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In this paper, we develop a general method to determine evolutionary equilibrium sex ratios
and to check evolutionary stability, continuous stability and invadability in exact genetic
models with or without dominance. This method is then applied to three kinds of models for
structured populations: the "rst one concerns Hamilton's LMC model, except that only
a fraction b of female o!spring mate with male o!spring born in the same colonies, while
a fraction 1!b mate with male o!spring chosen at random within the whole population; in
the second model, it is assumed that partial dispersal of inseminated females occurs after
mating; in the third model, partial dispersal of male and female o!spring occurs before mating.
In the "rst model, the e!ect of population regulation is studied while, in the other models, two
kinds of dispersal are considered: proportional and uniform.
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Introduction

Sex ratio evolution has been a major topic
in theoretical population biology since Fisher
(1958) presented a verbal argument for the pre-
dominance of an even sex ratio in random mating
populations (see, e.g. Karlin & Lessard, 1986, and
references therein). The subject has deserved
much attention because sex ratio is an easily
measurable trait and its evolution, though sensi-
tive to some general factors, seems not to depend
on the exact genetic background.

One of the "rst factors to have been considered
to explain biased sex ratios in some natural
populations is local mate competition, LMC
(Hamilton, 1967), which occurs when female
o!spring mate exclusively or mostly with male
o!spring born within the same con"ned niches or
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colonies and then disperse to found new colonies,
as commonly observed in parasitic insects, mites
and other arthropods. In such a case, it has been
argued that a female-biased sex ratio evolves in
order to reduce competition among sons. Some
have suggested that the main feature in the LMC
model responsible for a female-biased sex ratio
is partial sib-mating or inbreeding (Maynard
Smith, 1978; Stenseth, 1978); others group selec-
tion (Colwell, 1981; Wilson & Colwell, 1981), the
colonies producing more female o!spring contri-
buting more foundresses to the next generation.
But there may be also competition among daugh-
ters for limited resources within colonies, called
local resource competition (LRC, Clark, 1978),
leading to a male-biased sex ratio if male o!-
spring disperse before mating. More generally,
a bias of the sex ratio towards the sex dispersing
more widely or more evenly in geographically
structured populations has been predicted
(Bulmer & Taylor, 1980). It has been suggested
that the mechanism underlying biased sex ratios
( 2000 Academic Press
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in structured populations is di!erential sib com-
petition, actually intra-sex as well as inter-sex
sibling interactions over reproductive success
(Taylor, 1981).

A relationship between biased sex ratios and
asymmetrical degrees of relatedness among rela-
tives have also been proposed with particular
reference to the social hymenoptera and a possible
worker}queen con#ict over the sex ratio (Hamil-
ton, 1972; Trivers & Hare, 1976; Oster et al.,
1977; Uyenoyama & Bengtsson, 1981; Matessi
& Eshel, 1992; see also Lessard, 1996). The role of
relatedness in the evolution of the sex ratio has
been studied for partial sib-mating models
(Uyenoyama & Bengtsson, 1982; Lessard, 1990)
and LMC models (Herre, 1985; Frank, 1986a, b,
Taylor, 1988; Taylor & Frank, 1996). In particu-
lar, maximization of inclusive "tnesses (Hamil-
ton, 1964) that measure contributions to future
generations through male and female o!spring
weighted by coe$cients of relatedness, has pro-
ved to be a powerful approach to predict optimal
sex ratios. But the approach is applicable only to
a "rst approximation when selection is weak.

From an evolutionary perspective, the main
problem is the existence of some population sex
ratio that can be maintained through time. Con-
sidering Y-linked drive with local mate competi-
tion, Hamilton (1967) found out a brood sex ratio
that would have a selective advantage over any
other at any frequency and called it an unbeatable
sex ratio. He also presented an approximate anal-
ysis in the case of non-sex linked control. Analys-
ing diploid and haplodiploid models, Taylor
& Bulmer (1980) looked for a "xed sex ratio
determined by some allele at a single locus that
can resist invasion by any mutant allele when
rare, either dominant or recessive. Such a sex
ratio corresponds to an evolutionarily stable
strategy, ESS, in the Maynard Smith & Price
(1973) terminology, originally introduced in
a purely ecological context of animal con#ict. But
actually, Taylor & Bulmer (1980) only checked
evolutionary equilibrium, not evolutionary stab-
ility (see also Taylor, 1985). Karlin & Lessard
(1986) studied in a similar way the e!ect of partial
outbreeding and population regulation within
colonies in diploid populations. Bulmer (1986)
obtained by numerical methods ESS sex ratios in
LMC models with limited but uniform dispersal
of males and females before or after mating for
haploid, diploid and haplodiploid populations,
assuming recessive, additive or dominant gene
action. Applying the Price (1970, 1972) covari-
ance form for hierarchical selection to a haploid
model or diploid model with additive gene action
and using the expected number of grand progeny
as "tness, Frank (1986a, b) deduced Bulmer's
results. He also considered more realistic as-
sumptions (Frank, 1985). A more rigorous treat-
ment linking exact genetic models with Price's
covariance approach, and with inclusive "t-
ness formulations based on regression (related-
ness) coe$cients was proposed by Taylor (1988)
to get the evolutionary equilibrium sex ratio un-
der weak selection. A &&direct "tness'' approach
for inclusive "tness yielded an even more
straightforward derivation by simple di!erenti-
ation and replacement of derivatives by appro-
priate relatedness terms (Taylor & Frank, 1996).
See, e.g. the Frank (1998) book for a review of sex
ratio evolution theory in the context of kin selec-
tion theory.

