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Abstract. We show that an optimal migration rate may not exist in a popula-
tion distributed over an infinite number of individual living sites if empty sites
occur. This is the case when the mean number of offspring per individual k is
finite. We make the assumption of uniform migration to other sites whose rate
is determined by the parent’s genotype or the offspring’s genotype at a single
locus in a diploid hermaphrodite population undergoing random mating. In
both cases, for k small enough, any population at fixation would go to
extinction. Moreover, in the latter case, for intermediate values of k, the only
fixation state that could resist the invasion of any mutant would lead the
population to extinction. These are the two conditions for the non-existence of
an optimal migration rate. They become less stringent as the cost for migra-
tion expressed by a coefficient of selection 1!b becomes larger, that is, closer
to 1. The results are obtained assuming that the allele at fixation is either
nondominant or dominant. Although the optimal migration rate is the same
in both cases when it exists, the optimality properties may differ.
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1 Introduction

Hamilton and May (1977) have shown that migration might be favorable even
in a saturated environment, and even though offspring who migrate consider-
ably reduce their own chance of surviving. In their model, the environment is
partitioned into an infinite number of sites, which are supposed to be con-
stantly occupied by single individuals, one on each site, and the next genera-
tion is made of successors randomly chosen among the offspring of the next
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generation present on the different sites. Comparing the fitnesses of indi-
viduals using one of two different migration rates in a population, it has been
shown that some level of migration corresponds to an unbeatable strategy in
Hamilton’s (1967) sense. This is what keeps the population away from ad-
opting a sedentary strategy. The fitness of an individual is defined here as the
expected number of sites that will be occupied in the next generation by the
individual’s offspring. Then an unbeatable strategy is defined as a strategy
such that any other competing with it in the population cannot have a higher
fitness. Therefore any other strategy will have a diminishing frequency in any
mixture. In particular, this will be the case when the frequency of this other
will be small as occurs initially for mutant strategies. This defines an ESS
(evolutionarily stable strategy) in Maynard Smith and Price’s (1973) sense.

In a series of papers, Motro (1982a, 1982b, 1983) has made a detailed
analysis of Hamilton and May’s (1977) model, using exact recurrence equa-
tions for gene frequencies, first in haploid populations and then in diploid
populations, with migration rate determined either by the parent’s genotype
or by the offspring’s genotype. In these models, migration of offspring to other
sites is uniform and the migration rate is genetically determined at a single
locus. An optimal migration rate is defined as a rate that can resist the initial
invasion of any other rate when at fixation in the population. This corre-
sponds to an ESS in Maynard Smith and Price’s (1973) terminology. With the
hypothesis of sites being constantly occupied, both the haploid case and the
diploid case with migration rate determined by the parent’s genotype lead to
the same optimal migration rates. In diploid populations with migration rate
determined by the offspring’s genotype, smaller optimal migration rates are
found. Relaxing the assumption of uniform migration of offspring, Comins
(1982) has treated the case of a two-dimensional stepping-stone model for
haploid populations, where immigrants go to neighbouring sites, and he has
shown that to a good approximation the optimal migration rate is indepen-
dent of the migration pattern.

In most of the above models, all sites are assumed to be occupied. This is
the case if there is an infinite number of offspring produced by each individual.
Otherwise, the models are only approximate. However some haploid models
(Hamilton and May, 1977; Motro, 1982a) have been considered without this
assumption. The main effect of allowing empty sites is that the optimal
migration rate is smaller than the optimal rate obtained by assuming that all
sites are occupied, even though more resources are available to individuals in
that case.

Comins, Hamilton and May (1980) have studied a haploid model with
k individuals per site and exogenous extinction of sites. Here the optimal
migration rate decreases when the number of mature individuals per site
k increases.

Another way to define an optimal migration rate is to look at the
probability of extinction. Karlson and Taylor (1992) have used a branching
process model to show that some level of migration is generally needed to
keep extinction at furthest reach, by finding the migration rate that minimizes
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the extinction probability for the lineage, when sites are subject to exogenous
extinction. This optimal rate increases when the number of offspring
per individual increases and when the probability of surviving migration
increases.

Our work deals with models of the same kind as those of Motro (1982b,
1983) for diploid populations, but we admit the possibility of sites becoming
empty. Such models can be viewed as generalizations of the corresponding
models with the assumption of a saturated environment. As a matter of fact we
get the corresponding results for this case by taking the limit when the mean
number of offspring per individual goes to infinity. But we also observe
something peculiar, namely, a possible non-existence of an optimal migration
rate. This fact has been suggested by Hamilton and May (1977) who have
argued, for a particular model, that the only ESS for the migration rate could
‘‘imply situations where the population and the species is dangerously liable to
extinction’’ if we do not assume that all sites are constantly occupied, that is
when we make the model dependent on the expected number of offspring.
Analysis of this question is made in the present paper.

We also make a complete analysis of cases with dominance of an allele
determining the migration rate, which have been left over by the previous
authors, except Motro (1982a) in his study of haploid populations.

