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Abstract

Ewens’ sampling formula, the probability distribution of a configuration of alleles in a sample of genes under the infinitely-many-

alleles model of mutation, is proved by a direct combinatorial argument. The distribution is extended to a model where the

population size may vary back in time. The distribution of age-ordered frequencies in the population is also derived in the model,

extending the GEM distribution of age-ordered frequencies in a model with a constant-sized population. The genealogy of a rare

allele is studied using a combinatorial approach.

A connection is explored between the distribution of age-ordered frequencies and ladder indices and heights in a sequence of

random variables. In a sample of n genes the connection is with ladder heights and indices in a sequence of draws from an urn

containing balls labelled 1; 2; . . . ; n; and in the population the connection is with ladder heights and indices in a sequence of
independent uniform random variables.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Ewens’ (1972) sampling formula (ESF) is the prob-
ability distribution of the number of different types of
genes and their frequencies at a selectively neutral locus
under the infinitely-many-alleles model of mutation. The
coalescent process of Kingman (1982) describing the
genealogy of a sample underlies the sampling distribu-
tion. Kingman (1978) relates the sampling distribution
to partition structures. The population model under
which the ESF holds can be described as a diffusion
process which contains a large class of finite-population
e front matter r 2005 Elsevier Inc. All rights reserved.
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models in its limit domain of attraction as the
population size tends to infinity and time is scaled
appropriately. The class includes the Wright–Fisher
model, the Moran model, and Cannings’ (1974)
exchangeable model generalizing the Wright–Fisher
model. Earlier papers viewed the ESF as an approx-
imate sampling formula in the Wright–Fisher model.
The population gene frequencies are modelled as a
diffusion process by Ethier and Kurtz (1981), and as a
genealogical process by Griffiths (1980) and Donnelly
and Tavaré (1987). Joyce and Tavaré (1987) relate the
genealogical process to a linear pure birth and immigra-
tion process. Applied interest is that in the ESF the
number of types is a sufficient statistic for the mutation
rate. The stationary distribution of the population
gene frequencies in the diffusion process model is the
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Poisson–Dirichlet process. Kingman (1978) constructs
the Poisson–Dirichlet process with a paintbox construc-
tion. Hoppe (1984) derived the ESF from an urn model
representation of sampling genes. Donnelly (1986)
studies a partition of sample genes by the age of their
allele types in the urn model construction of Hoppe
(1984). He shows an equivalence between the urn
construction and Kingman’s paintbox construction.
Donnelly and Kurtz (1996) study a particle process that
relates the population frequencies, modelled as a
measure-valued diffusion process, to the coalescent
process. Combinatorial aspects of Ewens’ sampling
formula, the Poisson–Dirichlet process, and age-ordered
allele frequencies are detailed in Arratia et al. (2003).
The distribution of non-mutant lines of descent after
some given time in the past to the present time is studied
by Griffiths (1980), Watterson (1984), Tavaré (1984) and
Donnelly and Tavaré (1986) giving a generalization of
the ESF to the distribution of allele types before and
after the given time in the past. The distribution of age-
ordered alleles in the ESF is derived in Donnelly and
Tavaré (1986).
The age distribution of a mutation known to be of a

given frequency in a population was first derived in a
classic paper by Kimura and Ohta (1973). Recent papers
studying the age distribution in a sample of genes or the
population use genealogy in a coalescent process, a
diffusion process, or a combination of the two (Slatkin
and Rannala, 1997; Rannala and Slatkin, 1998; Wiuf
and Donnelly, 1999; Stephens, 2000; Wiuf, 2000, 2001;
Griffiths, 2003; Griffiths and Tavaré, 1998, 2003).
In this paper, we present an elementary proof of the

ESF based on combinatorial arguments in the frame-
work of the coalescent process. The approach is used to
extend the sampling formula and the Poisson–Dirichlet
distribution in the population to the case of a variable
population size. The age-ordered distribution of gene
frequencies in a sample and the population is also found
in this case, extending known results.
The genealogy and age of a rare mutant type

considered in Wiuf (2000, 2001) is studied using the
combinatorial approach in this paper.
A connection is explored between the distribution of

age-ordered frequencies and ladder indices and heights
in a sequence of random variables. In a sample of n

genes the connection is with ladder heights and indices
in a sequence of draws from an urn containing balls
labelled 1; 2; . . . ; n; and in the population the connection
is with ladder heights and indices in a sequence of
independent uniform random variables.
2. Ewens’ sampling formula: a combinatorial derivation

The ancestry of a random sample of n genes is
described back in time by a coalescent tree, with vertices
where lineages have a common ancestor (Kingman,
1982). Mutations occur along the edges of the coalescent
tree according to a Poisson process of intensity y=2.
Many discrete population models are in the domain of
attraction of the coalescent when time is measured
appropriately. In a Wright–Fisher model of constant
size N with an infinitely-many-alleles model of muta-
tion, novel mutant types are formed at a rate of u per
gene per generation. The distribution of the ancestral
tree of a sample of n genes converges to the coalescent
when time is measured in units of N generations, where
y ¼ 2Nu is the scaled mutation rate per gene per
generation and N ! 1. The number of non-mutant
ancestors of a sample of n genes is a death process back
in time, where ancestral lines are lost by either mutation
or coalescence. Griffiths (1980) and Tavaré (1984) study
this death process in the entire population and in a
sample of n genes. Ewens (1990) calls the events in the
death process defining events. Lines lost by mutation
determine the family tree of the mutation in the sample,
with the number of members of the family as the
number of leaves subtended by the mutation.
Label the sample genes and list them in the order in

which they are lost backward in time, following either a
mutation or a coalescence. In the case of coalescence,
one of the two genes involved is chosen at random to
continue back in time as a parent gene and the other
gene is lost. There are n! different ordered loss lists. If
there are k different types of genes represented in the
sample with nl genes of type l for l ¼ 1; . . . ; k, then there
are n!=½n1! � � � nk!� possibilities for the positions of the
genes of the different types in the list. However, if the
types that have the same number of genes in the sample
are not labelled, then this number of possibilities is
divided by ½b1! � � � bn!�, where bj is the number of types
represented j times in the sample for j ¼ 1; . . . ; n such
that

P
j bj ¼ k.

