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Abstract

The effect of population structure on the probability of fixation of a newly introduced mutant under weak selection is studied using a

coalescent approach. Wright’s island model in a framework of a finite number of demes is assumed and two selection regimes are

considered: a beneficial allele model and a linear game among offspring. A first-order approximation of the fixation probability for a

single mutant with respect to the intensity of selection is deduced. The approximation requires the calculation of expected coalescence

times, under neutrality, for lineages starting from two or three sampled individuals. The results are obtained in a general setting without

assumptions on the number of demes, the deme size or the migration rate, which allows for simultaneous coalescence or migration events

in the genealogy of the sampled individuals. Comparisons are made with limit cases as the deme size or the number of demes goes to

infinity or the migration rate goes to zero for which a diffusion approximation approach is possible. Conditions for selection to favor a

mutant strategy replacing a resident strategy in the context of a linear game in a finite island population are addressed.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction

How does selection affect the probability that a single
mutant ultimately fixes in the entire population? This is one
of the oldest questions raised by mathematical population
geneticists. In the framework of an ideal diploid popula-
tion, Fisher (1922, 1930) and Haldane (1927) found that
the probability of fixation of a new beneficial allele should
be approximately given by twice the selective advantage of
the heterozygote. Using a diffusion approximation for the
frequency of an allele under weak selection in a finite
population and allowing for deleterious mutation, arbi-
trary dominance and arbitrary but large effective popula-
tion size, Kimura (1957, 1962) obtained a more general
formula for the probability of fixation of a mutant given its
initial frequency (see also Caballero and Hill, 1992).

In many biological contexts, selection differences are not
constant but shaped by the composition of the population.
e front matter r 2007 Elsevier Inc. All rights reserved.
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With interacting individuals, evolutionary game theory
appears as a key theoretical framework to make predic-
tions about evolution (Hamilton, 1967; Maynard Smith
and Price, 1973). The approach has been applied notably to
sex ratio evolution, parental care, dispersal strategies and
predator–prey or host–parasite interactions (see, e.g.,
Maynard Smith, 1982; Godfray, 1995; Abrams and
Matsuda, 1997; Hardy, 2002; Taylor et al., 2006). Some
linear games involving two strategies, namely the prisoner’s
dilemma (Axelrod and Hamilton, 1981) and the snowdrift
game (Sugden, 1986), have been used to explain the
evolution of cooperation and they have been documented
for certain viruses (Turner and Chao, 1999). Similarly, the
rock–scissors-paper game has served to model the three
mating behaviors of the male lizard, Uta stansburniana

(Sinervo and Lively, 1996) and poisoning strategies used by
bacteria (Kerr et al., 2002).There are many other examples
of populations engaged in game-like-theory interactions
(see, e.g., Nowak and Sigmund, 2004, for a recent review).
Traditionally studied in the framework of infinite

populations (Maynard Smith and Price, 1973; Maynard
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Smith, 1974; Taylor and Jonker, 1978; Hofbauer and
Sigmund, 1998), linear games have been considered
recently in the context of a finite population (Nowak et
al., 2004; Wild and Taylor, 2004; Lessard, 2005; Orzack
and Hines, 2005; Imhof and Nowak, 2006). In this
framework, selection may favor or oppose a mutant
strategy replacing a resident strategy. This will be the case
if the probability of fixation of the mutant is larger or
smaller than it would be under neutrality. Then, a question
of interest is the following: does selection oppose any
mutant strategy replacing an ESS, an evolutionarily stable
strategy in Maynard Smith and Price’s (1973) sense?
Another one is: what is the condition for a strategy A to
replace a strategy B when both are the best replies to
themselves? The answer for a panmictic population is that
the frequency of A at the unstable equilibrium in the
replicator dynamics should be less than 1=3. This has been
termed the one-third law in Nowak et al. (2004).

The effect of population structure on the fixation
probability was addressed by Maruyama (1970, 1974). He
considered Wright’s (1931) island model, except that the
population consists of a finite number of demes or colonies,
and some other models with conservative migration (which
means that the subpopulation sizes are not changed by
migration), and he showed that the probability of fixation
of additive beneficial alleles remains the same. This result
relies on an analogy between such populations and a
panmictic population with a rescaled size. It was confirmed
by separation-of-time-scales arguments in diffusion ap-
proximations in the case where migration is strong
(Nagylaki, 1980, 1982, 2000) or low (Slatkin, 1981;
Takahata, 1991) and also in the case of a large number
of demes (Cherry and Wakeley, 2003; Wakeley, 2003).
However, Barton (1993) and more recently Cherry (2003b)
showed that, under extinction and recolonization of demes,
the probability of fixation of beneficial alleles can be
altered by population structure. This is the case because the
scaled selection intensity depends on the population
structure. Whitlock (2003) studied several geographical
models, including the stepping-stone model, under various
assumptions as hard versus soft selection, deleterious
mutation and arbitrary dominance with respect to the
probability of fixation. See also Cherry (2003a) for the case
of frequency-dependent selection and Rousset and Billiard
(2000) and Roze and Rousset (2003, 2004) for the effect of
inbreeding and the role of identity measures between
interacting individuals.

In this article we use a coalescent approach suggested in
Rousset (2003) and rigorously justified in Lessard and
Ladret (2007) to study the probability of fixation of a single
mutant allele under the joint effect of population structure
and weak selection. A finite island model with D demes of
N individuals is assumed and two selection scenarios for
viability (fitness) differences between individuals within
demes are considered. The first scenario is the well-known
beneficial allele model previously studied in the framework
of an island model by Maruyama (1970), among others.
Viability differences in the second scenario, called the
linear game model and recently studied in the context of a
single deme by Nowak et al. (2004), among others, are a
result of pairwise interactions between individuals using
mixed strategies. The selection differences will be assumed
to be small and determined at a single locus and the
population to be haploid, but the results will remain valid
in the diploid case under additivity assumptions. Genera-
tions will be discrete, non-overlapping and migration will
take place after reproduction so that a proportion m of
individuals in each deme will come from the other demes.
Then, there will be selection within each deme (soft
selection) followed by random sampling to restore the
deme size. In the case of a diploid population, migration is
assumed to be gametic. While these models have already
been studied in limit cases using diffusion approximations
with scaled population parameters (see, e.g., Whitlock,
2003; Lessard, 2005, and references therein), the method
presented in this paper allows for arbitrary number of
demes D, arbitrary deme size N and arbitrary backward
migration rate m. The approximation obtained for the
probability of fixation assumes all these parameters fixed
and it is valid as long as the intensity of selection is small
compared to the inverse of the total population size.
We will show that the derivative of the fixation

probability with respect to the intensity of selection
evaluated at neutrality can be expressed in terms of
expected coalescence times, under neutrality, for samples
of two individuals in the case of a beneficial mutant allele
and for samples of two and three individuals in the case of
a mutant strategy in a linear game. These expected
coalescence times can be found exactly using a standard
conditioning procedure for Markov chains. Limit values as
the number of demes or the deme size goes to infinity or as
the migration rate goes to zero, which correspond to
different limit models previously studied, are deduced: (1)
the structured coalescent (SC) extending Kingman’s
(1982a, b) coalescent to a subdivided population and in
particular to the finite island model in the case of a
migration rate m of order 1=N such that Nm tends to a
positive constant as the deme size, N, goes to infinity
(Notohara, 1990; Herbots, 1994; Wilkinson-Herbots, 1998,
2003); (2) the strong- (or high-) migration (SM or HM,
respectively) limit in the case of a migration rate m

remaining constant (equal to 1, respectively) as the deme
size N approaches infinity (Nagylaki, 1980, 2000; Noto-
hara, 1993, 2000; Bahlo and Griffiths, 2001); (3) the low-
migration (LM) limit in the case of a migration rate m

going to 0 such that Nm tends to 0 as N goes to infinity
(Slatkin, 1981; Takahata, 1991; Notohara, 2001); (4) the
many-demes (MD) limit in the case of a number of demes
D that tends to infinity (Wakeley, 1998, 2003, 2004). In this
case, it has been noticed that the deme size N does not have
to be large and the migration rate m small (Wakeley and
Lessard, 2003; Lessard and Wakeley, 2004).
The results are presented as follows. In Section 2, the

finite island model with the two selection regimes
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considered, a beneficial allele and a linear game, is
described. In Section 3, a first-order approximation for
the probability of fixation of a single mutant with respect
to the intensity of selection is deduced. In Section 4, it is
shown that the derivative of the fixation probability with
respect to the intensity of selection evaluated at neutrality,
called the fixation coefficient, can be expressed in terms
expected coalescence times of lineages for two or three
sampled individuals in the neutral setting. In Section 5,
systems of linear equations for these expected coalescence
times are deduced and their exact solutions are given
analytically (see the Appendix for samples of three
individuals), illustrated numerically and compared to their
approximations in different limit cases: low migration, high
or strong migration, structured coalescent, many demes. In
Section 6, conclusions on the approximation of the fixation
probability in the different settings are drawn. Finally, in
Section 7, we discuss differences between results obtained
from a diffusion approximation and results obtained from
a coalescent approach in the case of a beneficial allele and
between conditions for a strategy to replace another in the
case of a linear game in an island model versus a panmictic
population.
2. Finite island model under two selection regimes

Consider a haploid population subdivided into D demes,
DX3, with N individuals in each deme. Suppose that the
population undergoes discrete, non-overlapping genera-
tions represented by time steps t ¼ 0; 1; 2; . . . : At the
beginning of every generation, each individual in the
population produces the same very large number of
offspring, which then disperse independently among the
demes. Let mij be the proportion of offspring in deme i that
come from deme j and assume these backward migration
rates to be constant over time. Moreover, suppose that the
backward migration rates to other demes are all equal, that
is, mij ¼ m=ðD� 1Þ for all iaj, where m ¼ 1�m11 is the
probability that an offspring in any given deme has been
produced in one of the D� 1 other demes. We assume
throughout 0omo1.

