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ABSTRACT

An exact sampling formula for a Wright–Fisher population of fixed size N under the infinitely many
neutral alleles model is deduced. This extends the Ewens formula for the configuration of a random
sample to the case where the sample is drawn from a population of small size, that is, without the usual
large-N and small-mutation-rate assumption. The formula is used to prove a conjecture ascertaining the
validity of a diffusion approximation for the frequency of a mutant-type allele under weak selection in
segregation with a wild-type allele in the limit finite-island model, namely, a population that is subdivided
into a finite number of demes of size N and that receives an expected fraction m of migrants from a
common migrant pool each generation, as the number of demes goes to infinity. This is done by applying
the formula to the migrant ancestors of a single deme and sampling their types at random. The proof of
the conjecture confirms an analogy between the island model and a random-mating population, but with
a different timescale that has implications for estimation procedures.

WAKELEY (2003) has provided a theoretical
framework for statistical inference about muta-

tion, selection, and divergence time made from molec-
ular data at unlinked nucleotide sites as in Sawyer and
Hartl (1992) but in the case of a population subdi-
vided into many subpopulations or demes. Assuming
an island model of migration (Wright 1931; Moran

1959) but with a finite number of finite demes, it has
been argued that the frequency of a mutant allele seg-
regating with a wild-type allele at the same locus in the
whole population should be governed in the limit of a
large number of demes by a diffusion process that is
identical to the standard diffusion approximation used
for a panmictic population (see, e.g., Ewens 2004, Chap.
4), with the exception that it occurs on a longer timescale.

More precisely, consider a haploid population sub-
divided into D demes with N individuals in each deme
and suppose discrete, nonoverlapping generations. At
the beginning of each generation, every individual in
every deme produces the same large number of off-
spring, which then disperse independently and ran-
domly among all the demes with probability m (0 , m #

1) or stay in their original deme with probability 1 � m.

In other words, m is the fraction of offspring in each
deme that come from a deme chosen at random. Two
alleles at a single locus are segregating in the popula-
tion, a mutant allele A and a wild-type allele B, and
viability selection takes place among the offspring
within each deme (what is known as soft selection) such
that the mutant type has fitness 1 1 g/(ND) compared
to 1 for the wild type. The population structure is re-
stored before the beginning of the next generation by
sampling N survivors within each deme according to a
classical Wright–Fisher model (Fisher 1930; Wright

1931). The frequency of A in all the demes is then
described by a multidimensional discrete-time Markov
chain. The same chain is obtained in the case of a
diploid population with gametic migration followed by
random union of gametes and additive selection.

Measuring time in units of ND/(1 � F ) generations,
where F is the fixation index given by

F ¼ ð1� mÞ2

Nmð2� mÞ1 ð1� mÞ2; ð1Þ

it has been shown that the frequency of A in the whole
population in the limit as D goes to infinity should be
described by a diffusion continuous-time process on the
interval ½0, 1� having drift and diffusion coefficients
given by

aðxÞ ¼ gxð1� xÞ ð2Þ
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and

bðxÞ ¼ xð1� xÞ; ð3Þ

respectively. This is exactly what is obtained for a
panmictic population of size ND with ND generations
taken as unit of time (see, e.g., Ewens 2004, Chap. 5).
Therefore, in the limit of a large D, the only difference
between the two models is the timescale, the unit of time
in the island model being longer by a factor 1/(1 � F ).
Note that the parameter F represents the probability
under neutrality and assuming a large number of demes
that the lineages of two individuals chosen at random in
the same deme coalesce backward in time before one of
them migrates to another deme.

The limit diffusion for the island model results from a
separation of timescales as in Ethier and Nagylaki

(1980), drift within demes occurring on a faster time-
scale than drift between demes and selection pressure.
Moreover, a rigorous proof relies on the following
assumption:

Conjecture (Wakeley 2003): If n ¼ (n0, n1, . . . , nN)
is the probability distribution satisfying

nj ¼
XN
i¼0

niP
*
ij ; ð4Þ

where

P *
ij ¼

N
j

� �
ð1�mÞ i

N
1mx

� �j

ð1�mÞN � i

N
1mð1�xÞ

� �N�j

ð5Þ

and x represents the frequency of A in the current generation,
then there exist some coefficients r1, . . . , rN such that from one
generation to the next

n9j ¼ nj 1
XN
i¼1

riðx9� xÞi : ð6Þ

Moreover, these coefficients may depend on N, j, m, and x.