In this paper, we "rst extend the Taylor &
Bulmer (1980) condition for a strategy as the sex
ratio to be an evolutionary equilibrium, in order
to get a tractable condition for local evolutionary
stability. These are conditions on the character-
istic polynomial of the linearized transformation
for the population state near "xation and its "rst
and second partial derivatives. We consider the
case of a mutant allele that is neither recessive
nor dominant, which leads to a situation where
a resident strategy is confronted to two mutant
strategies. We also consider continuous stability.
A continuously stable strategy, CSS, is a strategy
such that, &&if a large enough majority of the
population chooses a strategy close enough to
[it], then only those mutant strategies which are
even closer to [it] will be selectively advantage-
ous'' (Eshel, 1983). A related property considered
for a strategy is the property of invading, when
rare, any other strategy at least su$ciently close
to it and once "xed in the population, which will
be called the invadability property. Note that, in
a population genetic framework, a population
strategy has been said to possess the evolutionary
genetic stability (EGS) property if, within a given
genetic system, a mutant allele introduced in
small frequency into any deviant population at



OPTIMAL SEX RATIOS 161
equilibrium, monomorphic or polymorphic, is se-
lectively favored if and only if it renders the
population strategy closer to it, at least initially
after enough generations have passed, and this
has been applied to sex ratio evolution in random
mating populations (Eshel & Feldman, 1982).

We study optimal sex ratios in structured
populations, actually LMC models, in the case of
partial outbreeding with or without regulation
on the number of inseminated females within
colonies, in the cases of partial dispersal of
inseminated females after mating and partial
dispersal of male and female o!spring before
mating, with two types of dispersal, proportional
and uniform. Haploid, diploid and haplodiploid
populations are considered.

Framework

Consider an in"nite population subdivided
into an in"nite number of colonies in which two
genes, a resident gene R and a mutant gene S, are
segregating at a single locus. Assume that there
are n colony types in the population among
which n!1 contain the mutant gene S. These are
called mutant colonies. Let

x"(x
1
, x

2
,2, x

n~1
)5

be the vector of the frequencies of the di!erent
mutant colonies in the population and let
x
n
"1!x

1
!x

2
!2!x

n~1
be the frequency

of the non-mutant colonies. Suppose discrete,
non-overlapping generations and let x at the cur-
rent generation become x@ at the next generation,
according to the following transformation:

x@"T(x)

"Mx#higher-order terms in x,

where

M"A
Lx@

i
Lx

j
Kx/0

B
n~1

i, j/1

is the linearized matrix around 0"(0,2, 0) of
the transformation T.

The mutant gene S will disappear when rare if,
for all x*0 su$ciently close to 0 (meaning
x
i
*0 small enough for i"1,2, n!1), we have

TkxP0 as kPR,

where Tk represents the k-th iterate of T.
On the contrary, the mutant gene S will invade

when rare if, for all x'0 su$ciently close to
0 (meaning x

i
'0 small enough for i"1,2,n!1),

we have

TkxP/ 0 as kPR.

Now, suppose that the genes R and S, with
S either dominant or recessive on R, determine
some individual strategy as a progeny sex ratio
represented by a real number between 0 and 1,
and that we are interested in "nding a resident
strategy r, governed by gene R, which is protected
once "xed in the population against any mutant
strategy s, governed by gene S, when S is intro-
duced in very low frequency into the population.
Then, whatever is the strategy s (with sOr)
adopted by all individuals carrying at least one
mutant gene S, this gene will have to disappear
when rare. Denote by j(r, s) the spectral radius of
the linearized matrix M"M(r, s). This means
that j(r, s) is the greatest modulus of the eigen-
values of M. Assume that for every (r, s), we have
M*0 with Mk'0 for at least one k*1 (that is,
all entries of the matrix M are nonnegative and
there exists an integer k such that all entries of the
matrix Mk are positive). Then the Perron}
Frobenius theory (see, e.g. Karlin & Taylor, 1975)
tells us that j (r, s) is a simple positive eigenvalue
of M and that there exist two positive vectors
g(r, s) and n (r, s) satisfying g5 (r, s)n(r, s)"1 (t for
transpose) and

g(r, s)5M(r, s)"j (r, s)g(r, s)5, (1)

M (r, s)n(r, s)"j (r, s)n(r, s). (2)

Moreover, we have

Mk

j(r, s)k
Pg(r, s)n (r, s)5 as kPR.

It is known (see, e.g. Lessard & Karlin, 1982)
that the condition j(r, s)(1 is su$cient (and
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necessary in non-degenerate cases) for the gene
S to disappear when rare. We are thus looking for
a strategy r such that

j (r, s)(1 for all sOr.

Since j (r, r)"1, we must have, assuming the
function j (r, s) regular enough and r in the
interior of [0, 1],

L
Ls

j (r, s) K
s/r

"0 (3)

and

L2

Ls2
j(r, s) K

s/r

(0. (4)

Evolutionary Equilibrium

Following Taylor (1985), the evolutionary
equilibrium strategies are de"ned as the interior
strategies which satisfy eqn (3). Unfortunately, in
most practical cases, this condition is useless be-
cause it is di$cult to "nd an explicit expression
for j (r, s), especially when the matrix M is large.
For this reason, we look for another condition
equivalent to eqn (3).

First, let us take the derivative with respect to
s on both sides of eqn (1) and, then, let us multiply
each term on the right by n(r, s). We obtain

C
L
Ls

g (r, s)5DM(r, s)n (r, s)

#g (r, s)5C
L
Ls

M(r, s)Dn (r, s)

"C
L
Ls

j(r, s)Dg(r, s)5n(r, s)

#j (r, s) C
L
Ls

g(r, s)5Dn (r, s).

