
Copyright � 2005 by the Genetics Society of America
DOI: 10.1534/genetics.104.039024

Note

Kin Selection Is Implicated in Partial Sib-Mating Populations With
Constant Viability Differences Before Mating

Sabin Lessard1
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ABSTRACT

The change in the frequency of a rare mutant allele under constant sex-differentiated viability selection
in an infinite, partial full-sib mating population is studied. The diplo-diploid and haplo-diploid
polygynous models are considered with a Poisson distribution for the number of offspring produced by
every mated female. Reproduction is followed by weak selection among the offspring and then mating to
form the next generation. It is shown that the rate of change with respect to the frequency of the mutant
allele and the intensity of selection can be expressed in terms of costs or benefits of substituting the
mutant type for the wild type, which correspond to average excesses in viability in females and males,
multiplied by coefficients of relatedness to the individuals affected by such a substitution and reproductive
values associated to the sexes of these individuals. This reveals hidden interactions between mated
individuals and between males for mating, the former having positive effects on the reproductive success
of related individuals and the latter having negative effects. Such interactions are the result of
reproductive constraints when a fixed proportion of females must mate with a male sib and all females are
fertilized as long as one mate is available. However, they affect the change in allele frequency because
there is inbreeding or relatedness between mates and more generally relatedness between interacting
individuals. Surprisingly, the effects of these interactions cancel out in a diploid population when the
number of offspring is large enough so that the possibility for a female to have no male sib to mate with
can be neglected and the viability differences are the same in both sexes.

STUDYING the change in the frequency of an allele at
one locus in a partial sib-mating population under

weak viability selection, Pollak (1995) found a discrep-
ancywith the formula that isentailedbyWright’s (1942)
adaptive topography in the case of a partially inbred
population that is close to equilibrium: the change ob-
tained was actually given by Wright’s formula times one
plus the correlation coefficient between the frequencies
of the allele in mated individuals. Caballero (1996)
pointed out that Wright’s formula may not apply to
Pollak’s model for the reason that it is a kind of fertility
model with selection occurring aftermating and showed
that the formula should be fully valid if viability selection
takes place before mating. Actually, with selection after
mating, there is a kin selection effect (Hamilton 1964)
due to the fact that mated individuals are related to one
another and their reproductive success depends on the
survival ofboth.This is thecaseevenwithout interactions
between kin affecting viability. The effects of such

interactionsbeforeor aftermatingwith smalldifferences
amongphenotypes orfitnesseswere studied still recently
(Lessard and Rocheleau 2003, 2004) and led to the
introduction of generalized coefficients of relatedness
conditional on the inbreeding state of the interacting
individuals (extendingcoefficientsproposed inLessard
1992) to describe the underlying factors responsible for
the change in allele frequency. But the results obtained
did not actually challenge the validity of Wright’s for-
mula when viability selection precedes mating, any kin
selection effect seeming to disappear in the absence of
interactions between related individuals affecting viabil-
ity. In this model, however, differences in viability were
assumed to be the same in both sexes. According to
Uyenoyama (1984), sex-differentiated viabilities induce
multiplicative models even in the presence of inter-
actions whose effects combine additively. The analysis
of such models should require more intricate, and
therefore less tractable, measures of relatedness (see,
e.g., Uyenoyama and Feldman 1982).

A sex-differentiated viability model without interac-
tions between individuals affecting viability is consid-
ered in this note. We also introduce stochastic variations
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on the number of offspring. The first objective is to
confirm that kin selection is at work when there is some
level of inbreeding in the population even when
selection precedes mating. The second objective is to
understand how coefficients of relatedness come into
play in such models and what exact factors can explain
their presence. The partial full-sib mating model with
single insemination of females and a number of off-
spring following a Poisson distribution for diplo-diploid
as well as haplo-diploid polygynous populations is used
as an illustration but the conclusions should be extend-
able to many other models.

