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INTRODUCTION: LMC MODEL AND
ESS SEX RATIO

Let us consider the following model known as the local
mate competition (LMC) model (Hamilton, 1967): a
population is subdivided into an infinite number of
colonies founded by a certain number of inseminated
females chosen at random in the whole population. These
foundresses produce male and female offspring in a
certain ratio, and then die. The offspring mate at random
within their own colony, every female offspring being
inseminated once and only once. Then these newly insemi-
nated females randomly disperse to found new colonies.

In such a model, what is the progeny sex ratio (the
expected proportion of males in the progeny) that has
higher fitness than any other once fixed in the popula-
tion? This corresponds to an evolutionarily stable strategy
(ESS) following Maynard Smith and Price (1973). If the
number of foundresses is constant from one colony to
another, and denoted by n, and the number of offspring
produced is constant from one foundress to another, and
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virtually infinite, then the ESS sex ratio is female-biased
and explicitly given by (n&1)�2n (Hamilton, 1967;
Taylor and Bulmer, 1980; Colwell, 1981). When the
number of foundresses is a random variable, the ESS sex
ratio becomes (&&1)�2&, where & represents the average
number of foundresses in non-void colonies (Karlin and
Lessard, 1986; Nunney and Luck, 1988). When the number
of foundresses and the number of offspring produced by
a foundress are both random variables, the ESS sex ratio
can be approximated by

+K

2(1++K)
+

+K

2+T (1++K)2 \1&
_2

T

+T+&
_2

K

2(1++K)3 ,

where +K and _2
K represent the mean and variance for

the number of co-foundresses, K, of a foundress chosen
at random, while +T and _2

T represent the mean and
variance for the number of offspring, T, produced by a
foundress (Nishimura, 1993). This should be a good
approximation if the number of foundresses in each
colony or the number of offspring produced by each
foundress are large enough, and if variability is small
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enough (_2
K and _2

T small enough). These conditions
make it reasonable to ignore the possibility of extinction
of a colony due to the absence of offspring of one sex in
the colony and to neglect all centered moments of order
higher than 2 for the number of foundresses and the
number of offspring for each in a Taylor expansion for
fitness.

In the case of a fixed number of foundresses and a fixed
number of offspring for each, the number of male off-
spring being fixed (for a ``precise'' foundress) or following
a binomial distribution (for a ``binomial'' foundress),
numerical studies indicate a less female-biased ESS sex
ratio as the number of offspring per foundress becomes
smaller (Nagelkerke, 1994). This change in the ESS sex
ratio in favor of more males is to compensate for the
extinction of colonies containing no male, whose prob-
ability increases as the number of offspring per foundress
decreases.

In this paper, we study the exact ESS sex ratio in the
case where the number of foundresses in each colony is a
random variable having any distribution and the number
of offspring for each foundress is a random variable
having a Poisson distribution. Moreover, given the
number of offspring, the number of male offspring is
assumed to follow a binomial distribution.

Our study shows how the standard results on the ESS
sex ratio in LMC models are affected in the face of
stochasticity, of both foundress and offspring numbers.
Although our approach and mathematical methods
could be applied to a wide variety of LMC models, we
concentrate on the case of diploid populations with no
dispersal of males before mating and complete dispersal
of females after mating. We refer the reader interested in
the effect of haplodiploidy to Hamilton (1979), Taylor
and Bulmer (1980), Wilson and Colwell (1981), and
Herre (1985), who dealt with the case in which the
number of foundresses can be assessed by each one. This
assumption is not made in this paper. For dispersal
models, see, e.g., Bulmer (1986), Karlin and Lessard
(1986), and Taylor (1994).

EXACT ESS SEX RATIO WITH A
POISSON BROOD SIZE

In the LMC model, let the number of offspring
produced by a foundress be represented by a random
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variable T. Suppose that the variable T has a Poisson
distribution with mean * and that all such variables are
independent. Moreover let every foundress in the popula-
tion be such that each offspring in the progeny is male
with probability r independently of all other offspring.
Then r is the expected proportion of males in the progeny,
called the progeny sex ratio, and is fixed in the population.

Now assume that a foundress chosen at random in
the population mutates such that each offspring in her
progeny is male with probability r̂, instead of r for a non-
mutant foundress, independently of all other offspring.
We want to compare the fitness of such a mutant foundress
to the fitness of a non-mutant foundress.