Now consider the probability of each particular
sequence of events. When i genes remain, the rate of
mutation is iy=2 and the rate of coalescence is iði � 1Þ=2.
The probability that a particular gene is the next one lost
and that it is lost by mutation is y=½iðyþ i � 1Þ�.
Similarly the probability that a particular gene of a
given type is the next one lost and that it is lost by
coalescence is ðj � 1Þ=½iðyþ i � 1Þ�, where j is the
number of genes of the given type among the i

remaining genes. Then it is clear that

n!
n!

n1! � � � nk!

� �
1

b1! � � � bn!

ðn1 � 1Þ! � y � � � ðnk � 1Þ! � y
1 � y � � � n � ðyþ n � 1Þ

¼
n!

1b1 � � � nbn

1

b1! � � � bn!

yk

y � � � ðyþ n � 1Þ
ð1Þ

is the probability of having k types of genes with bj types
represented j times for j ¼ 1; . . . ; n in a sample of size
n ¼

P
j jbj . This is the sampling formula conjectured by
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Ewens (1972) and proved by induction by Karlin and
McGregor (1972).
Notice that, if the n genes are labelled, then the

probability that nl given genes among these are of type l

for l ¼ 1; . . . ; k is

n!ykQk
l¼1 ðnl � 1Þ!Qn

i¼1 iðyþ i � 1Þ
.

Moreover, if the n sampled genes are labelled and the
ancestry is traced back up to the point of m ancestral
genes of given types, say types 1; . . . ;m, then it suffices
to choose these m ancestral genes and proceed as above
for the others to find

ðn � mÞ!yk�mQm
l¼1 nl !

Qk
l¼mþ1 ðnl � 1Þ!Qn

i¼mþ1 iðyþ i � 1Þ
(2)

for the probability of having nl given genes of type l for
l ¼ 1; . . . ; k, types 1; . . . ;m being ancestral and types
m þ 1; . . . ; k being mutant. This is the formula originally
given by Watterson (1984), which also extends King-
man’s (1982) formula for the case y ¼ 0.
3. Variable population size

If the population size is variable, the rate of mutation
of i genes at time t back is iy=2 and the rate of
coalescence is iði � 1Þ=½2lðtÞ�, where lðtÞ ¼ NðtÞ=Nð0Þ
and t is expressed in units of Nð0Þ generations. Starting
with n genes at the current time 0 and measuring
time backward, the genes are lost by mutation or
coalescence at random times TnoTn�1o � � �oT1 ac-
cording to a non-homogeneous death process of rate
i½yþ ði � 1ÞlðtÞ�1�=2, where i is the number of remaining
genes at time t back. At time Ti ¼ t, the probability that
a particular gene is lost by mutation is ½ylðtÞ�=½iðylðtÞ þ
i � 1Þ� and by coalescence ðj � 1Þ=½iðylðtÞ þ i � 1Þ�,
where j is the number of remaining ancestral lineages
of the particular gene type in the sample.
Assume n distinct genes at time 0 and allocate each of

them a type such that nl are of type l for l ¼ 1; . . . ; k.
There are n!=½n1! � � � nk!� possibilities. The genes are lost
in order and there are n! cases in all to consider.
Decompose these cases by looking at the position of the
last gene of each type defined as the number of
remaining genes the last time there remains one gene
of the given type. The outcome will be an ordered
sequence 1 ¼ il1o � � �oilk

pn, where ilm
is the number of

genes remaining just before the last gene of type lm is
lost, this type being the mth oldest, for m ¼ 1; . . . ; k, and
ðl1; . . . ; lkÞ being a permutation of ð1; . . . ; kÞ. This
sequence configuration is possible if and only if the
inequalities ilm

p
Pm�1

n¼1 nln þ 1 hold for m ¼ 1; . . . ; k. The
number of arrangements of the n genes satisfying these
conditions is, starting from the last gene lost and ending
with the first one,

Yk

m¼1

nlm

ð
Pm

n¼1 nln � ilm
Þ!

ð
Pm

n¼1 nln � ilmþ1
þ 1Þ!

, (3)

with the convention that ilkþ1
¼ n, since there are nlm

possible genes for the last one of type lm to be lost and
ð
Pm

n¼1 nln � ilm
Þ possible genes for the ones lost between

the last one of type lm and the last one of type lmþ1, for
m ¼ 1; . . . ; k. The number of arrangements (3) can also
be written as

Yk

m¼1

ðnlm
!Þ

Pm
n¼1

nln � ilm

nlm
� 1

0
B@

1
CA.

The probability of each such sequence is

E
ykQk

l¼1 ½ðnl � 1Þ!lðTil
Þ�

n!
Qn

i¼1 ½ylðTiÞ þ i � 1�

( )
.