2 Formulation of the model

We consider an infinite hermaphrodite diploid population, geographically
distributed over an environment partitioned into an infinite number of living
sites. Each site can be occupied by at most one single mature individual. Such
a situation may model limited local resources. At the beginning of any given
generation, every mature individual produces a finite random number of
female gametes and a uniformly infinite number of male gametes. While the
female gametes stay on the parental site, the male gametes disperse over the
entire environment and fertilize at random the female gametes. We suppose
that the number of female gametes produced by an individual is a Poisson
variable of mean k. Moreover, we suppose that all female gametes are
fertilized (though the parameter k can also be interpreted as the mean number
of successfully fertilized female gametes). Note that k is also the mean number
of successful male gametes per individual. Therefore, k is the mean number of
offspring per individual with the convention that every successful gamete
counts for half an offspring.

Later on, the offspring either stay on the parental site or migrate uniformly
to the other sites, independently of one another. They migrate with a probabil-
ity determined by their parent’s genotype or their own genotype, according to
the hypothesis considered. Here the parent is the individual who transmitted
the female gamete. The offspring that migrate are called immigrants and the
offspring that stay on the parental site are called residents. The probability to
migrate is the migration rate.
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Fig. 1. Life cycle

Table 1. Notation for genotypic frequencies and migra-
tion rates

Genotype A
1
A

1
A

1
A

2
A

2
A

2Migration rate a
11

a
12

a
22Frequency u v w

At the end of the given generation, the single parent on every site dies, and
there is competition among all offspring present on that site, either residents
or immigrants, to occupy the site. Only one of these offspring, called successor,
will occupy the site at the beginning of the next generation. This successor is
assumed to be chosen at random among all competitors present on the site.
The entire generation is described by the life cycle of Fig. 1.

Suppose that the migration rate is determined by two alleles, A
1
and A

2
, at

a single locus. The migration rates and the genotypic frequencies at the
beginning of a generation associated with the three possible genotypes are
given in Table 1.

Because migration is risky, we suppose that there is a probability 1!b
that an immigrant dies or is lost before competing for a site. This probability is
the same for all three genotypes. So there is only a fraction b of all immigrants
that will be competing for sites.

We denote by u, v and w the frequencies, at the beginning of a generation,
of the sites occupied by mature individuals of genotype A

1
A

1
, A

1
A

2
and

A
2
A

2
, respectively. As discussed above, sites may be empty, and we denote by

r"1!u!v!w their proportion in the whole population. Using this nota-
tion, the frequency of allele A

1
is

p"
u#v/2

u#v#w
,

and the frequency of allele A
2

is

q"
w#v/2

u#v#w
.
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3 Equilibrium points

First let us consider the case where only one allele is present in the population,
say A

1
. We want to find an equilibrium for the proportion of sites that are

occupied. The following analysis is valid when the migration rate of offspring
is determined either by the parent’s genotype or by the offspring’s genotype.
Since we suppose that the number of female gametes produced by any
individual is a Poisson variable and that all female gametes are fertilized, the
number of offspring competing on every site will be a Poisson variable, due to
uniform dispersion of immigrants, and due to statistical independence be-
tween the number of residents and the number of immigrants on every site.
The proportion of sites occupied by an individual of genotype A

1
A

1
from one

generation to the next will be

u@"uM1!e~*k(1~a11)`kba11u+N#(1!u)M1!e~kba11uN . (1)

Since the function

f (u)"uM1!e~*k(1~a11)`kba11u+N#(1!u)M1!e~kba11uN

is increasing and concave for 06u61, and satisfies f (0)"0 and f (1)(1,
there exists a fixed point uJ in the open interval (0, 1) if and only if f @ (0)'1.
This necessary and sufficient condition is equivalent to

kba
11
!e~k(1~a11)'0 . (2)

In this case, the fixed point uJ is a globally stable equilibrium point of the
recurrence system (1) in the sense that there is convergence to this point from
any starting point, as long as no other allele is introduced into the population.
Conversely, if (2) fails, the iterates of (1) will converge to 0.

Let us point out that the left hand side of (2) admits an absolute maximum
value

b (ln b#k!1) ,

which is attained when a
11
"1#(ln b)/k. Thus, when ln b61!k, the allele

A
1

is not viable, whatever may be the migration rate associated with the
genotype A

1
A

1
, the only equilibrium of (1) being the point u"0, which is

globally stable. The above condition on the existence of a non-trivial equi-
librium point for the frequency of unoccupied site is exactly the same as the
one given by Motro (1982a) for a haploid population.

Let us introduce an allele A
2

into the population. Then we get an
augmented recurrence system in the form

A
u@

v@

w@

r@ B"A
P
uu

P
vu

P
wu

P
ru

P
uv

P
vv

P
wv

P
rv

P
uw

P
vw

P
ww

P
rw

P
ur

P
vr

P
wr

P
rr
B A

u

v

w

r B , (3)
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where P
ij

denotes the probability that the successor of a site previously
occupied by an individual of genotype i is an individual of genotype j. For
convenience, a genotype is represented by its frequency in the subscripts of P

ij
.

We use the subscript r to indicate an empty site. The expressions for these
transition probabilities are found below.

In the augmented system (3), the point (uJ , 0, 0, 1!uJ ) is an equilibrium
corresponding to fixation of allele A

1
. Determining conditions for this equilib-

rium to be locally stable when allele A
2

is introduced in sufficiently small
frequency is a way to compare migration strategies adopted by individuals in
the population. Then an optimal strategy will be defined as a migration rate
associated with an allele A

1
in homozygotes A

1
A

1
such that A

1
-fixation is

locally stable against the invasion of any other allele A
2
, at least to the order

of the approximation used.
Since r"1!u!v!w, we will use the vector (u, v, w) to describe the

state of the population.