Let us define the fitness of a foundress as her expected
contribution to the next generation through her sons and
daughters, this expected contribution being the expected
number of her inseminated daughters plus the expected
number of female offspring inseminated by her sons. This
definition of fitness should be appropriate at least for
diploid populations. If m̂ and f� represent the numbers of
sons and daughters, respectively, produced by a mutant
foundress, and M and F the total numbers of sons and
daughters, respectively, produced by all the other (non-
mutant) foundresses of the same colony, then the fitness
of the mutant foundress is the expected value of the
variable

W={ f� +X�
0

if m̂+M�1
if m̂+M=0

, (1)

where X� , which denotes the number of female offspring
inseminated by the sons of the mutant foundress, follows
a binomial distribution with parameters f� +F and
m̂�(m̂+M) in the case m̂+M�1, that is, in the case
where there is at least one male offspring in the colony.
In the case m̂+M=0, none of the female offspring is
inseminated.

We are interested in finding a progeny sex ratio rC such
that, if every non-mutant foundress produces a progeny
sex ratio r=rC, then any mutant foundress producing a
progeny sex ratio r̂{rC will have a lesser fitness than a
non-mutant foundress. Therefore we look for a progeny
sex ratio rC such that the expected value of W, E[W],
satisfies the conditions

�
�r̂

E[W] } r̂=r=rC
=0 (2)

and

�2

2 E[W] <0. (3)
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�r̂ } r̂=r=rC

If the solution to conditions (2) and (3) is unique, then
the corresponding progeny sex ratio rC is better than any



other once fixed in the population. This corresponds to
an ESS sex ratio (Maynard Smith and Price, 1973). A sex
ratio that satisfies condition (2) is said to be a critical sex
ratio.

In order to calculate the expectation of W for a mutant
foundress, E[W], it will be convenient first to calculate
the conditional expectation of W given the number K of
co-foundresses of the mutant foundress, E[W | K], and
then to take the expectation of this variable.

First of all, note that, given m̂, f� , M, F and the formula
for the expected value of a binomial distribution, the
expected value of W is

E[W | m̂, f� , M, F]={
f� +

m̂
m̂+M

( f� +F )

if m̂+M�1
0 if m̂+M=0.

(4)

But, given that the mutant foundress produces T off-
spring, the random variables m̂ and f� have a binomial
distribution with parameters T, r̂ and T, 1& r̂, respec-
tively, since the T offspring of the mutant foundress are
male with probability r̂ and female with probability 1&r̂,
independently of one another. Similarly, given K non-
mutant co-foundresses producing T1 , ..., TK offspring,
the random variables M and F have a binomial distribu-
tion with parameters SK , r and SK , 1&r, respectively,
where

SK=T1+ } } } +TK .

Under the assumption that the numbers of offspring
produced by the foundresses are independent Poisson
random variables with mean *, the variables m̂, f� , M, and
F, conditionally on K, are independent random variables
having a Poisson distribution with means *r̂, *(1&r̂),
K*r, and K*(1&r), respectively (see Appendix 1). There-
fore, we have

E[W | K]=E[W | m̂+M�1, K] P(m̂+M�1 | K)

+E[W | m̂+M=0, K] P(m̂+M=0 | K)

=E _ f� +
m̂

m̂+M
( f� +F ) } m̂+M�1, K&

_P(m̂+M�1 | K).
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But since m̂, f� , M, and F are conditionally independent
random variables, it follows that m̂�(m̂+M) and f� +F are
also conditionally independent random variables, so
that

E _ m̂
m̂+M

( f� +F ) } m̂+M�1, K&
=E _ m̂

m̂+M } m̂+M�1, K& E[ f� +F | K].

Moreover, since m̂ and M conditionally on K are not
only independent but have also a Poisson distribution,
we have

P(m̂+M=0 | K)=P(m̂=0) P(M=0 | K)=e&*(r̂+Kr)

and (see, e.g., Lemire and Lessard, 1997)

E _ m̂
m̂+M } m̂+M�1, K&=

E[m̂]
E[m̂]+E[M | K]

.

We conclude that

E[W | K]

=_E[ f� ]+\E _ m̂
m̂+M } m̂+M�1, K&

_E[ f� +F | K]+& (1&P(m̂+M=0 | K))

=_*(1& r̂)+\ r̂
r̂+Kr+ (*(1& r̂)+*K(1&r))&

_(1&e&*( r̂+Kr))

=* _(1& r̂)+
r̂((1& r̂)+K(1&r))

r̂+Kr & (1&e&*(r̂+Kr)).