Finally, if the types with the same number of genes are
not labelled, the probability of having k types of genes
with bj types represented j times for j ¼ 1; . . . ; n is

n!yk�1

ð
Qk

l¼1 nlÞð
Qn

j¼1 bj!Þ

X
i;l

ai;lE

Qk
l¼2 lðTil

ÞQn
i¼2 ½ylðTiÞ þ i � 1�

( )
,

(4)

where

ai;l ¼

Qk
m¼1

Pm
n¼1 nln � ilm

nlm
� 1

 !

n

n1; . . . ; nk

 ! ,

with i ¼ ði1; . . . ; ikÞ satisfying 1 ¼ il1o � � �oilk
pn and

imp
Pm�1

l¼1 nl þ 1, for m ¼ 1; . . . ; k, and l ¼ ðl1; . . . ; lkÞ

being a permutation of ð1; . . . ; kÞ. Note that

X
i

ai;l ¼
Yk

m¼1

nlmPk
n¼m nln

( )
, (5)

which is the probability that type lm is the mth oldest,
for m ¼ 1; . . . ; k. The product on the right side of (5)
is obtained by conditioning on the older types in
sequential order from m ¼ 1 to m ¼ k. The sum on
the left side of (5) is obtained by partitioning the event
according to the positions of the last genes of the k

different types then using the above number of possible
arrangements of all the genes for each case divided byQk

m¼1 ðnlm
!Þ, in order not to distinguish genes within

types. Also
P

i;l ai;l ¼ 1. Notice that

n!yk�1Qk
l¼1 nl

X
i

ai;lE

Qk
l¼2 lðTil

ÞQn
i¼2 ½ylðTiÞ þ i � 1�

( )
(6)

is the probability of having nlm
genes of type lm, this type

being the mth oldest, for m ¼ 1; . . . ; k. In the case of a
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constant population size, taking lk ¼ k; . . . ; l1 ¼ 1, with-
out loss of generality, this probability reduces to

ðn � 1Þ!

nkðnk þ nk�1Þ � � � ðnk þ � � � þ n2Þ

yk

y � � � ðyþ n � 1Þ
, (7)

which is the formula for the age-ordered types given by
Donnelly and Tavaré (1986).
4. Ladder indices and heights in an urn model

There is a representation of the conditional distribu-
tion of the partial sums

Pm
n¼1nn, m ¼ 1; . . . ; k, given i as

the distribution of ladder heights given ladder indices i
in an urn model.
The probability of a particular sequence i is

E

Q
cei ðc � 1Þ

Q
d2i ylðTdÞQn

i¼1 ½ylðTiÞ þ i � 1�

� �

ðn � 1Þ!Qk
l¼2 ðil � 1Þ

E

Qk
l¼1 ylðTil ÞQn

i¼1 ½ylðTiÞ þ i � 1�

( )
. ð8Þ

The probability of an age-ordered configuration condi-
tional on i, from (6) and (8), is

hiðnÞ ¼
n
Qk

l¼2 ðil � 1ÞQk
l¼1 nl

ai;l

¼

Qk
l¼2 ðil � 1Þ

ðn � 1Þ!

Yk

m¼1

ð
Pm

n¼1 nn � imÞ!

ð
Pm�1

n¼1 nn � im þ 1Þ!
.

ð9Þ

By convention the factorial term in the denominator is
taken as 1 when m ¼ 1. Note that

P
hiðnÞ ¼ 1; where

summation is over
Pk

l¼1 nl ¼ n and
Pm�1

l¼1 nlXim � 1,
m ¼ 2; . . . ; k.
Now label n balls in an urn 1; 2; . . . ; n and draw out

balls at random without replacement sequentially. Let
i ¼ ði1; . . . ; ikÞ and b ¼ ðb1; . . . ; bkÞ be ladder indices and
ladder heights where record values occur in the numbers
on the balls which are drawn. The last index k is defined
such that bk ¼ n. The probability of a particular initial
pair i1 ¼ 1; b1 is n�1. The distribution of ladder heights
and indices in the urn model is equivalent to the
distribution in a random permutation of 1; 2; . . . ; n.
After the ðm � 1Þth ladder index at im�1 there are n �

im�1 balls left in the urn, with bm�1 � im�1 balls having
labels less than bm�1. Thus for m41, the probability of
obtaining im; bm, conditional on ði1; . . . ; im�1Þ and
ðb1; . . . ; bm�1Þ, is

bm�1 � im�1

n � im�1
� � �

bm�1 � im þ 2

n � im þ 2

1

n � im þ 1

¼
ðbm�1 � im�1Þ!

ðbm�1 � im þ 1Þ!

Yim�1

j¼im�1

1

n � j
. ð10Þ
The joint probability of a configuration i; b is therefore

Pði; bÞ ¼
ðn � ikÞ!

n!

Yk

m¼2

ðbm�1 � im�1Þ!

ðbm�1 � im þ 1Þ!

¼
1

n!

Yk

m¼1

ðbm � imÞ!

ðbm�1 � im þ 1Þ!
. ð11Þ

The distribution of the age-ordered frequencies n ¼
ðn1; . . . ; nkÞ is identical to the ladder height distribution
with bm ¼

Pm
n¼1 nn. This follows because hiðnÞ is

proportional to Pði; bÞ. Also by comparing the two
distributions, we see that the marginal ladder index
distribution is

PðiÞ ¼
1

n
Qk

m¼2 ðim � 1Þ
. (12)
5. Population frequencies

5.1. GEM distribution

In an infinite-population model where lðtÞ ¼ 1; tX0,
the age-ordered frequencies X 1;X 2; . . . have a GEM
distribution given by

Z1;Z2ð1� Z1Þ;Z3ð1� Z2Þð1� Z1Þ; . . . , (13)

where fZi; iX1g are mutually independent identically
distributed (i.i.d.) random variables with density

yð1� zÞy�1; 0ozo1

(Donnelly and Tavaré, 1986; Ewens, 1990). This is a
random partition representation (see Pitman (1996) and
references therein). The unordered frequencies are
distributed as a Poisson–Dirichlet point process (King-
man, 1978).
The population analogue of (2) is derived in Griffiths

(1980), Donnelly and Tavaré (1986).
Let ðn1; . . . ; nkÞ be a sample taken from the GEM

distribution arranged in age order and let qðn1; . . . ; nkÞ

denote the age-ordered distribution defined by

qðn1; . . . ; nkÞ ¼
X

1pi1oi2���oik

n!

n1! � � � nk!
EðX n1

i1
� � �X nk

ik
Þ.