Consider two types of individuals in the population, a
wild or resident type B and a mutant type A. If xi denotes
the frequency of A in deme i at the beginning of a given
generation and ~xi the frequency of A in deme i after
migration, then we have

~xi ¼ ð1�mÞxi þ
m

D� 1

X
jai

xj. (1)

Notice that

1� ~xi ¼ ð1�mÞð1� xiÞ þ
m

D� 1

X
jai

ð1� xjÞ. (2)

Migration is followed by selection among offspring within
the same deme. This is known as soft selection. The two
selection schemes considered are the following.
Beneficial allele: Under this selection scheme, the
fitnesses of A and B offspring are 1þ s and 1, respectively,
where s40. Thus, the frequency of A among the
individuals in deme i after selection is

x0i ¼
~xið1þ sÞ

~xið1þ sÞ þ ð1� ~xiÞ
.

Throughout the paper, we make the assumption that the
selection intensity s is small, which models weak selection.
In such a case, a first-order development of x0i with respect
to s leads to

x0i ¼ ~xi þ s ~xið1� ~xiÞ þ oðsÞ. (3)

Notice that we get the same first-order development if the
population is diploid, migration is gametic and selection
occurs after random union of gametes within the demes
according to the fitnesses 1þ 2s, 1þ s and 1 for the
genotypes AA, AB and BB, respectively, in which case we
have

x0i ¼
~xi
2ð1þ 2sÞ þ ~xið1� ~xiÞð1þ sÞ

~xi
2ð1þ 2sÞ þ 2 ~xið1� ~xiÞð1þ sÞ þ ð1� ~xiÞ

2

in deme i after selection.
Linear game: Under this selection scenario, we assume

that the two types of individuals, A and B, are associated
with the mixed strategies pA and pB, respectively, these
being frequency vectors whose components give the
probabilities of using some pure strategies in a contest
against an opponent. More precisely, pairwise interactions
take place among the offspring in the same deme so that
the viabilities (fitnesses) for types A and B in deme i take
the forms

f A;i ¼ 1þ spA �W p̄i

and

f B;i ¼ 1þ spB �W p̄i,

respectively, where s40 measures the selection intensity, W

refers to some game matrix, x � y denotes the scalar product
of two vectors x and y, and p̄i stands for the mean strategy
in deme i before selection, that is,

p̄i ¼ ~xipA þ ð1� ~xiÞpB ¼ ~xiðpA � pBÞ þ pB.

Following selection, the frequency of A among the
individuals in deme i becomes

x0i ¼
~xif A;i

~xif A;i þ ð1� ~xiÞf B;i

.

The next generation is obtained by drawing at random N

individuals in each deme so that the number of A

individuals in deme i follows a binomial distribution of
parameters N and x0i. Then, the frequency of A in deme i

has mean x0i whose first-order development with respect to
s is given by

x0i ¼ ~xi þ sf ~xið1� ~xiÞðpA � pBÞ �Wpig þ oðsÞ,
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or equivalently,

x0i ¼ ~xi þ sf ~x2
i ð1� ~xiÞðpA � pBÞ �W ðpA � pBÞ

þ ~xið1� ~xiÞðpA � pBÞ �WpBg þ oðsÞ, ð4Þ

owing to (2). Notice that the same first-order development
is obtained in the diploid case if migration is gametic and
the fitnesses of the genotypes AA, AB and BB after random
union of gametes in deme i are f AA;i ¼ 1þ 2spA �W p̄i,
f AB;i ¼ 1þ sðpA þ pBÞ �W p̄i and f BB;i ¼ 1þ 2spB �W p̄i,
respectively, which lead to the equation

x0i ¼
~xi
2f AA;i þ ~xið1� ~xiÞf AB;i

~xi
2f AA;i þ 2 ~xið1� ~xiÞf AB;i þ ð1� ~xiÞ

2f BB;i

.

3. Fixation probability under weak selection

In this section we use and extend an approach suggested
in Rousset (2003, 2004) to show that the probability of
fixation of a single mutant can be expressed to a first order
with respect to s as a function of expected coalescence times
between pairs of individuals in the case of a beneficial
allele, and between pairs and triplets of individuals in the
case of a linear game.

Let X iðtÞ be the frequency of the mutant type A in deme i

at time tX0. Define the vector XðtÞ ¼ ðX 1ðtÞ;
X 2ðtÞ; . . . ;X DðtÞÞ. Suppose that, at time t ¼ 0, there is a
single individual of the mutant type A in the whole
population and that this individual is in deme 1, that is,
Xð0Þ ¼ x0, where

x0 ¼
1

N
; 0; . . . ; 0

� �
.

Let ZðtÞ be the frequency of A in the whole population at
time tX0. Then, we have

ZðtÞ ¼
1

D

XD

i¼1

X iðtÞ

and Zð0Þ ¼ 1=ðNDÞ.
Denote by uðsÞ the probability of ultimate fixation of

type A in the whole population when the selection intensity
is s. We have to determine uð0Þ and u0ð0Þ, the derivative
evaluated at s ¼ 0, in order to find the first-order
development of uðsÞ with respect to s, that is,

uðsÞ ¼ uð0Þ þ su0ð0Þ þ oðsÞ.

The term u0ð0Þ will be called the fixation coefficient. In the
following, we shall denote by E0 (P0, respectively) the
expectation (probability, respectively) in the case of
neutrality, that is, when s ¼ 0. We will use the notation E

(P, respectively) in the case of an unspecified selection
intensity s.

In the neutral selection scenario, all individuals in the
population will eventually descend from a single random
individual in the initial generation as a result of random
drift and symmetry. Therefore, the fixation probability of
A when s ¼ 0 is

uð0Þ ¼ Zð0Þ ¼
1

ND
.

Now, consider sX0. The sequence ZðtÞ for t ¼ 0; 1; . . . is a
Markov chain on the states k=ðNDÞ for k ¼ 0; 1; . . . ;ND;
with initial state Zð0Þ ¼ 1=ðNDÞ and fixation states z ¼ 0
and 1, while all other states are transient. This chain will
converge in probability to a variable Zð1Þ, which takes the
value 1 with probability uðsÞ and 0 with the complementary
probability 1� uðsÞ. Being uniformly bounded the chain
will also converge in mean. This justifies to write, as
claimed in Rousset (2003, 2004, p. 93), that

E½Zð1Þ � Zð0Þ� ¼
X
tX0

E½Zðtþ 1Þ � ZðtÞ�,

that is,

uðsÞ �
1

ND
¼
X
tX0

E½Zðtþ 1Þ � ZðtÞ�. (5)

Then, assuming that uðsÞ is differentiable with respect to s

and that the derivative of the sum in (5) is the sum of the
derivatives (see Lessard and Ladret, 2007, for a formal
proof under mild regularity conditions on the transition
probabilities), we have

u0ð0Þ ¼
X
tX0

d

ds
E½Zðtþ 1Þ � ZðtÞ�

�����
s¼0

.

Conditioning on the value x ¼ ðx1;x2; . . . ;xDÞ taken by
XðtÞ, we get

E½Zðtþ 1Þ � ZðtÞ�

¼
X
x

E½Zðtþ 1Þ � ZðtÞjXðtÞ ¼ x�PðXðtÞ ¼ xÞ.

It follows that

d

ds
E½Zðtþ 1Þ � ZðtÞ�

����
s¼0

¼
X
x

P0ðXðtÞ ¼ xÞ
d

ds
E½Zðtþ 1Þ � ZðtÞjXðtÞ ¼ x�

����
s¼0

þ
X
x

E0½Zðtþ 1Þ � ZðtÞjXðtÞ ¼ x�
d

ds
PðXðtÞ ¼ xÞ

����
s¼0

.

Under neutrality, the frequency of A in the whole
population does not change in mean from one generation
to the next, that is,

E0½Zðtþ 1Þ � ZðtÞjXðtÞ ¼ x� ¼ 0.

