(2k)\IN

ζ(hN,I)
q (1 + LN,I(s))ds2k−N · · · ds1,

where λj/λj−1 ≥ λ, EN(s) := LN,[2k](s),

MN :=
N∑
n=1

∑
I∈(In\In−1)∩S+(2k)

(hn−1,I + 1),

and G is a function in the variables s1, . . . , s2k−N that belongs to the class C2k−N , given by

G(s) = F (LN,{1}(s), . . . , LN,{2k}(s))

when d = 0. In particular, G is non-vanishing in Ω2k−N when d = 0 by (12.3).
As in Section 8.2, a fundamental component of level N is called reducible when N < 2k and

EN 6= 0. Otherwise, it is called irreducible. With this above terminology, the integral on the right
hand side of (12.1) is a reducible fundamental component of level 0 and of type (∅, ∅, 0).
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Again as in Section 8.2, when EN 6= 0 there are some γj ∈ Q with γjN+1
6= 0 such that

EN(x) = γ1x1 + γ2x2 + · · ·+ γjN+1
xjN+1

If λ is big enough, then the sign of Re(EN(s)) throughout the region of integration is constant and
equal to the sign as γjN+1

.
The analogies of Lemmas 8.4 and 8.5 can be proven in this setting:

Lemma 12.1. Assume the above setup, let J(R) be a reducible fundament component of level
N < 2k, and let γjN+1

be as above. Suppose, further, that k ≥ 2 and that e(log q)2 ≤ R ≤ Q. All
implied constants below depend at most on k.

(a) If γjN+1
> 0, then J(R) is a linear combination of fundamental components of level N + 1,

up to an error term of size� 1/ logR. Moreover, the coefficients of this linear combination
are� (log q)O(1).

(b) If γjN+1
< 0, then J(R)� T−1+o(1).

We iterate the above lemma till all the fundamental components we are dealing with are irre-
ducible. For such components, we have the following asymptotic formula.

Lemma 12.2. Assume the above setup. Suppose, further, that k ≥ 2 and that e(log q)2 ≤ R ≤ Q. If
J(R) is an irreducible fundamental component, then there is some complex number c� (log q)O(1)

such that
J(R) = c(logR)(

2k
k )−2k +O((log(q logR))O(1)(logR)(

2k
k )−2k−1).

All implied constants depend at most on k.

Since the integral on the right hand side of (12.1) is a reducible fundamental component of level
0, we apply Lemma 8.4 repeatedly to write it as a linear combination of irreducible fundamen-
tal components, and then estimate these components by Lemma 8.5. This proves that there is a
constant ck(χ)� (log q)O(1) such that

X2k(R) = ck(χ) · (logR)(
2k
k )−2k +O

(
(log(q logR))O(1)(logR)(

2k
k )−2k−1

)
(12.5)

when k ≥ 2 and e(log q)2 ≤ R ≤ Q. We will show that ck(χ) � (log q)−O(1) in Section 12.5 and
complete the proof of Theorem 1.5. The key intermediate Lemmas 12.1 and 12.2 are proven in the
next section.

12.4. Proof of the auxiliary Lemmas 12.1 and 12.2. For easy reference, we record the following
bound that we will repeatedly use: for R ≤ Q, we have

(logR)XN−N−d
∏

I∈S−(2k)∩IN

L(hN,I)(1, χ)� (log q)O(1)(logR)A (VN )−N−D,(12.6)

where
D = d+

∑
I∈S(2k)\IN

hN,I +
∑

I∈S−(2k)∩IN
hN,I≥1

(hN,I − 1)

and A (VN) is defined in Section 7. Indeed, when hN,I = 0 with I ∈ S−(2k) ∩ IN , we use (12.4)
to find that have that

L(1, χ)� (log q)2

logQ
≤ (log q)2

logR
.