MODEL AND RESULTS

Diplo-diploid population: We consider an infinite,
diploid population undergoing discrete, nonoverlap-
ping generations and we assume viability selection
before mating determined by two alleles at a single
locus, A1 and A2, such that the probability of surviving
from conception tomaturity associated to theAiAj geno-
type is fij ¼ f(11 uijs) in females and mij ¼ m(11 vijs) in
males, independently for all individuals. The parameter
s measures the intensity of selection. It is assumed
throughout to be positive and small, whichmodels weak
selection.
Following selection, every female mates with, and is

inseminated once by, either a male chosen at random
among its full-sibs with probability b or a male chosen at
random among all males in the population at large with
probability 1� b. In the former case the female is said to
be sib mated and in the latter randomly mated. Note
that a female that has no male sib because none has
been produced or has survived as a result of stochastic
effects is assumed not to mate with probability b. To
begin the next generation, every mated female pro-
duces a random number of offspring that follows a Pois-
son distribution of parameter 2l, the offspring being
male or female with probability 1

2 independently of one
another such that the numbers of male and female
offspring are independent Poisson variables of mean l.
Denoting by x1, x2, x3, x4, x5, and x6 the frequencies of

the mating types A1A1 3 A1A1, A1A1 3 A1A2, A1A1 3

A2A2, A1A2 3 A1A2, A1A2 3 A2A2, and A2A2 3 A2A2,
respectively, in the current generation and assuming
Mendelian segregation, the frequencies of the mating
types in the next generation are given by the recurrence
equations in Table 1.
Note that the expected contribution of a mated

female in number of randomly mated female offspring
is proportional to the mean viability of its female
offspring, while this contribution in number of sib-
mated female offspring is proportional to the mean
viability of its female offspring times the probability that
at least one male sib is produced and survives.
If the mated female is of type A1A2 3 A1A2, for

instance, the numbers of its female and male offspring,

respectively, of genotypes A1A1, A1A2, A2A2, respectively,
that survive to maturity are independent Poisson vari-
ables of means ðl=4Þf11; ðl=2Þf12; ðl=4Þf22 and ðl=4Þm11;
ðl=2Þm12; ðl=4Þm22, respectively. Therefore, the number
of its female offspring that mate with a random male in
the population is a Poisson variable of mean ð1� bÞl �f4,
where �f4 ¼ 1

4 f111
1
2 f121

1
4 f22. On the other hand, the

number of its female offspring that mate with a random
sib is a Poisson variable of mean bl �f4 with probability
ð1� e�l �m4Þ and 0 with probability e�l �m4, where �m4 ¼
1
4m111

1
2m121

1
4m22. Moreover, given at least one mature

male sib, such a sib chosen at random is of one of
the genotypes A1A1, A1A2, A2A2 with the probabilities

TABLE 1

Recurrence equations for the diplo-diploid model, with the
notation x*i ¼ xið1� e�l �mi Þ= �f *, and the quantities �f * and

