The distribution of the maximum of character sums

Dimitris Koukoulopoulos

(joint work with J. Bober, L. Goldmakher and A. Granville)

Université de Montréal

Analytic Number Theory, a conference to honor É. Fouvry Centre International de Rencontres Mathématiques June 18, 2013

Background & motivation

Let χ be a Dirichlet character modulo q and define

$$M(\chi) = \max_{1 \le z \le q} \left| \sum_{n \le z} \chi(n) \right|.$$

If χ is non-principal, then Pólya and Vinogradov showed in 1918 that

$$M(\chi) \ll \sqrt{q} \log q$$
.

Assuming GRH, Montgomery and Vaughan improved this in 1977 to

$$M(\chi) \ll \sqrt{q} \log \log q$$
.

This is best possible: Paley had already shown in 1932 that

there is a sequence $q_n o \infty$ such that $M\left(\left(\frac{q_n}{\cdot}\right)\right) \gg \sqrt{q_n}\log\log q_n$.

However, such extremal examples should be rather rare. Our goal is to study *how rare* they are.

The distribution of $M(\chi)$: random models

We shall study

$$P_q(\tau) := \frac{\#\left\{\chi\left(\operatorname{mod} q\right) : M(\chi) > \frac{\mathrm{e}^{\gamma}}{\pi}\tau\sqrt{q}\right\}}{\phi(q)} = \operatorname{Prob}\left(M(\chi) > \frac{\mathrm{e}^{\gamma}}{\pi}\tau\sqrt{q}\right).$$

We always assume for simplicity that q is prime.

Two questions:

- **1** Is there a random model that describes $P_{\alpha}(\tau)$ accurately?
- ② How big is $P_q(\tau)$?

Let $(X_p)_{p\nmid q}$ be a sequence of independent random variables, uniformly distributed on $\{z\in\mathbb{C}:|z|=1\}$, and $X_p=0$ if p|q. (They should model $\chi(p)$ as χ runs through characters modulo q.)

Then we define $X_n = \prod_{p^r || n} X_p^r$, which serves a model for $\chi(n)$.

First attempt: model $\sum_{n \leq z} \chi(n)$ by $\sum_{n \leq z} X_n$.

For z large compared to q, this will fail: periodicity is not taken into account.

The distribution of $M(\chi)$: random models, continued

$$P_q(\tau) = \mathbf{Prob}\left(M(\chi) > \frac{\mathrm{e}^{\gamma}}{\pi}\tau\sqrt{q}\right).$$
 $(X_p)_{p\nmid q}$ sequence of independent random variables, uniformly distributed

on $\{z\in\mathbb{C}:|z|=1\}$, $X_p=0$ if p|q, $X_n=\prod_{p^r\parallel n}X_p^r$.

Second attempt: use Pólya's expansion (χ primitive, $e(x) = e^{2\pi i x}$):

$$\begin{split} \sum_{n \leq z} \chi(n) &= \frac{\tau(\chi)}{2\pi i} \sum_{1 \leq |n| \leq w} \frac{\overline{\chi}(n)(1 - e(-nz/q))}{n} + O\left(\frac{q \log q}{w}\right) \quad (1 \leq w \leq q). \\ \text{Our model for } \sum_{n \leq z} \chi(n) \text{ then becomes} \\ S(z) &:= \frac{\tau(\chi)}{2\pi i} \quad \sum_{n \leq z} \frac{\overline{X_n} \cdot (1 - e(-nz/q))}{n}. \end{split}$$

 $1 \leq |n| \leq q$

This model captures the periodicity of χ .

Remark. The standard deviation of $S(z)/\sqrt{q}$ is $\ll 1$. (Compare this to 1st model: the SD of $T(z) = \sum_{n \leq z} X_n$ is \sqrt{z} , and one might expect $T(z)/\sqrt{z}$ to get large relatively often.) As a result, $P_q(\tau)$ will be rather small.