Thus, we have

u0ð0Þ ¼
X
tX0

X
x

P0ðXðtÞ ¼ xÞ

�
d

ds
E½Zðtþ 1Þ � ZðtÞjXðtÞ ¼ x�

����
s¼0

,

where

E½Zðtþ 1Þ � ZðtÞjXðtÞ ¼ x� ¼
1

D

XD

i¼1

ðx0i � xiÞ.
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We will now consider the two selection scenarios sepa-
rately.

Beneficial allele: In this case, (3) leads to

d

ds
E½Zðtþ 1Þ � ZðtÞjXðtÞ ¼ x� ¼

1

D

XD

i¼1

~xið1� ~xiÞ,

from which

u0ð0Þ ¼ E0ðbÞ, (6)

where

b ¼
X
tX0

1

D

XD

i¼1

~X iðtÞð1� ~X iðtÞÞ.

Using (1), (2) and the identity

XD

i¼1

X
jai

ð1� X iðtÞÞX jðtÞ ¼
XD

i¼1

X
jai

X iðtÞð1� X jðtÞÞ,

we find that

b ¼ ð1�mÞ2b1 þ 2mð1�mÞb2 þm2b3, (7)

where

b1 ¼
X
tX0

1

D

XD

i¼1

X iðtÞð1� X iðtÞÞ,

b2 ¼
X
tX0

1

DðD� 1Þ

XD

i¼1

X
jai

X iðtÞð1� X jðtÞÞ,

b3 ¼
X
tX0

1

DðD� 1Þ2

XD

i¼1

X
j;kai

ð1� X jðtÞÞð1� X kðtÞÞ.

Linear game: Owing to (4), this model leads to

u0ð0Þ ¼ E0ðaÞðpA � pBÞ �W ðpA � pBÞ

þ E0ðbÞðpA � pBÞ �WpB, ð8Þ

where b is given in (7) and

a ¼
X
tX0

1

D

XD

i¼1

~X
2

i ðtÞð1�
~X iðtÞÞ.

Using (1) and (2), we find that

a ¼ ð1�mÞ3a1 þmð1�mÞ2a2 þm2ð1�mÞa3 þm3a4, (9)

where

a1 ¼
X
tX0

1

D

XD

i¼1

X 2
i ðtÞð1� X iðtÞÞ,

a2 ¼
X
tX0

1

DðD� 1Þ

XD

i¼1

X
jai

ð2X iðtÞX jðtÞð1� X iðtÞÞ

þ X 2
i ðtÞð1� X jðtÞÞÞ,
a3 ¼
X
tX0

1

DðD� 1Þ2

XD

i¼1

X
j;kai

ð2X iðtÞX jðtÞð1� X kðtÞÞ

þ X jðtÞX kðtÞð1� X iðtÞÞÞ,

a4 ¼
X
tX0

1

DðD� 1Þ3

XD

i¼1

X
j;k;lai

X jðtÞX lðtÞð1� X kðtÞÞ.

Hence, in order to evaluate the fixation coefficient u0ð0Þ in
the two selection scenarios, we have to find E0ðaiÞ, for i ¼

1; . . . ; 4 and E0ðbiÞ for i ¼ 1; 2; 3.

4. Fixation coefficient in terms of expected coalescence

times

We will use the following notation to describe the
configuration of a sample of n individuals in the finite
island model (see, e.g., Wakeley, 1998). Let d be the total
number of demes that contain sampled individuals and ni

be the number of those demes that contain exactly i

sampled individuals. In particular, we have
Pn

i¼1ni ¼ d andPn
i¼1ini ¼ n. Then, the sample configuration is represented

by the vector nd ¼ ðn1; . . . ; ndÞ and the set of all such
vectors is denoted by S.
We will concentrate on samples of three individuals or

less. A sample of one individual has only one possible
configuration (1). There are two possible configurations for
a sample of two individuals, ð0; 1Þ and ð2; 0Þ, and three
possible configurations for a sample of three individuals,
ð0; 0; 1Þ, ð1; 1; 0Þ and ð3; 0; 0Þ. Finally, we denote by Tn the
coalescence time of the genealogy of a sample whose
configuration is n, that is, the random variable that counts
the number of generations backward in time starting from
the n sampled individuals and ending with their most recent
common ancestor (MRCA).
Defining xliðtÞ ¼ 1 if individual l in deme i at time t is of

type A and 0 otherwise, the frequency of A in deme i at
time t can be expressed as

X iðtÞ ¼
1

N

XN

l¼1

xliðtÞ,

and its kth power as

X k
i ðtÞ ¼

1

Nk

X
i1þ���þiN¼k

k

i1; . . . ; iN

 !
xi1
1iðtÞ � � � x

iN

NiðtÞ.

The variables xliðtÞ being exchangeable and satisfying
xil

liðtÞ ¼ xliðtÞ if ilX1 and 1 if il ¼ 0, the expected value of
X k

i ðtÞ under neutrality will be

E0½X
k
i ðtÞ� ¼

1

Nk

Xminðk;NÞ

l¼1

N

l

� �
l!SklE0½x1iðtÞ . . . xliðtÞ�, (10)

where Skl is a Stirling number of second kind, that is,

Skl ¼
1

l!

X
i1þ���þil¼k
i1;...;ilX1

k

i1; . . . ; il

 !
,
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and represents the number of ways that k distinct elements
can be partitioned into l nonvoid subsets (see, e.g.,
Abramowitz and Stegun, 1965).

Moreover, we have

1

D

XD

i¼1

E0½x1iðtÞ . . . xliðtÞ� ¼
1

ND
P0ðTel

ptÞ, (11)

where el ¼ ð0; . . . ; 0; 1Þ represents a random sample of l

individuals in a single deme. Indeed, notice that
E0½x1iðtÞ . . . xliðtÞ� is the probability for the most recent
common ancestor (MRCA) of l individuals chosen at
random without replacement in deme i at time t to be of
type A. This is the probability for these individuals to have
a common ancestor at time 0 multiplied by the probability
for this common ancestor to be of type A. The former is the
probability for the coalescence time to the MRCA to be
less or equal to t, that is, P0ðT el

ptÞ. The latter is 1=N if the
common ancestor at time 0 is in deme 1, which contains a
single individual of type A, and 0 otherwise. Let Al;ijðtÞ

represent the event that l individuals chosen at random
without replacement in deme i at time t have a common
ancestor in deme j at time 0 given that they have a common
ancestor at time 0. Then, we have

E0½x1iðtÞ . . . xliðtÞ� ¼
1

N
P0ðTel

ptÞP0ðAl;i1ðtÞÞ.

Eq. (11) follows from the symmetry property

P0ðAl;i1ðtÞÞ ¼ P0ðAl;1iðtÞÞ

and the fact that

XD

i¼1

P0ðAl;1iðtÞÞ ¼ 1.

Using the equality P0ðT el
ptÞ ¼ 1� P0ðTel

4tÞ, we deduce
from (10) and (11) that

1

D

XD

i¼1

E0½X
k
i ðtÞ�

¼
1

ND
�

1

DNkþ1

Xminðk;NÞ

l¼1

N

l

 !
l!SklP0ðTel

4tÞ.

Recalling the identities Sn;n ¼ 1, Sn;n�1 ¼ nðn� 1Þ=2 and
Sn;2 ¼ 2n�1 � 1, it follows that

1

D

XD

i¼1

E0½X iðtÞ� ¼
1

ND
,

1

D

XD

i¼1

E0½X
2
i ðtÞ�

¼
1

ND
1� 1�

1

N

� �
P0ðT ð0;1Þ4tÞ

� �
,

1

D

XD

i¼1

E0½X
3
i ðtÞ� ¼

1

ND
1�

3

N
1�

1

N

� �
P0ðT ð0;1Þ4tÞ

�

� 1�
2

N

� �
1�

1

N

� �
P0ðT ð0;0;1Þ4tÞ

�
.

Similarly, we have

1

DðD� 1Þ

XD

i¼1

X
jai

E0½X iðtÞX jðtÞ�

¼
1

DðD� 1ÞN2

XD

i¼1

X
jai

XN

k;l¼1

E0½xkiðtÞxljðtÞ�,

which is equal to

1

ND
ð1� P0ðT ð2;0Þ4tÞÞ,

the probability for two individuals chosen at random in
two different demes chosen at random at time t to be both
of type A. The same arguments apply, including the
symmetry argument, for three individuals in three different
demes to yield

1

DðD� 1ÞðD� 2Þ

XD

i¼1

X
jai

X
kai;j

E0½X iðtÞX jðtÞX kðtÞ�

¼
1

ND
ð1� P0ðT ð3;0;0Þ4tÞÞ.

Considering two individuals in the same deme and a third
individual in a different deme, we find

1

DðD� 1Þ

XD

i¼1

X
jai

E0½X
2
i ðtÞX jðtÞ�

¼
1

DðD� 1ÞN3

XD

i¼1

X
jai

XN

k;m¼1

E0½xkiðtÞxmjðtÞ�

þ
1

DðD� 1ÞN3

XD

i¼1

X
jai

XN

kal;m¼1

E0½xkiðtÞxliðtÞxmjðtÞ�,

which is equal to

1

ND
1�

1

N
P0ðT ð2;0Þ4tÞ � 1�

1

N

� �
P0ðT ð1;1;0Þ4tÞ

� �
.

