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Abstract

A composite-conditional-likelihood (CCL) approach is proposed to map the position of a
trait-influencing mutation (TIM) using the ancestral recombination graph (ARG) and importance
sampling to reconstruct the genealogy of DNA sequences with respect to windows of marker loci
and predict the linkage disequilibrium pattern observed in a sample of cases and controls. The
method is designed to fine-map the location of a disease mutation, not as an association study.
The CCL function proposed for the position of the TIM is a weighted product of conditional
likelihood functions for windows of a given number of marker loci that encompass the TIM locus,
given the sample configuration at the marker loci in those windows. A rare recessive allele is
assumed for the TIM and single nucleotide polymorphisms (SNPs) are considered as markers. The
method is applied to a range of simulated data sets. Not only do the CCL profiles converge more
rapidly with smaller window sizes as the number of simulated histories of the sampled sequences
increases, but the maximum-likelihood estimates for the position of the TIM remain as satisfactory,
while requiring significantly less computing time. The simulations also suggest that non-random
samples, more precisely, a non-proportional number of controls versus the number of cases, has
little effect on the estimation procedure as well as sample size and marker density beyond some
threshold values. Moreover, when compared with some other recent methods under the same
assumptions, the CCL approach proves to be competitive.
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1 Introduction

Linkage disequilibrium (LD) refers to the non-random association of variants
along a DNA sequence. Suppose that, some generations ago, a mutation cre-
ating or influencing a given trait and responsible for a disease occurred on a
certain sequence. Such a mutation will be called a trait-influencing mutation
(TIM). If this mutation is rare enough so that it occurred only once in the
history of the current population, all the individuals showing the trait, the
cases, not only bear the disease allele from the original bearer, but also share
some genetic material identical by descent (IBD) in the vicinity of the TIM lo-
cus. The original sequence on which the mutation occurred will not descend to
the current cases in one invariant block however; this sequence will be broken
into pieces by recombination events and altered by mutation events elsewhere
along the sequence. The linkage disequilibrium pattern around the TIM locus
is the result of all such events and, conversely, this pattern gives information
about the exact position of the TIM.

As noted by Nordborg and Tavaré (2002), the main difference between
LD analysis and linkage analysis is found in the type of sample that is under
study rather than in the methodology that is used. Whereas linkage analysis
considers sequences taken in closely related individuals whose recent genealo-
gies are known, at least in part, to evaluate the likelihood of the position of
the TIM, LD analysis concerns sequences that are chosen at random but are
nonetheless related by their unknown ancestry since they come from the same
population. Due to the larger number of recombination events that can occur
when one considers the whole ancestry of the sample, mapping methods based
on linkage disequilibrium in random samples may achieve a higher resolution
than methods based on linkage analysis on family data whose limits have been
pointed out by Boehnke (1994). For this reason, one might prefer the former
methods for gene mapping at a finer scale.

Several measures of pairwise linkage disequilibrium used for fine-scale map-
ping have been studied and compared (see, e.g., Devlin and Risch 1995, and
references therein). Such measures provide a level of association between a
marker locus and a disease mutation locus. Most methods for gene mapping
which use statistics based on single markers one at a time, or combinations
of single markers (Terwilliger 1995, Xiong and Guo 1997, Collins and Morton
1998), ignore or underestimate the dependence of linked markers. As an il-
lustration of this point, consider Figure 1 which shows association between 30
marker loci and a disease mutation locus as measured by r2, the square of the
correlation coefficient between alleles at two loci, for three data sets identified
by A, B and F (see Section 4 for details). A high level of association around
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Figure 1. Association between 30 marker loci and a disease mutation locus
for three data sets, A, B and F. The horizontal axis is for the position in
the sequence (in cM) and the vertical axis for the value of r2. A red triangle
indicates the position of the putative mutation.

the disease mutation locus is observed for the data set B, while association
for the data sets A and F is almost nonexistent so that it is useless to lo-
cate the disease mutation. The variability of such statistics has already been
pointed out (see, e.g., Nordborg and Tavaré 2002). Likelihood methods based
on multilocus linkage disequilibrium are generally more difficult to develop
and implement, but they are also expected to give more precise estimates for
the location of a TIM. Notice that other multilocus measures, e.g., the level
of homozygosity (Sabatti and Risch 2002) or entropy (see, e.g., Nothnagel et
al. 2002), have also been proposed.

One important aspect of any LD-based likelihood method is how the ge-
nealogy is modeled. The simplest assumption is to suppose a star genealogy
for the cases (Figure 2, i). All lineages at the TIM locus directly coalesce
backward in time to the most recent common ancestor (MRCA). This is the
assumption made in McPeek and Strahs (1999), Morris et al. (2000) and Liu
et al. (2001), for example, in which the portion of the original sequence around
the TIM locus inherited by the current cases is inferred from mutation and
sharing patterns at given marker loci. A star genealogy has the advantage to
simplify the analysis since then, given the MRCA, all sampled sequences are
independent and some correlation can be taken into account by introducing
correcting terms. Such a genealogy appears to be appropriate for a very fast
expanding population. Another assumption is to suppose a tree genealogy for
the cases with a succession of coalescence events at the TIM locus from the
sampled sequences to the MRCA as in Rannala and Slatkin (1998), Rannala
and Reeve (2001), Garner and Slatkin (2002)(see Figure 2, ii). Morris et al.
(2002) uses a tree genealogy for the cases and a star genealogy for the con-
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trols. A tree genealogy does not assume independence between the sampled
sequences given the MRCA, but it ignores recombination events between them
and between any two ancestral sequences. If the sample size is very small and
recombination events very rare, this assumption makes sense, but in general
we have to consider the possibility that an ancestral sequence comes from two
parental ancestral sequences that have recombined. This will be the case if
the recombination event occurs within the ancestral material of the sequence.
Going backward in time, such a sequence will have two parental sequences
bearing some material ancestral to the sample, and not only one. Thus, this
leads to a graph genealogy, called an ancestral recombination graph, ARG
(Griffiths 1981, Hudson 1983, Griffiths and Marjoram 1996) (see Figure 2,
iii). The incorporation of such a graph in gene mapping based on a finite
set of markers observed in cases as well as in controls is the objective of the
present work. Zollner and Pritchard (2005) considered a local approximation
of the ARG at a focal point along the sequence. We will consider the ARG at
multiple points at a time.