Known results on $P_q(\tau)$

In 1979, Montgomery and Vaughan showed that

$$\frac{1}{\phi(q)} \sum_{\chi \pmod{q}} M(\chi)^{2k} \ll_k q^k.$$

An immediate corollary is that

$$P_q(au) = \operatorname{Prob}\left(M(\chi) > rac{\operatorname{e}^{\gamma}}{\pi} au \sqrt{q}
ight) \ll_A rac{1}{ au^A}.$$

In 2011, Bober-Goldmakher proved that, for fixed τ and $q\to\infty$ over primes,

$$\exp\left\{-rac{\mathsf{C} \mathsf{e}^ au}{ au}(1+o_{ au o\infty}(1))
ight\} \leq P_q(au) \leq \exp\left\{-\mathsf{e}^{B\sqrt{ au}/(\log au)^{1/4}}
ight\},$$

where $C=1.09258\ldots$ This supports the claim that $P_q(au)$ is very small.

Question: why do the tails of the distribution of $M(\chi)$ have this double exponential decay?

The distribution of $M(\chi)$ vs the distribution of $L(1,\chi)$

$$\sum_{n \leq \alpha q} \chi(n) = \frac{\tau(\chi)}{2\pi i} \sum_{1 \leq |n| \leq q} \frac{\overline{\chi}(n)(1 - e(-n\alpha))}{n} + O(\log q).$$

In view of Pólya's expansion, one might conjecture that

$$P_q(au) := \mathsf{Prob}\left(M(\chi) > rac{e^{\gamma}}{\pi} au \sqrt{q}
ight) pprox \mathsf{Prob}\left(|\mathit{L}(1,\chi)| > c au
ight).$$

Granville-Soundararjan: for q prime and $e^{\tau} = o(\log q)$,

$$\mathsf{Prob}\left(|\mathit{L}(1,\chi)|>e^{\gamma} au
ight)=\exp\left\{-rac{\mathit{Ce}^{ au}}{ au}(1+o_{ au o\infty}(1))
ight\}.$$

Compare this to

$$\exp\left\{-\frac{C\mathrm{e}^{\tau}}{\tau}(1+o_{\tau\to\infty}(1))\right\} \leq P_q(\tau) \leq \exp\left\{-\mathrm{e}^{B\sqrt{\tau}/(\log\tau)^{1/4}}\right\}.$$

The distribution of $L(1,\chi)$: main ideas

• We shall take moments of $L(1,\chi)$, so we need to 'shorten' it. We have that $\log L(1,\chi) = \sum_{p} \chi(p)/p + C_{\chi}$, where C_{χ} is a constant.

$$\begin{array}{ll} \mathsf{PNT} \ \Rightarrow \ \log L(1,\chi) \sim \sum_{p \leq \mathsf{e}^{q^\epsilon}} \chi(p)/p + C_\chi, \\ \mathsf{GRH} \ \Rightarrow \ \log L(1,\chi) \sim \sum_{p \leq (\log q)^{2+\epsilon}} \chi(p)/p + C_\chi. \end{array}$$

But we study $L(1, \chi)$ statistically: for most $\chi \pmod{q}$,

Zero-density estimates $\Rightarrow \log L(1,\chi) \sim \sum_{p \leq (\log p)^{100}} \chi(p)/p + C_{\chi}$.

Take moments of

$$L(1,\chi;y) := \prod_{p \le y} \left(1 - \frac{\chi(p)}{p} \right)^{-1} = \sum_{p \mid n \Rightarrow p \le y} \frac{\chi(n)}{n} \quad (y = (\log q)^{100}) :$$

$$(1,\chi,y) := \prod_{p \le y} \left(1 - \frac{1}{p} \right) = \sum_{p \mid n \Rightarrow p \le y} \frac{1}{n} \quad (y = (\log q))$$

$$\frac{1}{\phi(q)} \sum_{\chi \pmod{q}} |L(1,\chi;y)|^{2k} = \frac{1}{\phi(q)} \sum_{\chi \pmod{q}} \left| \sum_{\substack{p|n \Rightarrow p \leq y}} \frac{\tau_k(n)\chi(n)}{n} \right|^2$$
$$= \sum_{\substack{m \equiv n \pmod{q} \\ p|mn \Rightarrow p \leq y, p \nmid q}} \frac{\tau_k(m)\tau_k(n)}{mn}.$$