Using eqn (2) and the fact that g(r, s)5n(r, s)"1,
we have

L
Ls

j (r, s)"g (r, s)5C
L
Ls

M(r, s)Dn (r, s),
which gives, by continuity, the equation

L
Ls

j(r, s) K
s/r

"g5C
L
Ls

M(r, s) K
s/r
Dn,

where

g"g (r, r) and n"n (r, r)

are positive left and right eigenvectors associated
with the eigenvalue 1 of the matrix M(r, r), and
satisfying g5n"1.

Thus, the evolutionary equilibrium strategies
are characterized by the equation (Taylor, 1985)

g5C
L
Ls

M(r, s) K
s/r
Dn"0. (5)

Evolutionary Stability

Let r* be an evolutionary equilibrium strategy.
We say that r* is a local ESS or, simply, an
ESS (evolutionarily stable strategy, following
Maynard Smith & Price, 1973), if r* satis"es
eqn (4).

We look for an equivalent condition easier to
use. To "nd such a condition, we develop further
an approach suggested by Taylor & Bulmer
(1980). Since j (r, s) is an eigenvalue of the matrix
M(r, s) (by the Perron}Frobenius theory), then
j(r, s) is a solution to the equation

f (r, s, j)"0,

where

f (r, s, j)"det(jI!M(r, s))

is the characteristic polynomial of M (r, s).
Taking the derivative of the characteristic poly-
nomial with respect to s, we obtain

Lf
Ls

#

Lf
Lj

Lj
Ls

"0, (6)

where the "rst term represents the derivative of
f with respect to s, keeping j constant. Then, we
have

Lj
Ls K

s/r/r*
"0
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if and only if

Lf
Ls K

s/r/r*
"0,

unless (Lf/Lj) D
s/r/r*

"0. But (see Appendix A),
we always have

Lf
Lj K

s/r/r*
'0. (7)

Thus, the condition

Lf
Ls K

s/r/r*
"

L
Lj

det(I!M(r, s)) D
s/r/r*

"0,

which is equivalent to eqns (3) and (5), can be
used to determine evolutionary equilibrium strat-
egies (Taylor & Bulmer, 1980).

Now, let us take once more the derivative with
respect to s on both sides of eqn (6). We get

L
Ls C

Lf
Ls

#

Lf
Lj

Lj
LsD#

Lj
Ls

]
L
Lj C

Lf
Ls

#

Lf
Lj

Lj
LsD"0.

When s"r"r*, we have Lj/Ls"0, and then, at
this point, the above equation becomes

L2f
Ls2

#

L2j
Ls2

Lf
Lj

"0.

Thus, when s"r"r*, we have

L2j
Ls2

"!

(L2f/Ls2)
(Lf/Lj)

. (8)

Since Lf/LjD
s/r

'0 (see Appendix A), then

L2j
Ls2 K

s/r/r*
and !

L2f
Ls2 K

s/r/r*

have the same sign. This proves the following
result.

Result 1. If a resident strategy r is confronted
to one mutant strategy s, then an evolutionary
equilibrium strategy r* is an ESS if

L2f
Ls2 K

s/r/r*
'0, (9)

where f"det(I!M(r, s)).

Continuous Stability

Suppose that the population is "xed for a strat-
egy r near an ESS strategy r*. Will it be selec-
tively advantageous for a mutant individual to
adopt a strategy closer to r*? If this is the case,
then we say that r* is a continuously stable strat-
egy or, simply, a CSS (Eshel, 1983).

More formally, an ESS strategy r* will be
a CSS if there exists an e'0 such that, for any
strategy r in the e-neighborhood of r* (which
means that r is within the range [r*!e, r*#e]),
there exists some d'0 such that for any strategy
s in the d-neighborhood of r, we have

j (r, s)'1 if and only if Ds!r*D(Dr!r*D.

Eshel (1983) derived the following condition for
an ESS to be a CSS. Let r* be an ESS.

(i) If r* is a CSS, then, for s"r"r*, we have

L2

Lr Ls
j (r, s)#

L2

Ls2
j (r, s))0.

(ii) If, for s"r"r*, we have

L2

Lr Ls
j(r, s)#

L2

Ls2
j(r, s)(0, (10)

then r* is a CSS.

For the same reason as before, we wish to "nd an
equivalent condition for an ESS to be a CSS. To
do this, we consider the following Taylor series
around the point s"r"r*:

L
Ls

j (r, s) K
s/r/r*`h

"

L
Ls

j(r, s) K
s/r/r*

#hC
L2

Ls2
j (r, s)#

L2

Lr Ls
j (r, s)D

s/r/r*
#o(h)
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and

L
Lr

j (r, s) K
s/r/r*`h

"

L
Lr

j(r, s) K
s/r/r*

#hC
L2

Lr2
j(r, s)#

L2

Ls Lr
j(r, s)D

s/r/r*
#o(h),

where o(h) designates any function such that
o(h)/h goes to 0 as h goes to 0. Combining the
above two expressions, we get

L
Ls

j (r, s) K
s/r/r*`h

#

L
Lr

j(r, s) K
s/r/r*`h

"

L
Ls

j(r, s) K
s/r/r*

#

L
Lr

j(r, s) K
s/r/r*

#hC
L2

Ls2
j(r, s)#

L2

Lr Ls
j(r, s)

#

L2

Lr2
j(r, s)

#

L2

LsLr
j (r, s)D

s/r/r*
#o(h).