Finally, we get

E[W]=E[E[W | K]]

=E _* _(1& r̂)+
r̂((1& r̂)+K(1&r))

r̂+Kr &
_(1&e&*( r̂+Kr))& .
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The partial derivative of E[W] with respect to r̂
evaluated at r̂=r is given by



�
�r̂

E[W] } r̂=r

=E _ �
�r̂ \* _(1&r̂)+

r̂((1&r̂)+K(1&r))
r̂+Kr &

_(1&e&*(r̂+Kr))+& } r̂=r

=*E _\&1+
(K+1)(1&r)

(K+1) r

+r \&(K+1) r&(K+1)(1&r)
(K+1)2 r2 ++

_(1&e&*(K+1) r)+2(1&r) *e&*(K+1) r&
=*E _\&1+

1&r
r

&
1

(K+1) r+ (1&e&*(K+1) r)

+2(1&r) *e&*(K+1) r&
=*E _\&2+

K
(K+1) r+ (1&e&*(K+1) r)

+2(1&r) *e&*(K+1) r&
=&2*(1&e&*rE[e&*Kr])+2*2(1&r) e&*rE[e&*Kr].

Thus, we have

�
�r̂

E[W] } r̂=r

=&2*(1&e&*rE[e&*Kr])+2*2(1&r) e&*rE[e&*Kr]

+
*
r \E _ K

1+K&&e&*rE _ K
1+K

e&*Kr&+ . (5)

We can formulate the last equation in terms of the
moment-generating function. More precisely, if we let

.(t)=E[etK] and I(x)=|
x

&�
et.(t) dt, (6)

then we have

E _ex(K+1)

1+K &=E _|
x

&�
et(K+1) dt&
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=|
x

&�
E[et(K+1)] dt=I(x),
and it is easy to see that

E[e&*Kr]=.(&*r), E _ K
1+K&=1&I(0) (7)

and

E _ K
1+K

e&*Kr&=.(&*r)&e*rI(&*r).

Then Eq. (2) is satisfied if and only if rC is a solution of
the equation

&2rC+e&*rC.(&*rC)(2rC+2*rC(1&rC)&1)

+1&I(0)+I(&*rC)=0, (8)

where the functions . and I are given by (6).
Moreover, rC is an ESS sex ratio if it is the unique

solution to (8) and if

�2

�r̂2 E[W] } r̂=r=rC

=
2*
rC2 _&E _ K

(K+1)2 (1&e&*rC(K+1))&
&*rCE _e&*rC(K+1)

K+1 &
+*rC(1&2rC&*rC+*rC2) E[e&*rC(K+1)]&<0.

(9)

A sufficient condition for this to occur is

1&2rC&*rC+*rC2�0.

But this is true if and only if

(2+*)&- 4+*2

2*
�rC�

(2+*)+- 4+*2

2*
. (10)

Note that the upper bound is always greater or equal
to 1�2.

It would also be very interesting to know if the critical
sex ratio rC is a continuously stable strategy (CSS), which
means that not only rC is an ESS sex ratio, but it also
satisfies the following condition: if the population is
fixed on any value, sufficiently close to rC, then there is
selective advantage to those mutations that render the
individual's strategy at least slightly closer to it and selec-
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tive disadvantage to those that render the individual's
strategy further apart from it. This condition is also known
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as the convergence-stability condition (see Christiansen
(1991) and Eshel (1996) for details).

A sufficient condition for an ESS sex ratio to be a CSS
sex ratio is given by (Eshel, 1996)

�2V
�r �r̂

+
�2V
�r̂2 } r= r̂=rC

<0,

where V is a payoff function. Using E[W] as our payoff
function, the CSS condition becomes

TABLE 1

ESS Sex Ratio Obtained by Solving Eq. (8)