The distribution of $L(1, \chi)$, continued

Ignoring the off-diagonal terms (assumption that X_n is a good model for $\chi(n)$), and assuming that q is prime,

$$M_{2k} := rac{1}{\phi(q)} \sum_{\chi \, (\mathsf{mod} \, q)} |L(1,\chi;y)|^{2k} = \sum_{\substack{m \equiv n \, (\mathsf{mod} \, q) \ p \mid mn \ \Rightarrow \ p \leq y, \, p \nmid q}} rac{ au_k(m) au_k(n)}{mn} \ pprox \sum_{\substack{n \mid n \, \Rightarrow \ n \leq y \ n^2}} rac{ au_k(n)^2}{n^2} = \prod_{\substack{n \leq y \ p \leq y \ p^2}} \left(1 + rac{ au_k(p)^2}{p^2} + rac{ au_k(p^2)}{p^4} + \cdots
ight).$$

Then Granville and Soundararajan proceed to show that $\log M_{2k} = 2e^{\gamma}k + C'k/\log k + O(k/\log^2 k)$, which allows them to estimate **Prob** $(|L(1,\chi)| > e^{\gamma}\tau)$ quite accurately.

Remark. In fact, they observe that

$$\log\left(1 + \frac{\tau_k(p)^2}{p^2} + \frac{\tau_k(p^2)}{p^4} + \cdots\right) = \log I_0(2k/p) + O(k/p^2),$$

where $I_0(t) = \sum_{n\geq 0} \left(\frac{t/2}{n!}\right)^2$ is the modified Bessel function of the 1st kind. In particular, most of the contribution to M_{2k} comes from primes $p \approx k$.

New results on $P_q(au) = \mathbf{Prob}\left(M(\chi) > \frac{e^{\gamma}}{\pi} \tau \sqrt{q}\right)$

Recall Bober-Goldmakher's result: for au fixed and $q \to \infty$ over primes,

$$\exp\left\{-\frac{C\mathrm{e}^{\tau}}{\tau}(1+o_{\tau\to\infty}(1))\right\} \leq P_q(\tau) \leq \exp\left\{-\mathrm{e}^{B\sqrt{\tau}/(\log\tau)^{1/4}}\right\}.$$

There are two issues to be addressed:

- There is a discrepancy between upper and lower bounds.
- The result is not uniform in τ and q.

Theorem (Bober, Goldmakher, Granville, K. (2013))

Let $\theta > 14/15$, q be prime and $2 \le \tau \le \log \log q - \log \log \log q - 5$. Then

$$\exp\left\{-rac{C\mathrm{e}^{ au}}{ au}(1+o_{ au o\infty}(1))
ight\} \leq P_q(au) \leq \exp\left\{-\mathrm{e}^{ au+O_{ heta}(au^{ heta})}
ight\}.$$

Remark. On GRH, the theorem holds when $\tau \leq \log_2 q - \log_4 q + O(1)$. It seems likely that it can be shown unconditie^{τ} = $o(\log q)$ can be obtained unconditionally.

A reduction to the distribution of $L(1, \chi)$: lower bounds

For lower bounds on $P_q(au)$, we follow Bober-Goldmakher and note that

$$\begin{split} \sum_{n \leq q/2} \chi(n) &\sim \frac{\tau(\chi)}{2\pi i} \sum_{1 \leq |n| \leq q} \frac{\overline{\chi}(n)(1 - e(-n/2))}{n} \\ &= \frac{\tau(\chi)}{\pi i} \sum_{\substack{1 \leq |n| \leq q \\ n \text{ odd}}} \frac{\overline{\chi}(n)}{n} = \frac{2\tau(\chi)}{\pi i} \begin{cases} \sum_{\substack{1 \leq n \leq q \\ n \text{ odd}}} \frac{\overline{\chi}(n)}{n} & \text{if } \chi(-1) = -1, \\ 0 & \text{if } \chi(-1) = 1. \end{cases} \end{split}$$

When χ is odd, the right hand side is essentially $L(1, \overline{\chi})$, divided by the Euler factor at p=2.