Since j (r, r)"1 for all r in (0, 1), then the deriva-
tive of j (r, s) in the direction of the diagonal
evaluated on the diagonal (that is, when s"r) is
0. Moreover, this directional derivative, denoted
by Dj (r, s), is given by

Dj(r, s) D
s/r

"cos(n/4)
L
Lr

j (r, s) K
s/r

#sin(n/4)
L
Ls

j(r, s) K
s/r

"

J2
2 C

L
Lr

j(r, s) K
s/r

#

L
Ls

j (r, s) K
s/r
D

"0.
Since r* is an ESS, then

L
Ls

j(r, s) K
s/r/r*

"0,

which implies

L
Lr

j(r, s) K
s/r/r*

"0.

Thus, we have

0"h C
L2

Ls2
j (r, s)#

L2

LrLs
j(r, s)#

L2

Lr2
j(r, s)

#

L2

LsLr
j(r, s)D

s/r/r*
#o (h)

for h su$ciently small. Therefore, we obtain the
following equality:

C
L2

Ls2
j (r, s)#

L2

LrLs
j(r, s)D

s/r/r*

"!C
L2

Lr2
j (r, s)#

L2

LsLr
j (r, s)D

s/r/r*
(11)

On the other hand, for s"r"r*, we have

L2

Lr2
j(r, s)"!

(L2f/Lr2)
(Lf/Lj)

and

L2

LrLs
j(r, s)"!

(L2f/LrLs)
(Lf/Lj)

. (12)

Finally, using eqns (8), (11) and (12), we obtain the
following result.

Result 2. ¸et r* be an ESS and f"det(I!
M(r, s)).
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(i) If r* is a CSS, then, for s"r"r*, we have

L2f
Ls2

#

L2f
LrLs

*0

Aor, in an equivalent form,
L2f
Lr2

#

L2f
LsLr

)0B.

(ii) If, for s"r"r*, we have

L2f
Ls2

#

L2f
LrLs

'0

Aor, in an equivalent form,
L2f
Lr2

#

L2f
LsLr

(0B,
(13)

then r* is a CSS.

Invadability Property

Let r* be a CSS strategy. Then, we would like
to know if r* has also the property of invading,
when rare, any other ,xed strategy at least su$-
ciently close to it. Proceeding as previously, we
get that this will be the case if we have the
inequality

L2

Lr2
j(r, s) K

s/r/r*
'0,

which is equivalent to the converse inequality for
the corresponding partial derivative of the char-
acteristic polynomial.

Result 3. A CSS strategy r* will invade, when rare,
any other ,xed strategy su.ciently close to it if

L2f
Lr2 K

s/r/r*
(0, (14)

where f"det(I!M(r, s)).

Note that, in the case where r* is not a CSS, the
above condition cannot be satis"ed by r*. Indeed,
using eqns (10) and (11), we have

L2

Ls2
j (r, s) K

s/r/r*
*!

L2

LrLs
j(r, s) K

s/r/r*

and

L2

Lr2
j (r, s) K

s/r/r*
)!

L2

LrLs
j (r, s) K

s/r/r*
.

Thus, we have

L2

Lr2
j (r, s) K

s/r/r*
)

L2

Ls2
j (r, s) K

s/r/r*
.

But, since r* is an ESS, then

L2

Ls2
j(r, s) K

s/r/r*
(0

and, consequently, we get

L2

Lr2
j(r, s) K

s/r/r*
(0.

Case without Dominance

If there is no dominance, diploid individuals
will adopt di!erent strategies according to the
number of mutant genes that they will carry at
a single locus. Suppose that RR individuals adopt
strategy r, SS individuals adopt strategy s and SR
individuals adopt strategy t.

The linearized matrix associated with the re-
currence equation x@"T(x) will now depend on
r, s and t. This time we are looking for a strategy
r which satis"es

j(r, s, t)(1 for all sOr and tOr,

where j (r, s, t) is the spectral radius of the matrix
M(r, s, t). Assuming the function j(r, s, t) regular
enough, we must have

L
Ls

j (r, s, t) K
s/t/r

"0 (15)
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and

L
Lt

j(r, s, t) K
s/t/r

"0, (16)

for r to be an evolutionary equilibrium strategy.
Proceeding as before, these conditions become,
respectively,

g5C
L
Ls

M(r, s, t) K
s/t/r

Dn"0 (17)

and

g5C
L
Lt

M(r, s, t) K
s/t/r

Dn"0, (18)

where g and n are positive left and right eigenvec-
tors associated with the eigenvalue j(r, r, r)"1
of the matrix M(r, r, r), and satisfying g5n"1.

Furthermore, j(r, s, t) has to be actually max-
imum when s"t"r for an evolutionary equilib-
rium strategy r to be an ESS strategy. This leads
to the extra conditions

L2

Ls2
j (r, s, t) K

s/t/r/r*
"0 (19)

and

C
L2

Ls2
j(r, s, t)

L2

Lt2
j(r, s, t)!A

L2

LtLs
j(r, s, t)B

2

D
s/t/r/r*

'0. (20)

Proceeding as before, we get the following iden-
tities:

L2j
Ls2

"!

(L2f/Ls2)
(Lf/Lj)

,
L2j
Lt2

"!

(L2f/Lt2)
(Lf/Lj)

,

and

L2j
LtLs

"!

(L2f/LtLs)
(Lf/Lj)

.

This leads to the result below.
Result 4. If a resident strategy r is confronted to
two mutant strategies s and t, then an evolutionary
equilibrium strategy r* is an ESS if

L2f
Ls2 K

s/r/r*
'0 and

C
L2f
Ls2

L2f
Lt2

!A
L2f
LtLsB

2

D
s/r/r*

'0, (21)

where f"det(I!M(r, s, t)).