3
2

1

1

a b c d e f g h

(iii) ARG genealogy

c d e f

(ii) Tree genealogy

f e

c d

(i) Star genealogy

F TIM

Figure 2. Schematic representation of three genealogies for a sample of 8
sequences at 5 loci: four cases in black that bear a disease allele at locus 3
(c, d, e and f) and four controls in blue (a, b, g and h); for a primitive allele
at an ancestral locus; for a derived allele at an ancestral locus; for a non-
ancestral locus; m for a recombination event between loci m and m+1. (i) Star
genealogy for cases; (ii) Tree genealogy for cases; (iii) Ancestral recombination
graph for cases and controls.
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The ARG is a birth and death process that generalizes the coalescent
(Kingman 1982) by allowing for recombination events when one follows the
ancestry of sampled sequences backward in time. Excellent reviews and per-
spectives on the subject can be found in the literature (Hudson 1990, Nord-
borg 2001, Tavaré and Zeitouni 2004, Nordborg and Tavaré 2002, Hein et al.
2005, Wakeley 2008). The approach can be used to deduce a recurrence equa-
tion backward in time for the ancestral material of sampled sequences under
recombination and mutation according, e.g., to an infinitely-many-sites muta-
tion scheme. Then, the likelihood of the sampled sequences can be estimated
using importance sampling to reconstruct the unknown genealogy. This has
been done, e.g., to evaluate the recombination rate (Griffiths and Marjoram
1996, Fearnhead and Donnelly 2001) and the mutation rate (Stephens and
Donnelly 2000), or to map a TIM locus based on single nucleotide polymor-
phisms (SNPs) as markers with a primitive type and a derived type at each
locus (Larribe et al. 2002). The primitive type refers to the allele of the most
recent common ancestor, and has not the same meaning as an ancestral lo-
cus, as we shall see in section 2. The derived type corresponds to the mutant
allele. Other approaches to reconstruct unknown genealogies and estimate
unknown parameters include Markov chains Monte Carlo (MCMC) methods
and Bayesian inference (Kuhner et al. 2000, Nielsen 2000). Unfortunately, the
statistical procedures to deal with missing data, that is, importance sampling
and MCMC, require so intensive computing that they are untractable in most
practical cases in estimating a full-likelihood function based on all the infor-
mation available in sampled DNA sequences. Recently, Zollner and Pritchard
(2005) proposed a local approximation of the ARG in the vicinity of a putative
disease mutation locus to simplify gene mapping in a case-control context. On
the other hand, Minichiello and Durbin (2006) developed a heuristic algorithm
to infer plausible ancestral recombination graphs. More recently, Wu (2007)
developed an association method using ancestral recombination graphs that
minimize the number of recombination events.

A composite-likelihood approach (see, e.g., Lindsay 1988, Varin and Vi-
doni 2005, Varin 2008) has already been proposed to tackle the problem of
excessive computing time and it has been applied to the estimation of the re-
combination rate (Hudson 2001, Fearnhead and Donnelly 2002, McVean et al.
2002, Wall 2004). Basically, a composite likelihood function is some average of
marginal likelihood functions, each one using only part of all the information
available and requiring less computing time to estimate than the full-likelihood
function. In the case of the recombination rate, for instance, it may be a prod-
uct of likelihood functions for two or three sites at a time. Li and Stephens
(2003) proposed a product of approximate conditional (PAC) likelihoods for
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haplotypes sampled sequentially one at a time.
Other tractable methods to estimate the recombination rate include sum-

mary statistics including bounds for the minimum number of recombination
events required to explain the history of the sample (see, e.g., Hudson and Ka-
plan 1985, Hudson 1987, Wall 2000, Myers and Griffiths 2003, and references
therein).

In this paper, we present and extend a maximum-likelihood approach to
estimate the position of a TIM from observed markers in cases and controls
that is based on the ARG coupled with importance sampling originally devel-
oped by Griffiths and Marjoram (1996) to estimate the recombination rate.
In section 2, we describe in detail the full-likelihood procedure for a rare re-
cessive disease allele and a given set of SNPs as markers. The recurrence
equation backward in time for the ancestral material of sampled sequences
and the likelihood function with a given proposal distribution for their history
are deduced. The mutation term in the recurrence equation and some mis-
prints in the likelihood function given in Larribe et al. (2002) are corrected.
In section 3, we propose a composite-conditional-likelihood (CCL) function
which is a weighted product of conditional likelihood functions associated to
windows of k contiguous marker loci, the condition being the observed sample
configuration at those marker loci and the weight being inversely proportional
to the number of windows of that size encompassing the TIM locus. Then,
the method is applied to a range of data sets in section 4. Numerical compar-
isons with other recent methods are presented in section 5. The results and
limitations of the method are discussed in section 6.

2 Method for single nucleotide polymorphisms

We assume that the disease allele under study is rare and recessive: a case
individual is supposed to carry the disease allele twice (the risk allele, also
called derived allele) at the TIM locus, whereas a control individual is supposed
to carry the non-disease allele twice (also called primitive) at the TIM locus.
There is a one-to-one correspondence between the individual phenotype and
the set of alleles at the TIM locus, so that the allele at this locus carried by
sequences sampled in cases and controls is known with certainty. This is a
basic genetic model to test the method proposed, but it can be extended to
deal with more general situations allowing for partial penetrance. In such a
case, the alleles at the TIM locus have to be inferred using, e.g., the frequency
of the disease in the whole population and a Bayesian approach. Essentially,

5

Larribe and Lessard: A Composite-Conditional-Likelihood Approach

Published by The Berkeley Electronic Press, 2008



the method proposed is based on reconstructing the genealogy of sampled
sequences knowing the alleles at given marker loci and a TIM locus. This is
precisely what characterizes the present method.

A sequence of type i with respect to L loci is described by an ordered
L-tuple s(i) = (s

(i)
1 , ..., s

(i)
L ) where s

(i)
m represents the genetic material at the

m-th locus from the beginning (left end by convention) to the end (right end
by convention) of a DNA string. One of these loci is the unknown TIM locus,
whose exact position has to be estimated, while the others are known marker
loci. The distance between loci m and m+ 1, which corresponds to the length
of segment m, is represented by the recombination rate between these two loci
and is denoted by rm. The corresponding distance from the beginning of the
sequence to the TIM locus is denoted by rT . If the TIM locus corresponds to
locus m, then the distances between the TIM locus and the first loci to its left
and right, rm−1 and rm, are represented by rl and rr, respectively. Interference
is ignored, which means that the distances rm for m = 1, ..., L are supposed to
be additive. This is a reasonable assumption if the distances are small enough.
In particular, the total length of the sequence, from the first locus to the last
one, is r =

∑
m rm. It is assumed throughout that the TIM locus does not

correspond to the first or last locus so that 0 < rT < r. Figure 3 illustrates
this situation, where x1, . . . , xL refer to the positions of the L loci with the
convention x1 = 0.