bs as defined in the text

x91 ¼ ð1� bsÞP11Q11 1bs f11m11
x*1
�m1

1
x*2
4 �m2

1
x*4

16 �m4

� �

x92 ¼ ð1� bsÞðP11Q12 1 P12Q11Þ

1bsð f11m12 1 f12m11Þ
x*2
4 �m2

1
x*4
8 �m4

� �

x93 ¼ ð1� bsÞðP11Q 22 1P22Q11Þ1bsð f11m22 1 f22m11Þ
x*4

16 �m4

� �

x94 ¼ ð1� bsÞP12Q12 1bs f12m12
x*2
4 �m2

1
x*3
�m3

1
x*4
4 �m4

1
x*5
4 �m5

� �

x95 ¼ ð1� bsÞðP12Q 22 1P22Q12Þ

1bsð f12m22 1 f22m12Þ
x*4
8 �m4

1
x*5
4 �m5

� �

x96 ¼ ð1� bsÞP22Q 22 1bs f22m22
x*4

16 �m4
1

x*5
4 �m5

1
x*6
�m6

� �

�mP11 ¼ m11 x1 1
x2
2
1
x4
4

� �
; �f Q11 ¼ f11 x1 1

x2
2
1
x4
4

� �

�mP12 ¼ m12
x2
2
1 x3 1

x4
2
1
x5
2

� �
; �f Q12 ¼ f12

x2
2
1 x3 1

x4
2
1
x5
2

� �

�mP22 ¼ m22
x4
4
1
x5
2
1 x6

� �
; �f Q22 ¼ f22

x4
4
1

x5
2
1 x6

� �

�m ¼ x1 �m1 1 x2 �m2 1 x3 �m3 1 x4 �m4 1 x5 �m5 1 x6 �m6

�f ¼ x1 �f1 1 x2 �f2 1 x3 �f3 1 x4 �f4 1 x5 �f5 1 x 6
�f6

�m1 ¼ m11; �m3 ¼ m12; �m6 ¼ m22

�m2 ¼
m11

2
1
m12

2
; �m4 ¼

m11

4
1

m12

2
1
m22

4
; �m5 ¼

m12

2
1
m22

2

�f1 ¼ f11; �f3 ¼ f12; �f6 ¼ f22

�f2 ¼
f11
2
1
f12
2
; �f4 ¼

f11
4
1
f12
2
1
f22
4
; �f5 ¼

f12
2
1
f22
2
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ð14m11= �m4Þ; ð12m12= �m4Þ; ð14m22= �m4Þ, respectively. (This is a
property of independent Poisson variables; see, e.g.,
Lemire and Lessard 1997 for a proof and another
application.) As a consequence, the mean number of
A1A1 female offspring that mate with an A1A2 male sib,
for instance, is bðl=4Þf11ð1� e�l �m4Þ times ð12m12= �m4Þ.
The expected contributions of all other mating types in
numbers of mated female offspring can be obtained in a
similar way.

Observe that the proportion of sib-mated females in
the next generation is

bs ¼
b �f *

ð1� bÞ �f 1b �f *; ð1Þ

where

�f ¼ x1 �f1 1 � � � 1 x 6
�f6 ð2Þ

and

�f * ¼ x1 �f1ð1� e�l �m1Þ1 � � � 1 x 6
�f6ð1� e�l �m6Þ; ð3Þ

with �mi and �fi being the mean viabilities of male and
female offspring, respectively, produced by mated
females of types labeled from i ¼ 1 to i ¼ 6, respectively,
as listed above. The proportion bs is less than b since a
fraction of the female offspring do not have male sibs to
mate with and it is frequency dependent unless there is
no viability difference in males. In such a case, this
proportion reduces to

b0 ¼
bð1� e�lmÞ
1� be�lm : ð4Þ

As l grows to infinity, both bs and b0 tend to b. The
quantity b ¼ rb0, where

r ¼ lme�lm

1� e�lm ; ð5Þ

also plays a role in the analysis. Actually, we have

b ¼ blme�lm

1� be�lm ; ð6Þ

and this can be interpreted as the rate of increase in the
proportion of sib-mated female offspring produced by a
mated female with respect to an increase in the viability
of its male offspring.

Assuming that allele A1 is a rare mutant, the frequen-
cies x1, x2, x3, x4, x5 are all close to 0 and their trans-
formation from one generation to the next has a matrix
of linear approximation whose value and derivative with
respect to s evaluated at s ¼ 0, denoted by M and Ṁ,
respectively, are given in Table 2. Observe that thematrix
M is nonnegative and admits an eigenvalue 1 with
associated left and right positive eigenvectors y and z,
respectively, also given in Table 2. The entries of y are
proportional to the frequencies of A1 in the mating types

and the entries of z are proportional to the frequencies
of themating types in the long run near the fixation state
of A2.

The frequency of allele A1, given by x11
3
4x21

1
2x31

1
2x41

1
4x5, is represented by p. Its change from one

generation to the next, after enough generations have
passed and as long as A1 remains rare and selection is
weak, is approximated by the formula

Dp � Lps; ð7Þ

where

L ¼ yTṀz

yTz
; ð8Þ

with T denoting matrix transposition (see, e.g., Taylor
1985, 1989 for similar statements and Lessard and
Rocheleau 2003 for a formal proof). In this approxi-
mation, terms of order ps 2 or p 2s as well as all smaller
terms when p and s are small are ignored. The quantity L
can be seen as a rate of change with respect to the
frequency of A1 and the intensity of selection.