Model I: LMC Model with Partial Outbreeding

We consider a very large number of colonies
founded by N inseminated females. Following
reproduction, a female o!spring mate with
a male o!spring within the same colony with
probability b and mate with a male o!spring
chosen at random in the population at large with
probability 1!b. The newly inseminated fe-
males randomly disperse and form colonies of
size N. If we assume that the newly inseminated
females compete between themselves before dis-
persal such that the contribution of every colony
to the next generation is the same, then we will
say that there is regulation, actually local popula-
tion regulation. Otherwise, we will say that there
is no regulation. We also assume that each in-
seminated female has a very large number of
o!spring and that generations are non-overlap-
ping. The sex ratio among the o!spring is deter-
mined either by the mother or the father
(maternal control or paternal control).

With the method developed in the previous
sections, we have determined evolutionary equi-
librium sex ratios in the general case, without any
assumption on the dominance of gene S. Then we
have checked whether or not these sex ratios
were optimal in the ESS and CSS senses and if
they were invading any other "xed sex ratio su$-
ciently close to them. Symbolic calculations were
performed using softwares as MATHEMATICA
and MAPLE. For haploid and diploid popula-
tions, a shortcut is available because of symmetry
in gene transmission to male and female o!-
spring, as in Taylor & Bulmer (1980) and Karlin
& Lessard (1986). Some details on the models are
presented in Appendices B and C.



TABLE 1
Evolutionary equilibrium sex ratios for model I

Control Regulation 0)b)1 b"0 b"1

Haplodiploid Maternal No (2N!b) (N!b)

N (4N!b)

1

2
*

(2N!1)(N!1)

N(4N!1)
-

Yes (2N!b) (N!b)

(2N!b) (N!b)#2N(N!1)

N

2N!1

2N!1

4N!1
?

Paternal No b (N!b)

N (4N!b)
0A

N!1

N(4N!1)
-

Yes b (N!b)

b (N!b)#2(N!1)(2N!b)
0

1

4N!1

Haploid Maternal No N!b
2N

E
1

2
*

N!1

2N
-Aor or

diploid paternal
Yes N!b

2N!b!1
E

N

2N!1
B

1

2
**

*Fisher (1958).
-Taylor & Bulmer (1980).
?Herre (1985).
AHamilton (1967).
EKarlin & Lessard (1986).
BCharnov (1982).
**Wilson & Colwell (1981).

FIG. 1. Evolutionary equilibrium sex ratios for model I as
functions of N for b"0, 1/4, 1/2, 3/4 and 1: haplodiploid
populations with maternal control.

FIG. 2. Evolutionary equilibrium sex ratios for model I as
functions of N for b"0, 1/4, 1/2, 3/4 and 1: haplodiploid
populations with paternal control.

FIG. 3. Evolutionary equilibrium sex ratios for model I as
functions of N for b"0, 1/4, 1/2, 3/4 and 1: haploid and
diploid populations with maternal or paternal control.
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Result 5. ¹he evolutionary equilibrium sex ratios
for model I with or without regulation (¹able 1 and
Figs 1}3) are ESS and CSS sex ratios for at least
N*2. Moreover, they invade, when rare, any
other ,xed sex ratio su.ciently close to them.

Model II: LMC Model with Partial Dispersal
after Mating

We consider a very large number of colonies
founded by N inseminated females. Following
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reproduction and mating within colonies, a pro-
portion d (with d'0) of the newly inseminated
females disperse randomly in the population,
while the others stay in their own colony. The
newly inseminated females then compete within
colonies such that N survive in each colony. Two
types of dispersal are considered: proportional
dispersal, which means that every inseminated
female who quits her own colony is replaced by
an inseminated female taken at random in the
population; and uniform dispersal, which means
that every colony receives the same amount of
inseminated females taken at random in the
population. The latter case has already been
analysed numerically for small values of N
(N"2, 3, 4) by Bulmer (1986) and analytically
for any N but in a special case (additive gene
action in a diploid population) by Frank (1986b)
and Taylor (1988).

Since not all inseminated females disperse, we
cannot suppose that a colony is formed by no
more than one mutant female and at least N!1
resident females. In the previous model, this as-
sumption was legitimate because of total disper-
sal of inseminated females. We have been able,
using MATHEMATICA and MAPLE, to deter-
mine the evolutionary equilibrium sex ratio and
its optimality properties for a population of hap-
loid individuals in the case N"2.

Result 6. Consider model II for a haploid popula-
tion in the case N"2. In the case of proportional
dispersal, the evolutionary equilibrium sex ratio is

r*"
2!d

2(3!d)
,

which is optimal in the ESS and CSS senses and
which invades when rare any other ,xed sex ratio.
In the case of uniform dispersal, the sex ratio which
has the same properties is

r*"
1
4
,

which does not depend on the parameter d, in
agreement with previous studies.

Some details on the models are provided in Ap-
pendix D. Note that the evolutionary equilibrium
sex ratio in the case of proportional dispersal
decreases from 1/3 to 1/4 as the dispersal rate
d goes from 0 to 1.

Model III: LMC Model with Partial Dispersal
before Mating

In this model, we suppose that dispersal of
male and female o!spring occurs before mating.
More precisely, we assume that a proportion d

1
of female o!spring and a proportion d

2
of male

o!spring randomly disperse and then mate with-
in their colony. The newly inseminated females
compete within the colonies and N survive in
each colony. We also suppose that sex ratio con-
trol is maternal.

We consider two types of dispersal for males
and females: proportional dispersal and uniform
dispersal. As for model II, we concentrate on
small values of N (N"1, 2) and use MATH-
EMATICA and MAPLE. The evolutionary
equilibrium sex ratios are shown in Table 2
and some details for the analysis are given in
Appendix E.