4 Migration rate determined by the parent’s genotype

Let
j"kb(a

11
u#a

12
v#a

22
w)

be the mean number of immigrants on a site and

j
11
"kb (a

11
up#a

12
vp/2) ,

j
12
"kb (a

11
uq#a

12
/2#a

22
wp) ,

j
22
"kb (a

22
wq#a

12
vq/2) ,

be the mean numbers of immigrants of genotype A
1
A

1
, A

1
A

2
and A

2
A

2
,

respectively, on that site. The transition probabilities in the system (3) can be
found in the following way. Let the random variables N

ij
(i"u, v, w, r and

j"u, v, w) represent the numbers of competitors of type j on a site previously
occupied by an individual of type i. Under the assumption that the number of
female gametes produced by every individual is a Poisson variable of mean
k and that these numbers for all individuals are independent, the random
variables N

ij
are also Poisson variables, independent of one another, whose

means are

E (N
iu
)"[k (1!a

11
)p]I

u
(i )#[k (1!a

11
)p/2]I

v
(i )#j

11
,

E (N
iv
)"[k (1!a

12
)q]I

u
(i )#[k (1!a

12
)/2]I

v
(i )

#[k (1!a
12

)p]I
w
(i )#j

12
,

E(N
iw

)"[k (1!a
22

)q/2]I
v
(i)#[k (1!a

22
)q]I

w
(i)#j

22
,

where

I
j
(i )"G

1

0

if i"j

if i9j
.
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For i"u, v, w, r, the probability P
ir

is given by

P
ir
"P(N

iu
#N

iv
#N

iw
"0) .

We get
P
rr
"e~j ,

P
ur
"e~*k(1~a11)`j+ , P

vr
"e~*k(1~a12)`j+ ,

P
wr
"e~*k(1~a22)`j+ .

For i"u, v, w, r and j"u, v, w, the transition probabilities P
ij

are given by

P
ij
"(1!P

ir
)E A

N
ij

N
iu
#N

iv
#N

iw
KNiu

#N
iv
#N

iw
'0B

"(1!P
ir
) C

E (N
ij
)

E (N
iu
#N

iv
#N

iw
)D , (4)

the second equality being a property of independent Poisson variables (see
Appendix A.1). We find

P
ru
"(1!P

rr
)
j
11
j

, P
rv
"(1!P

rr
)
j
12
j

, P
rw
"(1!P

rr
)
j
22
j

,

P
uu
"(1!P

ur
) C

k (1!a
11

)p#j
11

k (1!a
11

)#j D ,

P
uv
"(1!P

ur
) C

k (1!a
11

)q#j
12

k (1!a
11

)#j D ,

P
uw
"(1!P

ur
) C

j
22

k(1!a
11

)#jD ,

P
vu
"(1!P

vr
) C

k (1!a
12

)p/2#j
11

k (1!a
12

)#j D ,

(5)

P
vv
"(1!P

vr
) C

k (1!a
12

)/2#j
12

k (1!a
12

)#j D ,

P
vw
"(1!P

vr
) C

k (1!a
12

)q/2#j
22

k(1!a
12

)#j D ,

P
wu
"(1!P

wr
) C

j
11

k (1!a
22

)#jD ,

P
wv
"(1!P

wr
) C

k (1!a
22

)p#j
12

k(1!a
22

)#j D ,

P
ww

"(1!P
wr

) C
k (1!a

22
)q#j

22
k(1!a

22
)#j D .
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We have the following result on local stability of the equilibrium (uJ , 0, 0),
which is valid only if allele A

1
is not dominant (a

12
9a

11
). This result is

obtained by analyzing the largest eigenvalue of the linear approximation of
the recurrence system (u@, v@, w@ ) in a neighbourhood of the equilibrium point
(see Appendix B.1).

Result 4.1. In the case of no dominance of allele A
1
, the equilibrium point

(uJ , 0, 0) of the recurrence system (u@, v@, w@) with the transition probabilities (5) is
locally stable if inequality (2) is satisfied, and if

1

a
11

[1!g (a
11

, a
11

)](
1

a
12

[1!g (a
11

, a
12

)] , (6)

where

g(a
11

, a)"M1!e~*k(1~a)`kba11uJ +N
k (1!a)

k (1!a)#kba
11

uJ

and uJ is the unique fixed point in (0, 1) of the recurrence equation (1).

If allele A
1

is dominant (a
12
"a

11
), we get a degeneracy, the largest

eigenvalue of the linear approximation of the recurrence system (3) being
equal to one. The local stability of the equilibrium point cannot be decided
from linear approximations. A quadratic analysis can be performed, based on
a criterion proposed by Lessard and Karlin (1982) presented under more
general conditions in Morris, Matessi and Karlin (1987). This criterion,
described in Appendix C.1, serves us to prove the following result, in the case
of dominance of allele A

1
(see Appendix C.2).