Mean and variance Distribution
of K of K *=1 *=2

+K=0, _2
K=0 Fixed 0.443 0.396

+K=1, _2
K=0 Fixed 0.430 0.381

+K=1, _2
K=0.9 B(10, 1�10) 0.433 0.388

+K=1, _2
K=1 P(1) 0.433 0.389

+K=1, _2
K=1.5 BNm(2, 2�3) 0.435 0.391

+K=1, _2
K=2 Gm(1�2) 0.436 0.392

+K=2, _2
K=0 Fixed 0.427 0.385

+K=2, _2
K=1.8 B(20, 1�10) 0.431 0.391

+K=2, _2
K=2 P(2) 0.431 0.391

+K=2, _2
K=4 BNm(2, 1�2) 0.433 0.394

+K=2, _2
K=6 Gm(1�3) 0.435 0.396

+K=3, _2
K=0 Fixed 0.429 0.396

+K=3, _2
K=2.7 B(30, 1�10) 0.431 0.398

+K=3, _2
K=3 P(3) 0.432 0.398

+K=3, _2
K=7.5 BNm(2, 2�5) 0.435 0.400

+K=3, _2
K=12 Gm(1�4) 0.437 0.402

+K=4, _2
K=0 Fixed 0.432 0.408

+K=4, _2
K=3.6 B(40, 1�10) 0.434 0.407

+K=4, _2
K=4 P(4) 0.434 0.407

+K=4, _2
K=12 BNm(2, 1�3) 0.437 0.407

+K=4, _2
K=20 Gm(1�5) 0.439 0.407

+K=5, _2
K=0 Fixed 0.436 0.420

+K=5, _2
K=4.5 B(50, 1�10) 0.437 0.417

+K=5, _2
K=5 P(5) 0.437 0.416

+K=5, _2
K=17.5 BNm(2, 2�7) 0.439 0.413

+K=5, _2
K=30 Gm(1�6) 0.441 0.412

+K=10, _2
K=0 Fixed 0.456 0.455

+K=10, _2
K=9 B(100, 1�10) 0.455 0.451

+K=10, _2
K=10 P(10) 0.455 0.451

+K=10, _2
K=60 BNm(2, 1�6) 0.451 0.437

+K=10, _2
K=110 Gm(1�11) 0.451 0.431
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Note. The number of offspring per foundress, T, is supposed to be a P
modified binomial negative, and Gm for modified geometric.)
=3 *=4 *=5 *=10 *=� Nishimura

.358 0.327 0.301 0.218 0.000 0.000

.347 0.322 0.303 0.261 0.250 0.250

.356 0.331 0.311 0.253 0.188 0.194

.356 0.331 0.312 0.251 0.184 0.188

.358 0.333 0.312 0.249 0.167 0.156

.359 0.334 0.313 0.246 0.153 0.125

.361 0.348 0.340 0.333 0.333 0.333

.365 0.348 0.335 0.304 0.288 0.300

.365 0.348 0.334 0.301 0.284 0.296

.367 0.347 0.331 0.285 0.250 0.259

.368 0.346 0.329 0.275 0.225 0.222

.382 0.377 0.376 0.375 0.375 0.375

.380 0.369 0.362 0.349 0.345 0.354

.379 0.368 0.361 0.346 0.342 0.351

.378 0.362 0.350 0.317 0.300 0.316

.377 0.358 0.343 0.300 0.269 0.281

.402 0.400 0.400 0.400 0.400 0.400

.395 0.389 0.386 0.381 0.380 0.386

.394 0.388 0.384 0.379 0.377 0.384

.388 0.376 0.366 0.343 0.333 0.352

.385 0.369 0.356 0.320 0.300 0.320

.417 0.417 0.417 0.417 0.417 0.417

.409 0.406 0.404 0.403 0.402 0.407

.408 0.405 0.403 0.401 0.401 0.405

.398 0.387 0.380 0.363 0.357 0.376

.392 0.378 0.367 0.336 0.321 0.348

.455 0.455 0.455 0.455 0.455 0.455

.451 0.451 0.451 0.450 0.450 0.452

.450 0.450 0.450 0.450 0.450 0.451

.430 0.426 0.423 0.418 0.417 0.432

.418 0.409 0.402 0.386 0.380 0.414

�2

�r �r̂
E[W]+

�2

�r̂2 E[W] } r=r̂=rC

=&
*

rC2 E _e&*rC(K+1)

K+1
(2*rC2(2+*&*rC)

+*rCK2(&1+2rC(1+*)&2*rC2)

+K(&1+e*rC(K+1)+4*2rC2(1&rC)

+*rC(&1+6rC)))&<0.
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oisson variable with mean *. (B for binomial, P for Poisson, BNm for



After rearrangement, we get

�2E[W]
�r �r̂

+
�2E[W]

�r̂2 } r=r̂=rC

=
&*
rC2 _E _ K

K+1
(1&e&*rC(K+1))&

+2*rC2(2+*(1&rC)) E[e&*rC(K+1)]

+*rC(2rC(1+*&*rC)&1) E[Ke&*rC(K+1)]&<0.