Otherwise, we use the bound L(hN,I)(1, χ)� (log q)hN,I+1. Putting these estimates together yields
(12.6).
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Proof of Lemma 12.1. (a) Here γjN+1
> 0. We make the change of variables

s′j = sj (1 ≤ j < jN+1), s′j = sj+1 (jN+1 ≤ j ≤ 2k −N), s′2k−N = sjN+1
,

and similarly for the forms xj and the parameters λj .
Next, we shift the s′2k−N contour to the line Re(s′2k−N) = −ε for a small enough ε > 0. The

integral on the new contour is� (logR)O(1)/T , which is negligible, and we are left with having to
analyze the pole contributions. The poles occur when LN,IN+1

(s′) = 0 for some IN+1 ∈ S+(2k) \
IN such that the coefficient of s′2k−N in LN,IN+1

is non-zero. As we discussed in the previous
section, imposing the relation LN,IN+1

(x′) = 0 to write the form x′2k−N as a linear combination of
x′1, . . . , x

′
2k−N−1, say x′2k−N = C(x′1, . . . , x

′
2k−N−1). In particular, LN,I(x′) becomes a linear form

LN+1,I in the variables x′1, . . . , x
′
2k−N−1. We also set EN+1 = LN+1,[2k] and let IN+1 be the set of

I ⊂ [2k] such that LN+1,I = 0.
The generic order of the pole at s′2k−N = C(s′1, . . . , s

′
2k−N−1) is

m =
∑

I∈(IN+1\IN )∩S+(2k)

(hN,I + 1)− ν,(12.7)

where ν is the generic order of the zero of

G(s)
∏

I∈S−(2k)∩(IN+1\IN )

L(hN,I)(1 + LN,I(s), χ)

at the same point. In particular, ν = 0 if d = 0 (so that G(s) = F (LN,{1}(s), . . . , LN,{2k}(s))) and
hN,I = 0 for all I ∈ S−(2k) ∩ (IN+1 \ IN). By a direct computation, we then find that

X2k−1 +m = #(IN+1 ∩ S+(2k))−
∑

I∈S−(2k)∪(S+(2k)\IN+1)

hN,I − ν.(12.8)

We note that m ≥ 1 for all N ≤ 2k − 1 when k ≥ 2 and ν = 0; otherwise, we would have that
S+(2k) ⊂ IN , which is impossible because the dimension of VN is N , whereas the dimension of
the span of the linear forms sI , I ∈ S+(2k), is 2k.

We want to understand the pole contribution when m ≥ 1. We separate two subcases:

Case 1 of the proof of Lemma 12.1: N = 2k− 1. In this case, we have that s′j = L2k−1,{j}(s
′
1) =

ajs
′
1 for all j, where aj ∈ Q. Then the pole occurs necessarily when s′1 = 0. Thus I2k = S(2k),

and we obtain an evaluation of J(R) as finite linear combination of powers of logR, the highest of
which has exponent

X2k−1 +m− 2k = 22k−1 − 2k − 1−
∑

I∈S−(2k)

h2k−1,I − ν,

up to an admissible error. The coefficients of the polynomial in logR are given in terms of the
derivatives L(j)(1, χ). Specifically, the coefficient of (logR)X2k−1+m−2k−h, 0 ≤ h ≤ m − 1, is a
linear combination of products of the form(

ϕ(q)

q

)M2k ∏
I∈S−(2k)

L(h2k,I)(1, χ),

with the coefficients of this linear combination being� 1, and with the parameters h2k,I satisfying
h2k,I ≥ h2k−1,I with equality if I ∈ I2k−1 \ {0}, and

∑
I∈S−(2k)(h2k,I − h2k−1,I) ≤ h. Arguing as
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in the proof of (12.6), we find that

J(R)� (log q)O(1)(logR)X2k−1+m−2k−h

(logQ)#{I∈S−(2k):h2k,I=0} ≤ (log q)O(1)(logR)22k−1−2k−1−
∑
I∈S−(2k) h2k,I

(logR)#{I∈S−(2k):h2k,I=0} ,

where we used that Q ≤ R, ν ≥ 0 and h ≥
∑

I∈S−(2k)(h2k,I − h2k−1,I). We thus conclude that

J(R)� (log q)O(1)

(logR)2k+1
� 1

logR
.