Result 4.2. In the case of dominance of allele A
1
, the equilibrium point (uJ , 0, 0) of

the recurrence system (u@, v@, w@) with the transition probabilities (5) is locally
stable if inequality (2) is satisfied, and if

1

a
11

[1!g (a
11

, a
11

)](
1

a
22

[1!g (a
11

, a
22

)] , (7)

where

g(a
11

, a)"M1!e~*k(1~a)`kba11uJ +N
k (1!a)

k (1!a)#kba
11

uJ

and uJ is the unique fixed point in (0, 1) of the recurrence equation (1).

Note that the above condition for local stability of A
1
-fixation with

dominance of A
1

is in the same form as the condition with no dominance of
A

1
, except that a

11
is now confronted with a

22
. Inequalities (6) and (7) have

a nice interpretation, which will be presented in the discussion section.
Figure 2 shows numerical results for the optimal migration rate when the

migration rate is determined by the parent’s genotype. This optimal rate is the
value a

11
which satisfies inequality (6) (or (7), the dominance case leading to

the same optimal rate) for every rate a
12

(or a
22

, respectively) different from
a
11

. This figure shows level curves of the optimal rate, as a function of k and b.
The region I represents the situation where inequality (2) is not satisfied for
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Fig. 2. Optimal migration rate determined by the parent’s genotype. In region I, there
exists no optimal migration rate

any rate a
11

(the cases where ln b61!k), so that allele A
1

is not viable at
fixation state. No optimal migration rate can exist in this region.

For any fixed b'0, the optimal rate converges to a value which is strictly
greater than 1

2
, as k goes to infinity. Actually it converges to the value

1

2!b
,

which is the optimal migration rate given by Motro (1982b) in the case of no
vacant site under the assumption of a large number of offspring per site (see
Appendix B.1). This is a value also found by Taylor (1988), using an inclusive
fitness approach. From Fig. 2, we see that any level curve b (k) associated with
a fixed optimal rate a decreases as k increases at least for large enough values
of k. As k goes to infinity, the level curve b(k) converges to the value b such
that a"1/(2!b). This limit case corresponds to the model with all sites
being constantly occupied. Moreover the optimal rate for any k finite is
always smaller than the optimal rate for k infinite.

5 Migration rate determined by the offspring’s genotype

In the case where it is the offspring’s genotype that determines the migration
rate, the mean number of immigrants on a site is

j"kb(a
11

up#a
11

vp/2#a
12

uq#a
12

v/2#a
12

wp#a
22

vq/2#a
22

wq) ,
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and the mean numbers of immigrants of genotype A
1
A

1
, A

1
A

2
and A

2
A

2
,

respectively, on that site are

j
11
"kb (a

11
up#a

11
vp/2) ,

j
12
"kb (a

12
uq#a

12
v/2#a

12
wp) ,

j
22
"kb (a

22
vq/2#a

22
wq) .

As in Sect. 4, we calculate the transition probabilities of the recurrence system
(3) using the random variables N

ij
, whose means, with the migration rate

determined by the offspring’s genotype, are

E (N
iu
)"[k (1!a

11
)p]I

u
(i )#[k (1!a

11
)p/2]I

v
(i )#j

11
,

E (N
iv
)"[k (1!a

12
)q]I

u
(i )#[k (1!a

12
)/2]I

v
(i )

#[k (1!a
12

)p]I
w
(i )#j

12
,

E(N
iw

)"[k (1!a
22

)q/2]I
v
(i)#[k (1!a

22
)q]I

w
(i)#j

22
,

where

I
j
(i )"G

1

0

if i"j

if i9j .

Using relation (4), we get

P
rr
"e~j ,

P
ur
"e~*k(1~a11)p`k(1~a12)q`j+ ,

P
vr
"e~*k(1~a11)p@2`k(1~a12)@2`k(1~a22)q@2`j+ ,

P
wr
"e~*k(1~a12)p`k(1~a22)q`j+ ,

P
uu
"(1!P

ur
) C

k (1!a
11

)p#j
11

k (1!a
11

)p#k (1!a
12

)q#jD ,

P
uv
"(1!P

ur
) C

k (1!a
12

)q#j
12

k (1!a
11

)p#k (1!a
12

)q#jD ,

P
uw
"(1!P

ur
) C

j
22

k (1!a
11

)p#k (1!a
12

)q#jD ,

P
vu
"(1!P

vr
) C

k (1!a
11

)p/2#j
11

k (1!a
11

)p/2#k (1!a
12

)/2#k (1!a
22

)q/2#jD ,

P
vv
"(1!P

vr
) C

k (1!a
12

)/2#j
12

k (1!a
11

)p/2#k (1!a
12

)/2#k (1!a
22

)q/2#jD ,

P
vw
"(1!P

vr
) C

k (1!a
22

)q/2#j
22

k (1!a
11

)p/2#k (1!a
12

)/2#k (1!a
22

)q/2#jD ,
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P
wu
"(1!P

wr
) C

j
11

k (1!a
22

)p#k(1!a
22

)q#jD ,

P
wv
"(1!P

wr
) C

k (1!a
12

)p#j
12

k (1!a
22

)p#k(1!a
22

)q#jD ,

P
ww

"(1!P
wr

) C
k (1!a

22
)q#j

22
k (1!a

22
)p#k (1!a

22
)q#jD ,

P
ru
"(1!P

rr
)
j
11
j

, P
rv
"(1!P

rr
)
j
12
j

, P
rw
"(1!P

rr
)
j
22
j

. (8)

We suppose first that allele A
1

is not dominant, that is a
12
9a

11
. The

following result, proven in Appendix B.2, states the condition for A
1
-fixation

to be locally stable.