(14)

It is known that this distribution is given by
(7), however, we give a short proof for completeness.
Considering whether the oldest type in the sample
is the oldest type in the population or not, we find
that

qðn1; . . . ; nkÞ

¼
n

n1

� �
E Zn1

1 ð1� Z1Þ
n�n1

� �
qðn2; . . . ; nkÞ
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þ E ð1� Z1Þ
n

ð Þqðn1; . . . ; nkÞ

¼
n

n1

� �
yGðn1 þ 1ÞGðn � n1 þ yÞ

Gðn þ yþ 1Þ
qðn2; . . . ; nkÞ

þ
y

n þ y
qðn1; . . . ; nkÞ, ð15Þ

where qðn2; . . . ; nkÞ is interpreted as 1 if k ¼ 1. Simplify-
ing (15) yields

qðn1; . . . ; nkÞ ¼
y

ðn � n1Þ

ðn � 1Þ!

ðn � n1 � 1Þ!

�
Gðn � n1 þ yÞ

Gðn þ yÞ
qðn2; . . . ; nkÞ.

and (7) follows by recurrence. The distribution of the
age-ordered relative frequencies n=n in a model with a
constant-sized population, given by (7), converges to the
GEM distribution as n ! 1 because (7) is a sample
distribution from the GEM distribution.

5.2. Variable population size

It is of interest to find the population distribution of
age-ordered frequencies in a model with a variable-sized
population. This extends the Poisson–Dirichet and
GEM distributions. This distribution can be described
in terms of: (i) the event times fTj ; jX1g; (ii) a stochastic
sequence i generated by a mixture of Bernoulli trials
fwj ; jX1g conditionally independent given fTj ; jX1g
such that Pðwj ¼ 1jTjÞ ¼ ylðTjÞ=½ylðTjÞ þ j � 1�, Pðwj

¼ 0jTjÞ ¼ ðj � 1Þ=½ylðTjÞ þ j � 1�; and (iii) the age-
ordered frequencies, conditional on i. The limit dis-
tribution for the age-ordered relative frequencies in a
sample of genes conditional on i is intrepreted as the
population distribution.
The sequence fTj ; jX1g is a reverse Markov chain,

with transition distributions

PðTj4t j Tjþ1 ¼ sÞ ¼ exp �
y
2
ðt � sÞj �

j

2

� �Z t

s

du

lðuÞ

� �

¼ exp �
jy
2

Z t

s

du

pjðuÞ

( )
, ð16Þ

where t4s and pjðuÞ ¼ ylðuÞ=½ylðuÞ þ j � 1�. In the limit
there is an entrance boundary at infinity in the process
corresponding to an infinite population. It follows from
(16) and

Pðwj ¼ 1jTj ¼ tÞ ¼ pjðtÞ

that

Pðwj ¼ 1;Tj 2 ðt; t þ dtÞ j Tj4tÞ ¼
jy
2

dt þ oðdtÞ.

The limit form of the distribution of the relative age-
ordered sample frequencies n1=n; . . . ; nk=n as n ! 1
with ni=n ! xi for i ¼ 1; . . . ; k, is given by

lim
n!1

nk�1hiðnÞ ¼
Yk�1
l¼1

Xl

j¼1

xj

 !ilþ1�il�1

, (17)

since

lim
n!1

nk�1hiðnÞ

¼ lim
n!1

Yk

m¼2

ðim � 1Þnim�1
ð
Pm

n¼1 nn � imÞ!

ð
Pm

n¼1 nn � 1Þ!

� n�ðim�2Þ
ð
Pm�1

n¼1 nn � 1Þ!

ð
Pm�1

n¼1 nn � im þ 1Þ!

¼
Yk

m¼2

ðim � 1Þ
Xm

n¼1

xn

 !�ðim�1Þ Xm�1

n¼1

xn

 !im�2

¼
Yk

l¼2

ðil � 1Þ
Yk�1
l¼1

Xl

j¼1

xj

 !ilþ1�il�1

. ð18Þ

Note that ðn1 � i1Þ! ¼ ðn1 � 1Þ! and ð
Pk

l¼1 nl � 1Þ! ¼
ðn � 1Þ! in simplifying the first line of (18).
The distribution mentioned in (iii) is related to the

distribution of ladder heights and indices in a sequence
of i.i.d. uniform random variables on ½0; 1�, as shown in
the next subsection.
5.3. Ladder indices and heights in a sequence of uniform

random variables

Let fUl ; lX1g be a sequence of i.i.d. uniform random
variables on ½0; 1� and fSm; mX1g the ladder heights
(record values) which occur in the sequence fUl ; lX1g at
random ladder indices i (with i1 ¼ 1) such that
Sm ¼ Uim

; mX1. Then the joint probability of the first
k indices ði1; . . . ; ikÞ and density of these ladder heights
fSm; 1pmpkg is, by direct argument,

Yk�1
m¼1

simþ1�im�1
m . (19)

The marginal probability of obtaining the indices is

Z Yk�1
m¼1

simþ1�im�1
m

Yk

m¼1

dsm ¼
1

ik

Yk

m¼2

1

im � 1
, (20)

where integration is over 0os1os2o � � �osko1. The
conditional distribution of fSm; 1pmpkg given the
indices is thus

ik

Yk�1
m¼1

ðimþ1 � 1Þs
imþ1�im�1
m . (21)
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We rescale by making a transformation from
ðS1; . . . ;SkÞ to

Zm ¼
Sm

Sk

; 1pmok; Sk.