Using Table 2 and following tedious algebraic manip-
ulations, the following expression,

L ¼ f1
2
RI/I 1

1
2
RI/IMgaðI Þ1 f1

2
RJ/J � 1

2
RJ/SMgað J Þ

1 f1
2
RJ/J 1

1
2
RJ/JMgbað J Þ; ð9Þ

can be found, where

aðI Þ ¼ F ðu11 � u22Þ1 ð1� F Þðu12 � u22Þ ð10Þ

and

að J Þ ¼ F ðv11 � v 22Þ1 ð1� F Þðv12 � v22Þ; ð11Þ

with

F ¼ b0

4� 3b0

ð12Þ

being the inbreeding coefficient under neutrality, that
is, the probability that the two genes of an individual
chosen at random in the population at equilibrium in
the absence of selection (s ¼ 0) are identical by descent
(IBD). Moreover, we have

RI/I ¼ RJ/J ¼ 1 ð13Þ

and

RI/IM ¼ RJ/SM ¼ RJ/JM ¼ b0

2� b0

: ð14Þ

Here, I stands for a female, J for amale, IM and JM for the
mates of I and J, respectively, and SM for the mate of a
sister. Moreover, RX/Y represents the coefficient of
relatedness of an individual X to an individual Y under
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neutrality (Michod and Hamilton 1980), which corre-
sponds in the case of the neutral partial full-sib mating
model at hand to the expected fraction of genes in Y
IBD to one or more genes in X independently of the
event that the genes inX are IBDor not (Lessard 1992).
On the other hand, the fraction 1

2 in front of these
coefficients in Equation 9 corresponds to the reproduc-
tive value of the sex of Y (female if I or JM,male if J, IM, or
SM) in a neutral diplo-diploid population.
The quantities a(I) and a( J ) multiplied by the in-

tensity of selection give the average excesses in viability
of A1 over A2 in females and males, respectively, which
are inbred with probability F and outbred with proba-
bility 1 � F, when allele A1 is rare in the population, in

agreement with Fisher’s (1941) definition. They can be
interpreted as costs (if negative) or benefits (if positive)
of substituting A1 for A2 in a female and a male,
respectively, in a population fixed for allele A2. An extra
cost or benefit is given by ba( J ) when there is some
positive probability that no male sib is produced and
survives, as a result of stochastic effects, to fertilize the
females that must sib mate.
Haplo-diploid population: Assuming diploid females

and haploid males with viabilities fij ¼ f(1 1 uijs) and
mi ¼ m(1 1 vis) for the genotypes AiAj and Ai, re-
spectively, the recurrence equations for the frequencies
of the mating types A1A1 3 A1, A1A2 3 A1, A2A2 3 A1,
A1A1 3 A2, A1A2 3 A2, and A2A2 3 A2 represented by x1,

TABLE 2

Linear approximation of the transformation of x1, x2, x3, x4, x5 near 0 in the diplo-diploid model