Result 5.3. In the case of no dominance of allele A
1
, the equilibrium point

(uJ , 0, 0) of the recurrence system (u@, v@, w@) with the transition probabilities (8) is
locally stable if inequality (2) is satisfied, and if

1

a
11

[1!G(a
11

, a
11

)](
1

a
12

[1!G(a
11

, a
12

)] , (9)

where

G(a
11

, a)"
M1!e~*k(1~a11)`kba11uJ +Nk (1!a)/2

Mk(1!a
11

)#kba
11

uJ N

#

M1!e~*k(1~a11)@2`k(1~a)@2`kba11uJ +Nk (1!a)/2

Mk (1!a
11

)/2#k (1!a)/2#kba
11

uJ N

and uJ is the unique fixed point in (0, 1) of the recurrence equation (1).

A necessary condition for inequality (9) to be satisfied for every a
12
9a

11
is

L
La G

1

a
[1!G(a

11
, a)]H Ka/a11

"0 . (10)

This equation has always a solution in a
11

, the left hand side of the equation
tending to !Ras a

11
goes to 0, and being positive when a

11
"1. Numerical

results indicate that this solution is unique. The numerical values of the
optimal rate of migration are presented in Fig. 3. This figure presents some
level curves of the optimal migration rate, as a function of k and b, along with
two regions where the optimal rate does not exist.

In the region I, allele A
1

is not viable at fixation; condition (2) is not
satisfied for any rate a

11
. It coincides with the region I in Fig. 2 (the situations

where ln b61!k). In the region II, although certain migration rates
guarantee the survival of allele A

1
at fixation state, the solution of (10) does

not satisfy condition (2). Therefore, in this region, there is no optimal migra-
tion rate even if there exists an equilibrium uJ 90 at fixation state for some a

11
.
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Fig. 3. Optimal migration rate determined by the offspring’s genotype. In regions I and II,
there exists no optimal migration rate

In the region where there exists an optimal migration rate, this rate
increases with the probability of survival of the immigrants, b, for each k fixed.
For small values of b, the optimal rate decreases rapidly to 0 when the mean
number of offspring increases. But in all cases, we observe that as k ap-
proaches infinity, the optimal migration rate converges to a value which
agrees with the rate predicted by Motro (1983), that is

a*"G
0

b!3
4

(b!1
2
) (3

2
!b )

if 0(b63
4

if 3
4
(b61

,

where the sites are supposed to be constantly occupied (see Appendix B.2).
Here the possibility of sites becoming empty leads to an optimal migration
rate, if it exists, higher than a*. The situation where a

12
"a

11
forces us to take

into account the quadratic approximation of the recurrence system (u@, v@, w@),
the largest eigenvalue of the matrix of the linear approximation of this system
being equal to 1. We have the following result (see Appendix C.3).

Result 5.4. In the case of dominance of allele A
1
, the equilibrium point (uJ , 0, 0) of

the recurrence system (u@, v@, w@) with the transition probabilities (8) is locally
stable if inequality (2) is satisfied, and if

1

a
11

[1!H (a
11

, a
11

)](
1

a
22

[1!H (a
11

, a
22

)] , (11)
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where

H (a
11

, a)"M1!e~*k(1~a11)`kba11uJ +N
k(1!a)

k (1!a
11

)#kba
11

uJ

#M1!e~*k(1~a11)`kba11uJ +N G
k(1!a

11
)/2

k (1!a
11

)#kba
11

uJ H
2

!e~*k(1~a11)`kba11uJ + G
[k (1!a

11
)/2]2

k (1!a
11

)#kba
11

uJ H
!M1!e~*k(1~a11)`kba11uJ +N G

k2 (1!a
11

) (1!a)/4

[k(1!a
11

)#kba
11

uJ ]2H
#e~*k(1~a11)`kba11uJ + G

k2 (1!a
11

)(1!a)/4

k (1!a
11

)#kba
11

uJ H
and uJ is the unique fixed point in (0, 1) of the recurrence equation (1).

Although result 5.4 differs from result 5.3, it turns out that the same
optimal migration rate prevails if it exists. This can be shown by verifying the
equality

L
La G

1

a
[1!G(a

11
, a)]H Ka/a11

"

L
La G

1

a
[1!H(a

11
, a)]H Ka/a11

.

But there is still a degeneracy in the stability analysis when the population
at A

1
-fixation adopts the optimal rate. If we analyse the regions for local

stability and for instability of the fixation state according to the resident
migration rate and the mutant migration rate, we observe a vertical line
delimiting these regions above and below the main diagonal in the case of
dominance of allele A

1
(see Fig. 5). The optimal rate must be precisely located

at the intersection of this vertical line with the main diagonal. These two lines
correspond to the case where local stability is not tractable using a second
order approximation (see Appendix C). Therefore, once the population adopts
the migration rate at the intersection of these two lines at fixation state, it is
not clear whether or not it can be destabilized by a newly arising mutant allele.
However, this migration rate is the only candidate to be the optimal rate. Such
a degeneracy is not present when allele A

1
is not dominant, as shown in Fig. 4.