The Jacobian determinant of the inverse transformation
is sk�1

k and the joint density is found to be

ik

Yk�1
m¼1

ðimþ1 � 1ÞZimþ1�im�1
m s

Pk�1

n¼1
ðinþ1�in�1Þ

k sk�1
k

¼ ik

Yk�1
m¼1

ðimþ1 � 1ÞZimþ1�im�1
m sik�1

k . ð22Þ

Integrating with respect to 0osko1, the density of
fZm; 1pmokg is

Yk�1
m¼1

ðimþ1 � 1ÞZimþ1�im�1
m , (23)

which is identical to the density (17) of the partial sums
f
Pm

n¼1 X n; 1pmokg. In the limit as n ! 1, k ! 1,
Sk ! 1, and it follows that the distribution of
f
Pm

n¼1 X n; mX1g given i is identical to the distribution
of ladder heights in fUl ; lX1g given that they occur at
ladder indices i.
Distribution (17) is simplified by making a transfor-

mation to independent exponential random variables

X ¼ ðX 1; . . . ;X k�1Þ ! V ¼ ðV 1; . . . ;Vk�1Þ,

where

Xm

l¼1

X l ¼ exp �
Xk�1
l¼m

V l

( )
. (24)

The Jacobian determinant of the inverse transformation
is

ð�1Þk�1
Yk�1
m¼1

exp �
Xk�1
l¼m

vl

( )
(25)

and making the transformation in (17), the density of V
is

Yk�1
m¼1

ðimþ1 � 1Þ exp �ðimþ1 � 1Þvm

� �
. (26)

That is, V1; . . . ;V k�1 are i.i.d. exponential random
variables with rates i2 � 1; . . . ; ik � 1. In the limit as
k ! 1, Sk ! 1, and there is a representation

X 1 ¼ e�
P1

l¼1
Vl ,

X m ¼
Xm

l¼1

X l �
Xm�1

l¼1

X l

¼ e�
P1

l¼m
V l ð1� e�Vm�1 Þ; mX2. ð27Þ
An equivalent representation to (27) is that, for mX1,

� log
Xm

l¼1

X l

 !
¼
X1

j¼imþ1

ðj � 1Þ�1wjW j, (28)

where fW j ; j41g is a sequence of i.i.d. exponential
random variables with rate parameter unity.
A third representation of (27) as a random partition is

X m ¼ xm�1

Y1
l¼m

ð1� xlÞ; mX1, (29)

where fxl ; lX0g are mutually independent random
variables, with x0 ¼ 1, and for mX2, xm having the
density of

ðimþ1 � 1Þð1� zÞimþ1�2; 0ozo1.

Eq. (29) is obtained by setting, for l41, xl ¼ 1� e�V l .
The distribution of the age-ordered allele frequencies

X 1;X 2;X 3; . . . conditional on the number of non-
mutant lineages being i1; i2; i3; . . . when the allele types
arose by mutation has now been shown to be equivalent
to the distribution of S1;S2 � S1;S3 � S2; . . ., where
S1;S2;S3; . . . are successive ladder heights (record
values) in a sequence of i.i.d. uniform ½0; 1� random
variables given to occur at ladder indices i1; i2; . . . .
Representations (27)–(29) thus apply to age-ordered
frequencies.
The mean values of the age-ordered frequencies,

conditional on i, from (27) are for mX1

EðX m j iÞ ¼
1

im

Y1
l¼mþ1

1�
1

il

� �
. (30)

The unconditional mean frequencies can be partially
found. We have

EðX 1Þ ¼ E EðX 1 j iÞ½ �

¼ E
Y1
l¼2

1�
1

il

� �" #

¼ E
Y1
j¼2

1�
1

j
wj

� �" #

¼ E
Y1
j¼2

1�
ylðTjÞ

jðylðTjÞ þ j � 1Þ

� �" #
. ð31Þ

A similar calculation shows that for mX1

EðX mÞ ¼ E
1

im

Y1
j¼imþ1

1�
ylðTjÞ

jðylðTjÞ þ j � 1Þ

� �" #
. (32)

An alternative expression to (32) is

EðX mÞ ¼ E
1

ylðTimþ1Þ þ im

Y1
l¼imþ1

ylðTlÞ þ l

ylðTlþ1Þ þ l

" #
. (33)
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Eq. (33) is found by simplifying terms in the product of
(32) and shifting the product index in the denominator
by unity.
In the usual constant-sized population case when

lðtÞ ¼ 1; t40, we have

EðX mÞ ¼ E
1

yþ im

� �
. (34)

Remark. Convergence of the product in (33) needs
justification. Let ftl ; lX1g be independent exponential
random variables with rates flðl þ y� 1Þ=2; lX1g. In
the constant-sized population case (with notation T�

l ),
T�

l ¼
P1

k¼l tk. As l ! 1, T�
l ;Tl ! 0, and Tl�T�

l

because lð0Þ ¼ 1. We assume here that lðtÞ is continuous
at t ¼ 0 and jl0ð0Þjo1. As l ! 1 the general term of
the product satisfies

ylðTlÞ þ l

ylðTlþ1Þ þ l
�

yþ l þ 1þ T�
l l

0
ð0Þ

yþ l þ 1þ T�
lþ1l

0
ð0Þ

¼
yþ l þ 1þ ðtl þ T�

lþ1Þl
0
ð0Þ

yþ l þ 1þ T�
lþ1l

0
ð0Þ

� 1þ
tll

0
ð0Þ

l

� 1þ
2Y ll

0
ð0Þ

l3
, ð35Þ

where fY l ; lX1g are i.i.d. exponential random variables
with unit rate. The product converges because of the
cubic term in the denominator in (35).