M11 ¼ b0; M12 ¼
b0

4
; M14 ¼

b0

16
; M22 ¼

b0

2

M24 ¼
b0

4
; M31 ¼ 2ð1� b0Þ; M32 ¼ ð1� b0Þ; M34 ¼

ð4� 3b0Þ
8

M42 ¼
b0

4
; M43 ¼ b0; M44 ¼

b0

4
; M45 ¼

b0

4

M52 ¼ ð1� b0Þ; M53 ¼ 2ð1� b0Þ; M54 ¼
ð4� 3b0Þ

4
; M55 ¼

ð2� b0Þ
2

Ṁ11 ¼ b0ðc11 1 h1Þ; Ṁ12 ¼
b0

4

d11 � d12
2

1 c11 1 h2

� �

Ṁ14 ¼
b0

16
c11 1

3d11 � 2d12
4

1 h4

� �
; Ṁ22 ¼

b0

2

c11 1 c12
2

1 h2

� �

Ṁ24 ¼
b0

4

d11
4

1
c11 1 c12

2
1 h4

� �
; Ṁ31 ¼ ð1� b0Þðc11 1 d11 � 2h 0Þ

Ṁ32 ¼ ð1� b0Þ
c11 1 d11

2
� h 0

� �
; Ṁ34 ¼

b0

8

d11
4

1
c11 � d12

2
1 h4

� �
1
ð1� b0Þ

2

c11 1 d11
2

� h 0

� �

Ṁ42 ¼
b0

4

d12 � d11
2

1 c12 1 h2

� �
;

Ṁ43 ¼ b0ðc12 1 h3Þ; Ṁ44 ¼
b0

4

2d12 � d11
4

1 c12 1 h4

� �

Ṁ45 ¼
b0

4

d12
2

1 c12 1 h5

� �
; Ṁ52 ¼ ð1� b0Þ

c12 1 d12
2

� h 0

� �

Ṁ53 ¼ ð1� b0Þðc12 1 d12 � 2h 0Þ; Ṁ54 ¼
b0

4

c12
2

� d11
4

1 h4

� �
1 ð1� b0Þ

c12 1 d12
2

� h 0

� �

Ṁ55 ¼
b0

2

c12
2
1 h5

� �
1 ð1� b0Þ

c12 1 d12
2

� h 0

� �
;

y ¼ ð4; 3; 2; 2; 1Þ; z ¼ b0ð21b0Þ
16ð2� b0Þð1� b0Þ

;
b0

2ð2� b0Þ
;
1

2
; 1;

5b2
0 � 20b0 1 16

2b0ð2� b0Þ

� �

Nonnull entries are shown of the matrixM and its derivative Ṁ and left and right positive eigenvectors, y and
z, associated to the eigenvalue 1 of M, using the notation cij ¼ uij � u22, dij ¼ vij � v22, hi ¼ r �vi � h0 with
�vi ¼ ð �mi � mÞ=ðmsÞ, h0 ¼ rb0v 22, and the quantities r and b0 as defined in the text.
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x2, x3, x4, x5, and x6, respectively, are given in Table 3.
This time, we find

L ¼ 2
3
RI/I 1

1
3
RI/IM

� �
aðI Þ1 1

3
RJ/J � 1

3
RJ/SM

� �
að J Þ

1 1
3
RJ/J 1

2
3
RJ/JM

� �
bað J Þ ð15Þ

(see Table 4), with the same definitions and expressions
as previously for all coefficients but

að J Þ ¼ v1 � v2 ð16Þ

and

RJ/SM ¼ b0ð2� b0Þ
ð4� 3b0Þ

; RJ/JM ¼ b0

4� 3b0

: ð17Þ

With 2
3 and 1

3 being the reproductive values of fe-
males (the sex of I and JM) and males (the sex of J, IM,
and SM), respectively, in a neutral haplo-diploid pop-
ulation, the rate L for a haplo-diploid population given
in Equation 15 has the same structure as the rate given
in Equation 9 for a diplo-diploid population.

INTERPRETATION AND DISCUSSION

The rate of change in the frequency of a rare mutant
allele in a partial full-sib mating population under weak
sex-differentiated viability selection taking place before
mating reveals interactions between individuals affect-
ing reproductive success even in the absence of inter-
actions affecting viability. Actually, an increase in the
viability of males or females increases the reproductive
fitness of their mates, but such an increase in males also
decreases the reproductive fitness of other males. This
explains the signs, positive or negative, of the different
factors in Equation 9 and Equation 15. The first effect is
due to the assumption that all females that survive are
fertilized as long as onemate is available, and the second
is due to the ancillary fact that the males are in com-
petition to fertilize the females. With partial full-sib
mating, a fixed proportion of females are constrained to
sib mate, which creates mate competition betweenmale
sibs if some are produced and survive. Moreover, the
females are related to their mates, which is responsible
for inbreeding, and themales are related to competitors
for mating. As a result, any excess in viability in females
or males carrying the rare mutant allele, which corre-
sponds to a benefit if positive or a cost if negative, is
increased or decreased by an additive factor given by
some coefficient of relatedness to the individual af-
fected by such an excess times the total reproductive
value associated to the sex of that individual. Then, we
are in a framework of kin selection (Hamilton 1964;
see also Hamilton 1972 for haplo-diploid populations)
and it is revealed by sex differences in viability both in
diplo-diploid and in haplo-diploid models.