Bulmer (1986) has already determined numer-
ically the evolutionary equilibrium sex ratio for
this model in the case of uniform dispersal. The
haploid model with uniform dispersal for any
N has been analysed by Frank (1986b). Our
results are in agreement with Bulmer's results
except for a haplodiploid population. Bulmer's
results show a little di!erence on the evolution-
ary equilibrium sex ratio according to S recessive,
dominant or additive (this means that the hetero-
zygote RS produces a sex ratio (s#r)/2) in the
haplodiploid case, even for N"1. With the
method developed in this paper, we have deter-
mined exactly the evolutionary equilibrium sex
ratio in the more general case where S is co-
dominant (this means that the heterozygote RS
produces a sex ratio t). Our results show, how-
ever, no in#uence of the degree of dominance of
the mutant gene S on the evolutionary equilib-
rium sex ratio at least in the case N"1. On the
other hand, our analytical results for the haploid
model with uniform dispersal correspond to the
Frank (1986b) results in the cases N"1, 2. But
there are di!erences in the evolutionary equilib-
rium sex ratios and their optimality properties
when dispersal is proportional.



TABLE 2
Evolutionary equilibrium sex ratios for model III

Dispersal 0)d
1
)1 d

1
"1 d

1
"0

0)d
2
)1 d

2
"0 d

2
"1

N"1 Prop. d
2

d
1
#d

2

0 1
haploid and
diploid

Uniform d
2
(2!d

2
)

d
1
(2!d

1
)#d

2
(2!d

2
)
* 0- 1-

N"1 Prop. d
2
(1#d

1
#d

2
!d

1
d
2
)

2d
1
#d

2
(1#d

1
#d

2
!d

1
d
2
)

0 1haplodiploid

Uniform d
2
(2!d

2
) (1#d

1
#d

2
!d

1
d
2
)

2d
1
(2!d

1
)#d

2
(2!d

2
)(1#d

1
#d

2
!d

1
d
2
)

0 1

N"2 Prop. d
1
(10!3d

1
)#14d

2
#d2

2
(1!d

2
)!d

1
d
2
(6!d

1
)

4d
1
(7!2d

1
)#d3

1
#20d

2
!d3

2
!d

1
d
2
(8!d

1
#d

2
)

1/3 14/19haploid

Uniform d
1
(10!3d

1
)#d

2
(22!5d

2
)!d3

2
(4!d

2
)!d

1
d
2
(8!2d

1
!2d

2
#d

1
d
2
)

18d
1
(2!d

1
)#2d

2
(14!3d

2
)#d3

1
(4!d

1
)!d3

2
(4!d

2
)!8d

1
d
2

* 1/3- 14/19-

*Frank (1986b) in the haploid case for any N.
-Bulmer (1986) in the haploid case.
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Result 7. For N"1 and at least for uniform dis-
persal, all evolutionary equilibrium sex ratios for
model III (¹able 2) are ESS and CSS besides
invading, when rare, any other nearby ,xed sex
ratio. For proportional dispersal, in the haploid
and diploid cases, stability analysis of the evolu-
tionary equilibrium sex ratio degenerates, while in
the haplodiploid case, the evolutionary equilibrium
sex ratio is not ESS. For N"2, the evolutionary
equilibrium sex ratios in the haploid case with
uniform dispersal and proportional dispersal are
di+erent when d

1
Od

2
(¹able 2).

In fact, in the haplodiploid case for N"1, the
evolutionary equilibrium sex ratio is the worst
strategy a haplodiploid can adopt, since it will be
invaded by any other strategy. For N"2, we did
not manage to do the calculations necessary to
verify stability in the haploid case and to deter-
mine the evolutionary equilibrium sex ratios in
the diploid and haplodiploid cases. See Appendix
E for some details on the models.

Discussion

We have made e!ort to bring completeness
and mathematical rigor in the study of sex ratio
evolution in the structured populations. We have
developed tractable algebraic criteria for optimal
properties such as evolutionary equilibrium,
evolutionary stability, continuous stability and
invadability. These criteria bear on the character-
istic polynomial of the linearized transformation
for the population state near "xation and its "rst
and second partial derivatives. With the assist-
ance of computer softwares for symbolic cal-
culations (MATHEMATICA and MAPLE), we
have been able to get analytical results on opti-
mal sex ratios in LMC models taking into ac-
count several factors such as population ploidy,
paternal or maternal control, co-dominant gene
action, regulation of colony size, partial dispersal,
proportional or uniform. Three breeding as-
sumptions have been considered: partial out-
breeding (model I), partial dispersal after mating
(model II), partial dispersal before mating (model
III).

With complete dispersal after mating (Table 1),
the case of complete outbreeding (b"0) without
regulation corresponds to a panmictic situation
and the evolutionary equilibrium sex ratio is 1

2
except in a haplodiploid population with pater-
nal control of the sex ratio for which it is 0. The
case of no outbreeding (b"1) without regulation
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corresponds to the original LMC situation
(Hamilton, 1967). It is interesting to note that the
evolutionary equilibrium sex ratio in this case is
always equal to (N!1)/N times the evolutionary
equilibrium sex ratio in the case of no outbreeding
(b"1) but with regulation, which removes the
LMC advantage of a female-biased sex ratio, com-
petition of males for mates being counterbalanced
by competition of females for limited resources.
But the evolutionary equilibrium sex ratio in hap-
lodiploid populations remains female-biased in
the case of maternal control and positive in the
case of paternal control as an e!ect of non-
symmetric but always positive relatedness of the
controlling parent to its male and female o!spring
as noted by Herre (1985). In the case of complete
outbreeding (b"0) with regulation, the evolution-
ary equilibrium sex ratio is male-biased in order to
reduce LRC except in haplodiploid populations
with paternal control for which it is 0, fathers
being unrelated to their sons. As a function of b,
the evolutionary equilibrium sex ratio is mono-
tome. As the proportion of outbreeding increases
(b decreases), the evolutionary equilibrium sex ra-
tio increases or decreases when N*2, but there is
little di!erence as soon as N*10 (Figs 1}3). West
& Herre (1998) studied 17 species of "g wasps, ten
with wingless males, who must mate within their
natal patch before dispersal of females, and seven
with winged males who can practice partial out-
breeding. As expected for haplodiploid species
with maternal control and no regulation, species
with winged males had less female-biased sex
ratios than species with wingless males.