Here the curves delimiting the regions for local stability and for instability
correspond to the case of a first order approximation with a largest eigenvalue
equal to 1. To get the results of Figs. 4 and 5, we used the parameters k"8
and b"0.77, but our conclusions are of general validity.

Note also that if a
11

is different from the optimal rate, then the population
at A

1
-fixation will be invaded by a wider range of mutant migration rate in the

case of dominance of allele A
1

than in the case of no dominance of A
1
. This

was not the case in the model of migration rate determined by the parent’s
genotype since the conditions for local stability are analogous in both cases.
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Fig. 4. Stability regions for A
1
-fixation with the migration rate determined by the offspring

with no dominance of allele A
1
. A plus (#) sign indicates initial invasion of the mutant

allele, while a minus (!) sign indicates local stability

Fig. 5. Stability regions for A
1
-fixation with the migration rate determined by the offspring

with dominance of allele A
1
. A plus (#) sign indicates initial invasion of the mutant allele,

while a minus (!) sign indicates local stability
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6 Discussion

Conditions (6) and (7) for local stability of A
1
-fixation in the case of migration

rate determined by the parent’s genotype have a nice interpretation. If the
population consists only of individuals having migration rate a

11
, and if we

introduce only one individual having a migration rate a into the population,
then the probability that this individual will lose his site to an offspring that is
not his, or that his site will become empty is given by

1!M1!e~*k(1~a)`kba11uJ +N
k (1!a)

k (1!a)#kba
11

uJ
,

that is, 1 minus the probability that one of his offspring will take over his site
in the next generation (see result A.1 with X

1
the number of resident offspring

and X
2

the number of immigrant offspring on that site). Moreover, the mean
number of sites that will be taken by his immigrant offspring is proportional
to a. Therefore, the ratio

1

a C1!M1!e~*k(1~a)`kba11uJ +N
k (1!a)

k (1!a)#kba
11

uJ D
represents a ratio of lost over gain in terms of sites taken by the individual’s
offspring. It corresponds to the fitness function used in Hamilton and May’s
(1977) study on the optimal migration rate. For the sake of his offspring, it is
advantageous for an individual to make this ratio as small as possible.
Therefore, not only the optimal migration rate makes it impossible for
a mutant allele to invade the population, but it also maximizes the mean
number of offspring of an individual in the next generation. Conditions (9) and
(11) for local stability of A

1
-fixation in the case of migration rate determined

by the offspring’s genotype might have a similar interpretation, but in such
a case it is far less evident.

In the two models studied in the present paper, the non-existence of an
optimal migration rate due to extinction of the population at any fixation
state (region I in Figs. 2 and 3) has been demonstrated for sufficiently small
values of k, the mean number of female gametes produced by an individual,
whatever may be the cost of migration expressed by the coefficient of selection
1!b. Such an extinction occurs for smaller values of k when the cost of
migration becomes smaller.

In the case of a migration rate determined by the offspring’s genotype,
there is no optimal migration rate also for intermediate values of k (region II
in Fig. 3) since then the only candidate at fixation would lead to extinction of
the population. This is the main difference between this case and the case of
a migration rate determined by the parent’s genotype. Another difference is
that the optimal migration rate increases slowly and then rapidly as b in-
creases in the former case while it increases rapidly and then slowly as
b increases in the latter case. Also, the optimal migration rate increases for
a fixed b when k increases, except for small values of k, in the case of
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Fig. 6. Migration rate that maximizes the proportion of occupied sites

a migration rate determined by the parent’s genotype, while it decreases when
k increases in the case of a migration rate determined by the offspring’s
genotype. In all cases, the optimal migration rate when determined by the
offspring’s genotype is smaller than the optimal migration rate determined by
the parent’s genotype.

Note that for parameters k and b in region II in Fig. 3, a reduction of the
migration rate is favorable, in the sense that a reduced value of a

12
compared

to a
11

will lead to invasion of A
1
-fixation by the mutant allele A

2
at least

initially following the introduction of A
2

in small frequency. But it is possible
for the population to go extinct after the introduction of a mutant allele A

2
. If,

for instance, the homozygote A
2
A

2
has a migration rate 0, then the propor-

tion of vacant sites converges to 1. This has been checked numerically. Thus
region II may lead to quite an unstable situation where the invasion of
a mutant allele may cause the extinction of the entire population.

The cases with or without dominance of the allele at fixation lead to the
same optimal migration rate. But the nature of optimality is not the same
when the migration rate is determined by the offspring’s genotype. In the case
of no dominance, the optimal migration rate is a continuously stable strategy
(CSS) in Eshel’s (1983) sense while, in the case of dominance, it is only an
evolutionarily stable strategy (ESS) in Maynard Smith and Price’s (1973) sense
(see Figs. 4 and 5) that satisfies a necessary condition to be a CSS. In the
former case, the optimal migration rate at fixation is locally stable against the
introduction of any mutant, while in the latter there is a degeneracy in the
stability analysis, any mutant being maintained in the population to the order
of the approximation.
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Figure 6 gives the rate of migration that maximizes the proportion of
occupied sites when the population is at fixation. This is the rate of ‘‘maximal
occupancy’’ (Hamilton and May, 1977). The proportion of occupied sites can
represent the fitness of the population. We observe that for any fixed b, the
migration rate at fixation that maximizes this fitness decreases as k increases,
and that for any fixed k, it increases as the cost of migration 1!b decreases.
Comparing Figs. 6 and 2, we see that this optimal rate determined by the
population fitness is smaller than the optimal rate determined by the parent’s
genotype, while comparing Figs. 6 and 3, we see that the former is generally
higher than the optimal rate determined by the offspring’s genotype, except
for large enough values of k. We conclude that the optimal rate determined by
the parent’s genotype and by the offspring’s genotype are both suboptimal for
the population as a whole as in Hamilton and May (1977) model.