The mutation rate per sequence per generation at locus m is denoted by um.
It is assumed throughout this section that mutation is so rare that it occurred
only once in the coalescent tree of sampled sequences at every polymorphic
locus. This is a reasonable assumption for SNPs. Moreover, the older and
the younger types, called the primitive and derived types and represented by
0 and 1, respectively, are present in the sample and supposed to be known
(these types can be inferred from others species, for instance). Therefore, we

have s
(i)
m = 0 or 1 for every i and m considered.

We will trace back the history of a sample of sequences from the time
of the sampling to the time of the most recent common ancestor (MRCA).

x1 x2 xm−1 xm xm+1 xL−1 xL

r1 rm−1 rm rL−1

rT r − rT

rl rr

Figure 3. Illustration of a sequence of L loci with the TIM locus correspond-
ing to locus m.
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A sequence s(i) = (s
(i)
1 , ..., s

(i)
L ) ancestral to the sample is characterized by a

subset of loci at which it is ancestral, the subset of loci that are copied in
the sample, denoted by A(i), and the genetic material it carries at these loci,
that is, s

(i)
m for all m in A(i). These define the type of an ancestral sequence

i. Moreover, let B(i) be the set of all loci m such that m1 ≤ m < m2 for
some m1 and m2 in A(i). Notice that a mutation event at locus m of a given
sequence of type i affects the ancestral material if m belongs to A(i), while
a recombination event in segment m between loci m and m + 1 does it if m
belongs to B(i). The sets A(i) and B(i) represent the ancestral markers and
segments, respectively, of a sequence of type i.

A mutation event can occur backward in time at locus m in A(i) of an
ancestral sequence of type i only if there is a single ancestral sequence of type
i and a single type i in the ancestral material with s

(i)
m = 1, which means

s
(·)
m =

∑
i n

(i)
m s

(i)
m = 1, where n

(i)
m is the multiplicity of the sequences of type i

ancestral at locus m. Then, the locus m will be said unique and the parental
sequence of the sequence of type i will be of type j satisfying s

(j)
m = 0 and

s
(j)
l = s

(i)
l for all l 6= m in A(j) = A(i).

On the other hand, a recombination event in segment m of an ancestral
sequence i with B(i) containing m will produce backward in time two parental
sequences of types j and k satisfying s

(j)
l = s

(i)
l for l ≤ m in A(i), which defines

A(j), and s
(k)
l = s

(i)
l for l ≥ m+ 1 in A(i), which defines A(k).

Finally, a coalescence event between two ancestral sequences of types i and
j can occur backward in time only if these are compatible in the sense that
they are of the same type, that is, i = j, or they are of different types, that
is, i 6= j, but then s

(i)
m = s

(j)
m for all m in both A(i) and A(j). Then, the re-

sult of the coalescence event will be a parental sequence of type k satisfying
s
(k)
m = s

(i)
m if m belongs to A(i) and s

(k)
m = s

(j)
m if m belongs to A(j), with the

parental sequence being ancestral exactly at all these markers.

s(1) s(1) s(2) s(3) s(4)

C1

s(1)

C5
1,2

s(5)

M8
3 (3)

s(8)
3

R6,7
4 (3)

s(6) s(7)

Figure 4. Examples of events backward in time affecting the ancestral mate-
rial of sequences.
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We will use the following notation for the different events of coalescence
(C ), mutation (M ) and recombination (R) backward in time that can affect
the ancestral material of the initial sample:

• Ci for C of two sequences of type i,

• Ck
ij for C of two sequences of types i and j, i 6= j, to a parental sequence

of type k,

• M j
i (m) for M at locus m of a sequence of type i to a parental sequence

of type j,

• Rjk
i (m) for R anywhere in segment m of a sequence of type i to two

parental sequences of types j and k.

We refer to Figure 4 for examples of events backward in time.
Time is measured in units of 2N(0) generations, where N(0) is the popu-

lation size at the time of sampling. The τ -th event backward in time affecting
the ancestral material occurs at time back tτ , with τ = 0 corresponding to
the initial sampling and τ = τ ∗ corresponding to the coalescence event to the
MRCA.

The population size at time back t is assumed to be given by the equation
N(t) = N(0) exp(−κ t), where κ is positive if the population is growing expo-
nentially fast forward in time or negative if it is declining. If κ = 0, then the
population size is constant and denoted by N . The ratio λ(t) = N(0)/N(t) is
used throughout.

Let ρm = 4N(0)rm be the scaled recombination rate per generation between
loci m and m+ 1. For the whole sequence, the scaled recombination rate per
generation is ρ =

∑
m ρm.

Similarly, let θm = 4N(0)um be the scaled mutation rate at locus m. For
the L loci, the scaled mutation rate is θ =

∑
m θm. If um = u for m = 1, ..., L,

then θm = θ/L for m = 1, ..., L where θ = 4N(0)Lu is the scaled mutation
rate per generation for the whole sequence.

The configuration of the ancestral material at time back tτ is given by the
types of the ancestral sequences with their multiplicities following the τ -th
change in the ancestral material and is denoted by Hτ . In particular, H0 at
time t0 = 0 is the set of the sampled sequences, and Hτ∗ at time tτ∗ contains
only one sequence, the sequence carried by the MRCA. Owing to the assump-
tions made, this sequence has 0 at every locus.
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If there are ni ancestral sequences of type i at time back tτ for a total
number of ancestral sequences n =

∑
i ni, then the rates of change in the

ancestral material by coalescence, mutation and recombination, respectively,
at a subsequent time back t, given no change from tτ to t, are n(n− 1)λ(t)/2,
nαθ/2 and nβρ/2, respectively, where α and β are the probabilities that a
mutation event and a recombination event, respectively, affect the ancestral
material, that is,

α =
∑
i

ni
n

∑
m∈A(i)

θm
θ

and
β =

∑
i

ni
n

∑
m∈B(i)

ρm
ρ
.

The total rate of change in the ancestral material is then nD(t)/2, where

D(t) = (n− 1)λ(t) + αθ + βρ.