One can then obtain the claimed lower bound on $P_q(\tau)$ using the methods of Granville-Soundararajan.

The upper bound is significantly harder. The main issue is to understand where $\sum_{n\leq z}\chi(n)$ is maximized (ideas about pretentious characters).

A detour: pretentious characters

Granville-Soundararajan (2006) and Goldmakher (2010) improved the previously known bounds for $M(\chi)$ when χ has odd order g to

$$M(\chi) \ll egin{cases} \sqrt{q}(\log q)^{1-\delta_g+o(1)} & ext{unconditionally,} \ \sqrt{q}(\log\log q)^{1-\delta_g+o(1)} & ext{on GRH.} \end{cases} \left(\delta_g = 1 - rac{g}{\pi}\sinrac{\pi}{g}
ight)$$

Idea of the proof: g odd $\Rightarrow \chi(-1) = 1$. So Pólya's expansion becomes

$$\sum_{n \leq \alpha q} \chi(n) \sim \frac{\tau(\chi)}{2\pi i} \sum_{1 \leq |n| \leq q} \frac{\overline{\chi}(n)(1 - e(-n\alpha))}{n} = -\frac{\tau(\chi)}{2\pi i} \sum_{1 \leq |n| \leq q} \frac{\overline{\chi}(n)e(-n\alpha)}{n}.$$

 $n \le \alpha q$ $1 \le |n| \le q$ $1 \le |n| \le q$ $1 \le |n| \le q$ Let $|\alpha - a/b| < 1/(bB)$, $b \le B := e^{\sqrt{\log q}}$. Montgomery-Vaughan showed

$$\sum_{n} \frac{\chi(n)e(n\alpha)}{n} \ll \log\log x + \log b + \frac{(\log b)^{3/2}}{\sqrt{b}}\log x \quad (x \ge 2).$$

So, we may assume that $b \leq (\log q)^{1/3}$. Also, let $\alpha = a/b$ for simplicity.

Pretentious characters, continued

estimate

$$\sum_{n \leq \alpha q} \chi(n) \sim -\frac{\tau(\chi)}{2\pi i} \sum_{1 \leq |n| \leq q} \frac{\overline{\chi}(n) e(-na/b)}{n}.$$

 $\operatorname{ord}(\chi) = g = \operatorname{odd}, \ \chi(-1) = 1, \ \alpha = a/b, \ b \leq (\log q)^{1/3}.$ We need to

Expand e(-na/b) in terms of characters ψ (mod d), d|b, to replace $\sum_{n<\alpha a}\chi(n)$ by sums of the form

$$S = \sum_{1 \le |n| \le z} \frac{\overline{\chi}(n)\psi(n)}{n} = (1 - \chi(-1)\psi(-1)) \sum_{n \le z} \frac{\overline{\chi}(n)\psi(n)}{n}.$$

For S to be big, χ must be 'close' to ψ ($\chi(p) \approx \psi(p)$). Indeed,

$$\sum_{p \leqslant z} \frac{\chi(n)\overline{\psi}(n)}{n} \ll \frac{\log z}{\exp\{\mathbb{D}(\chi,\psi;z)/2\}}, \quad \mathbb{D}^2(\chi,\psi;z) = \sum_{p \leqslant z} \frac{1 - \Re(\chi(p)\overline{\psi}(p))}{p}.$$

If $\mathbb{D}(\chi, \psi; z)$ is small, we say that χ pretends to be ψ .

Also, $\psi(-1) = -\chi(-1) = -1 \implies \operatorname{ord}(\psi) = \operatorname{even} \neq g$.

But then $\chi \approx \psi$ \Longrightarrow $1 = \chi^g \approx \psi^g \neq 1$, a contradiction.