Acknowledgements. We thank two anonymous referees for their comments, especially one
who has suggested to study the migration rate that optimizes population fitness.

Appendix A

A.1 Proof of Relation 4

Result A.1. If X
1

and X
2

are two independent Poisson random variables, with
means j

1
and j

2
respectively, then we have

E A
X

1
X

1
#X

2
KX1

#X
2
'0B"

E (X
1
)

E (X
1
#X

2
)
.

Proof. The joint distribution of X
1
and X

2
, subject to X

1
#X

2
'0, is given by

P (X
1
"k

1
, X

2
"k

2
DX

1
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2
'0)

"
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1
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1
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2
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1
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2
'0)
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1

1!e~(j1`j2)BA
e~j1jk1

1
k
1
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e~j2jk2
2

k
2
! B ,

for k
1
"0, 1, . . . , k

2
"0, 1, . . . and k

1
#k

2
'0. Thus, we have

E A
X

1
X

1
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2
KX1
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2
'0B
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1
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+
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+

k2/0

k
1

k
1
#k

2
A

e~j1jk1
1

k
1
! BA

e~j2jk2
2

k
2
! BB

"A
j
1

1!e~(j1`j2)B A
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+

k{1/0
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+
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j
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1!e~(j1`j2)B E A
1

X
1
#X

2
#1B

"A
j
1

1!e~(j1`j2)B E A
1

½#1B ,

where ½ is a Poisson variable of mean j
1
#j

2
. But then
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1

½#1B"
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+
k/0
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+
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Therefore we have
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Appendix B

B.1 Proof of Result 4.1

The linear approximation of (u@, v@, w@ ) in a neighborhood of the equilibrium
point (uJ , 0, 0) is given by

A
u@!uJ

v@

w@ BG A
Lu@
Lu

Lu@
Lv

Lu@
Lw

Lv@
Lu

Lv@
Lv

Lv@
Lw

Lw@
Lu

Lw@
Lv

Lw@
Lw

B A
u!uJ

v

w B ,

where the elements of the Jacobian matrix are evaluated at (uJ , 0, 0). Since the
elements

Lv@
Lu

,
Lw@
Lu

,
Lw@
Lv

, and
Lw@
Lw

are all 0 at equilibrium, then the eigenvalues of the Jacobian matrix are

Lu@
Lu

,
Lv@
Lv

and 0 .
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The equilibrium point (uJ , 0, 0) is locally stable if each of these eigenvalues are
lower than one in absolute value. But since uJ is a fixed point of the recurrence
system (1), then we must have, at equilibrium,

K
Lu@
Lu K(1 .

Thus, we just need to analyse the eigenvalue Lv@/Lv at equilibrium, which is

Lv@
Lv K

(uJ ,0,0)

"uJ
L
Lv

PI
uv
#PI

vv
#(1!uJ )

L
Lv

PI
rv

,

where PI
ij

is the value of P
ij

at equilibrium. But we have

L
Lv
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)
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11
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12
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11
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11
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12
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11
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the last equality coming from a relation existing at equilibrium, that is

uJ "uJ PI
uu
#(1!uJ )PI

ru
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)#(1!uJ ) (1!PI
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The transition probabilities PI
ur

and PI
vr

are
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Finally, we get

Lv@
Lv K

(uJ ,0,0)

"

1

2 G1#(1!PI
vr

)
k (1!a

12
)

k (1!a
12

)#kba
11

uJ

#

a
12

a
11
C1!(1!PI

ur
)

k (1!a
11

)

k (1!a
11

)#kba
11

uJ DH .

This quantity, which is positive, is strictly less than 1 if and only if
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To derive the result obtained by Motro (1982b), we let k go to infinity. In
that case, the equilibrium point uJ of (1) approaches 1, so that the expression

1

a C1!M1!e~*k(1~a)`kba11uJ +N
k (1!a)

k (1!a)#kba
11

uJ D
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11
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Moreover, the second order partial derivative
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is positive at a
11
"1/(2!b ). Thus we have convergence of the optimal

migration rate to the value 1/(2!b ).

B.2 Proof of Result 5.3

As in the previous section, we only have to analyse the eigenvalue
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The quantities PI
ur

and PI
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are
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We now derive the result obtained by Motro (1983). The expression

1

a
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, a)]

given in result (5.3) converges, when k approaches infinity, to the expression
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is 0 at
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, the second partial derivative simplifies to
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Appendix C

C.1 A criterion for local stability with an eigenvalue 1

In this section we only recall a result presented in Morris, Matessi and Karlin
(1987), generalizing a result of Lessard and Karlin (1982).