The time of occurrence of the (τ +1)-th change in the ancestral material given
the time of occurrence of the τ -th change has some density function determined
by the total rate of change, and represented by g(tτ+1|tτ ), that can be simulated
using mutually independent uniform random variables (Donnelly and Tavaré
1995, Griffiths and Tavaré 1996, Larribe et al. 2002). The probability that the
(τ + 1)-th change in the ancestral material is caused by a coalescence event,
a mutation event and a recombination event, respectively, given the time of
occurrence of the τ -th change and Hτ , is then

Pτ (C) =

∫ ∞
tτ

[
(n− 1)λ(tτ+1)

D(tτ+1)

]
g(tτ+1|tτ ) dtτ+1,

Pτ (M) =

∫ ∞
tτ

[
αθ

D(tτ+1)

]
g(tτ+1|tτ ) dtτ+1,

Pτ (R) =

∫ ∞
tτ

[
βρ

D(tτ+1)

]
g(tτ+1|tτ ) dtτ+1,

respectively, by conditioning on the value taken by tτ+1 given the value of tτ .
In the case of a constant population size, λ(t) = 1 and the above probabilities
reduce to

Pτ (C) =
n− 1

n− 1 + αθ + βρ
,

Pτ (M) =
αθ

n− 1 + αθ + βρ
,
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Pτ (R) =
βρ

n− 1 + αθ + βρ
.

Considering only one mutation event at every polymorphic locus with 0 and
1 being the primitive and derived types, respectively, and assuming a random
sample of ancestral sequences at every step of change backward in time by
coalescence, mutation or recombination, the likelihood of the configuration
Hτ is related to the likelihood of all previous possible configurations Hτ+1 by
the recurrence system of equations

Q(Hτ ) = Pτ (C)
∑
ni>1

(ni − 1)

(n− 1)
Q(Hτ + Ci)

+ Pτ (C)
∑
i 6=j

compatible

2(nk + 1− δik − δjk)
(n− 1)

Q(Hτ + Ck
ij)

+ Pτ (M)
∑
i

∑
m∈A(i)

unique

θm
αθ

(nj + 1)

n
Q(Hτ +M j

i (m)) (1)

+ Pτ (R)
∑
i

∑
m∈B(i)

ρm
βρ

(nj + 1)(nk + 1)

n(n+ 1)
Q(Hτ +Rjk

i (m)).

This recurrence system of equations simplifies and corrects an expression given
in Larribe et al. (2002) in the case of a finite set of L loci with a uniform
mutation rate, that is, θm = θ/L. We refer to Griffiths and Marjoram (1996)
for the case of a continuous set of loci.

In the above system of equations, the notation Hτ + Ci is used for the
configuration obtained from the configuration Hτ and the coalescence of two
ancestral sequences of type i, and similarly for the other possibilities. The
equations are obtained by conditioning on the kind of event changing the
ancestral material at time back tτ+1. Given a mutation event in the ancestral
material, for instance, whose probability is Pτ (M), the configuration Hτ is
compatible only with a configuration Hτ+1 = Hτ + M j

i (m) with one less
sequence of type i but one more of type j for some sequence of type i that is
ancestral at locus m, and the only one to carry 1 at this locus in Hτ , and then
the mutation event must occur at locus m of a parental sequence of type j,
whose probability is (nj +1)/n times θm/θ divided by α, the probability of the
condition that the mutation event occurs in the ancestral material. Similarly,
given a coalescence event, whose probability is Pτ (C), the configuration Hτ is
compatible with either (a) Hτ+1 = Hτ +Ci containing one less sequence whose
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type is i, and then one sequence of this type must be the parental sequence
of the two that coalesce, whose probability is (ni − 1)/(n− 1), or (b) Hτ+1 =
Hτ+C

k
ij containing one less sequence of type i and one less of type j 6= i but one

more of type k, and then one sequence of type k must be the parental sequence
of two sequences of types i and j, whose probability is (nk + 1− δik − δjk)/(n−
1) times 2, since the sequences are not ordered. Finally, given a recombination
event, whose probability is Pτ (R), the configuration Hτ is compatible only
with a configuration Hτ+1 = Hτ + Rjk

i (m) with one less sequence of type i
but one more of type j and one more of type k for some sequence of type i
with m in B(i), and then the recombination event must occur in segment m
of two parental sequences of types j and k to produce a sequence of type i,
whose probability is [(nj + 1)(nk + 1)]/[n(n+ 1)] times ρm/ρ divided by β, the
probability of the condition that the recombination event affects the ancestral
material.

The above system of equations is in the form

Q(Hτ ) =
∑
Hτ+1

a(Hτ ,Hτ+1)Q(Hτ+1),

where

a(Hτ ,Hτ+1) =



Pτ (C)(ni−1)
(n−1)

if Hτ+1 = Hτ + Ci,

2Pτ (C)(nk+1−δik−δjk)
(n−1)

if Hτ+1 = Hτ + Ck
ij,

Pτ (M)θm(nj+1)

αθn
if Hτ+1 = Hτ +M j

i (m),

Pτ (R)ρm(nj+1)(nk+1)

βρn(n+1)
if Hτ+1 = Hτ +Rjk

i (m).

This system cannot be used directly to reconstruct the history of the sample
backward in time. A proposal distribution for the conditional probabilities
backward in time P (Hτ+1 | Hτ ) is needed. We choose

P (Hτ+1 | Hτ ) =
b(Hτ ,Hτ+1)

f(Hτ )
, (2)

where

b(Hτ ,Hτ+1) =


a(Hτ ,Hτ+1)

(nj+1)(nk+1)
if Hτ+1 = Hτ +Rjk

i (m),

a(Hτ ,Hτ+1) otherwise,
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while f(Hτ ) is a normalizing factor, that is,

f(Hτ ) =
∑
Hτ+1

b(Hτ ,Hτ+1).

Therefore, we get

Q(Hτ ) =
∑
Hτ+1

f(Hτ ,Hτ+1)P (Hτ+1|Hτ )Q(Hτ+1),

where

f(Hτ ,Hτ+1) =

 (nj + 1)(nk + 1)f(Hτ ) if Hτ+1 = Hτ +Rjk
i (m),

f(Hτ ) otherwise.

(3)

Notice that the value of b(Hτ ,Hτ+1) when Hτ+1 = Hτ + Rjk
i (m) reduces to

[Pτ (R)ρm]/[βρn(n + 1)], which does not depends on i, j, k. This simplifies
the procedure since we just have to take into account the possibility of a
recombination event between loci m and m+1 first, and then choose at random
the triplet i, j, k if such an event occurs.