It has been noted that the conjecture is true when n

is approximated with a hypergeometric distribution
ñ ¼ ðñ0; ñ1; . . . ; ñN Þ exhibiting the same mean and var-
iance; namely,

ñj ¼

j 1 Mx � 1
j

� �
N � j 1 M ð1� xÞ � 1

N � j

� �
N 1 M � 1

N

� � ; ð7Þ

where

M ¼ 1� F

F
¼ Nmð2� mÞ
ð1� mÞ2 ð8Þ

and

k 1 a � 1
k

� �
¼ Gða 1 kÞ

k!GðaÞ ; ð9Þ

with G(a 1 1) ¼ aG(a) for a . 0 (see, e.g., Feller 1968,
p. 66, for properties of the gamma function). Such an
approximation can be justified by exchangeability
properties (Rothman et al. 1974). The accuracy of the
approximation has been illustrated by numerical calcu-
lations for a deme of size as small as 10 (see Wakeley

2003 for more details). Moreover, numerical simulations
in the case of a large deme size have shown little dis-
crepancy with the stochastic dynamics predicted from
the diffusion approximation (Cherry and Wakeley

2003). This is consistent with analytical results for a large
deme size with Nm kept constant, in which case both Nn

and N ñ approach the density of a beta distribution
evaluated at y ¼ j/N; namely,

nðyÞ ¼ GðM Þ
GðMxÞGðM ð1� xÞÞ y

Mx�1ð1� yÞM ð1�xÞ�1; ð10Þ

where M takes its limit value 2Nm (see, e.g., Moran 1962,
Chap. 6). This distribution corresponds to the station-
ary distribution in a deme of large size that receives an
expected fraction m of migrants each generation from
an infinite population, possibly subdivided into an
infinite number of demes, in which the frequencies of
A and B are kept constant and equal to x and 1 � x,
respectively (Wright 1931).

On the other hand, the hypergeometric distribution
ñ, where

M ¼ Nm

1� m
; ð11Þ

is the solution of the system of equations

ñj ¼
XN
i¼0

ñi P̃
*
ij ; ð12Þ

where

P̃ *
i;i11 ¼

N � i

N
ð1� mÞ i

N
1 mx

� �
; ð13Þ

P̃ *
i;i�1 ¼

i

N
ð1� mÞN � i

N
1 mð1� xÞ

� �
; ð14Þ

P̃ *
i;i ¼ 1� P̃ *

i;i11 � P̃ *
i;i�1; ð15Þ

and P̃ *
ij ¼ 0 otherwise. This distribution comes into play

when a Moran-type model (Moran 1958) is used for
reproduction, one individual at a time being replaced
with an offspring of an individual either in the same
deme with probability 1� m or in the entire population
with probability m (Wakeley and Takahashi 2004).
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This is also the distribution of allele types in an island
population of size N generated by a birth-and-death
process with immigration (BDI) from a large mainland
population in which the frequencies of alleles A and B
are x and 1� x, respectively, if M is defined as the ratio of
the immigration rate over the individual birth rate
(Rannala 1996).

In the case of infinitely many alleles in the mainland
population of a BDI process ( Joyce and Tavaré 1987;
Tavaré 1989), the distribution of allele types in an
island or a subpopulation is related to the Ewens sam-
pling formula. This formula gives the likelihood of the
configuration of alleles at a single locus in a small
sample drawn at random from a large population as-
suming that every mutation leads to a novel type. It was
conjectured by Ewens (1972) from the stationary fre-
quency spectrum based on a diffusion approximation
and proved formally by induction by Karlin and
McGregor (1972). The formula holds in the limit of
a wide range of exchangeable models, including the
Wright–Fisher model and the Moran model, and is a
basic tool for estimating the mutation rate and testing
neutrality (see, e.g., Ewens 1990). An analogy with a
Polya urn model has been pointed out (Hoppe 1984,
1987). The formula has been proved by a simple com-
binatorial argument (Griffiths and Lessard 2005)
based on the coalescent approach as the population size
goes to infinity (Kingman 1982).