A reduction to the distribution of $L(1,\chi)$: upper bounds

In bounding $P_q(\tau)$ from above, the key step is the following:

Theorem (Bober, Goldmakher, Granville, K. (2013))

Let $\theta>14/15$, q be prime and $2\leq \tau \leq \log\log q - \log\log\log q - 5$. With the exception of $\ll q\exp\{-20\tau e^{\tau}\}$ characters mod q, if $M(\chi)>\frac{e^{\gamma}}{\pi}\tau\sqrt{q}$, then χ is odd, and there is a $b\leq \tau^{10}$ such that

$$\left|\sum_{\substack{n\in\mathbb{N},\,(n,b)=1\\p\mid n\ \Rightarrow\ p\leq e^\tau}}\frac{\chi(n)}{n}\right|\geq e^\gamma\tau+O_\theta(\tau^\theta).$$

Then $P_q(au) \leq \exp\left\{-e^{ au + O_{ heta}(au^{ heta})}
ight\}$, by Granville-Soundararajan.

Main ideas involved in proving the above theorem:

- A high moment bound to truncate Pólya's expansion.
 - ② Use "pretentious characters" to locate the max of $|\sum_{n\leq x}\chi(n)|$.
 - **3** Slow variance of $\sum_{n \le x} \chi(n)$ (Lipschitz bounds).

Truncating Pólya's expansion

When χ is primitive, we have that

$$M(\chi) = \max_{\alpha \in [0,1]} \left| \sum_{n \leq \alpha q} \chi(n) \right| = \frac{\sqrt{q}}{2\pi} \max_{\alpha \in [0,1]} \left| \sum_{1 \leq |n| \leq q} \frac{\chi(n)(1 - e(n\alpha))}{n} \right|.$$

Using a moments argument, we show that, for most χ ,

$$\sum_{1 \leq |n| \leq q} \frac{\chi(n)(1 - e(n\alpha))}{n} \sim \sum_{1 \leq |n| \leq q, P^+(n) \leq y} \frac{\chi(n)(1 - e(n\alpha))}{n},$$

with $y \approx e^{\tau}$ (here $P^+(n) = \max\{p|n\}$ and $P^-(n) = \min\{p|n\}$). This is done by observing that their difference equals

$$\sum_{\substack{1 \le |n| \le q \\ P^+(n) > y}} \frac{\chi(n)(1 - e(n\alpha))}{n} = \sum_{\substack{1 \le |g| \le q \\ P^+(g) \le y}} \frac{\chi(g)}{g} \sum_{\substack{y < h \le q/g \\ P^-(h) > y}} \frac{\chi(h)(1 - e(gh\alpha))}{h}$$

$$\frac{1 \le |g| \le q}{P^{+}(n) > y} \qquad \frac{1 \le |g| \le q}{P^{+}(g) \le y} \qquad \frac{y < h \le q/g}{P^{-}(h) > y}$$

$$\ll \sum_{P^{+}(g) \le y} \frac{1}{g} \max_{\alpha \in [0,1]} \left| \sum_{y < h \le q/g, P^{-}(h) > y} \frac{\chi(h) e(h\alpha)}{h} \right|.$$

Truncating Pólya's expansion, continued

$$\sum_{\substack{1 \le |n| \le q \\ P^+(n) > y}} \frac{\chi(n)(1 - e(n\alpha))}{n} \ll \sum_{P^+(g) \le y} \frac{1}{g} \max_{\alpha \in [0,1]} \left| \sum_{y < h \le q/g, P^-(h) > y} \frac{\chi(h)e(h\alpha)}{h} \right|.$$

We raise both sides to 2k. Then $\max_{\alpha \in [0,1]}$ is removed by noticing that $|\alpha - r/R|$ for some $r \in \{1, \dots, R\}$. It remains to estimate

$$\sum_{\chi \pmod{q}} \left| \sum_{y < h \leq q/g, P^-(h) > y} \frac{\chi(h) e(hr/R)}{h} \right|^{2k}.$$

