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Background & motivation
Let x be a Dirichlet character modulo g and define

= max E
1<z<q X
n

If x is non-principal, then Pdlya and Vinogradov showed in 1918 that
M(x) < /qloggq.
Assuming GRH, Montgomery and Vaughan improved this in 1977 to
M(x) < +/qloglog q.
This is best possible: Paley had already shown in 1932 that

there is a sequence g, — oo such that M ((@)) > \/qnloglog qp.

However, such extremal examples should be rather rare. Our goal is to
study how rare they are.



The distribution of M(x): random models
We shall study

_ #{x(modq) : M(x) > £7yq}

Pqy(T) : @) = Prob (M(X) > irﬁ) :

We always assume for simplicity that g is prime.

Two questions:
Q s there a random model that describes Pq(7) accurately?
@ How big is Py(7)?

Let (Xp)p1q be a sequence of independent random variables, uniformly
distributed on {z € C : |z| = 1}, and X, =0 if p|q.
(They should model x(p) as x runs through characters modulo q.)

Then we define X, = Hp,”n
First attempt: model > _, x(n) by >, ., Xa.

For z large compared to g, this will fail: periodicity is not taken into
account.

X5, which serves a model for x(n).



The distribution of M(x): random models, continued

eV

P4(7) = Prob (I\/l(x) > Fﬁﬁ) .
(Xb)ptq sequence of independent random variables uniformly distributed
on{zeC:|z|=1}, X, =0if p|lg, Xo =11,
Second attempt: use Pdlya’s expansion (x primitive, e(x) = e

7(x) X(n)(1 — e(=nz/q)) qlogg
= == _— < < q).
Sam=22 % oz o (1989) 1<wsq)

n<z 1<|n|<w

Our model for >

p ||n
27rix):

n<z X(n) then becomes

1<|n|<q
This model captures the periodicity of x.

Remark. The standard deviation of $(z)/,/q is < 1. (Compare this to 1st
model: the SD of T(z) = 3_ ., Xy is v/z, and one might expect T(z)/\/z
to get large relatively often.) As a result, Py(7) will be rather small.



Known results on Py(7)

In 1979, Montgomery and Vaughan showed that

1
Y M) <k k.
o(a) |

(mod q)

An immediate corollary is that

e7 1
Pq(T) = PrOb (M(X) > 7_[_7'\/6) <<A T7

In 2011, Bober-Goldmakher proved that, for fixed 7 and g — oo over
primes,

exp {— s oHoo(l))} < Po(r) < exp { —eBVT/ 18D Y

T

where C =1.09258... This supports the claim that Pq(7) is very small.

Question: why do the tails of the distribution of M(x) have this double
exponential decay?



The distribution of M(x) vs the distribution of L(1, x)

> x(n) = 7-2(;(,) > X _ne(_na)) + O(log q).
n<aq 1<[n<q

In view of Pdlya’s expansion, one might conjecture that
%
Py(r) := Prob <I\/I(X) > ';T\/a) ~ Prob (|L(1,x)| > c7).

Granville-Soundararjan: for g prime and e” = o(log q),

T

Prob (|L(1, x)| > €77) = exp {_ C: (1+ oHOO(1))} .

Compare this to

exp {_C: (1 n Oq—aoo(l))} < Pq(T) < exp {_eB\ﬁ/(logT)lM}‘




The distribution of L(1,x): main ideas

@ We shall take moments of L(1,x), so we need to ‘shorten’ it. We
have that log L(1, x) = >_, x(p)/p + Cy, where C, is a constant.
PNT = log L(1,x) ~ >_ e X(P)/P+ Cy,
GRH = log L(1,x) ~ >_p<(0gqp2+< X(P)/P + Cy.
But we study L(1, x) statistically: for most x (mod q),

Zero-density estimates = log L(1, x) ~ Zpg(log q)10 x(p)/p+ C.
@ Take moments of

—1
taoin) =TT (1-X2) = 5 2 qogay):

p n
pP<y pln =p<y

2

L=y |y k)

N9) \ (oda) |pln Spzy "

_ 3 7k(m)7i(n)

mn
m=n(mod q)

plmn = p<y, plq



The distribution of L(1,x), continued

Ignoring the off-diagonal terms (assumption that X, is a good model for
x(n)), and assuming that q is prime,

1 2 T\M)T (N
Maci= o5 D0 IL@xinP= 3 k(nznk()

x (mod q) m=n(mod q)
plmn = p<y, plq

T, n2 T, 2 T, 2
- Z k,(72) :H<1+ «(p) n k,(gl:)er)’

p2
pln = p<y p<y

Then Granville and Soundararajan proceed to show that
log My = 2e7k + C'k/log k + O(k/ log? k), which allows them to
estimate Prob (|L(1, x)| > €77) quite accurately.