Also, some algebraic manipulations yield

XD

i¼1

X
j;lai

E0½X jðtÞX lðtÞ�

¼
DðD� 1ÞðD� 2Þ

ND
ð1� P0ðT ð2;0Þ4tÞÞ

þ
DðD� 1Þ

ND
1� 1�

1

N

� �
P0ðT ð0;1Þ4tÞ

� �
,
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XD

i¼1

X
j;kai

E0½X iðtÞX jðtÞX kðtÞ�

¼
DðD� 1ÞðD� 2Þ

ND
ð1� P0ðT ð3;0;0Þ4tÞÞ þ

DðD� 1Þ

ND

� 1�
1

N
P0ðT ð2;0Þ4tÞ � 1�

1

N

� �
P0ðT ð1;1;0Þ4tÞ

� �
,

XD

i¼1

X
j;k;lai

E0½X jðtÞX kðtÞX lðtÞ�

¼
DðD� 1ÞðD� 2ÞðD� 3Þ

ND
ð1� P0ðT ð3;0;0Þ4tÞÞ

þ
3DðD� 1ÞðD� 2Þ

ND
1�

1

N
P0ðT ð2;0Þ4tÞ

�

� 1�
1

N

� �
P0ðT ð1;1;0Þ4tÞ

�

þ
DðD� 1Þ

ND
1�

3

N
1�

1

N

� �
P0ðT ð0;1Þ4tÞ

�

� 1�
3

N
þ

2

N2

� �
P0ðT ð0;0;1Þ4tÞ

�
.

Since
P

tX0P0ðTn4tÞ ¼ E0ðTnÞ, the above calculations
lead to the following expressions:

E0ðb1Þ ¼
1

ND
1�

1

N

� �
E0ðT ð0;1ÞÞ,

E0ðb2Þ ¼
1

ND
E0ðT ð2;0ÞÞ,

E0ðb3Þ ¼
1

NDðD� 1Þ
ðD� 2ÞE0ðT ð2;0ÞÞ

�

þ 1�
1

N

� �
E0ðT ð0;1ÞÞ

�
,

E0ða1Þ ¼
1

ND
1�

1

N

� �
1�

2

N

� �
E0ðT ð0;0;1ÞÞ

�

� 1�
3

N

� �
E0ðT ð0;1ÞÞ

�
,

E0ða2Þ ¼
1

ND
3 1�

1

N

� �
E0ðT ð1;1;0ÞÞ � 2�

3

N

� �
E0ðT ð2;0ÞÞ

�

� 1�
1

N

� �
E0ðT ð0;1ÞÞ

�
,

E0ða3Þ ¼
1

NDðD� 1Þ
3ðD� 2ÞE0ðT ð3;0;0ÞÞ

�

þ3 1�
1

N

� �
E0ðT ð1;1;0ÞÞ � 3D� 4�

3

N

� �
E0ðT ð2;0ÞÞ

� 1�
1

N

� �
E0ðT ð0;1ÞÞ

�
,

E0ða4Þ ¼
m3

ðD� 1Þ2
1

ND
ðD� 2ÞðD� 3ÞE0ðT ð3;0;0ÞÞ

�

þ 3ðD� 2Þ 1�
1

N

� �
E0ðT ð1;1;0ÞÞ

þ 1�
3

N
þ

2

N2

� �
E0ðT ð0;0;1ÞÞ

� ðD� 2Þ D� 1�
3

N

� �
E0ðT ð2;0ÞÞ

� 1�
1

N

� �
D� 1�

3

N

� �
E0ðT ð0;1ÞÞ

�
.

Finally, we get

E0ðaÞ ¼ ð1�mÞ3
1

ND
1�

3

N
þ

2

N2

� �
E0ðT ð0;0;1ÞÞ

�

� 1�
1

N

� �
1�

3

N

� �
E0ðT ð0;1ÞÞ

�

þmð1�mÞ2
1

ND
3 1�

1

N

� �
E0ðT ð1;1;0ÞÞ

�

� 2�
3

N

� �
E0ðT ð2;0ÞÞ � 1�

1

N

� �
E0ðT ð0;1ÞÞ

�

þ
m2ð1�mÞ

ðD� 1Þ

1

ND
3ðD� 2ÞE0ðT ð3;0;0ÞÞ

�

þ 3 1�
1

N

� �
E0ðT ð1;1;0ÞÞ

� 3D� 4�
3

N

� �
E0ðT ð2;0ÞÞ � 1�

1

N

� �
E0ðT ð0;1ÞÞ

�

þ
m3

ðD� 1Þ2
1

ND
ðD� 2ÞðD� 3ÞE0ðT ð3;0;0ÞÞ

�

þ 3ðD� 2Þ 1�
1

N

� �
E0ðT ð1;1;0ÞÞ

þ 1�
3

N
þ

2

N2

� �
E0ðT ð0;0;1ÞÞ

� ðD� 2Þ D� 1�
3

N

� �
E0ðT ð2;0ÞÞ

� 1�
1

N

� �
D� 1�

3

N

� �
E0ðT ð0;1ÞÞ

�
, ð12Þ

E0ðbÞ ¼ ð1�mÞ2
1

ND
1�

1

N

� �
E0ðT ð0;1ÞÞ

þ 2mð1�mÞ
1

ND
E0ðT ð2;0ÞÞ

þ
m2

ðD� 1Þ

1

ND
ðD� 2ÞE0ðT ð2;0ÞÞ

�

þ 1�
1

N

� �
E0ðT ð0;1ÞÞ

�
. ð13Þ

Therefore, the fixation coefficient for a beneficial allele can
be expressed in terms of expected coalescence times under
neutrality for samples of two individuals in agreement with
Rousset (2004, p. 98) and the fixation coefficient for an
allele coding for a mutant strategy in a linear game in terms
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of expected coalescence times under neutrality for samples
of two and three individuals. In order to go further,
we have to find these expected times with respect to the
parameters of the population structure. This is done
in the next section using a standard conditioning
procedure for Markov chains, first in the most general
setting without any assumption on the number of demes,
the deme size or the migration rate, and then in some
special limit cases.

5. Expected coalescence times

Consider a sample of n individuals described by the
vector n ¼ ðn1; . . . ; ndÞ. The sample configuration
backward in time is modelled as a Markov chain
with state space S. Assume that Pnn0 is the probability
of transition from state n to state n0 from one generation
to the previous one. The time back to a change in
the chain state following coalescence or migration
events (notice that several events can occur simultaneously
in the general setting) is geometrically distributed with
parameter

Pn ¼
X
n0an

Pnn0 . (14)

Moreover the probability that the change is a transition
from state n to state n0an is

Qnn0 ¼ Pnn0=Pn. (15)

Thus, conditioning on the first change in the chain state,
the expectation of the coalescence time Tn, defined as the
number of generations backward in time from state n to
state ð1Þ, which corresponds to the MRCA, is given by the
recurrence equation

E0ðTnÞ ¼
1

Pn

þ
X
n0an

Qnn0E0ðTn0 Þ.

Measuring time in units of ND generations, the coalescence
time from state n to the MRCA becomes

tn ¼
Tn

ND
,

and its expected value satisfies

E0ðtnÞ ¼
1

ln
þ
X
n0an

Qnn0E0ðtn0 Þ,

where

ln ¼ NDPn. (16)

For samples of two individuals, we get the system of
equations

ðIÞ

E0ðtð0;1ÞÞ ¼
1

lð0;1Þ
þQð0;1Þð2;0ÞE0ðtð2;0ÞÞ;

E0ðtð2;0ÞÞ ¼
1

lð2;0Þ
þQð2;0Þð0;1ÞE0ðtð0;1ÞÞ;

8>>><
>>>:
while for samples of three individuals, we have the system

ðIIÞ

E0ðtð0;0;1ÞÞ ¼
1

lð0;0;1Þ
þQð0;0;1Þð0;1ÞE0ðtð0;1ÞÞ

þQð0;0;1Þð2;0ÞE0ðtð2;0ÞÞ þQð0;0;1Þð1;1;0ÞE0ðtð1;1;0ÞÞ

þQð0;0;1Þð3;0;0ÞE0ðtð3;0;0ÞÞ;

E0ðtð1;1;0ÞÞ ¼
1

lð1;1;0Þ
þQð1;1;0Þð0;1ÞE0ðtð0;1ÞÞ

þQð1;1;0Þð2;0ÞE0ðtð2;0ÞÞ þQð1;1;0Þ;ð0;0;1ÞE0ðtð0;0;1ÞÞ

þQð1;1;0Þð3;0;0ÞE0ðtð3;0;0ÞÞ;