Introducing limited but uniform dispersal,
Bulmer (1986) obtained little or no e!ect on the
evolutionary equilibrium sex ratio if dispersal
occurs after mating, but a bias of the sex ratio
towards the sex with the highest dispersal rate to
lower competition between sibs of that sex if
dispersal occurs before mating. The conclusion in
the "rst case challenged the Grafen (1984) predic-
tion for a more female-biased sex ratio with de-
creasing dispersal explained by a kin selection
factor when females in each breeding colony are
related. But it seems that the increase in repro-
ductive success of ones relatives' sons is exactly
counterbalanced by the decrease in reproductive
success of ones relatives' daughters who do not dis-
perse. With proportional dispersal after mating,
there is a kind of regulation after dispersal which
favors a less female-biased sex ratio. In the case of
dispersal before mating with N"1, proportional
dispersal favors a more pronounced bias of the
sex ratio towards the sex with the highest disper-
sal rate than uniform dispersal, but this is not
always true when N"2.

Note that, in several cases (model I, models II
and III in the case of proportional dispersal), the
evolutionary equilibrium sex ratios have been
obtained for the "rst time, in others (models II
and III in the case of uniform dispersal), previous
numerical results (Bulmer, 1986) or analytical
results (Frank, 1986b; Taylor, 1988; Taylor &
Frank, 1996) have been complemented. Among
our most valuable "ndings is the rather robust
result that the evolutionary equilibrium sex ratios,
in all cases considered, are independent of the
degree of dominance of the mutant genes. This
challenges di!erent numerical "ndings, at least
for haplodiploid populations, in the case of par-
tial uniform dispersal before mating. Another
particularly interesting result is the fact that the
evolutionary equilibrium sex ratio obtained in
the case of partial dispersal after mating, depends
on the dispersal rate when dispersal is propor-
tional, but not when it is uniform.

Finally, all the evolutionary equilibrium sex
ratios obtained, except those in model III with
partial proportional dispersal before mating,
have been shown for the "rst time to be evolu-
tionarily stable (ESS) and continuously stable
(CSS) besides to invade, at least when rare, any
other closeby strategy once "xed in the popula-
tion. However, in the haplodiploid case con-
sidered with partial proportional dispersal before
mating, we have shown that the evolutionary
equilibrium sex ratio is not an ESS and is actually
invaded by any other rare mutant. Therefore, it is
not su$cient to check evolutionary equilibrium
to conclude about evolutionary stability.

This paper is part of a Ph.D. thesis defended
by Josiane Courteau supervised by Sabin Lessard.
More details on the appendices can be found on the
web page Shttp://www.dms.umontreal.ca/&courteau/T.
The authors thank the external examiner, Prof. Carlo
Matessi, for very helpful comments. They also thank
Dr S. A. West and an anonymous referee for pertinent
references and constructive comments on an earlier
draft of this paper.
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APPENDIX A

Property of the Characteristic Polynomial

Let us determine the sign of Lf/Lj when s"r,
where f"det(jI!M(r, s)) is the characteristic
polynomial of the matrix M (r, s). This determi-
nant can be written as

(j!j
1
) (j!j

2
)2(j!j

n~1
),

where j
1
,2, j

n~1
are the n!1 eigenvalues of

the matrix M (r, s). Without loss of generality, we
can suppose that j

1
"j(r, s), the spectral radius

of M (r, s). Taking the derivative of f with respect
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to j yields

Lf
Lj

"(j!j
2
)2(j!j

n~1
)

#(j!j
1
)

L
Lj

[(j!j
2
)2(j!j

n~1
)].

When s"r, we have j"j (r, r)"j
1
"1 and,

therefore,

Lf
Lj K

s/r

"(1!j
2
)2(1!j

n~1
).

On the other hand, j
1
"1*Dj

j
D for j"2,2,n!1

by the de"nition of the spectral radius. Moreover,
since the eigenvalue 1 is simple, then the other
eigenvalues are all di!erent from 1. This ensures
that the above derivative is non-zero when s"r.
If j

j
is a real eigenvalue, then (1!j

j
)'0. If

j
j
"a#ib, with bO0, that is, j

j
is a complex

eigenvalue, then necessarily j1
j
"a!ib is also

a complex eigenvalue. Then

(1!j
j
) (1!j1

j
)"(1!a)2#b2'0.

Thus,

Lf
Lj K

s/r

'0.

APPENDIX B

Model I for Haplodiploid Populations

Assuming the mutant gene S rare, most of the
mutant colonies will be of the types

(2, 1), (2, 0), (1, 1), (1, 0), (0, 1),

where (i, j) means a colony founded by N!1
non-mutant inseminated females and one mutant
inseminated female (i, j), where i and j are the
numbers of gene S carried by the female and her
mate, respectively, with i#j*1. Let x (i, j) be
the frequency of the mutant colonies (i, j ) and

x"(x(2, 1), x (2, 0), x (1, 1), x (1, 0), x(0, 1)).
A non-mutant colony is represented by (0, 0)
and the frequency of all non-mutant colonies is
given by

x (0, 0)"1!x (2, 1)!x(2, 0)!x (1, 1)

!x (1, 0)!x(0, 1).