5.4. Laplace transforms

The Laplace transform of � logðX 1Þ, conditional on
fTl ; l41g, is

E ef logðX 1Þ
� �

¼ E X
f
1

h i

¼ E
Y1
l¼2

il � 1

il � 1þ f

" #

¼ E
Y1
j¼2

1�
fwj

j � 1þ fwj

 !" #

¼
Y1
j¼2

1�
f

j � 1þ f
ylðTjÞ

ylðTjÞ þ j � 1

� �
ð36Þ

¼
Y1
j¼2

½1� rjðoj � 1Þ�
�1, ð37Þ

with notation bl ¼ ylðTlÞ þ l � 1, rl ¼ ylðTlÞ=ðl � 1Þ,
and ol ¼ 1þ f=bl

� ��1
for l41.

The moments of X 1 can be found from (36), for
k ¼ 0; 1; . . ., by setting f ¼ k to obtain

EðX k
1Þ ¼ E

Y1
j¼2

1�
k

k þ j � 1

ylðTjÞ

ylðTjÞ þ j � 1

� �" #
. (38)
A representation shown by (37) is

� logðX 1Þ ¼
X1
j¼2

gj , (39)

where fgj ; j41g are mutually independent random
variables with Laplace transforms

Eðe�fgj Þ ¼ 1� rjðoj � 1Þ
h i�1

; j41.

The random variable gj has an atom at zero with
probability ð1þ rjÞ

�1, and a continuous density

X1
l¼1

rj

1þ rj

 !l
1

1þ rj

bl
jg

l�1

ðl � 1Þ!
e�bjg

¼
rj

1þ rj

bj

1þ rj

e
�

bj
1þrj

g

¼
rj

1þ rj

ðj � 1Þe�ðj�1Þg; g40. ð40Þ

Of course � logðX 1Þ is continuous, which agrees with

P
X1
j¼2

gj ¼ 0

 !
¼
Y1
j¼2

ð1þ rjÞ
�1

¼ 0,

since the series diverges to zero, because rj is asymptotic
to y=ðj � 1Þ. Note directly from (36) that gj ¼ wjkj, for
j41, where fwj ; j41g and fkj ; j41g are independent
with fkj ; j41g mutually independent exponential ran-
dom variables with rates fj � 1; j41g. The Laplace
transform of � logðX mÞ, conditional on im and
fTl ; l41g is

E ef logðX mÞ
� �
¼ E ð1� e�Vm�1Þ

f
Y1
j¼m

e�fVj

" #

¼
Yim
j¼2

1þ
f

j � 1

� ��1 Y1
j¼imþ1

½1� rjðoj � 1Þ�
�1. ð41Þ

The first product in (41) is obtained from

E ð1� e�Vm�1Þ
f� �

¼ ðim � 1Þ

Z 1

0

e�ðim�1Þv 1� e�vð Þ
f dv

¼ ðim � 1Þ

Z 1

0

yim�2ð1� yÞf dy

¼ ðim � 1ÞBðim � 1;fþ 1Þ

¼
Yim

j¼2

j � 1

j � 1þ f
.

The structure of (41) clearly implies that

� logðX mÞ ¼
Xim

k¼2

dk þ
X1

j¼imþ1

gj, (42)

where fdj ; j41g are independent exponential random
variables such that dj has rate j � 1. Trying to simplify
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(41) further by taking expectation with respect to im

seems complicated.
As an application, it is of interest to calculate the

probability pO that the oldest type in a sample of genes is
the oldest type in the population. In a constant-size
population, from the GEM distribution

pO ¼ 1� Eðð1� X 1Þ
n
Þ ¼ 1�

y
yþ n

¼
n

yþ n
.

In a model with a variable-sized population, using (38)

pO ¼
Xn

k¼1

ð�1Þk�1
n

k

 !

�E
Y1
j¼2

1�
k

k þ j � 1

ylðTjÞ

ylðTjÞ þ j � 1

� �" #
. ð43Þ

5.5. GEM distribution equivalence with a constant

population size

The consistency of representation (29) with the GEM
distribution in a model with a constant-sized population
where lðtÞ ¼ 1; tX0, is shown in this section. A long
calculation shows that moments in the finite-dimen-
sional distributions of (29) coincide with moments in the
GEM representation in the constant population size
model. Let r1; . . . ; rm be non-negative integers. In the
GEM distribution

E
Ym
l¼1

X rl

l

" #
¼
Ym
l¼1

E Zrl

l ð1� ZlÞ

Pm

n¼lþ1
rn

h i

¼ ym
Ym
l¼1

B rl þ 1;
Xm

n¼lþ1

rn þ y

 !

¼ ym
Ym
l¼1

rl !G
Pm

n¼lþ1 rn þ y
� �

G
Pm

n¼l rn þ yþ 1
� �

¼
GðyÞ

Gðjrj þ yÞ
ym
Ym
l¼1

rl !Pm
n¼l rn þ y

, ð44Þ

where jrj ¼
Pm

n¼1 rn. To show the equivalence of the
GEM distribution and (29), moments in (29) are
calculated and shown to agree with (44). An identity
that establishes the equivalence is that for m41

E
Ym
l¼1

X rl

l

 !
¼

y
yþ rm

rm�1!rm!

ðrm�1 þ rmÞ!