A sufficient condition for this to occur is

2rC(1+*&*rC)&1�0,

which is true if and only if

(1+*)&- 1+*2

2*
�rC�

(1+*)+- 1+*2

2*
. (11)

NUMERICAL RESULTS WITH SOME
PARTICULAR DISTRIBUTIONS
FOR COLONY SIZE

Equation (8) can be solved numerically, with a soft-
ware as Mathematica, for a variety of distributions for
the variable K. We have done this (see Appendix 2) for K
fixed and for the following distributions: Poisson, bino-
mial, modified geometric (that is to say K+1 is a geometric
random variable), modified negative binomial (that is to
say K+2 is a negative binomial random variable). The
results are summarized in Table 1. All critical sex ratios
are less than 1�2. Then the upper limit of condition (10)
is never reached. On the other hand, the lower limit of
condition (10) is given by 0.382 for *=1, 0.293 for *=2,
0.232 for *=3, 0.191 for *=4, 0.161 for *=5, and finally
0.090 for *=10. The respective critical sex ratios are
always greater than these values and consequently all
critical sex ratios in Table 1 are ESS sex ratios. More-
over, condition (11) is always satisfied for these values
and therefore all ESS sex ratios in Table 1 are CSS sex
ratios.

CASE OF A LARGE BROOD SIZE
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We are interested in the special case where T=�,
which corresponds to the case of a very large number of
offspring by each foundress, because the ESS sex ratio
has already been found in this case by Karlin and
Lessard (1986) and by Nunney and Luck (1988). These
authors have obtained as ESS sex ratio

rC=
&&1

2&
,

where & is the mean size of non-void colonies. On the
other hand, if we take the limit as * goes to infinity in
Eq. (8), we get

rC=
1&I(0)

2
=

1
2

E _ K
K+1& .

These two results do not seem to agree unless K is fixed.
But actually, they agree. To show this, let us recall the
definition of the random variable K: K is the number of
co-foundresses of a foundress chosen at random in the
population at large. The relation between the variable K
and the variable N, representing the colony size, is given
by the equation

P(K=n)=P(a foundress chosen at random in the
population comes from a colony of size n+1)

=
(n+1) P(N=n+1)

�k�0 (k+1) P(N=k+1)
. (12)

Note that in general, N{K+1. Therefore, we have

E _ 1
K+1&=

�n�0 P(N=n+1)
�k�0 (k+1) P(N=k+1)

=
P(N�1)

�k�0 (k+1) P(N=k+1)

=
1

�k�0 (k+1) P(N=k+1 | N�1)

=
1

E[N | N�1]

=
1
&

.

Thus, we get

rC=
1&E[1�(K+1)]

2
=

&&1
2&

,

Courteau and Lessard
and our results coincide with previous results in the
special case where the number of offspring per foundress
is very large.



DISCUSSION

Hamilton (1967) assumed a fixed colony size and a
fixed very large brood size to show that the unbeatable
sex ratio should be female-biased in the LMC model.
Nagelkerke (1996) pointed out that a small brood size
diminishes the bias in favor of females in the ESS sex
ratio. This is presumably to diminish the probability of
extinction of colonies due to the absence of male off-
spring to inseminate the female offspring. These results
were obtained assuming a fixed brood size and a fixed
colony size. Our results in the case of a fixed number of
foundresses producing a random number of offspring
that follows a Poisson distribution suggest that random-
ness of T reduces the diminution of the bias in favor of
females. For a colony size N=1, 2, 3, 4, Table 2 shows
the ESS sex ratio obtained by solving Eq. (8) with a
brood size T that follows a Poisson distribution with
mean *=1, 2, 3, 4, 5, 10, � and the one obtained by
Nagelkerke (1996) with a fixed brood size T=1, 2, 3, 4,
5, 10, �. The ESS sex ratio is always lower in the former
case with a random T than in the latter case with a fixed T.
Of course, in both cases, as the mean brood size increases
to �, the ESS sex ratio approaches Hamilton's (1967)
prediction. Note that it actually decreases to that predic-
tion in both cases. This is surprising since the probability
of extinction of a colony is larger for a random T than for
a fixed T due to Jensen's inequality, that is,

E[(1&r)� N
i=1 Ti ]�(1&r)*N.