Remark. In fact, they observe that

log (1 + Tkl(;;)z + Tk,(jz) +- ) = log lo(2k/p) + O(k/p?),

2
where Io(t) = 3,0 %) is the modified Bessel function of the 1st kind.

In particular, most of the contribution to My, comes from primes p ~ k.



New results on Py(7) = Prob (M(y) > %7\/6)

Recall Bober-Goldmakher's result: for 7 fixed and g — oo over primes,

exp{— e (1+OT—>OO(1))} < P(r) < exp{—eBﬁ/(bgf)l/“}_

T

There are two issues to be addressed:
@ There is a discrepancy between upper and lower bounds.

@ The result is not uniform in 7 and q.

Theorem (Bober, Goldmakher, Granville, K. (2013))

Let § > 14/15, q be prime and 2 < 7 < loglog g — logloglog g — 5. Then

exp {— C: 1+ oT_>oo(1))} < Py(7) < exp {—eT+O9(T€)} .

Remark. On GRH, the theorem holds when 7 < log, g — log, g + O(1). It
seems likely that it can be shown unconditie” = o(log q) can be obtained
unconditionally.



A reduction to the distribution of L(1, x): lower bounds

For lower bounds on Pg4(7), we follow Bober-Goldmakher and note that

7(X) X(n)(1 — e(—n/2))
dox(m o~ o= Y
2mi n

n<q/2 1<|n|<q

X _ 20 > AP =

1<n<q
1<Inl< n odd
n .
n oddq 0 if X(_l) =1

When x is odd, the right hand side is essentially L(1,%), divided by the
Euler factor at p = 2.

One can then obtain the claimed lower bound on P4(7) using the methods
of Granville-Soundararajan.

The upper bound is significantly harder. The main issue is to understand
where >~ x(n) is maximized (ideas about pretentious characters).



A detour: pretentious characters

Granville-Soundararajan (2006) and Goldmakher (2010) improved the
previously known bounds for M(x) when x has odd order g to

Vq(log q)t%+o(1) unconditionally, < g . 7r>
M < 5 =1-= Sin —
W {\/a(log log g)1~%+°(1)  on GRH. & Y

Idea of the proof: g odd = x(—1) = 1. So Pdlya’s expansion becomes

Z Z xX(n 1—e( na)) 77‘ Z Xn)e noz).

n<aq 1<\n|<q 1<|n\<q

Let o — a/b| < 1/(bB), b < B := V89, Montgomery-Vaughan showed

(log b)*/?
Vb

Z x(n << log log x + log b + logx (x>2).

n<x

So, we may assume that b < (log g)/3. Also, let o = a/b for simplicity.



Pretentious characters, continued
ord(x) = g = odd, x(—1) =1, a = a/b, b < (log q)*/3. We need to

estimate ) el 5
TX x(n)e(—na
S ()~ 5Ny Xmenan)
nsaq 1<|n|<q
Expand e(—na/b) in terms of characters ¢ (mod d), d|b, to replace
anaq x(n) by sums of the form

s— 3 M) (g Caypy Y ),
1<|n|<z N

For S to be big, x must be ‘close’ to ¥ (x(p) = 1¥(p)). Indeed,

x(n)i(n) log z 2 oy L= R(x(p)Y(p))
2 n S ep(D(x, 022} Do viz) =2 p '

If D(x,; z) is small, we say that x pretends to be 1.
Also, ¥(—1) = —x(—1) = -1 = ord(y)) = even # g.
But then x =~ = 1=x8~vy& #1, a contradiction.

n<z p<z



A reduction to the distribution of L(1, x): upper bounds
In bounding P,(7) from above, the key step is the following:

Theorem (Bober, Goldmakher, Granville, K. (2013))

Let 6 > 14/15, q be prime and 2 < 7 < loglog g — log log log g — 5 With
the exception of < qexp{—201e”} characters mod q, if M(x) > q,
then x is odd, and there is a b < 710 such that

Z —X(n) > et + 09(79).
neN, (n,b)=1 n
pln = p<e”

Then Pg(7) < exp {—e”O@(Te)}, by Granville-Soundararajan.

Main ideas involved in proving the above theorem:
@ A high moment bound to truncate Pdlya’s expansion.
@ Use “pretentious characters” to locate the max of | >, _ x(n)|.
@ Slow variance of > __ x(n) (Lipschitz bounds).

n<x



Truncating Pdlya’s expansion
When x is primitive, we have that

Va x(n)(1 — e(na))
M = max n)| = Y— max .
() a€l0,1] n;qX( ) 21 a€lo,1] 1<%:<q n

Using a moments argument, we show that, for most Y,

3 x(n)(1 — e(na)) 3 x(n)(1 — e(na))

n

M
1<|n|<q 1<|n|<q, PT(n)<y

with y &~ €7 (here P*(n) = max{p|n} and P~(n) = min{p|n}). This is
done by observing that their difference equals