�E
Ym�2

l¼1

X rl

l

" #
X rm�1þrm

m�1

 !
. ð45Þ

It then follows by induction on m that (44) is satisfied.
Note that for m ¼ 1, directly from (29),

EðX r1
1 Þ ¼ E

Y1
l¼1

ilþ1 � 1

ilþ1 þ r1 � 1

" #
and for m41,

E
Ym
l¼1

X rl

l

" #

¼ E
Ym�1

a¼1

xraþ1
a ð1� xaÞ

Pa

n¼1
rn
Y1
l¼m

ð1� xlÞ

Pm

n¼1
rn

" #

¼ E
Ym�1

a¼1

ðiaþ1 � 1ÞBðraþ1 þ 1; iaþ1 þ
Xa
n¼1

rn � 1Þ

"

�
Y1
l¼m

ilþ1 � 1

ilþ1 þ jrj � 1

#
. ð46Þ

The expectation of the last product in (46) conditional
on im is

E
Y1
l¼m

ilþ1 � 1

ilþ1 þ jrj � 1

" #

¼ E
Y1

j¼imþ1

1�
wjjrj

j þ jrj � 1

� �" #

¼
Y1

j¼imþ1

1�
yjrj

ðj þ jrj � 1Þðj þ y� 1Þ

� �

¼
Y1

j¼imþ1

ðj � 1Þðj þ yþ jrj � 1Þ

ðj þ jrj � 1Þðj þ y� 1Þ

� �

¼
1

ðim � 1Þ!

Gðyþ imÞGðjrj þ imÞ

Gðyþ jrj þ imÞ
. ð47Þ

Simplification of the second last line in (47) to the last
line follows by taking the limit of the product from im þ

1 to n as n ! 1 and applying Euler’s formula

GðzÞ ¼ lim
n!1

n!nzQn
j¼0 ðz þ jÞ

.

If m ¼ 1, im ¼ 1, this shows that

EðX r1
1 Þ ¼

Gðyþ 1ÞGðr1 þ 1Þ
Gðyþ r1 þ 1Þ

,

in agreement with (44). The term containing im in (46),
when m41 is thus

ðim � 1ÞBðrm þ 1; im þ jrj � rm � 1Þ

�
1

ðim � 1Þ!

Gðyþ imÞGðjrj þ imÞ

Gðyþ jrj þ imÞ

¼
Gðrm þ 1ÞGðim þ jrj � rm � 1ÞGðyþ imÞ

ðim � 2Þ!Gðyþ jrj þ imÞ
. ð48Þ

The probability that im ¼ im�1 þ j, for jX1, conditional
on im�1 is

yðim�1 þ j � 2Þ!Gðyþ im�1Þ

ðim�1 � 1Þ!Gðim�1 þ j þ yÞ
. (49)

The expected value of the expression (48) conditional on
im�1 is obtained by multiplying (48) by (49) and
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summing; that is

yGðrm þ 1ÞGðyþ im�1Þ

ðim�1 � 1Þ!Gðyþ rm þ 1Þ

�
X1
j¼1

Bðyþ rm þ 1; j � 1þ im�1 þ jrj � rmÞ

¼
yrm!Gðyþ im�1Þ

ðim�1 � 1Þ!Gðyþ rm þ 1Þ

�Bðyþ rm; im�1 þ jrj � rmÞ. ð50Þ

Simplification from the second last line in (50) follows
by expressing the Beta function as an integral, then
summing in the integrand. The identity used is that for
a40; b40,

X1
j¼1

Bða þ 1; b þ j � 1Þ ¼ Bða; bÞ.

Multiplying the last line in (50) by the term containing
im�1 in (46)

ðim�1 � 1ÞBðrm�1 þ 1; im�1 þ jrj � rm � rm�1 � 1Þ

results in the expression

y
yþ rm

rm!rm�1!

ðrm þ rm�1Þ!
Gðrm�1 þ rm þ 1Þ

�
Gðim�1 þ jrj � rm�1 � rm � 1Þ

ðim�1 � 2Þ!

�
Gðyþ im�1Þ

Gðyþ jrj þ im�1Þ
. ð51Þ

Comparing (48) and (51) establishes the identity (45)
and therefore completes the proof of the equivalence of
the GEM representation and (29).
6. Genealogy of a derived type in a population of constant

size

In the case of a constant population size, the
probability that a sample of n genes contains nl genes
of type l for l ¼ 1; . . . ; k with

P
l nl ¼ n does not depend

on the order in which the sampled genes are lost
backward in time either by mutation or coalescence.
Therefore, if a given type is represented r times and
known to have been derived from another type in the
sample, the probability for the last gene of this type to
be lost when there remain m þ 1 genes for m ¼

1; . . . ; n � r is given by

n � m � 1

r � 1

� �
n � 1

r

� � , (52)

which converges to qð1� qÞm�1 as n and r tend to
infinity such that r=n converges to q. The time of
occurrence of this event, represented by Tmþ1, is
distributed as the sum of independent exponential
variables of parameters iðyþ i � 1Þ=2 for
i ¼ m þ 1; . . . ; n, whose expectation is

Xn

i¼mþ1

2

iðyþ i � 1Þ
(53)

Multiplying and summing over m, the mean age of the
mutation that has given rise to the family of size r is

Xn�r

m¼1

n � m � 1

r � 1

� �
n � 1

r

� � Xn

i¼mþ1

2

iðyþ i � 1Þ
. (54)

The limit of (54) as n ! 1 is

2q

y� 1

Z 1

0

1� vy�1

1� v

v

1� ð1� qÞv
dv. (55)

If y ! 0 and n ! 1, then the mean age, calculated
directly from (54), is

X1
m¼1

qð1� qÞm�1 2

m
¼ �

2q

1� q
logðqÞ. (56)

Kimura and Ohta (1973) derived the classical formula
(56). Griffiths and Marjoram (1996), Griffiths and
Tavaré (1998), Wiuf and Donnelly (1999) and Stephens
(2000) show that the mean age of a mutation that gave
rise to a family of size r is (54) when y ¼ 0. Griffiths
(2003) shows that there is a simplification to

2rðn � rÞ�1
Xn

j¼rþ1

j�1. (57)

In the treatment of the above authors only the lineages
containing a given mutation are considered, with other
mutations not affecting lineages.
Similarly to the derivation of (52), the probability for

a gene of the derived type to be lost when there remain
m þ 1 genes among which j are of the derived type for
j ¼ 2; . . . ; r and m ¼ j; . . . ; n � r þ j � 1 is

m � 1

j � 1

 !
n � m � 1

r � j

 !

n � 1

r

� � ,

whose limit is

m � 1

j � 1

 !
qjð1� qÞm�j
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and the time of occurrence of the coalescence event
responsible for this loss has expectation

Xn�rþj�1

m¼j

m � 1

j � 1

 !
n � m � 1

r � j

 !

n � 1

r

 !