Then we find that this is $\lesssim \sum_{P^-(n)>y,\,n>y^k} \tau_k(n)^2/n^2 = o(1)$ if $k \leq y/(\log y)^{100}$. (If y > k, the primes $p \approx k$ that give most of the contribution to the sum $\sum_{n>1} \tau_k(n)^2/n^2$ are not present.)

$$y pprox e^{ au} \; \Rightarrow \; P_q(au) \sim \mathbf{Prob} \left(\max_{lpha \in [0,1]} \left| \sum_{P^+(|n|) \leq e^{ au}} rac{\chi(n)(1-e(nlpha))}{n}
ight| > 2e^{\gamma} au
ight).$$

Locating the maximum

$$P_q(au) \sim \mathbf{Prob}\left(\max_{lpha \in [0,1]} \left| \sum_{P^+(|n|) \leq e^{ au}} rac{\chi(n)(1-e(nlpha))}{n}
ight| > 2e^{\gamma} au
ight).$$

Write $N(\chi)$ for the above maximum, and let α_{χ} be its location.

Let $|\alpha_{\chi} - a/b| < 1/(bB)$, $b \le B := e^{\sqrt{\tau}}$. Also, let ξ be the primitive character of conductor $\le \tau$ that lies the 'closest' to χ , i.e.

$$\mathbb{D}(\chi,\xi;e^{\tau}) = \min_{\substack{\psi \bmod d \leq \tau \\ \psi \text{ prim.}}} \mathbb{D}(\chi,\psi;e^{\tau}), \quad \mathbb{D}^2(f,g;y) = \sum_{p \leq y} \frac{1 - \Re(f(p)\overline{g}(p))}{p}.$$

Claim: If $N(\chi) > 2e^{\gamma}\tau$, then $\xi = 1$ and χ is odd.

Assume not. Then

$$\sum_{P^+(|n|) \le e^{\tau}} \frac{\chi(n)}{n} = (1 - \chi(-1)) \sum_{P^+(n) \le e^{\tau}} \frac{\chi(n)}{n} = o(\tau).$$

Also, $b \le \tau^{1/10}$; else, $N(\chi) \sim \sum_{P^+(|n|) \le e^\tau} \chi(n) e(n\alpha)/n = o(\tau)$, by Montgomery-Vaughan, a contradiction to " $N(\chi) > 2e^\gamma \tau$ ".

Locating the maximum, continued

If $\xi \pmod{D}$ is the 'closest' character to χ , and either $\xi \neq 1$ or χ is even:

$$2e^{\gamma}\tau < N(\chi) \sim \left| \sum_{P^+(|n|) \le e^{\tau}} \frac{\chi(n)e(n\alpha)}{n} \right|, \quad |\alpha_{\chi} - a/b| \le \frac{1}{be^{\sqrt{\tau}}}, \quad b \le \tau^{1/10}.$$

Assume that $\alpha_{\chi}=a/b$, and expand e(na/b) using characters, to get sums

$$\sum_{P^+(|n|) \le e^\tau} \frac{\chi(n)\overline{\psi}(n)}{n} = (1 - \chi(-1)\psi(-1)) \sum_{P^+(n) \le e^\tau} \frac{\chi(n)\overline{\psi}(n)}{n}.$$

Small unless $\chi\overline{\psi}$ odd and $\chi\approx\psi$. So ψ induced by ξ and $\chi\overline{\xi}$ odd. Then

$$\left| \sum_{P^+(|n|) \le e^{\tau}} \frac{\chi(n)e(\frac{na}{b})}{n} \right| \sim \frac{2D^{\frac{1}{2}}}{b} \left| \sum_{D|d|b} \frac{\chi(\frac{b}{d})\mu(\frac{d}{D})\overline{\xi}(\frac{d}{D})}{\phi(d)/d} \sum_{P^+(n) \le e^{\tau}}^{(n,d)=1} \frac{\chi(n)\overline{\xi}(n)}{n} \right|.$$

$$\implies 2e^{\gamma}\tau \lesssim \frac{2\sqrt{D}}{b}\sum_{D|d|b}\frac{d}{\phi(d)}\cdot\frac{\phi(d)}{d}e^{\gamma}\tau = \frac{2e^{\gamma}\tau(b/D)}{\sqrt{D}b/D} \leq \frac{2e^{\gamma}\tau}{\sqrt{D}}.$$

If D > 1, this is a contradiction. So $\xi = 1$ and χ is odd.