Iterating from τ = 0 to τ = τ ∗ − 1, we have

Q(H0) = EP

[
Q(Hτ∗)

τ∗−1∏
τ=0

f(Hτ ,Hτ+1)

]
,

where the expectation is on P , the proposal distribution defined previously,
given H0. This can be seen as an importance sampling procedure (see, e.g.,
Stephens 2001, and references therein). The proposal distribution depends
on unknown parameters, including the parameter to estimate, rT . Using a
proposal distribution P0 that uses a trial value r0 for rT and known estimates
for the other parameters (mutation rates, initial population size and population
growth rate), the likelihood of the initial sample takes the form

Q(H0) = EP0

[
Q(Hτ∗)

τ∗−1∏
τ=0

f(Hτ ,Hτ+1)P (Hτ+1|Hτ )

P0(Hτ+1|Hτ )

]
.

The assumptions are such that the configuration Hτ∗ must contain only the
sequence with 0 at every locus whose likelihood is 1, that is, Q(Hτ∗) = 1.

The trial value r0 for the position of the TIM is usually chosen in the
middle of two adjacent marker loci, and the L − 2 pairs of such marker loci
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are considered in turn to cover the whole sequence. Assuming that the TIM
locus corresponds to locus m, then r0 is chosen in the middle of the interval
[xm−1, xm+1], which will be referred to as interval m. Then, an estimate of the
likelihood function for rT in interval m, represented by Lm(rT ) and given by
Q(H0) for rT in interval m and 1 elsewhere, is

L̂m(rT ) =
1

K

K∑
k=1

[
τ∗−1∏
τ=0

f(H
(k)
τ ,H

(k)
τ+1)P (H

(k)
τ+1|H

(k)
τ )

P0(H
(k)
τ+1|H

(k)
τ )

]
,

where H
(k)
τ for τ = 0, ..., τ ∗ and k = 1, ..., K are K histories of the sample

independently simulated backward in time using the proposal distribution P0

for a TIM at locus m. By convention, L̂m(rT ) = 1 for rT outside interval m.
The estimation procedure can be repeated with the maximum point of L̂m(rT )
in interval m as trial value for rT . Finally, after repeating the same procedure
for m = 2, ..., L− 1, the parameter rT is estimated by the maximum point of

L̂(rT ) =
L−1∏
m=2

L̂m(rT ) (4)

over the whole sequence, which is an estimate of the likelihood function L(rT ) =∏L−1
m=2 Lm(rT ). The maximum point is represented by r̂T .
Notice that we could have chosen b(Hτ ,Hτ+1) = a(Hτ ,Hτ+1) in the pro-

posal distribution for reconstructing the history of a sample backward in time,
in which case the expression for the likelihood of the sample configuration
would have taken a simpler form with f(Hτ ,Hτ+1) = f(Hτ ). However, this
choice would require to compute all the products (nj +1)(nk+1) at every step
of the reconstructing procedure even if no recombination event occurs, which
would significantly increase the simulation time.

Here is a sketch of the algorithm, called MapARG, to obtain an estimate
of the likelihood L(rT ).

1: Algorithm A1:
2: for m = 2, . . . , L− 1 do b for each interval m e
3: for k = 1, . . . , K do b K ancestral recombination graphs e
4: insert TIM in interval m.
5: for τ = 0, . . . , τ ? − 1 do b simulation of each step of the history e
6: 1. evaluate all possible states Hτ+1;
7: 2. evaluate P0(Hτ+1 | Hτ ) for these states with eq. (2);
8: 3. choose randomly an event among all possible events;
9: 4. evaluate f(Hτ ,Hτ+1) using eq. (3);
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10: 5. evaluate wτ (rT ) = f(Hτ ,Hτ+1)P (Hτ+1 | Hτ )/P0(Hτ+1 | Hτ )
11: end for
12: evaluate yk(rT ) =

∏τ?−1
τ=0 wτ (rT ).

13: end for
14: L̂m(rT ) = 1

K

∑K
k=1 yk(rT ). b likelihood in interval m e

15: end for
16: 1. evaluate L̂(rT ) =

∏L−1
m=2 L̂m(rT ). b global likelihood e

17: 2. r̂T corresponds to the maximum of L̂(rT ). b MLE e

3 Composite conditional likelihood

We propose to consider marginal likelihood functions based on the genetic
material carried by sampled sequences in cases and controls at a fixed number
d of contiguous marker loci, called windows of size d, as illustrated in Figure 5.
The total number of such windows is G = L− d, where L is the total number
of marker loci, including the TIM locus, and therefore L− 1 is the number of
marker loci. Going from the left to the right of the sequence, these windows
are numbered from 1 to G. Notice that interval m between the (m − 1)-th
marker locus and the next is included in window g if and only if g is comprised
between

g(m) = max(1,m+ 1− d)

and
g(m) = min(m− 1, L− d).

In such a case, let Lm,g(rT ) represent the marginal likelihood function for
the position of the TIM in interval m, as defined above, which uses only the
information in window g, that is, which ignores all marker loci outside window
g. Moreover, Lm,g(rT ) = 1 by convention if rT falls outside interval m.

Then, a composite-likelihood (CL) function for the position of the TIM
along the whole sequence which uses windows of size d and gives the same
weight to every interval can be defined as

CLd(rT ) =
L−1∏
m=2

 g(m)∏
g=g(m)

Lm,g(rT )

wm

,

where

wm =
1

g(m)− g(m) + 1
.
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(i) d = 2 1 2 3 4 5

• •
1
• •

2

• •
3 • •

4

(ii) d = 3 1 2 3 4 5

• •
1
• •

2• •
3

Figure 5. Examples of windows with 5 marker loci: (i) four windows of size
d = 2; (ii) three windows of size d = 3.

Such a function does not correspond to an exact likelihood, since the events
occurring in different windows are not independent, but it makes sense as an
average.

Actually, the above composite-likelihood function is not well defined. The
problem is that Lm,g(rT ) does not use the same information from one window
g to another. As a matter of fact, this function is the likelihood of the sample
configuration at the TIM locus including its position rT in interval m, rep-
resented by HrT

0 , jointly with the sample configuration at the d marker loci
belonging to window g, represented by Hg

0. This can be written as

Lm,g(rT ) = Q(HrT
0 ,H

g
0).

But the likelihood of Hg
0 may differ from one g to another. Therefore, we

propose to use the conditional marginal likelihood defined as

Lm,g(rT |Hg
0) =

Q(HrT
0 ,H

g
0)

Q(Hg
0)

(5)

and the corresponding composite-conditional-likelihood (CCL) function

CCLd(rT ) =
L−1∏
m=2

 g(m)∏
g=g(m)

Lm,g(rT |Hg
0)

wm

. (6)

If d = L − 1, that is, when one considers a single window for the whole
set of markers, then the function CCLL−1(rT ) is proportional to CLL−1(rT ),
which is equal to L(rT ). Therefore, this case corresponds to the full-likelihood
(FL) procedure.