This completes the proof of the lemma in this case (the linear combination is empty).

Case 2 of the proof of Lemma 12.1: N ≤ 2k − 2. Arguing as in the proof of part (b) of Lemma
8.4, the contribution of the pole s′2k−N = C(s′1, . . . , s

′
2k−N−1) to J(R) can be seen to be a linear

combination of terms of the form(
ϕ(q)

q

)MN+1 (logR)XN+m−h−N−1−d

(2iπ)2k−N−1

∫
· · ·
∫

Re(sj)=λ
′
j/ logR, |Im(sj)|≤T

1≤j≤2k−N−1

G̃(s)REN+1(s)

×
∏

I∈S−(2k)

L(hN+1,I)(1 + LN+1,I(s), χ)

×
∏

I∈S+(2k)\IN+1

ζ(hN+1,I)
q (1 + LN+1,I(s))ds2k−N−1 · · · ds1

plus an error term of size O(1/ logR), where h ∈ {0, . . . ,m − 1}, hN+1,I ≥ hN,I with equality
if I ∈ IN+1 \ {0}, and

∑
I∈S−(2k)∪(S+(2k)\IN+1)(hN+1,I − hN,I) ≤ h. Relation (12.8) then implies

that the power of logR is then XN+1 −N − 1− d′ with

d′ = d+ ν + h−
∑

I∈S−(2k)∪(S+(2k)\IN+1)

(hN+1,I − hN,I) ≥ 0.

Moreover, XN+1 − d′ = XN +m− h ≥ N + 1. This completes the proof of part (a).

(b) Here γjN+1
< 0. We treat this case using the same argument as in part (b) of Lemma 8.4,

with the difference that the contours of s2k−N , s2k−N−1, . . . , sjN+1
are shifted to the lines Re(sj) =

λj/((log q) + (log T )3/2), jN+1 ≤ j ≤ 2k −N . Since q ≤ e
√

logR by assumption, we find that

J(R)� T−1+o(1),

as needed. �

Proof of Lemma 12.2. We separate three cases.

Case 1 of the proof of Lemma 12.2: N = 2k. Here I2k = S(2k) and thus J(R)� (log q)O(1)/(logR)2k+1

by (12.6), which proves Lemma 12.2 in this case.
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Case 2 of the proof of Lemma 12.2: N = 2k − 1. As in Case 1 of the proof of Lemma 12.1, we
have that sj = L2k−1,{j}(s1) = ajs1 for all j, where aj ∈ Q. Then

J(R) =

(
ϕ(q)

q

)M2k−1 (logR)X2k−1−2k+1−d

2πi

∏
I∈S−(2k)∩I2k−1

L(h2k−1,I)(1, χ)

×
∫

Re(s1)=λ1/ logR
|Im(s1)|≤T

G2k−1(s1)
∏

I∈S−(2k)\I2k−1

L(h2k−1,I)(1 + aIs1, χ)

×
∏

I∈S+(2k)\I2k−1

ζ
(h2k−1,I)
q (1 + aIs1)ds1,

We first show a crude bound on J(R), that will allow us to focus on a more convenient subcase.
We move the line of integration to Re(s1) = λ/ log(qT ) and use (12.3) to find that the integral
over s1 is� (log(q logR))O(1). Together with (12.6) and Proposition 7.1, this implies that

J(R)� (log(q logR))O(1) · (logR)(
2k
k )−2k−1,

unless d = 0, h2k−1,I ∈ {0, 1} for all I ∈ S−(2k) ∩ I2k−1, h2k−1,I = 0 for all I ∈ S(2k) \ I2k−1,
half of the aj’s are +b and the other half are −b, for some b 6= 0.