At the next generation, the frequency of the mu-
tant colonies (i, j) becomes

x@(i, j )"N[P(i, j )
(2,1)

C (2, 1)#2#P(i,j)
(0,0)

C(0, 0)]

#higher-order terms in x,

where

P(i,j )
(k, l)

"proportion of mutant inseminated

females (i, j )

coming from colonies (k, l )

and

C (k, l)"proportion of inseminated females

coming from colonies (k, l ).

APPENDIX C

Model I for Haploid Populations

C.1. CASE OF NO REGULATION

We suppose that the inseminated females (1, j )
and (0, j ) have a sex ratio given, respectively, by
s and r. Let t(i, j) be the frequency of gene
S transmitted to the next generation by all in-
seminated females of type (i, j ) and f (i, j) be the
frequency of females of type (i, j ) in the popula-
tion. The frequency of S in females (i, j ) is
[(i#j )/2] f (i, j). We are looking for r satisfying

t(i, j ))A
i#j

2 B f (i, j ) for all sOr (A.1)

with strict inequality for at least one (i, j ). We
have

t (i, j )"1
2
/

1
(i, j )#1

2
/

2
(i, j),
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where

/
1
(i, j)"expected frequency of S transmitted to

the next generation by the female

o!spring of (i, j )

"A
i#j

2 B f (i, j)k
1
(r, s, i)

and

/
2
(i, j)"expected frequency of S transmitted to

the next generation by the male

o!spring of (i, j )

"A
i#j

2 B f (i, j)k
2
(r, s, i),

where

k
1
(r, s, i)"G

(1!s)/(1!r)
1

if i"1,
if i"0
and

k
2
(r, s, i)"G

b
s

s#(N!1)r
(1!s)#(N!1)(1!r)

(1!r)
#(1!b)

s
r

1

if i"1,

if i"0.
Then,

t(i, j )"A
i#j

4 B f (i, j )g (r, s, i),

where

g (r, s, i)"k
1
(r, s, i)#k

2
(r, s, i).

Therefore, we are looking for r such that
g(r, s, i)(2 for all sOr, for at least one (i, j ). We
"nd the solution

r"
N!b

2N
.

C.2. CASE OF REGULATION

In this case, we have

t (i, j )"1
2
/

1
(i, j )#1

2
/

2
(i, j),

where

/
1
(i, j)"

GA
i#j

2 BC
Nf(i, j) (1!s)

(1!s)#(N!1)(1!r)D
A
i#j

2 B f (i, j )

if i"1,

if i"0

and
/
2
(i, j)"GA

i#j
2 B f (i, j)Cb

Ns
s#(N!1)r

#(1!b)
s
rD

A
i#j

2 B f (i, j)

if i"1,

if i"0.
The equation

t(i, j)(A
i#j

2 B f (i, j ) for all sOr

is satis"ed for at least one (i, j ) if and only if

g(r, s)"
N(1!s)

(1!s)#(N!1)(1!r)
#b

Ns
s#(N!1)r

#(1!b)
s
r
(2.
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This is true if and only if

r"
(N!b)

2N!b!1
.

APPENDIX D

Model II for Haploid Populations
in the case N"2

An inseminated female is of type (i, j ) if she has
i mutant genes S in her genotype and j genes S in
her mate's genotype. When individuals are hap-
loid with two inseminated females by colony,
there are ten types of colonies:
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inseminated female of type (i
1
, i

2
) and one of type

(i
3
, i

4
). Let x
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be the frequency of all colonies of

type j at a given generation and x@
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sponding frequency at the next generation for
j"1, 2,2, 10.

D.1. CASE OF PROPORTIONAL DISPERSAL

We have
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D.2. CASE OF UNIFORM DISPERSAL

Let
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Proceeding as before, we have

Pi
j
"(1#I ((i

1
, i

2
)O(i

3
, i

4
)))[ f

j
(d )P(i1, i2)

#(1!f
j
(d))P(i1, i2)

j
][ f

j
(d)P(i3, i4)

#(1!f
j
(d))P(i3, i4)

j
]

and for i"M(i
1
, i

2
), (i

3
, i

4
)N,

x@
i
"(1#I ((i

1
, i

2
)O(i

3
, i

4
)))

]
10
+
j/1
CAfj(d)

10
+
n/1

P(i1,i2)
n

C
n
#(1!f

j
(d))P(i1,i2)

j B

]Afj (d)
10
+
n/1

P(i3, i4)
n

C
n
#(1!f

j
(d))P(i3,i4)

j BDxj
.

APPENDIX E

Model III

For N"1 and n!1 types of mutant in-
seminated females represented by i"(i

1
, i

2
), with

i
1
#i

2
*1, we have, from one generation to the

next,
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where Pi1
k

and Pi1 represent the proportions of
female o!spring i

1
among the females produced

by a colony of type k and those produced by
the migrant females, Qi2

k
and Qi2 represent the

proportions of male o!spring i
2

among the
males produced by a colony of type k and those
produced by the migrant males, f

k
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1
) and
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) correspond to the proportions of female

and male migrants in a colony of type k, after
dispersion.

For N"2 and for i from 1 to n!1 represent-
ing a colony founded by inseminated females of
types (i
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), we have
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where, as for the case N"1, Pi1
k

and Pi1 rep-
resent the proportions of female o!spring
i
1

among all the females produced by a colony
of type k and among the immigrant females,
Qi2

k
and Qi2 represent the proportions of male

o!spring i
2

among all the males produced by
a colony of type k and among the immigrant
males.
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