When windows of size d are considered, the likelihood function is estimated
d−1 times in all intervals but the first d−2 and the last d−2, which is almost
all intervals if the number of markers is large compared to the window size.
This procedure can be compared to the full-likelihood procedure repeated the
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same number of times, that is, d− 1 times, with the composite-full-likelihood
(CFL) function

CFLd−1(rT ) =
d−1∏
g=1

(
L(g)(rT )

)1/(d−1)
=

L−1∏
m=2

(
d−1∏
g=1

L(g)
m (rT )

)1/(d−1)

,

where L(g)(rT ) for g = 1, ..., d − 1 are independent copies of the likelihood

function L(rT ) and similarly L
(g)
m (rT ) for the likelihood function Lm(rT ) in

interval m.
Since the proposal distribution used is far from being the ideal distribution

(see, e.g., Stephens and Donnelly 2001), it is challenging to find histories of
the subsample associated with high contributions to its likelihood. Recall that
this likelihood is an expectation with respect to the proposal distribution; the
likelihood increases significantly when a history associated with a high value is
found, and then decreases slowly as more histories associated with lower values
are simulated. The overall result is that the height of the likelihood function
fluctuates as the number of simulations increases. The CFL function, which
corresponds to a geometric average over several runs of simulations, should
help resolve this issue.

Here is the sketch of the algorithm used to obtain the composite condi-
tional likelihood. The expressions for Q(Hg

0) and Q(HrT
0 ,H

g
0) are evaluated

independently; the evaluation of Q(HrT
0 ,H

g
0) proceeds as in the previous sec-

tion (Algorithm A1), with the difference that it is done with d marker loci at
a time; the evaluation of Q(Hg

0) is also similar, but with two differences: (1)
it is done with d marker loci at a time, and (2) the TIM locus is not inserted
into the sequence.

1: Algorithm A2:
2: for g = 1, . . . , G do b for each window g e
3: evaluate Q(Hg

0) b denominator of eq. (5) e
4: for each interval in window g do
5: evaluate Q(HrT

0 ,H
g
0). b numerator of eq. (5) e

6: end for
7: evaluate Lm,g(rT | Hg

0). b eq. (5) e
8: end for
9: 1. evaluate ˆCCLd(rT ). b eq. (6) e

10: 2. r̂T corresponds to the maximum of ĈCLd(rT ). b MLE e
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4 Results on simulated data sets

A C++ program, named MapARG, implements the method described in the
previous section. Our objective here is to ascertain its validity and its accuracy
on a limited number of simulated data sets but under a variety of conditions.
The method is still computationally intensive, and it would take a long time
to get results for a large number of samples as in Morris et al. (2002), for one
thousand data sets.

Using the ms program of Hudson (2002) for generating sequences under
recombination in a neutral population of constant size, we have generated 16
samples of 10 000 sequences for a fixed value of the scaled recombination rate
corresponding to a fixed number of sites along the whole sequence (chosen
to be ρ = 100 for 250Kb and ρ = 500 for 1.25Mb), and a given number of
segregating loci (chosen to be 80). Despite the finite number of loci, the muta-
tion events are assumed to occur according to the infinitely-many-sites model,
which implies no recurrent mutation, at positions from the beginning to the
end of the sequence comprised between 0 to ρ in units of scaled recombination
rate. Therefore, the segregating loci are different from one sample to another.
Moreover, the scaled recombination rate ρm between loci m and m+1 is trans-
formed into a genetic scale, using rm = ρm/(4N) and a constant population
size N = 10000, which corresponds to the effective population size for humans
(see, e.g., Wall 2003, and references therein); this gives an approximation for
the genetic distance in cM between adjacent segregating loci.

Notice that the sample size corresponds to half the population size, since
2N = 20000, while the program in Hudson (2002) uses approximations based
on the assumption of a small sample in a large population inherent to the
coalescent.

In each sample, we have chosen the most polymorphic loci (namely, those
showing the highest heterozygosity) for the markers and the TIM. Then, the
TIM locus has been chosen between the first and third quartiles of the sequence
(in order to have marker loci on both sides of the TIM locus), such that the
frequency of the derived type at the TIM locus is as close as possible to a
given value ξ. This value has been chosen to be 0.1 in half of the samples
with sequences of total length 0.25cM (samples A, B, C, D, E, F, G, H), which
corresponds to a common disease, and 0.01 in the other half in the case of
sequences of total length 1.25cM (samples S, T, U, V, W, X, Y, Z), which
models a rare disease. The sequences that carry the derived type at the TIM
locus are considered to be cases, and the others that carry the primitive type
to be controls.

For comparison, Morris et al. (2002) considered frequencies for the disease
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Figure 6. Comparison of estimates based on CLd(rT ) and CCLd(rT ) for
sample B. The horizontal axis is for rT (in cM) and the vertical axis for the log-
likelihood. A thin line is for one run of simulations (K = 1t for each interval)
and a thick blue line for four runs combined (K = 4t for each interval). A
dashed vertical line indicates the real position of the TIM locus and a triangle
the value of the estimate r̂T . Small vertical lines on the horizontal axis indicate
marker loci. Results obtained with 40 loci.

allele comprised between 0.01 and 0.025 and sequences of length 2.25Mb. On
the other hand, Zollner and Pritchard (2005) worked with sequences of 1Mb.
The ancestral recombination graph becomes very complex, and the compu-
tation time necessary for simulations very long, when dealing with genetic
lengths that large. Then, there is almost independence between the first seg-
regating locus and the last one, while the adjacent segregating loci are closely
linked if the segregating loci are dense enough.

The analysis for the position of the TIM is done using a subsample taken
in the larger sample which is assumed to be representative of the whole pop-
ulation. Formally, the method requires a random subsample. In such a case
however, the subsample size has to be large to contain a significant number of
cases when the disease allele frequency is low. Fixing the numbers of cases and
controls in the subsample introduces a selection bias but ensures a minimum
of information on both groups. To do our first analysis, a balanced subsample
with 50 cases and 50 controls drawn at random without replacement in each
sample has been used.
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Figure 7. Comparison of estimates based on L(rT ), CFL9(rT ) and
CCL10(rT ) for sample D. Results obtained with 25 loci.