We have thus reduced proving the lemma to the case when d = 0, h2k−1,I ∈ {0, 1} for all
I ∈ S−(2k)∩I2k−1, h2k−1,I = 0 for all I ∈ S(2k)\I2k−1, half of the aj’s are +b and the other half
are−b, where b 6= 0. In particular, we find that I2k−1∩S−(2k) = ∅ and that #(I2k−1∩S+(2k)) =(

2k
k

)
− 1, so that

J(R) =

(
ϕ(q)

q

)M2k−1 (logR)(
2k
k )−2k

2πi

∫
Re(s1)=λ/ logR
|Im(s1)|≤T

G(s1)
∏

I∈S−(2k)

L(1 + aIs1, χ)

×
∏

I∈S+(2k)\I2k−1

ζq(1 + aIs1)ds1.

Since ν = 0 here, we saw before that the integrand has a genuine pole of order m ≥ 1 at s1 = 0
by a dimension argument. In fact, we have that m ≥ 2: indeed, we know that [2k] ∈ I2k−1 by our
assumption that E2k−1 = 0, so that I ∈ I2k−1 if and only if [2k] \ I ∈ I2k−1. In particular, since
we know that there is at least one I ∈ S+(2k) \ I2k−1, there must be at least two such I’s.

The presence of this pole make the estimation of J(R) tricky. In particular, we cannot shift the
contour to the line Re(s1) = 0 as in Case 2 of Section 8.2. Instead, we write

L(1 + aIs1, χ) = L(β + aIs1, χ) + ∆(aIs1),

where
∆(s) := L(1 + s, χ)− L(β + s, χ).

We thus find that

∆(s) =

∫ 1

β

L′(u+ s, χ)du� log(q + |t|)
logQ

(σ ≥ −1/ log(q + |t|)),

by (12.3) and the assumption that β > 1− 1/(100 log q). With this notation,

J(R) = M + E,
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where

M =

(
ϕ(q)

q

)M2k−1 (logR)(
2k
k )−2k

2πi

∫
Re(s1)=λ/ logR
|Im(s1)|≤T

G2k−1(s1)
∏

I∈S−(2k)

L(β + aIs1, χ)

×
∏

I∈S+(2k)\I2k−1

ζq(1 + aIs1)ds1,

and E is a sum of similar expressions where at least one of the L(β + aIs1, χ) factors is replaced
by ∆(aIs1).

First, we bound E. Moving s1 to the line Re(s1) = 1/ log(qT ), we find that

E � (log(q logR))O(1)(logR)(
2k
k )−2k

logQ
≤ (log(q logR))O(1)(logR)(

2k
k )−2k−1.

Finally, we estimate M by moving the line of integration of s1 to Re(s1) = 0, and use the fact
that G(s1) � 1/(1 + |s1|)2k (note that the integrand is now analytic, since the pole of the ζq’s is
annihilated by the zeroes of the L(·, χ)’s) to find that

J(R) =

(
ϕ(q)

q

)M2k−1 (logR)(
2k
k )−2k

2π

∫ T

−T
G(it)

∏
I∈S−(2k)

L(β + iaIt, χ)

×
∏

I∈S+(2k)\I2k−1

ζq(1 + iaIt)dt+O((log(q logR))O(1)(logR)(
2k
k )−2k−1).

Note thatG(s) = F (a1s, . . . , a2ks) here, because d = 0. When |t| ≤ logR, we use (6.6) to replace
ĥR by Rs/s, and when |t| > logR we use the bound ĥR(s) � Rσ/|s| by (6.5). Taking C to be
large enough, we thus conclude that

J(R)

(logR)(
2k
k )−2k

=
(ϕ(q)/q)M2k−1

2π

∫ ∞
−∞

F (ia1t, . . . , ia2kt)
∏

I∈S−(2k)

L(β + iaIt, χ)

×
∏

I∈S+(2k)\I2k−1

ζq(1 + iaIt)
2k∏
j=1

1− 2−iajt

iajt
dt+O

(
(log(q logR))O(1)

logR

)
.

This completes the proof of Lemma 12.2 in this case.

Case 3 of the proof of Lemma 12.2: N ≤ 2k − 2. As in the corresponding case of the proof of
Lemma 8.5, and using (12.6), we find that

J(R)� (log(q logR))O(1)(logR)XN−N−d
∏

I∈S−(2k)∩IN

|L(hN,I)(1, χ)|

� (log(q logR))O(1)(logR)A (VN )−N .