Let ¹(x)"(¹
1
(x), . . . , ¹

n
(x)) be a transformation of a frequency vector x,

which admits an equilibrium point xJ . Suppose that the spectral radius of the
Jacobian matrix of ¹ at equilibrium is 1, and that this matrix is in the general
form

¸"A
A

0

B

CB ,
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where A is of order m, C is of order n!m, and A and B are in the form

A"A
X

½

0

ZB , B"A
»

¼B ,

and where X, » and C are nonnegative matrices. Moreover, suppose that X is
a primitive matrix of order l, in the sense that some power of X is a positive
matrix, whose spectral radius is 1, that is o (X)"1, and that Z satisfies
o(Z )(1. Let n and g be left and right eigenvectors for A associated with the
eigenvalue 1, chosen such that their scalar product is 1. The first l components
of n give a left eigenvector for X associated with the eigenvalue 1, while the
other components are 0. Also, the first l components of g give a right
eigenvector for X associated with the eigenvalue 1. These eigenvectors for
X can be chosen positive (all their components are positive) by the Perron-
Frobenius theory for nonnegative matrices.

Define the vectors

h (1)"(h
1
, . . . , h

m
) , h (2)"(h

m`1
, . . . , h

n
) ,

where

h
i
"

m
+
k/1

m
+
l/1

L2¹
i
(xJ )

Lx
k
Lx

l

g
k
g
l
.

We use the notation | · , ·} for the usual scalar product.

Result C.1 (Lessard and Karlin, 1982; Morris, Matessi and Karlin, 1987).
¼hen

S $%&
"|n, h (1)#B (I!C )~1h (2)}

(0 ,

then the equilibrium xJ is locally stable. It is unstable when S'0.

C.2 Proof of Result 4.2

In order to have the Jacobian matrix in the form described above, we consider
the linear approximation of the system (v@, u@, w@) around the equilibrium point
(0, uJ , 0) :

A
v@

u@!uJ
w@ BG A

1 0
Lv@
Lw

Lu@
Lv

Lu@
Lu

Lu@
Lw

0 0 0 B A
v

u!uJ
w B ,
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where the derivatives are evaluated at the equilibrium point. Then the
matrices A and B are

A"A
1 0

Lu@
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Lu@
Lu B K
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, B"A
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Lu@
Lw B K
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,

and the matrix C is the scalar 0. In order to apply result C.1, it is necessary to
verify that the value of Lv@/Lw is nonnegative at equilibrium. Using relation
(B1), we get
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which is nonnegative. Observe that
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using again relation (B1), and that
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.

Therefore n"(1, 0) and g"(1,!1) are the left and right eigenvectors, respec-
tively, associated with the eigenvalue 1 of A, whose scalar product is 1. The
second component of n being 0, we need only to calculate

h
1
"A

L2v@
Lv2

!2
L2v@
Lu Lv

#

L2v@
Lu2B K

(0,uJ ,0)

,

h
3
"A

L2w@
Lv2

!2
L2w@
Lu Lv

#

L2w@
Lu2 B K

(0,uJ ,0)

.

Using relation (B1) in the expressions for the derivatives, we get

h
1
"!

1

uJ
, h

3
"

1

2uJ
.

Owing to result C.1, we conclude that in the case where

S"
1

2uJ
Lv@
Lw K

(0,uJ ,0)

!

1

uJ
(0 ,
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the equilibrium is locally stable. The expression for Lv@/Lw evaluated at (0, uJ , 0)
leads to the final result.

C.3 Proof of Result 5.4

As previously, we calculate

Lv@
Lw K

(0,uJ ,0)

"2 C(1!PI
rr
)
(1!uJ )

uJ
#1!PI

urD
"2 ,

and we show that

A
Lu@
Lv

!

Lu@
Lu B K

(0,uJ ,0)

"!1 .

Then n"(1, 0) and g"(1,!1) are the left and right eigenvectors associated
with the eigenvalue 1 of the matrix A, whose scalar product is 1, and we need
only to calculate

h
1
"A

L2v@
Lv2

!2
L2v@
Lu Lv

#

L2v@
Lu2B K

(0,uJ ,0)

,

h
3
"A

L2w@
Lv2

!2
L2w@
Lu Lv

#

L2w@
Lu2 B K

(0,uJ ,0)

.

We get

h
1
"!

1

uJ G1!(1!PI
ur

) C
k (1!a

11
)/2

k (1!a
11

)#kba
11

uJ D
2

#PI
ur C

[k (1!a
11

)/2]2

k(1!a
11

)#kba
11

uJ D
#(1!PI

ur
) C

k2 (1!a
11

) (1!a)/4

[k (1!a
11

)#kba
11

uJ ]2D
!PI

ur C
k2(1!a

11
) (1!a)/4

k (1!a
11

)#kba
11

uJ DH ,

h
3
"

1

2uJ G
a
22

a
11
C1!(1!PI

ur
)

k (1!a
11

)

k (1!a
11

)#kba
11

uJ D
#(1!PI

ur
)

k(1!a
22

)

k(1!a
11

)#kba
11

uJ H .

Therefore, owing to result C.1, the equilibrium is locally stable when

S"h
1
#2h

3
(0 .

The above expressions for h
1

and h
3

yield the final result.
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