In order to reconstruct the history of the subsample, we have arbitrarily
chosen a mutation rate at every polymorphic locus equal to um = 5 × 10−5.
This assumption does not affect the estimation procedure as long as the rate
chosen is low enough not to allow for recurrent mutations (see the paragraph
about the effect of the mutation rate in the Discussion).

Figure 6 compares estimated profiles of the composite-conditional-likelihood
function, CCLd(rT ), and the composite-likelihood function, CLd(rT ), for d =
2, 4 and 6, obtained from simulations using the same data set (sample B).
The results show that the former keep the same general shape for the different
values of d, while this is not the case for the latter. The maximum likelihood
estimate of rT based on CCLd(rT ) proves to be robust, differing little with
different values of d. One might still expect a more precise estimate when a
larger value for d is used, since then less information is lost, but the value of
d may not have to be so large. Of course, the estimation procedure is faster
when d is smaller, since then less events have to be considered to reconstruct
the history of the subsample backward in time. To get the estimated profile
of CCLd(rT ) for d = 2 in Figure 6, the computation time was 3m 3s, but 17m
58s for d = 4 and 58m 5s for d = 6. Note however that the number of times
each interval between marker loci is considered, and therefore the number of
ancestral recombination graphs simulated, is not the same with different win-
dow sizes, being approximately three times larger with d = 4, and five times
larger with d = 6, than with d = 2.

Figure 7 compares the composite-conditional-likelihood procedure with
windows of size 10 to the full-likelihood procedure with 9 repetitions and the
composite-full-likelihood procedure with 10 repetitions. The CFL method ap-
pears to be less variable than the simple FL method, the estimates obtained
being less dependent on the number of simulations. This is also the case with
the CCL approach, which proves to be as efficient as the CFL method in
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Figure 8. Estimates based on CCL6(rT ) with 30 loci, for samples A to H,
and S to Z.

locating the TIM. A comparison with the results obtained in Larribe et al.
(2002) using the FL function shows also the superiority of the CCL approach.
From now on, we will report only results based on the composite-conditional-
likelihood function CCLd(rT ).

The composite-conditional-likelihood function, CCLd(rT ), has been esti-
mated four times for each of the simulated data sets using windows of size
6 (d = 6) and one thousand (K = 1000 or 1t) simulated histories of the
subsample for each of the 29 intervals each time. The results are presented
in Figure 8. The maximum likelihood estimate r̂T is most often in the right
interval and very close to the real position of the TIM locus. We can see
some variability between the four estimates obtained with different runs of
simulations, but the results are usually consistent from one run to another.

Different subsamples have been drawn from one of the sample to study the
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Figure 9. Effect of non-random selection of cases and controls on estimates
based on CCL5(rT ) with 20 loci for sample B: (a) 50 cases and 50 controls
(about 25 minutes in computation time); (b) and (c) 48 cases and 451
controls, for a frequency of the disease allele around 0.1 in the population
(more than 4 hours in computation time).

effect of subsample size and non-random selection of cases and controls. A bal-
anced subsample (50 random cases, 50 random controls) and two proportional
subsamples of size 500 (48 random cases and 451 random controls, giving a
frequency of cases in the subsample around the frequency of the disease allele
in the whole sample, which is equal to 0.1) have been considered. The val-
ues of all other parameters are as previously. Figure 9 shows the simulation
results. We can see some differences in the likelihood profiles, especially at
the beginning of the sequence, but the conclusions remain essentially similar.
We have also analyzed the same data using balanced subsamples of size 20,
50, 200 and 500 (this is the total number of sequences, so in each case half
are cases and the other half are controls). The simulation results (not shown)
show very little difference in the likelihood profiles. The main difference lies in
the computation time required to do the analysis: it is (roughly) proportional
to the subsample size.

Notice that only the most polymorphic loci have been used for the analy-
sis. This does not guarantee that the whole sequence is covered equally with
markers. The number of markers has to be large enough in order to avoid big
gasps between adjacent marker loci. Figure 10 shows simulation results using
the 20 (a), 30 (b) and 35 (c) most polymorphic loci in sample H and windows
of size d = 15. The position of the TIM in this example is in the first quarter
of the sequence, and even with the 30 most polymorphic loci, we have little
information on the beginning of the sequence and the TIM locus cannot be
found. With 35 loci however, this region is covered and the position of the
TIM is estimated accurately. Considering an increasing number of marker loci,
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from 2 to 70, in sample B (results not shown), we have obtained likelihood
profiles converging rather rapidly and showing little difference beyond 16 loci,
and almost none beyond 30. These numbers may of course vary from one
example to another.

It is interesting to compare the likelihood profiles in Figure 10 to the one
presented in Figure 8 for the same sample H, but with a smaller window size
of 6. We can see that increasing the window size improves the estimation
procedure. This has been verified also using sample A (Figure 11). Note
however that a window size d = 4 gives already a precise estimate in this
case, showing a substantial improvement from results obtained with d = 2 and
almost nothing to gain in increasing the window size to d = 14.

5 Comparisons

An interesting aspect of the composite-conditional-likelihood approach is that
it allows us to analyze long sequences. Longer is the sequence, more intricate is
the history of the sample. The analysis becomes rapidly untractable, in which
case the use of windows of marker loci is appealing. Consider for instance sim-
ulated sequences of length 33.27Mb, which corresponds roughly to the length
of the shortest human chromosome, with a disease allele of frequency equal
to 2.5%. Figure 12 shows the likelihood profile obtained with 200 loci and
windows of length five. It is maximum at a point very close to the position of
the disease mutation.

It is of interest to compare the proposed method with other recent methods.
We have to emphasize that this is a difficult task, since each method has its
strengths and weaknesses. Computational time involved in getting results also
imposes an important limitation. Zollner and Pritchard (2005) have compared
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Figure 10. Effect of increasing the number of loci on estimates based on
CCL15(rT ) for sample H: (a) 20 loci; (b) 30 loci; (c) 35 loci.
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Figure 11. Effect of the window size on estimates based on CCLd(rT ) for
sample A (20 loci used).

their method based on a local approximation of the ARG near the putative
location of the disease mutation, called LATAG, with the method of McPeek
et al. (1999) based on the decay of haplotype sharing, called DHSMAP, using
50 data sets. In order to do something similar, we have applied DHSMAP to
the data sets used in the previous section. Results are shown in Figure 13.
Comparison with Figure 8 reveals that the CCL approach gives point estimates
for the TIM locus closer to the real value for most of the data sets (A, C, D,
F, S, T, U, V, Y) and is outperformed by the DHSMAP method for only one
data set (H). Notice that both methods underperform for the same data sets
(W, X, Z).