It seems that the advantageous possibility of producing
more female offspring with a random T outweighs the
disadvantageous possibility of producing no male off-
spring.

TABLE 2

Comparison of Our Results for a Poisson T of Mean * with Nagelkerke's
(1996) Results for a Corresponding Fixed T

*=1 *=2 *=3 *=4 *=5 *=10 *=�
(T=1) (T=2) (T=3) (T=4) (T=5) (T=10) (T=�)

N=1 0.443 0.396 0.358 0.327 0.301 0.218 0
�� (0.50) (0.43) (0.37) (0.34) (0.22) (0)

N=2 0.430 0.381 0.347 0.322 0.303 0.261 0.250
(0.50) (0.43) (0.38) (0.35) (0.33) (0.26) (0.250)

Stochastic Effects in LMC Models
N=3 0.427 0.385 0.361 0.348 0.340 0.333 0.333
(0.50) (0.44) (0.39) (0.37) (0.36) (0.35) (0.333)

N=4 0.429 0.396 0.382 0.377 0.376 0.375 0.375
(0.50) (0.44) (0.42) (0.41) (0.40) (0.40) (0.375)
The effect of a random colony size coupled with a ran-
dom brood size is also interesting. When the mean brood
size and the mean of K, the number of co-foundresses
of a foundress chosen at random, are both small, an
increase in the variance of K causes an increase of the
ESS sex ratio (see Table 1). The relation is reversed when
either the mean brood size or the mean of K is large.

It is instructive to compare Nishimura's (1993) approxi-
mation for the ESS sex ratio with our exact results.
Nishimura (1993) has obtained the ESS sex ratio

rC=
+K

2(1++K)
+

+K

2+T (1++K)2 \1&
_2

T

+T+&
_2

K

2(1++K)3 ,

(13)

where +K , +T , _2
K , and _2

T are the means and variances of
K and T, K being the number of co-foundresses of a
foundress chosen at random and T being the progeny size
of a foundress. Since T is supposed to be a Poisson
random variable with mean *, then _2

T=+T=* and the
second term in the right side of Eq. (13) disappears.
Then, in this special case, Nishimura's approximation
becomes

rC=
+K

2(1++K)
&

_2
K

2(1++K)3 , (14)

which does not depend on the parameter *. Because
Nishimura did not take into account the possibility that
a colony producing no male disappears, his approxima-
tion cannot be good, underestimating the exact ESS sex
ratio, when * and +K are both small. For very large
values of *, corresponding to the case *=�, Nishimura's
predictions slightly overestimates the exact ESS sex ratio
except for small +K and large _2

K as illustrated in Table 1.

APPENDIX 1

Let us determine the moment-generating function of
the random variable m̂. We have

E[etm̂]=E[et �T
i=1 Xi]=E[E[et �T

i=1 Xi | T]]

T tX tX T
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=E[6 i=1 E[e i | T]]=E[(E[e i]) ]

=E[((1&r̂)+r̂et)T]= :
�

T=0

((1&r̂)+r̂et)T *Te&*

T!



=e&* :
�

T=0

[*((1&r̂)+r̂et)]T

T!
=e&*e*[(1&r̂)+ r̂et ]

=e*r̂(et&1),

which is the moment-generating function of a Poisson
random variable with mean *r̂. Thus, m̂ is a Poisson
random variable with mean *r̂. The same argument also
holds if we substitute m̂ by f� and r̂ by 1&r̂. Then, f� is a
Poisson random variable with mean *(1&r̂). Moreover,
we have

P(m̂=k, f� =n)=E[P(m̂=k, f� =n | T )]

=E[P(m̂=k, T&m̂=n | T )]

= :
�

t=0

P(m̂=k, m̂=T&n | T=t)
*te&*

t !

= :
�

t=0

P(m̂=k, t=k+n | T=t)
*te&*

t !

=P(m̂=k | T=k+n)
*k+ne&*

(k+n)!

=\k+n
k + r̂k(1& r̂)n *k+ne&*

(k+n)!