Proposition 7.1(c) then implies that A (VN) − N ≤
(

2k
k

)
− 2k − 2, thus completing the proof of

Lemma 12.2. �
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12.5. Lower bounds. In order to complete the proof of Theorem 1.5, we show that constant ck(χ)
in (12.5) is� (log q)−O(1). In order to do so, we follow the argument of Section 9 and prove that,
for any ε > 0, there is a constant ck > 0 such that

X2k(R) ≥ ck
(logR)(

2k
k )−2k−ε

(log q)O(1)
−Oε

(
(log(q logR))O(1)(logR)(

2k
k )−2k−1

)
,(12.9)

provided that
√

logQ ≥ logR ≥ 2c1 log q, where c1 is the constant appearing in (12.3). (For this
section, all constants will be independent of ε, unless specified by a subscript, as above.)

We set
y = exp{(logR)1−ε′} and Y = exp{(logR)1−ε′/2},

where ε′ will be taken to be small enough in terms of ε, and focus our attention on integers of the
form n = ap1 · · · pk with P+(a) ≤ y, a ≤ Y , and p1, . . . , pk are distinct primes such that p` >

√
R

and χ(p`) = −1 for all ` ∈ {1, . . . , k}. Then

X2k(R) ≥
∏

p≤R(1− 1/p)

k!

∑
P+(a)≤y
a≤Y

∑
pj>
√
R

χ(pj)=−1
1≤j≤k

µ2(p1 · · · pk)
ap1 · · · pk

 k∑
`=1

∑
R/(2p`)<d≤R/p`

d|a

χ(d)


2k

.

The next step is to drop the condition that a ≤ Y by an application of Rankin’s trick and to
remove the condition that the pj’s are distinct. We further replace the sharp cut-off R/(2p`) < d ≤
R/p` by the smooth cut-off h( log(dp`)

logR
)− h( log(2dp`)

logR
), where h(x) = 1 for x ≤ 1− 1/(logR)B and

h(x) = 0 for x ≥ 1, with B is sufficiently large. To conclude, we have that

X2k(R) ≥
∏

p≤R(1− 1/p)

k!(logR)k

∑
P+(a)≤y

∑
√
R<pj≤R
χ(pj)=−1

1≤j≤k

∏k
j=1 log pj

ap1 · · · pk

 k∑
`=1

∑
d|a

χ(d)w

(
log(dp`)

logR

)2k

+O

(
1

logR

)
,

where w(x) = h(x)− h(x+ log 2/ logR).
The rest of the proof follows the argument of Section 9, with a small twist, as we will explain

in the end. We expand the 2k-th power and focus on a convenient subset of summands. We then
conclude that

X2k(R) ≥
∏

y<p≤R(1− 1/p)

k!

∑
J∈J

X(J) +O

(
1

logR

)
with

X(J) =
1

(logR)k

∑
P+(dj)≤y
1≤j≤2k

χ(d1) · · ·χ(d2k)

[d1, . . . , d2k]

k∏
`=1

∑
√
R<p`≤R

(1− χ(p`)) log p`
2p`

∏
j∈J`

w

(
log(p`dj)

logR

)
,

where J is as in Section 9. We set

S :=
∑

√
R<p≤R

(1− χ(p)) log p

2p
� logR
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and write L for the set of ` ∈ {1, . . . , k} such that J` 6= ∅. Then, using Perron’s formula 2k times
to write each appearance of w as an integral of ŵR, we find that

X(J) =
Sk−#L(logR)−k

(2πi)2k

∫
· · ·
∫

Re(sj)=1/ logR
1≤j≤2k

∑
P+(dj)≤y
1≤j≤2k

∏2k
j=1 χ(dj)d

−sj
j

[d1, . . . , d2k]

∏
`∈L

∑
p`>
√
R

(1− χ(p`)) log p`

2p
1+sJ`
`



×

(
2k∏
j=1

ŵR(sj)