We have also made a comparison with a more recent method proposed
by Minichiello and Durbin (2006), called Margarita and based on a heuristic
inference of plausible ARGs. Results are shown in Figure 14. This time, the
shapes of the curves and maximum points obtained are closer to those in Figure
8, but the CCL method is clearly not outperformed and does surprisingly well
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Figure 12. CCL5(rT ) for a sequence of length 33.37Mb, with 200 markers.
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in comparison with the other method in the case of two data sets (A, B).
Finally, we have compared the three methods with some simple statistics,

e.g., r2 (results not shown). Generally speaking, if the disease mutation locus
can be found by simple statistics, both DHSMAP and CCL with small windows
give an accurate estimate for the TIM locus. When the simple statistics do
not work, the CCL method gives generally an estimate closer to the real value.

Notice however that DHSMAP involves less calculations than the CCL
approach and both DHSMAP and Margarita might prove to be more robust.
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6 Discussion

We have extended and refined a full-likelihood method introduced in Larribe
et al. (2002) for mapping a TIM locus based on observed markers in cases and
controls. The mutation term in the recurrence equation (1) for the likelihood
of sample configurations corrects the expression given in Larribe et al. (2002)
in the special case of a uniform mutation rate, that is, θm = θ/L. The factor
1/L was absent in this paper, but the results presented there remain fully valid
since the system of equations for the likelihood function

Q∗(Hτ ) = LsτQ(Hτ ),
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Figure 14. “ARG MAP SCORE” by the Margarita method of Minichiello
and Durbin (2006) with 30 loci, for samples A to H, and S to Z.
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where sτ designates the number of polymorphic loci in Hτ , is the same with θ
instead of θ/L. This is the case because this number is reduced in Hτ only if
the tτ+1-th event of change in the ancestral material is an event of mutation.
Since Q∗(H0) differs from Q(H0) only by a multiplicative factor Ln, then the
maximum likelihood procedure leads to the same estimation for the location
of the TIM.

The main difficulties in the full-likelihood method proposed in Larribe et
al. (2002) were the computing time and the variability of the likelihood pro-
files. These issues have been addressed by considering a composite-likelihood
approach based on windows of a given number of contiguous marker loci. The
likelihood function for the position of the TIM is simpler to estimate if one
considers a smaller number of markers at a time and a weighted geometric
average over subsets of marker loci is easy to compute. Some care must be
taken, however, since the likelihood of the sample configuration in a window
of marker loci may greatly differs from one window to another. One way to
eliminate this bias effect is to consider the conditional likelihood function for
the position of the TIM, given the sample configuration at the marker loci
in the window. This leads to the proposed composite-conditional-likelihood
(CCL) function.

We have shown that the method can be applied to SNPs as markers, with
known primitive and derived types, but it can be extended to microsatellites
which are highly polymorphic, showing multiple types corresponding to num-
bers of repetitions of DNA patterns with no type in particular being identified
as primitive to the others. Of course, the mutation term in the recurrence
equation has to be changed accordingly.

The method is based on samples of haplotypes. If enough genotyping has
been done on family members, then haplotypes can be obtained. Otherwise,
they have to be inferred from genotypes by statistical methods (see, e.g., Fallin
and Schork 2000, or Stephens et al. 2001). Such an inference procedure has
not been incorporated into the method, but this could be done. Morris et
al. (2004), for instance, did it to improve their original method (Morris et
al. 2002); Rannala and Reeve (2001) considered that haplotypes were known,
while Zollner and Pritchard (2005) used haplotypes estimated from the method
of Stephens et al. (2001). Another related sampling issue that has not been
taken into account is incomplete penetrance and phenocopy. All these aspects
could be incorporated using, e.g., the current frequency of the disease mutation
and a Bayesian approach.

More importantly, the method assumes a random sample in the whole
population. In most genetic studies, samples are ascertained by the disease
status: cases and controls are sampled in similar numbers, particularly when

26

Statistical Applications in Genetics and Molecular Biology, Vol. 7 [2008], Iss. 1, Art. 27

http://www.bepress.com/sagmb/vol7/iss1/art27
10.2202/1544-6115.1298



the disease is rare since then a random sample has to be very large to include
a significant number of cases. Fortunately, our simulations have shown that
the bias caused by non-random selection of cases and controls has little effect
on the estimation results. This is also the case for the sample size and the
density of markers once some threshold value is reached.

As noted in Nordborg (2001), a sample of sequences taken in a population
can only give information about the genealogy of that population. This ge-
nealogy may be informative, and then an inference method can work, or it may
be non-informative, and then there is little we can do to change that situa-
tion. This may explain the general pattern of our simulation results which are
very clear for some data sets, and more or less conclusive for others. Similar
results are found in Zollner and Pritchard (2005). Notice also that different
independent subsamples taken from the same sample (see, e.g, Figure 9 (b)
and (c)) lead to similar conclusions.

The method assumes that the mutation rate is known. In the case of SNPs
with the same mutation rate at every locus, however, the likelihood function
for the position of the TIM differs only by a multiplicative factor from one
mutation rate to another. Therefore the maximun-likelihood estimate does
not depend on the mutation rate and it does not have to be known.

The proposal distribution to reconstruct the history of sampled sequences
is arbitrary but it is advantageous to choose one as close as possible to the
real distribution (Stephens and Donnelly 2000, Fearnhead and Donnelly 2001),
which is unknown, or as fast as possible to simulate. We have chosen a proposal
distribution which is uniform over all possible recombination events between
two adjacent marker loci for this reason. For the same reason, in the case
of microsatellites with a large number of mutation events to consider, the
proposal distribution would be chosen uniform over all mutation events at a
polymorphic locus. Of course, such choices affect the value of the variable we
have to simulate, but they proved to reduce significantly the simulation time
without reducing the accuracy of the whole estimation procedure.

References

Boehnke, M. (1994). Limits of resolution of linkage studies: Implications for
the positional cloning of disease genes. Am. J. Hum. Genet. 55, 379–390.

Collins, A. and Morton, N.E. (1998). Mapping a disease locus by allelic asso-
ciation. Proc. Natl. Acad. Sci. 95, 1741–1745.

27

Larribe and Lessard: A Composite-Conditional-Likelihood Approach

Published by The Berkeley Electronic Press, 2008



Devlin, B. and Risch, N. (1995). A comparison of linkage disequilibrium mea-
sures for fine-scale mapping. Genomics 29, 311–322.
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