E0ðtð3;0;0ÞÞ ¼
1

lð3;0;0Þ
þQð3;0;0Þð0;1ÞE0ðtð0;1ÞÞ

þQð3;0;0Þð2;0ÞE0ðtð2;0ÞÞ þQð3;0;0Þ;ð0;0;1ÞE0ðtð0;0;1ÞÞ

þQð3;0;0Þð1;1;0ÞE0ðtð1;1;0ÞÞ:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

We refer to the Appendix A.1 for the exact expressions of
the transition probabilities.
The solution of the system of equations (I) for samples of

two individuals is

E0ðtð0;1ÞÞ ¼ 1 (17)

and

E0ðtð2;0ÞÞ ¼ 1�
1

N
þ

1

Mð2�M=NÞ
, (18)

where M ¼ mND=ðD� 1Þ. This notation will be used
throughout.
For samples of three individuals, the solution of the

system (II) leads to cumbersome expressions given in the
Appendix A.2. Numerical evaluations of E0ðtð0;0;1ÞÞ,
E0ðtð1;1;0ÞÞ and E0ðtð3;0;0ÞÞ as functions of m and N in the
case D ¼ 5, D ¼ 100 and D ¼ 1000 (not shown) indicate
that all these expected coalescence times decrease to 4=3 as
m and N increase. Moreover, E0ðtð0;0;1ÞÞ approaches a finite
limit as m and N decrease, while E0ðtð1;1;0ÞÞ and E0ðtð3;0;0ÞÞ

tend to infinity. We will now focus more closely on limit
cases.

5.1. Structured coalescent (SC)

Under this scenario, the migration rate m is of order 1=N

and simultaneous events of migration or coalescence can be
neglected when N is large. In the limit, only one event of
migration or coalescence can occur at a time and the
system of equations (II) reduces to

E0ðtð0;0;1ÞÞ ¼
1

3ðMðD� 1Þ þDÞ
þ

D

ðMðD� 1Þ þDÞ
E0ðtð0;1ÞÞ

þ
MðD� 1Þ

ðMðD� 1Þ þDÞ
E0ðtð0;0;1ÞÞ,

E0ðtð1;1;0ÞÞ ¼
1

Dþ 2MðD� 1Þ �M

þ
D

Dþ 2MðD� 1Þ �M
E0ðtð2;0ÞÞ
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þ
2MðD� 2Þ

Dþ 2MðD� 1Þ �M
E0ðtð3;0;0ÞÞ

þ
M

Dþ 2MðD� 1Þ �M
E0ðtð0;0;1ÞÞ,

E0ðtð3;0;0ÞÞ ¼
1

6M
þ E0ðtð0;0;1ÞÞ,

where M ¼ mND=ðD� 1Þ. Letting N go to infinity in (17)
and (18), we find E0ðtð0;1ÞÞ ¼ 1 and E0ðtð2;0ÞÞ ¼ 1þ 1=ð2MÞ

in agreement with previous authors (see, e.g., Wilkinson-
Herbots, 1998, 2003; Bahlo and Griffiths, 2001), and then
some algebraic manipulations lead to

E0ðtð0;0;1ÞÞ ¼
4

3
þ

1

6ðM þ 1Þ
�

1

6DðM þ 1Þ
,

E0ðtð1;1;0ÞÞ ¼
4

3
þ

1

2M
�

1

6DðM þ 1Þ
,

E0ðtð3;0;0ÞÞ ¼
4

3
1þ

1

2M

� �
�

1

6DðM þ 1Þ
.

5.2. Many demes (MD)

When the number of demes D goes to infinity under the
structured coalescent assumptions, we get

E0ðtð0;0;1ÞÞ ¼
4

3
þ

1

6ðM þ 1Þ
,

E0ðtð1;1;0ÞÞ ¼
4

3
þ

1

2M
,

E0ðtð3;0;0ÞÞ ¼
4

3
1þ

1

2M

� �
,

with E0ðtð0;1ÞÞ ¼ 1 and E0ðtð2;0ÞÞ ¼ 1þ 1=ð2MÞ, where M

takes its limit value, that is, M ¼ Nm. Notice that these
results can be derived using a separation-of-time-scales
argument (Wakeley, 1998; Lessard and Wakeley, 2004).

5.3. Low migration (LM)

Under the low migration scenario, the migration
parameter m is of order smaller than 1=N so that the
product Nm tends to zero as N goes to infinity. In this case,
we get the approximations

E0ðtð0;0;1ÞÞ ¼
4

3
þ

1

6
1�

1

D

� �
, (19)

E0ðtð1;1;0ÞÞ ¼
1

2M
, (20)

E0ðtð3;0;0ÞÞ ¼
2

3M
, (21)

with E0ðtð0;1ÞÞ ¼ 1 and E0ðtð2;0ÞÞ ¼ 1=ð2MÞ. These approx-
imations are in agreement with the result of Takahata
(1991), who showed more generally that, in the LM limit,
we have

E0ðMtnÞ ¼ 1�
1

d

� �
,

where d is the number of demes occupied by the sampled
individuals. This means that, measuring time in units of
ND=ð2MÞ ¼ ðD� 1Þ=ð2mÞ generations and letting m go to
zero, samples of individuals from the same deme coalesce
instantaneously, while samples from d different demes
behave like samples of d individuals in a panmictic
population of size ðD� 1Þ=ð2mÞ as described by Kingman’s
(1982a, b) coalescent. (See also Slatkin, 1981; Notohara,
2001.)

5.4. Strong migration and high migration (SM and HM)

In the strong (or high) migration limit, the migration rate
m is kept fixed (equal to 1, respectively) as the deme size N

approaches infinity. In this case, we have
E0ðtð0;1ÞÞ ¼ E0ðtð2;0ÞÞ ¼ 1, in agreement with Nagylaki
(2000) who proved that the expected coalescence time for
samples of two individuals in the SM limit is the same as
the expected coalescence time for samples of two indivi-
duals in a panmictic population of size ND with ND

generations taken as the unit of time as N goes to infinity
(see also Notohara, 2000; Bahlo and Griffiths, 2001). The
same remains true for samples of three individuals, that is,

E0ðtð0;0;1ÞÞ ¼ E0ðtð3;0;0ÞÞ ¼ E0ðtð1;1;0ÞÞ ¼ 4=3.

6. Approximations of the fixation probability

We are now in a position to express E0ðaÞ and E0ðbÞ in
terms of the population parameters. Using the expressions
of the expected coalescence times for samples of two and
three individuals under neutrality presented in the previous
section and the Appendix, tedious but straightforward
algebraic manipulations yield

E0ðbÞ ¼ 1�
1

ND
(22)

and

E0ðaÞ ¼
1

3
þ

g
d
, (23)

where

g ¼ 7DNm�Nm4D5 � 24m2ND3 � 10m2ND5 þ 48mND3

þ ð2=3ÞNm4D4 � 2Dm� 8D2 � 30mND2 þ 7m2ND2

þ 2Dþ 3N þ 13mD2 � ð14=3Þm2D2 � 15DN � 27mD3

þ 9m2D5 þ 15D4N � ð2=3Þm4D4 � 7mD5 � 3D5N

� ð10=3Þm3D3 � 5m3D5 � 30ND3 þ 55m2D3=3

� 68m2D4=3þ 25m3D4=3þ 23mD4 þ 30ND2 þm4D5

� 8D4 þ 2D5 þ 12D3 þ 9mND5 þ ð10=3ÞNm3D3

þ 5Nm3D5 � 34mND4 � 25Nm3D4=3þ 27m2ND4
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and

d ¼ ð12� 81DNmþ 78Dmþ 72D2 þ 207mND2

� 4m4D3 � 129m2ND2 � 20m3D2 � 28m2D

þ 138mD3 � 18D4N þ 6m4D4 þ 50m3D3

þ 72ND3 � 12m� 136m2D3 þ 54m2D4

� 30m3D4 � 42mD4 � 108ND2 � 48D

þ 12D4 � 48D3 � 18N � 54m2N2D3

� 18mD4N2 � 65Nm3D3 þ 63mND4

þ 54mN2D3 þ 45Nm3D4 þ 27m2D4N2

� 81m2ND4 � 54mN2D2 � 15m3D4N2

þ 186m2ND3 � 195mND3 � 9Nm4D4

þ 15m3N2D3 þ 24m2NDþ 20Nm3D2

þ 4Nm4D3 þ 3N2m4D4 þ 18mN2D

þ 27m2N2D2 � 162mD2 þ 110m2D2

þ 6mN þ 72DNÞD.

All theoretical results concerning these expected values
along with the expected coalescence times for samples of
two and three individuals in the different limit cases (SC,
SM, HM, LM, MD) and the general setting are summar-
ized in Table 1.

Notice that E0ðbÞ depends only on the total population
size, ND. In particular, it does not depend on the migration
rate. Moreover, it increases to 1 as N and D tend to infinity
and does so very rapidly so that for D and N as small as 5
its value is comprised between 0.96 and 1.