When the number of offspring produced per mated
female is small, the actual proportion of female off-
spring that sib mate is determined not only by the
probability of having to mate with a male sib but also by
the probability of having at least one male sib to mate
with, and this uncertainty has an effect on the repro-
ductive success of males and also indirectly on the re-
productive success of their mates. When the number of
offspringbecomes large, this stochastic effect disappears
but not the kin selection effects caused by inbreeding
and local mate competition unless the population is
diploid and the viability differences are the same in both
sexes. It might be for the same reason that kin selec-
tion effects are not apparent in partial selfing models
(Lessard and Rocheleau 2003).

The interactions between mates have an effect on the
allelic frequencies because there is inbreeding, while

TABLE 3

Recurrence equations for the haplo-diploid model, with the
notation xi* ¼ xi 1� e�l �mið Þ= �f *, and the quantities �f * and

bs as defined in the text

x91 ¼ ð1� bsÞP1Q 11 1bs f11m1
x*1
�m1

1
x*2
4 �m2

� �

x92 ¼ ð1� bsÞP1Q 12 1bs f12m1
x*2
4 �m2

1
x*4
�m4

1
x*5
4 �m5

� �

x93 ¼ ð1� bsÞP1Q 22 1bs f22m1
x*5
4 �m5

� �

x94 ¼ ð1� bsÞP2Q 11 1bs f11m2
x*2
4 �m2

� �

x95 ¼ ð1� bsÞP2Q 12 1bs f12m2
x*2
4 �m2

1
x*3
�m3

1
x*5
4 �m5

� �

x96 ¼ ð1� bsÞP2Q 22 1bs f22m2
x*5
4 �m5

1
x*6
�m6

� �

�mP1 ¼ m1 x1 1
x2
2
1 x4 1

x5
2

� �
; �f Q 11 ¼ f11 x1 1

x2
2

� �

�mP2 ¼ m2
x2
2
1 x3 1

x5
2
1 x6

� �
; �f Q 12 ¼ f12

x2
2
1 x3 1 x4 1

x5
2

� �

�f Q 22 ¼ f22
x5
2
1 x6

� �

�m ¼ x1 �m1 1 x2 �m2 1 x3 �m3 1 x4 �m4 1 x5 �m5 1 x6 �m6

�f ¼ x1 �f1 1 x2 �f2 1 x3 �f3 1 x4 �f4 1 x5 �f5 1 x6 �f6

�m1 ¼ �m4 ¼ m1; �m3 ¼ �m6 ¼ m2; �m2 ¼ �m5 ¼
m1 1m2

2

�f1 ¼ f11; �f3 ¼ f12; �f6 ¼ f22

�f2 ¼
f11
2
1
f12
2
; �f4 ¼

f11
4
1

f12
2
1

f22
4
; �f5 ¼

f12
2
1
f22
2
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related males interact because there is local mate com-
petition. Each one of these factors was put forward to
explain biased sex ratios in partial sib-mating popula-
tions and more generally in structured populations
(Hamilton 1967; Maynard Smith and Stenseth
1978; see, e.g., Karlin and Lessard 1986 and references
therein). Our results enlighten the exact role of these
factors in the change of allele frequencies at least in
partial full-sib mating populations. Moreover, we have
made some specific assumptions such as polygyny and
single insemination. However, it is expected that the
conclusions can be adapted to other models with dif-
ferent mating assumptions and constraints. Allowing
multiple insemination, for instance, might remove
competition between males, while allowing a female to
mate with a male in the population at large when no
male sib is available might remove stochastic effects
entailed by a small number of offspring. Nevertheless,