)
ds1 · · · ds2k +O

(
1

logR

)
,

where sJ =
∑

j∈J sj , as usual, and the condition that p` ≤ R was dropped because it is encoded
in the support of w. By possibly re-indexing the variables s1, . . . , s2k, we may assume that L =
{1, . . . , L}, where L = #L, and that max J` = 2k − L + ` for all ` ∈ {1, . . . , L} with L = #L.
As in Section 9, we will move the variables s2k−L+1, . . . , s2k to the left. We note that∑

p>
√
R

(1− χ(p)) log p

p1+s
= −ζ

′

ζ
(1 + s) +

L′

L
(1 + s, χ) +O(1)−

∑
p≤R1/2

log p

p1+s

for Re(s) ≥ −1/3. The above has simple poles at s = 0 and s = β − 1, each of residue 1.
Therefore, using the argument leading to (9.12), we find that

X(J) =
∑

ε`∈{0,β−1}
1≤`≤L

Sk−L(logR)−k

2L(2πi)2k−L

∫
· · ·
∫

Re(sj)=1/ logR (1≤j≤2k−L)
sJ`=ε` (1≤`≤L)

∑
P+(dj)≤y
1≤j≤2k

∏2k
j=1 µ(dj)d

−sj
j

[d1, . . . , d2k]

×

(
2k∏
j=1

ŵR(sj)

)
ds1 · · · ds2k−L +O

(
1

logR

)
.

(12.10)

The above expression is sufficient for handling the terms J ∈ J with at least one J` of odd
cardinality: following the argument of Section 9.5 with the obvious modifications implies that

X(J)� (log(q logR))O(1) (log y)(
2k
k )−2k−1+L

(logR)L
,(12.11)

where we used the fact that supq<p≤Q(1 + χ(p))/p� 1.
However, we need to be more careful on our lower bound for the main term, that is to say

for X(J) with #J` = 2 for all `. First of all, by relabelling our variables, we may assume that
J` = {`, ` + k} for all `. In our expression (12.10) for X(J), we see that sJ` = ε` ∈ {0, β − 1}
implies that s`+k = −s` + O(1/ logQ). We want to replace s`+k by −s`. This introduces an
error that we will control by an application of the mean value theorem. In particular, we need to
understand the derivative of the integrand. If

G(s) =
∑

P+(dj)≤y
1≤j≤k

∏2k
j=1 χ(dj)d

−sj
j

[d1, . . . , d2k]
,

then −G′(s)/G(s) equals
∑

I∈S∗(2k)

∑
p≤y χ

#I(p) log p/p1+sI , plus lower order terms, so that
G′(s)� (log y)G(s) for the vectors swe are considering. Similarly, ŵR(s+ε)/Rs+ε = ŵR(s)/Rs+
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O(ε/(|s|+ 1)) by (6.5). Since we also have that∫
· · ·
∫

Re(sj)=1/ logR
|sj+k+sj |≤1−β

1≤j≤k

|G(s)|
k∏
j=1

|dsj|
1 + |sj|2

� (log(q logR))O(1) (log y)(
2k
k )−k

(logR)k
,

by the argument leading to (12.11), we conclude that

X(J) =
(1 +Rβ−1)k

(2πi logR)k

∫
· · ·
∫

Re(sj)=1/ logR
sj+k=−sj

1≤j≤k

G(s)

(
2k∏
j=1

ŵR(sj)

)
ds1 · · · dsk

+O

(
log y

logQ
· (log(q logR))O(1)(log y)(

2k
k )−k

(logR)k

)
.

The main term can now be bounded from below as in Section 9.4. We thus arrive to the lower
bound

X(J) ≥ ck
(log y)(

2k
k )−k(logR)−k

(log q)O(1)
−O

(
(log(q logR))O(1)(log y)(

2k
k )−k+1

(logR)k+2

)
,

using that
∑

q<p≤Q(1 + χ(p))/p � 1 and y ≤ R ≤ e
√

logQ here. This completes the proof of
(12.9), and thus of Theorem 1.5(c).
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