On the other hand, E0ðaÞ depends on the population
structure via the deme size, N, the number of demes, D, as
well as the migration rate, m. Its value ranges from 1=2 to
1=3. Moreover, E0ðaÞ remains dependent on the parameters
of the model in four of the limit cases considered, either
through D (SC, LM), or m and N (SC, MD). Notice also
Table 1

Expected coalescence times for samples of two and three individuals under the m

cases when the deme size N is large: LM for low migration (backward migratio

1=N), SM for strong migration (m fixed), HM for high migration (m ¼ 1) and

General setting LM S

E0ðtð0;1ÞÞ 1 1 1

E0ðtð2;0ÞÞ 1�
1

N
þ

1

Mð2�M=NÞ

1

2M
1

E0ðtð0;0;1ÞÞ Appendix A.2 3

2
�

1

6D

4

3

E0ðtð1;1;0ÞÞ Appendix A.2 1

2M

4

3
E0ðtð3;0;0ÞÞ Appendix A.2 2

3M

4

3
E0ðbÞ 1�

1

ND

1 1

E0ðaÞ Eq. (23) 1

2
�

1

6D

1

3

Parameter M is defined generally as M ¼ mND=ðD� 1Þ, but takes the value N
that E0ðaÞ varies little with the number of demes, D, and
the deme size, N. Fig. 1(a) shows the relative error, defined
as the absolute error over the exact value, using the SC
limit as an approximation. For D ¼ 5 or 100 and N

comprised between 5 and 20, the relative error remains
smaller than 10% when m ranges from 0.001 and 1, while
for the same values of D and any larger value of N it does
not exceed 3%. Hence, the number of demes, D, and the
deme size, N, do not need to be very large for the SC limit
to give a good approximation of E0ðaÞ. As a consequence,
E0ðaÞ can be approximated by its value in the SC limit,
which is 1=3þ ð1� 1=DÞ=ð6ðM þ 1ÞÞ, even for small values
of D and N. This is also the case for E0ðbÞ with the limit
value 1 as shown in Fig. 1(b).
In the MD limit, E0ðaÞ is equal to 1=3þ 1=ð6ðM þ 1ÞÞ

and numerical evaluations (not shown) indicate that this
limit provides a good approximation as soon as the number
of demes D exceeds 10, for NX20 and 0:001pmp1, the
relative error remaining smaller than 4%. On the other
hand, using the LM limit 1=2� 1=ð6DÞ as an approxima-
tion, the relative error does not exceed 4% as long as M

keeps smaller than 1=10, for NX5 and DX5. Finally, in the
SM and HM limits, E0ðaÞ is equal to 1=3. This
approximation holds with a relative error smaller than
10% as soon as NX30 and mX0:1, but less than 5% when
M exceeds 10 and NX10, for both D ¼ 5 and D ¼ 100.
With the expectations of a and b under neutrality in

hand, we can obtain expressions for the fixation coefficient,
and therefore approximations for the probability of
fixation of a newly introduced single mutant under weak
selection.
6.1. Beneficial allele

According to (6), the fixation probability uðsÞ for a single
beneficial mutant as a function of the intensity of selection
ost general setting of D demes of size N and their approximations in limit

n rate m much smaller than 1=N), SC for structured coalescent (m of order

MD for many demes (large number of demes D)

C SM and HM MD
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þ
1
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Fig. 1. Relative error using the SC limit to approximate E0ðaÞ and E0ðbÞ for D ¼ 5 demes (dotted surface) and D ¼ 100 demes (solid surface), as functions

of the deme size, N, and the migration rate, m. The parameter m ranges from 0.001 to 1, while N ranges from 5 to 100. (a) E0ðaÞ; (b) E0ðbÞ.
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s has a derivative at s ¼ 0 given by E0ðbÞ. Therefore,
we have

uðsÞ ¼
1

ND
þ s 1�

1

ND

� �
þ oðsÞ. (24)

This approximation under weak selection for D and N fixed
is not affected by population subdivision and it is the
same for a panmictic population of size ND. This result is
in agreement with a diffusion approximation in a frame-
work of a large population (Maruyama, 1970; Whitlock,
2003).

Notice that the intensity of selection s has to be
small compared to 1=ðNDÞ for the approximation to be
valid. Simulation results have shown however that sND

does not have to be too small. With D ¼ 5;N ¼ 10 and
s ¼ 0:01, for instance, in which case sND ¼ 1=2, the
relative error made in approximating uðsÞ, obtained from
the frequency of fixation in 108 replica, with Eq. (24) did
not exceed 5%.
6.2. Linear game

In the context of a linear game, the derivative of the
fixation probability with respect to the intensity of selection
is given in Eq. (8). Using the expressions (22) and (23) for
the expected values E0ðbÞ and E0ðaÞ in the general setting,
we get

uðsÞ ¼
1

ND
þ s

1

3
þ

g
d

� �
ðpA � pBÞ �W ðpA � pBÞ

�

þ 1�
1

ND

� �
ðpA � pBÞ �WpB

�
þ oðsÞ. ð25Þ

Using the values of E0ðbÞ and E0ðaÞ in the different
limit cases (see Table 1) and assuming s small
compared to 1=ðNDÞ when N is large, we have the
approximation

uðsÞ ¼
1

ND
þ s

1

3
ðpA � pBÞ �W ðpA � pBÞ

�

þ ðpA � pBÞ �WpB

�
þ oðsÞ, ð26Þ

under strong or high migration (SM or HM),

uðsÞ ¼
1

ND
þ s

1

2
�

1

6D

� �
ðpA � pBÞ �W ðpA � pBÞ

�

þ ðpA � pBÞ �WpB

�
þ oðsÞ, ð27Þ

under low migration (LM),

uðsÞ ¼
1

ND
þ s

1

3
þ

1

6ðM þ 1Þ
1�

1

D

� �� �
ðpA � pBÞ

�

�W ðpA � pBÞ þ ðpA � pBÞ �WpB

�
þ oðsÞ, ð28Þ

under the structured coalescent (SC) assumptions, and

uðsÞ ¼
1

ND
þ s

1

3
þ

1

6ðM þ 1Þ

� �
ðpA � pBÞ �W ðpA � pBÞ

�

þ ðpA � pBÞ �WpB

�
þ oðsÞ, ð29Þ

in the case of many demes (MD). The approximation
generally depends on the parameters describing the
population structure at neutrality, that is, the deme size,
the number of demes and the migration rate. This is the
case because the expected value E0ðaÞ that comes into play
in the fixation coefficient as a consequence of the pairwise
interactions depends on these parameters. Notice, however,
that this is no longer the case in the HM and SM scenarios
for which this approximation is the same as the one
obtained in a panmictic population of size ND (see
Lessard, 2005).
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7. Discussion

The probability of fixation of a mutant allele in a
population following an island model can be studied using
a diffusion approximation if the total population size is
large enough (see, e.g., Nagylaki, 1980; Slatkin, 1981). In
the case of a large number D of demes containing a fixed
number N of haploid individuals with an expected
proportion m of individuals coming from all other demes
each generation, for instance, Wakeley (2003) (see also
Wakeley and Takahashi, 2004, for a selection model of the
Moran type, and Cherry, 2003a, for the case of local
frequency-dependent selection) showed that the frequency
of a beneficial mutant allele A which has fitness 1þ s

compared to 1 for a wild-type allele B, with s being of order
1=ðNDÞ, can be approximated by a diffusion process whose
drift function is mðxÞ ¼ sNDxð1� xÞ and diffusion func-
tion is vðxÞ ¼ xð1� xÞ if time is measured in units of
ND=ð1� F Þ generations, which represents the effective
population size, where F is a fixation coefficient under
neutrality defined as

F ¼
ð1�mÞ2

Nmð2�mÞ þ ð1�mÞ2
.

This is also the case in a diploid population with N

individuals in each deme if N is replaced with 2N, if
selection is additive such that the fitnesses of AA, AB and
BB are 1þ 2s, 1þ s and 1, respectively, and if migration is
gametic. Then, the probability of ultimate fixation of A as a
function of s given that it is represented once initially is
approximately (see, e.g., Ewens, 2004, and references
therein)

uðsÞ ¼

R 1=ðNDÞ

0
cðyÞ dyR 1

0 cðyÞ dy
,

where

cðyÞ ¼ exp �2

Z y

0

mðxÞ

vðxÞ
dx

� �
.