=
(*r̂)k e&*r̂

k !
_

(*(1& r̂))n e&*(1& r̂)

n !

=P(m̂=k)_P( f� =n).

Therefore the random variables m̂ and f� are independent.
The variables M and F can be written as

M= :
K

i=1

mi and F= :
K

i=1

fi= :
K

i=1

(T i&mi),

where the m1 , m2 , ... are independent Poisson random
variables with mean *r and f1 , f2 , ... independent
Poisson random variables with mean *(1&r). Then by
the additivity of independent Poisson variables, M and F
are, given K, Poisson variables with means K*r and
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K*(1&r), respectively. Moreover, the preceding proof
shows that the variables mi and fi are independent.
Actually mi is independent of all fj , and M is independent
of F, conditionally on K.
APPENDIX 2

K Fixed

In this case, we can use Eq. (5) directly, giving

�
�r̂

E[W] } r= r̂=rC
=&2*(1&e&*rC(K+1))

+2*2(1&rC) e&*rC(K+1)+
*
rC

_\ K
K+1

&
Ke&*rC(K+1)

K+1 + .

After a few simplifications, we obtain the following
criterion for rC to be a critical sex ratio:

&2rC+e&*rC(K+1) \2rC+2*(1&rC)&
K

K+1+
+

K
K+1

=0. (15)

K Poisson P(:)

If we assume that K is a Poisson random variable with
mean :, the moment-generating function of K is given by

.(t)=E[etK]=e:(e t&1).

Furthermore, we have

I(x)=|
x

&�
et.(t) dt=|

x

&�
ete:(e t&1) dt

=_e:(et&1)

: &
x

&�
=

e:(e x&1)&e&:

:
,

so that

I(0)=
1&e&:

:
and I(&*r)=

e:(e&*r&1)&e&:

:
.

Substituting into Eq. (8), the critical sex ratio rC must
then be a solution of the equation

C

Courteau and Lessard
(2rC&1+2*rC(1&rC)) e(:(e&*r &1)&*rC)=2rC&1

+
(1&e:(e&*rC&1))

:
. (16)



K Binomial B(n, p)

If K is a binomial random variable with parameters n
and p, then we have

.(t)=(q+ pet)n

and

I(x)=|
x

&�
et(q+ pet)n dt

=
(q+ pet)n+1

p(n+1) }
x

&�
=

(q+ pex)n+1&qn+1

p(n+1)
,

where q=1& p. Equation (8) now becomes

&2rC+e&*rC
(q+ pe&*rC

)n (2rC+2*rC(1&rC)&1)+1

&
(1&(q+ pe&*rC

)n+1)
p(n+1)

=0. (17)

K Modified Geometric Gm( p)

If we assume that K+1 is a geometric random variable
with parameter p, then

.(t)=E[et(K+1)&t]=
p

1&qet

and

I(x)=|
x

&�
et.(t) dt=|

x

&�

pet

1&qet dt=|
e x

0

p
1&qu

du

=&
p
q

ln(1&qex),

giving

.(&*rC)=
p

1&qe&*rC , I(0)=&
p
q

ln p

and

I(&*rC)=&
p
q

ln(1&qe&*rC
),

where q=1& p. Equation (8) becomes
&*rC

Stochastic Effects in LMC Models
&2rC+
pe

1&qe&*rC (2rC+2*rC(1&rC)&1)+1

+
p
q

ln p&
p
q

ln(1&qe&*rC
)=0. (18)
K Modified Negative Binomial BNm(2, p)

In this case we assume that K+2 has a negative
binomial distribution with parameters 2 and p. We thus
obtain

.(t)=E[et(K+2)&2t]=
p2

(1&qet)2

and

I(x)=|
ex

0

p2

(1&qu)2 du=
p2

q _ 1
1&qu&

e x

0

=
p2ex

1&qex .

Then, we have

I(0)=
p2

1&q
= p

and

I(&*rC)=
p2e&*rC

1&qe&*rC ,

where q=1& p. In this particular situation, Eq. (8)
becomes

&2rC+
p2e&*rC

(1&qe&*rC
)2

(2rC+2*rC(1&rC)&1)+1& p

+
p2e&*rC

1&qe&*rC=0. (19)

Equations (15), (16), (17), (18), and (19) were solved
numerically (with Mathematica) to obtain the results of
Table 1.
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