Z x(n)(1 — e(na)) Z X(g Z Xh)l—egha))

1<]nl<q 1<lgl<q & y<h<a/e
Pt (n)>y Pt(g)<y P=(h)>y
1 h)e(h

a€l0,1 h
P*(g)<y y<h<q/g, P=(h)>y



Truncating Pdlya’s expansion, continued

y O s 1 s k)

0,1
1<|n|<q P+ (g)<y g aclol] y<h<q/g,P~(h)>y
P*(n)>y
We raise both sides to 2k. Then max,co 1] is removed by noticing that
| — r/R| for some r € {1,...,R}. It remains to estimate

2k
Z Z x(h)e(hr/R)
h
x (mod q) |y<h<q/g, P~ (h)>y

Then we find that this is < > p— ()5 nsyk m(n)?/n? = o(1) if
k < y/(logy). (If y > k, the primes p ~ k that give most of the
contribution to the sum 3 -, 7k(n)?/n? are not present.)

1—
y~e = Pg(r)~ Prob | max Z xX(n)(1 = e(na)) > 2e’T
a€l0,1] n
P+(Inl)<e”



Locating the maximum

Pq4(7) ~ Prob ( max Z x(n)(1 — e(nav)) S 2e77_) .

n
O lap<er
Write N(x) for the above maximum, and let «, be its location.

Let |o, — a/b| < 1/(bB), b< B :=eV™. Also, let £ be the primitive
character of conductor < 7 that lies the ‘closest’ to ¥, i.e.

—R(f(p)z
D(x,& €)= meJZgTD(X’w;eT)’ D*(f,g;y) = ; Ll ,Sp)g(p))-
% prim. pxy

Claim: If N(x) > 2e”T, then £ =1 and x is odd.
Assume not. Then

Z X(n”) = — Z X = o(T).

P*(|n|)<eT PJr )<e™

Also, b < 71/10; else, N(x) ~ > p(jn<er X(n)e(na)/n = o(r), by
Montgomery-Vaughan, a contradiction to “N(x) > 2e77".




Locating the maximum, continued
If £ (mod D) is the ‘closest’ character to x, and either £ # 1 or y is even:

1

x(n)e(na)
> T v

Pt(|n|)<e™

b< /10,

2e7T < N(x) ~ , Joay—a/bl <

Assume that oy, = a/b, and expand e(na/b) using characters, to get sums
x(n)y(n x(m(n
YO LGN S GIIG)
Pt(|n|)<eT P+(n )<eT

Small unless x4 odd and x ~ 1. So v induced by ¢ and x¢ odd. Then

n)e(52 2D3 by (dyg(dy (AT mé&(n
Z x( );(b) N Z (d();slng/) ( ) Z x( )nf( ) .
Pt(|n|)<e™ D|d|b Pt(n)<eT
. 2\7 d d)(d) _ 2e"7(b/D) _ 2e'T
= 26773 D%b od d " Vbbp S VD

If D > 1, this is a contradiction. So £ =1 and x is odd.



Locating the maximum, continued
To summarize,

1—
N(x) := max Z x(n)(1 = e(na)) >2e’r = x ~ 1landy odd.
a€gl0,1] n
P(|nl)<e”
Also, recall that «, location of max, |a, — a/b| < 1/(beV7).
Claim. Jc <7 with |3 p+(y<er, (ne)=1 X(n)/n| 2 €77¢(b)/b.
If b> 7, we take ¢ = 1 (by Mont-Vaughan: N(X) ~ 2[3_p+(n)<er (TD

If b < 7, then we use a result of Fouvry-Tenenbaum on smooth numbers
in APs to get asymptotics for the sum 3y p+(m<er X(n)/ 1.

We then find that 3N € (eV7, e7'°87] (related to |, — a/b]) such that

s ) x(n)| < 6(b)

n<N, (n,b)=1 n>N, (n,b)=
Pt(n)<eT Pt(n)<e”



Lipschitz bounds for averages of x

S- 0y Mgy )

n<N,(n,b)=1 n>N, (n,b)=1
PT(n)<eT PT(n)<eT

We have |S1] + |S2] 2 e”r@, we want to show that |S; + S| 2 eWT@.
Note that |S1| + |S2| < e€V7¢(b)/b.
So, if Sj = )\J|SJ| with |)\j| =1j€ {1,2}, then

o< Y MM MRy,

n<N,(n,b)=1 n>N, (n,b)=1
P*(n)<e” Pt (n)<e™

So x(n) ~ A1 for most n < N and x(n) ~ A\ for most n > N.

Averages of mult. fncs vary slowly. Ideas from Haldsz's theorem + x ~ 1:

Z,,g;fé)((”) B aniX(n) < §log(1/6) (6 > 1/logx).

So A1 ~ A2, which implies that |S1| + |S2| ~ |S1 + S2|.




Thank you!