This gives

uðsÞ ¼
1� expð�2sÞ

1� expð�2sNDÞ
. (30)

If sNDb1, then the denominator in (30) is close to 1 and a
Taylor expansion of the numerator yields

uðsÞ ¼ 2sþ oðsÞ. (31)

In the case of an additive beneficial allele in a diploid
population, this approximation for the probability of
fixation is in agreement with Maruyama (1970) who
extended a well-known result for a large panmictic
population (Haldane, 1927; Fisher, 1922, 1930; see also
Kimura, 1957, 1962; Caballero and Hill, 1992, for more
general assumptions) to the case of an island model and
other cases with conservative migration. See Takahata
(1991) and Nagylaki (2000) for limit cases of low migration
and strong migration, respectively, and Whitlock (2003) for
more general population structures and genetic assump-
tions.
On the other hand, if sND51, then a Taylor expansion

of both the numerator and the denominator in (30) up to
terms of order s2 yields the approximation

uðsÞ ¼
1

ND
þ s 1�

1

ND

� �
þ oðsÞ, (32)

in agreement with (24). This approximation is valid only
when selection is weaker than drift measured by the inverse
of the population size, 1=ðNDÞ. We have deduced this
approximation directly without having recourse to a
diffusion approximation and we have shown that it is
valid not only in a large population but also in a small
population for which the assumptions for a diffusion
approximation do not hold. This has been made possible
by using a coalescent approach suggested by Rousset
(2003, 2004). The analysis however relies on the symmetry
of the island model and cannot be extended easily to
asymmetric models. Let us also stress that letting ND go to
infinity in the approximation (32) for the case of selection
weaker than drift does not yield the approximation (31) for
the case of selection stronger than drift.
In the context of a linear game in a single deme of large

size N with a selection intensity s of order 1=N such that
sN51, a diffusion approximation yields (Lessard, 2005)

uðsÞ ¼
1

N
þ s ðpA � pBÞ �WpB

�

þ
1

3

� �
ðpA � pBÞ �W ðpA � pBÞ

�
þOðs=NÞ,

for the probability of fixation of a single mutant A. A more
precise approximation for any fixed N and s small enough
using the same approach as the one presented in this paper,
that is, the expected value of the frequency of A and
coalescent theory, is (Lessard and Ladret, 2007)

uðsÞ ¼
1

N
þ s 1�

1

N

� �
ðpA � pBÞ �WpB

�

þ
N

3N � 2

� �
ðpA � pBÞ �W ðpA � pBÞ

�
þ oðsÞ.

See also Imhof and Nowak (2006) for an alternative
approach based on a first-step analysis assuming that the
fixation probability given any initial frequency is a smooth
function of s. In Lessard and Ladret (2007), it is shown that
this is the case if the transition probabilities for the
frequency of A from one generation to the next are smooth
functions of s as in the model at hand. Notice that the
fixation probability can be found explicitly, and approxi-
mated for s small enough, in the case of a Moran model
(see Nowak et al., 2004; Lessard, 2005). A general
branching process approach based on stochastic calculus
has also been proposed recently (Lambert, 2006).
In the case of D demes, DX3, with a fixed deme size N,

we have shown (see Eq. (25)) that the coefficient of
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sðpA � pBÞ �WpB, given by E0ðbÞ ¼ ð1� ð1=NDÞÞ, depends
only on the total population size, ND, while the coefficient
of sðpA � pBÞ �W ðpA � pBÞ, given by E0ðaÞ, generally
depends on all the parameters of the population structure,
namely, the number of demes, the deme size and the
migration rate. In the limit as N goes to infinity, it reduces
to 1=3 when Nm tends infinity (SM or HM), 1=2� 1=ð6DÞ

when Nm tends to 0 (LM), 1=3þ ð1� 1=DÞ=ð6ðM þ 1ÞÞ
when mND=ðD� 1Þ tends to M (SC) and 1=3þ 1=ð6ðM þ
1ÞÞ when Nm tends to M and D tends to infinity (MD).
Only in the strong or high migration scenario does this
coefficient reduce to 1=3.

As in Nowak et al. (2004), selection favors A replacing B

if the fixation probability for a single mutant A is larger
than the fixation probability for a single neutral mutant,
that is, uðsÞ41=ðNDÞ. On the contrary, selection opposes A

replacing B if uðsÞo1=ðNDÞ. Since the coefficients E0ðaÞ
and E0ðbÞ are positive we find, as in Lessard (2005), that
selection opposes A replacing B for selection weak enough
and for pA different from, but close enough to, pB if and
only if either

ðiÞ ðpA � pBÞ �WpBp0,

or, in case of equality in (i),

ðiiÞ ðpA � pBÞ �W ðpA � pBÞo0.

If this condition holds for every pAapB close enough to pB,
then it holds for every pAapB. This means that pB is an
evolutionarily stable strategy (ESS) for the game matrix W

(Maynard Smith and Price, 1973; Maynard Smith, 1974).
This does not mean that uðsÞo1=ðNDÞ for selection weak
enough and for all pAapB if pB is an ESS. It will be the case
if pB has all positive components, which ensures an equality
in (i) for all pAapB. But, if pB has some null components,
then a strict inequality in (i) is possible for pAapB that has
at least one positive component corresponding to a null
component of pB. Then, if the inequality (ii) is reversed, pA

has to be close enough to pB to ensure that

E0ðaÞðpA � pBÞ �W ðpA � pBÞ

þ E0ðbÞðpA � pBÞ �WpBo0. ð33Þ

How close pA has to be to pB depends on the coefficients
E0ðaÞ and E0ðbÞ.
In the case of two pure strategies pA ¼ ð1; 0Þ and pB ¼

ð0; 1Þ for a 2� 2 game matrix

W ¼
a b

c d

� �
,

with a4c and d4b, which means that pA and pB are the
best replies to themselves, selection favors A replacing B

for selection weak enough if the inequality (33) is reversed,
which is equivalent to

d � b

a� b� cþ d
o

E0ðaÞ
E0ðbÞ

.

The left-hand member of this inequality corresponds to the
unstable equilibrium frequency of pA for the replicator
dynamics in an infinite population, while the right-hand
member reduces to 1=3 in the strong or high migration
limit as in a large panmictic population. This corresponds
to the one-third law proposed by Nowak et al. (2004). In
general, in a population subdivided into D demes according
to the finite island model, the ratio E0ðaÞ=E0ðbÞ is different
from 1=3 but close to 1=3 unless the migration rate is very
small, in which case it gets closer to 1=2. In this case, the
condition for A replacing B becomes less stringent.
The method based on expected coalescence times presented

in this paper can be applied under other assumptions on the
life cycle or the timing of the different factors as selection
preceding dispersal instead of following dispersal. It can also
be extended to population structures with slightly more
general demographic assumptions, namely subpopulations of
equal size with symmetric migration rates as occurs in the
circular stepping-stone model and other spatially homoge-
neous models (see, e.g., Rousset, 2004). Besides weak
selection, the main property used is that the probability
under neutrality for a common ancestor of individuals chosen
at random in subpopulation i to be in subpopulation j is the
same if i and j are permuted. In more general settings than the
finite island model, however, expected coalescence times are
more difficult to compute.
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Appendix A

A.1. Transition probabilities

Pð0;1Þð1Þ ¼ ð1�mÞ2
1

N
þ

m2

D� 1

1

N
,

Pð0;1Þð2;0Þ ¼ 2mð1�mÞ þm2 1�
1

D� 1

� �
,

Pð2;0Þð1Þ ¼ m 1�
1

D� 1

� �
m

D� 1

1

N
þ 2ð1�mÞ

m

D� 1

1

N
,
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Pð2;0Þð0;1Þ ¼ 2ð1�mÞ
m

D� 1
1�

1

N

� �
þm 1�

1

D� 1

� �
m

D� 1
1�

1

N

� �
,

Pð0;0;1Þð1Þ ¼ ð1�mÞ3
1

N2
þm

m

D� 1

� �2 1

N2
,

Pð0;0;1Þð0;1Þ ¼ 3ð1�mÞ3
1

N
1�

1

N

� �
þ 3m

m

D� 1

� �2 1

N
1�

1

N

� �
,

Pð0;0;1Þð2;0Þ ¼ 3mð1�mÞ2
1

N
þ 3m

m

D� 1
ð1�mÞ

1

N
þ 3m2 1�

1

D� 1

� �
m

D� 1

1

N
,

Pð0;0;1Þð1;1;0Þ ¼ 3mð1�mÞ2 1�
1

N

� �
þ 3ð1�mÞm

m

D� 1
1�

1

N

� �
þ 3m2 1�

1

D� 1

� �
m

D� 1
1�

1

N

� �
,

Pð0;0;1Þð3;0;0Þ ¼ 3m2ð1�mÞ 1�
1

D� 1

� �
þm3 1�

1

D� 1

� �
1�

2

D� 1

� �
,

Pð1;1;0Þð1Þ ¼ ð1�mÞ2
m

D� 1

1

N2
þ ð1�mÞ

m

D� 1

� �2 1

N2
þm 1�

1

D� 1

� �
m

D� 1

� �2 1

N2
,

Pð1;1;0Þð0;1Þ ¼ 3ð1�mÞ2
m

D� 1

1

N
1�

1

N

� �
þ 3ð1�mÞ

m
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1

N

� �
þ 3m 1�
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� �
m

D� 1

� �2 1

N
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1

N

� �
,

Pð1;1;0Þð2;0Þ ¼ ð1�mÞ3
1

N
þ ð1�mÞ2

1

N
m 1�

1

D� 1

� �
þ 2ð1�mÞ2

m

D� 1

1

N

þ ð1�mÞ 1�
1

D� 1

� �
m

m

D� 1

1

N
þ 2m

m

D� 1
ð1�mÞ 1�

1

D� 1

� �
1

N
þ 2ð1�mÞm 1�
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� �
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m
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1
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� �
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� �
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N
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� �
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Pð1;1;0Þð3;0;0Þ ¼ 2ð1�mÞ2m 1�
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Pð3;0;0Þð0;0;1Þ ¼ 3ð1�mÞ
m
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� �
1�

2

N

� �
,

Pð3;0;0Þð1;1;0Þ ¼ 6ð1�mÞ2
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� �
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�ð1�mÞ 1�
2

D� 1

� �
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� �
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� �
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� �
.