kin selection should be at work in a very wide range of
models but be apparent only when there is some
asymmetry between the sexes.
The coefficient of relatedness between the interacting

individuals that comes into play in our analysis is the
expected fraction of genes in the affected individual
that are IBD to one or more genes in the affecting
individual as originally proposed by Hamilton (1964)
(see, e.g.,Michod andHamilton 1980 formore general
definitions) even if the effects of the interactions on
reproductive success are not a priori additive and there
is inbreeding in the population. But we have to remind
ourselves that selection is assumed to be weak and that
the linear approximation used under this assumption
is tantamount to an additive model. Moreover, in partial
full-sib mating populations, the coefficient of relat-
edness of an individual to another turns out not to
depend on whether the individual is inbred or outbred

TABLE 4

Linear approximation of the transformation of x1, x2, x3, x4, x5 near 0 in the haplo-diploid model

M11 ¼ b0; M12 ¼
b0

4
; M22 ¼

b0

4
; M24 ¼ b0

M25 ¼
b0

4
; M31 ¼ ð1� b0Þ; M32 ¼

ð1� b0Þ
2

; M34 ¼ ð1� b0Þ

M35 ¼
ð2� b0Þ

4
; M41 ¼ ð1� b0Þ; M42 ¼

ð2� b0Þ
4

; M52 ¼
ð2� b0Þ

4

M53 ¼ 1; M54 ¼ ð1� b0Þ; M55 ¼
ð2� b0Þ

4

Ṁ11 ¼ b0ðc11 1 h1Þ; Ṁ12 ¼
b0

4
c11 1

d1
2
1 h2

� �

Ṁ22 ¼
b0

4
c12 1

d1
2
1 h2

� �
; Ṁ24 ¼ b0ðc12 1 h4Þ

Ṁ25 ¼
b0

4
c12 1

d1
2
1 h5

� �
; Ṁ31 ¼ ð1� b0Þðd1 � h0Þ

Ṁ32 ¼
ð1� b0Þ

2
ðd1 � h0Þ; Ṁ34 ¼ ð1� b0Þðd1 � h0Þ

Ṁ35 ¼
ð1� b0Þ

2
ðd1 � h0Þ1

b0

4

d1
2
1 h5

� �
; Ṁ41 ¼ ð1� b0Þðc11 � h0Þ

Ṁ42 ¼
ð1� b0Þ

2
ðc11 � h0Þ1

b0

4
c11 �

d1
2
1 h2

� �
; Ṁ52 ¼

ð1� b0Þ
2

ðc12 � h0Þ1
b0

4
c12 �

d1
2
1 h2

� �

Ṁ53 ¼ ð1� b0Þðc12 � h0Þ1b0ðc12 1 h3Þ; Ṁ54 ¼ ð1� b0Þðc12 � h0Þ

Ṁ55 ¼
ð1� b0Þ

2
ðc12 � h0Þ1

b0

4
c12 �

d1
2
1 h5

� �
;

y ¼ ð3; 2; 1; 2; 1Þ; z ¼ b0

4ð1� b0Þ
; 1;

4� 3b0

2b0
;
1

2
;
4� 3b0

b0

� �

Nonnull entries are shown of the matrix M and its derivative Ṁ and left and right positive eigenvectors, y and
z, associated to the eigenvalue 1 of M, using the notation cij ¼ uij � u22, d1 ¼ v1 � v2, hi ¼ r �vi � h0, with
�vi ¼ ð �mi � mÞ=ðmsÞ, h0 ¼ rb0v2, and the quantities r and b0 as defined in the text.
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(Lessard 1992). This is not generally the case in struc-
tured populations (Rocheleau 2003), for whichwemay
have to resort to generalized coefficients of relatedness.

Finally, we have focused on the change in the
frequency of a rare mutant allele in an infinite pop-
ulation for which approximations have been previously
established (Lessard and Rocheleau 2003). It might
be interesting to extend the analysis to the case of a
mutant allele that has reached any frequency and even
to the case of a finite population using related approx-
imations as in Caballero and Hill (1992) and Roze
and Rousset (2004).
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