Locating the maximum, continued

To summarize,

$$N(\chi) := \max_{\alpha \in [0,1]} \left| \sum_{P^+(|n|) \le e^{\tau}} \frac{\chi(n)(1 - e(n\alpha))}{n} \right| > 2e^{\gamma} \tau \implies \chi \approx 1 \text{ and } \chi \text{ odd.}$$

Also, recall that α_{χ} location of max, $|\alpha_{\chi} - a/b| < 1/(be^{\sqrt{\tau}})$.

Claim.
$$\exists c \leq \tau \text{ with } |\sum_{P^+(n) \leq e^\tau, (n,c)=1} \chi(n)/n| \gtrsim e^\gamma \tau \phi(b)/b.$$

If $b > \tau$, we take c = 1 (by Mont-Vaughan: $N(\chi) \sim 2|\sum_{P^+(n) \le e^{\tau}} \frac{\chi(n)}{n}|$).

If $b \le \tau$, then we use a result of Fouvry-Tenenbaum on smooth numbers in APs to get asymptotics for the sum $\sum_{n \le N, P^+(n) \le e^\tau} \chi(n)/n$.

We then find that $\exists N \in (e^{\sqrt{\tau}}, e^{\tau \log \tau}]$ (related to $|\alpha_{\chi} - a/b|$) such that

$$\left| \sum_{\substack{n \leq N, (n,b)=1 \\ P^+(n) \leq e^{\tau}}} \frac{\chi(n)}{n} \right| + \left| \sum_{\substack{n > N, (n,b)=1 \\ P^+(n) \leq e^{\tau}}} \frac{\chi(n)}{n} \right| \gtrsim \frac{\phi(b)}{b} e^{\gamma} \tau.$$

Lipschitz bounds for averages of $\boldsymbol{\chi}$

$$S_1 = \sum_{\substack{n \leq N, (n,b)=1 \\ P^+(n) \leq e^{\tau}}} \frac{\chi(n)}{n}, \quad S_2 = \sum_{\substack{n > N, (n,b)=1 \\ P^+(n) \leq e^{\tau}}} \frac{\chi(n)}{n}.$$

We have $|S_1|+|S_2|\gtrsim e^{\gamma}\tau\frac{\phi(b)}{b}$, we want to show that $|S_1+S_2|\gtrsim e^{\gamma}\tau\frac{\phi(b)}{b}$.

Note that $|S_1| + |S_2| \lesssim e^{\gamma} \tau \phi(b)/b$.

So, if
$$S_j = \lambda_j |S_j|$$
 with $|\lambda_j| = 1$, $j \in \{1, 2\}$, then

$$0 \leq \sum_{\substack{n \leq N, (n,b)=1 \\ P^+(n) \leq e^{\tau}}} \frac{\chi(n)\overline{\lambda_1}}{n} + \sum_{\substack{n > N, (n,b)=1 \\ P^+(n) \leq e^{\tau}}} \frac{\chi(n)\overline{\lambda_2}}{n} = o(\tau\phi(b)/b).$$

So $\chi(n) \sim \lambda_1$ for most $n \leq N$ and $\chi(n) \sim \lambda_2$ for most n > N.

Averages of mult. fncs vary slowly. Ideas from Halász's theorem + $\chi \approx$ 1:

$$\frac{\sum_{n \le x^{1+\delta}} \chi(n)}{x^{1+\delta}} - \frac{\sum_{n \le x} \chi(n)}{x} \lesssim \delta \log(1/\delta) \qquad (\delta \ge 1/\log x).$$

So $\lambda_1 \sim \lambda_2$, which implies that $|S_1| + |S_2| \sim |S_1 + S_2|$.