�
Xn

i¼mþ1

2

iðyþ i � 1Þ
, ð58Þ

whose limit as n ! 1 is

2q j

y� 1

Z 1

0

ð1� vy�1Þv j

ð1� vÞð1� ð1� qÞvÞ j
dv. (59)

Additionally, as y ! 0 the limit is

X1
m¼j

m � 1

j � 1

 !
q jð1� qÞm�j 2

m

¼ 2
q

1� q

� �j Z 1

q

ð1� yÞ j�1

y j
dy. ð60Þ

In the case j ¼ 2, (60) evaluates to

2q

1� q
þ

2q2

ð1� qÞ2
logðqÞ, (61)

which corresponds to the expected time it takes for all
genes of the derived type to coalesce.
The above treatment shows that, in the limit, the total

number of genes remaining the first time there remain
j � 1 genes of the derived type, denoted by MðjÞ, is
distributed as a sum of j independent geometric
variables of parameter q, and therefore the distribution
of qMðjÞ as q tends to 0 converges to the distribution of
a sum of j independent exponential variables of
parameter 1. Moreover, assuming qMðjÞ ¼ x fixed and
multiplying the unit of time by q, the last time there
remain j genes of the derived type converges in
distribution to its mean, which is 2=x, as y and q tend
to 0, since its variance, which is given by

Xn

i¼x
q
þ1

4

q2i2ðyþ i � 1Þ2
,

is bounded byZ 1

x
q
�1

4

q2y4

� �
dy ¼

4q

3ðx � qÞ3
,

which converges to 0 as q tends to 0, in agreement with
Wiuf (2000). This means that the last time there remain j

genes of the derived type is distributed, in the limit, as
twice the inverse of a gamma distribution.
7. Genealogy of a derived type with variable population

size

When the population size is variable, the probability
of having r genes of a derived type and n � r genes of an
ancestral type in a sample of size n for r ¼ 1; . . . ; n � 1 is

ðn � 1Þ!y
r

Xn�r

m¼1

n � m � 1

r � 1

 !

n � 1

r

 !

�E
lðTmþ1ÞQn

i¼2 ½ylðTiÞ þ i � 1�

� �
. ð62Þ

The probability of this event, given that there are two
types in the sample, is proportional, as y tends to 0, to

n

r

Xn�r

m¼1

n � m � 1

r � 1

� �
n � 1

r

� � EðlðTmþ1ÞÞ, (63)

which converges, as n and r tend to 0 such that r=n

converges to q, to

LðqÞ ¼
X1
m¼1

ð1� qÞm�1EðlðTmþ1ÞÞ. (64)

Moreover, given a frequency q of the derived type, the
last gene of this type is lost by mutation when there
remain m þ 1 genes with probability

ð1� qÞm�1

LðqÞ
EðlðTmþ1ÞÞ. (65)

for mX1, and the time of occurrence of this event is
Tmþ1 with this probability.
The coalescent process in a variable-sized population

can be coupled with a process in a population of
constant size Nð0Þ by measuring time backwards in units
of t ¼

R t

0 lðsÞ
�1 ds. In a population which decreases in

size exponentially back in time NðtÞ ¼ Nð0Þe�bt, that is
lðtÞ ¼ e�bt, and bt ¼ logð1þ btÞ. In such a case

EðlðTmþ1ÞÞ ¼ E
1

1þ bTmþ1

� �
, (66)

where Tmþ1 is distributed as a sum of independent
exponential variables of parameters iði � 1Þ=2 for
i ¼ m þ 1; . . . ; n. Keeping qm ¼ x and qb ¼ b fixed as
q tends to 0, the variable bTmþ1 converges in distribu-
tion to 2b=x. Then the variable qM ¼ X , where M

represents the number of genes remaining just after the
loss of the last gene of the derived type has a limiting
density function, as q tends to 0, that is proportional to

f ðxÞ ¼
e�x

1þ 2b=x
(67)



ARTICLE IN PRESS
R.C. Griffiths, S. Lessard / Theoretical Population Biology 68 (2005) 167–177 177
for x40. Moreover, the time of occurrence of this event
in time units of qNð0Þ generations is distributed, as q

tends to 0, as

ð1=bÞ logð1þ 2b=X Þ. (68)

Similarly, since the probability that the sampled genes are
lost in a given order depends only on the position of the
last gene of the derived type, the variable qMð jÞ ¼ X ð jÞ,
whereMð jÞ represents the number of genes remaining the
first time there remain j � 1 genes of the derived type, will
be distributed, as q tends to 0, as a sum of j independent
random variables, one of which has a density function
proportional to f ðxÞ and the other j � 1 have an
exponential distribution with parameter 1. Moreover,
the time of occurrence of this event in time units of qNð0Þ
generations will be distributed, as q tends to 0, as

ð1=bÞ logð1þ 2b=X ð jÞÞ. (69)

Again, this is in agreement with (Wiuf, 2000, 2001).
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Griffiths, R.C., Tavaré, S., 2003. The genealogy of a neutral mutation.

In: Green, P.J., Hjort, N.L., Richardson, S. (Eds.), Highly

Structured Stochast. Systems. Oxford Statistical Science Series

27. Oxford University Press, Oxford, UK.

Hoppe, F.M., 1984. Polya-like urns and the Ewens’ sampling formula.

J. Math. Biol. 20, 91–94.
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