A.2. Expected coalescence times for samples of three individuals

From the previous exact transition probabilities (Appendix A.1), together with (15) and (16), we get the exact
expressions for Qn;n0 and ln for all vectors n; n0 corresponding to samples of individuals of size two and three in the general
case (without neglecting simultaneous coalescence and/or migration events). Using Maple, we can solve the systems of
linear equations (I) and (II) and derive the exact expected coalescence times for samples of two and three individuals. We
find:

E0ðtð0;0;1ÞÞ ¼
4

3
þ

A1

B1
,

where

A1 ¼ ð�m4D5 þ 5m3D5 � 10m2D5 þ 9mD5 � 3D5 þ ð2=3Þm4D4 � ð25=3Þm3D4 þ 27m2D4 � 34mD4

þ 15D4 þ ð10=3Þm3D3 � 24m2D3 þ 48mD3 � 30D3 þ 7m2D2 � 30mD2 þ 30D2 þ 7mD� 15Dþ 3ÞN

þ ð1=3ÞDð6þ 69mD3 � 15m3D4 � 21mD4 � 10m3D2 � 6mþ 39mD� 14m2Dþ 27m2D4 � 24D� 2m4D3

þ 25m3D3 � 68m2D3 � 81mD2 þ 55m2D2 þ 3m4D4 � 24D3 þ 36D2 þ 6D4Þ,

B1 ¼ Dð�15m3D4N2 þ 15m3D3N2 � 54mD2N2 � 54m2D3N2 þ 27m2D2N2

þ 3m4D4N2 þ 27m2D4N2 � 18mD4N2 þ 18mDN2 þ 54mD3N2 þ 20m3D2N

þ 207mD2N þ 63mD4N � 65m3D3N � 9m4D4N þ 4m4D3N � 18N � 129m2D2N � 108D2N

� 81mDN � 18D4N þ 24m2DN � 195mD3N þ 186m2D3N þ 72D3N � 81m2D4N þ 6mN þ 72DN

þ 45m3D4N þ 50m3D3 þ 72D2 � 20m3D2 þ 138mD3 þ 110m2D2 � 12m� 30m3D4 þ 54m2D4

� 48D3 � 42mD4 þ 12� 4m4D3 � 48Dþ 78mD� 28m2D� 162mD2 þ 12D4 � 136m2D3 þ 6m4D4Þ.

E0ðtð1;1;0ÞÞ ¼
4

3
þ

A2

B2
,

where

A2 ¼ � 12� 358m2D2 � 444m3D3 þ 88m3D2 � 780mD3 þ 912m2D3 þ 240D3 � 180D2

þ 66D6m� 120m4D6 � 6m6D6 � 150D6m2 þ 4m6D5 þ 28m5D4 � 12D6 þ 42m5D6

� 70m5D5 þ 180D6m3 þ 72Dþ 12mþ 312m4D5 þ ð18þ 425m2D2 þ 550m3D3

� 280m3D2=3þ 1090mD3 � 1200m2D3 � 360D3 þ 270D2 � 99D6mþ 180m4D6 þ 9m6D6

þ 225D6m2 � ð14=3Þm6D5 � 98m5D4=3þ 18D6 � 63m5D6 þ 287m5D5=3� 270D6m3 � 108D

� 10m� 1324m4D5=3þ 270D4 � 108D5 � 950m2D5 þ 1028m4D4=3� 1090m3D4 þ 1550m2D4 þ 505mD5

� 1040mD4 þ 2710m3D5=3� 244m4D3=3þ 149mD� 50m2D� 595mD2ÞN � 180D4 þ 72D5

þ 652m2D5 � 264m4D4 þ 804m3D4 � 1108m2D4 � 342mD5 þ 720mD4 � 628m3D5 þ 72m4D3

� 126mDþ 52m2Dþ 450mD2 � ð1=3Þð�18� 63m2D2 � 41m3D3 � 1062mD3 þ 450m2D3

þ 720D3 � 450D2 þ 189D6m� 63m4D6 � 261D6m2 � 54D6 þ 9m5D6 � 2m5D5

þ 180D6m3 þ 144Dþ 77m4D5 � 630D4 þ 288D5 þ 846m2D5 � 14m4D4 þ 262m3D4 � 972m2D4

� 807mD5 þ 1338mD4 � 401m3D5 � 51mDþ 393mD2ÞmN2,
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B2 ¼ Nmð�2Dþ 2þmDÞDð�15m3D4N2 þ 15m3D3N2 � 54mD2N2 � 54m2D3N2

þ 27m2D2N2 þ 3m4D4N2 þ 27m2D4N2 � 18mD4N2 þ 18mDN2 þ 54mD3N2 þ 20m3D2N

þ 207mD2N þ 63mD4N � 65m3D3N � 9m4D4N þ 4m4D3N � 18N � 129m2D2N � 108D2N

� 81mDN � 18D4N þ 24m2DN � 195mD3N þ 186m2D3N þ 72D3N � 81m2D4N þ 6mN

þ 72DN þ 45m3D4N þ 50m3D3 þ 72D2 � 20m3D2 þ 138mD3 þ 110m2D2 � 12m� 30m3D4

þ 54m2D4 � 48D3 � 42mD4 þ 12� 4m4D3 � 48Dþ 78mD� 28m2D� 162mD2 þ 12D4 � 136m2D3 þ 6m4D4Þ.

E0ðtð3;0;0ÞÞ ¼
4

3
þ

A3

B3
,

where

A3 ¼ � 16� 512m2D2 � 636m3D3 þ 132m3D2 � 1060mD3 þ 1268m2D3 þ 320D3 � 240D2

þ 88D6m� 160m4D6 � 8m6D6 � 200D6m2 þ 6m6D5 þ 42m5D4 � 16D6 þ 56m5D6

� 98m5D5 þ 240D6m3 þ 96Dþ 18mþ 428m4D5 � 240D4 þ 96D5 þ 878m2D5 � 376m4D4

þ 1116m3D4 � 1512m2D4 � 458mD5 þ 970mD4 � 852m3D5 þ 108m4D3 � 178mDþ 78m2D

þ 620mD2 � ð1=3Þð�18� 63m2D2 � 41m3D3 � 1314mD3 þ 537m2D3 þ 900D3

� 540D2 þ 252D6m� 84m4D6 � 348D6m2 � 72D6 þ 12m5D6 � 2m5D5 þ 240D6m3

þ 162Dþ 98m4D5 � 810D4 þ 378D5 þ 1107m2D5 � 14m4D4 þ 322m3D4 � 1233m2D4 � 1059mD5

þ 1716mD4 � 521m3D5 � 51mDþ 456mD2ÞmN2 þ ð24þ 592m2D2 þ 763m3D3 � 403m3D2=3

þ 1470mD3 � 1638m2D3 � 480D3 þ 360D2 � 132D6mþ 240m4D6 þ 12m6D6 þ 300D6m2

� 20m6D5=3� 140m5D4=3þ 24D6 � 84m5D6 þ 392m5D5=3� 360D6m3 � 144D� 15m

� 1789m4D5=3þ 360D4 � 144D5 � 1273m2D5 þ 1418m4D4=3� 1483m3D4 þ 2092m2D4 þ 675mD5

� 1395mD4 þ 3643m3D5=3� 349m4D3=3þ 207mD� 73m2D� 810mD2ÞN,

B3 ¼ Nmð�2Dþ 2þmDÞDð�15m3D4N2 þ 15m3D3N2 � 54mD2N2 � 54m2D3N2

þ 27m2D2N2 þ 3m4D4N2 þ 27m2D4N2 � 18mD4N2 þ 18mDN2 þ 54mD3N2 þ 20m3D2N

þ 207mD2N þ 63mD4N � 65m3D3N � 9m4D4N þ 4m4D3N � 18N � 129m2D2N � 108D2N

� 81mDN � 18D4N þ 24m2DN � 195mD3N þ 186m2D3N þ 72D3N � 81m2D4N þ 6mN

þ 72DN þ 45m3D4N þ 50m3D3 þ 72D2 � 20m3D2 þ 138mD3 þ 110m2D2 � 12m� 30m3D4

þ 54m2D4 � 48D3 � 42mD4 þ 12� 4m4D3 � 48Dþ 78mD� 28m2D� 162mD2 þ 12D4 � 136m2D3 þ 6m4D4Þ.
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