The Ewens sampling formula or any related asymp-
totic formula cannot be used, however, to get the dis-
tribution n since the deme size is fixed and finite. What
is needed is an exact formula for the neutral Wright–
Fisher model. More precisely, the distribution n that is to
be determined corresponds to the stationary distribu-
tion in a Wright–Fisher population of fixed size N that
receives an expected fraction m of migrants each gen-
eration from an infinite population in which the fre-
quencies of A and B are kept constant and equal to x and
1 � x, respectively. Equivalently, this is the stationary
distribution in a Wright–Fisher population in which
mutation occurs with probability m per gene per gen-
eration and leads either to an allele A with probability
x or to an allele B with probability 1 � x.

In this note, the stationary distribution n is obtained
from an exact sampling formula for the Wright–Fisher
model under infinitely many alleles mutation that is
deduced in the next section (see Fu 2006 for a study of
the exact coalescent in this model without mutation).
The proof of the conjecture and some concluding
remarks follow.

EXACT SAMPLING FORMULA FOR THE NEUTRAL
WRIGHT–FISHER INFINITELY MANY

ALLELES MODEL

We consider the neutral Wright–Fisher model for a
population of N genes at a single locus with discrete,

nonoverlapping generations and a probability of muta-
tion to a novel allelic type u per gene per generation. We
are interested in the probability of having k different
types, labeled arbitrarily from 1 to k and represented
n1, . . . , nk times, respectively, in a sample of n ¼

P
i ni

genes drawn at random without replacement in a given
generation (say, generation g0). The sample size satisfies
1 # n # N.

Let us assign the labeled types to the sampled genes.
There are

n!Q
k
i¼1 ni !

ð16Þ

possibilities. The probability of the sample configura-
tion is obtained by reconstructing the history of the
sample genes.

Backward in time, the sampled genes are lost by mu-
tation or coalescence. We consider first only the genera-
tions with such mutation or coalescence events that
define ordered steps of gene loss backward in time. Let
step t correspond to generation gt for t¼ 1, . . . , T, where
T represents the total number of steps. We introduce
the notation ri,t for the number of genes of type i re-
maining at the beginning of step t. This number de-
creases from ni to 1 as t increases from 1 to ti, this step
corresponding to the loss of type i by mutation, so that
ri;ti ¼ 1 and ri,t ¼ 0 for all t . ti. Moreover, define
rt ¼

P
i ri;t , the total number of genes remaining at the

beginning of step t, and mt, the number of mutation
events occurring at step t, that is, the number of i such
that ti ¼ t. (See Table 1.)

Then, assuming that the parent of each gene in any
given generation is a gene chosen at random in the
previous generation independently of all others, step t
as defined from the numbers of genes of each type
remaining at the beginning of steps t and t 1 1, that is,
ri,t11 for all i given ri,t for all i with 0 # ri,t11 # ri,t for all i
following at least one, and possibly multiple, mutation
or coalescence events (see Figure 1 for an example), has
probability

umt ð1� uÞrt�mt
N ½rt11�

N rt�mt

Yk

i¼1

Sri;t ri;t11

" #
; ð17Þ

where N ½r� ¼ N(N � 1) . . . (N � r 1 1), while Srs re-
presents the number of ways that r distinct elements can
be partitioned into s nonvoid subsets. This is a Stirling
number of the second kind given by the formula

Srs ¼
1

s!

X
j1; . . . ; js$1

j11 . . . 1js¼ r

r
j1; . . . ; js

� �
ð18Þ

(see, e.g., Abramowitz and Stegun 1965). Note that, in
Equation 17, we use the equalities N ½0� ¼ 1 and S00 ¼
S10 ¼ 1.
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Considering all steps of gene loss from 1 to T ¼
max{t1, . . . , tk} and using the identity k ¼

P
t mt, we get

the probability

uN

1� u

� �kYT
t¼1

ð1� uÞrt N ½rt11�

N rt

Yk

i¼1

Sri;t ri;t11

" #
: ð19Þ

On the other hand, the probability of neither mutation
nor coalescence in all intermediate generations sepa-
rating the generations of gene loss is

YT
t¼1

X‘

gt�gt�1¼1

ð1� uÞrt
N ½rt �

N rt

� �gt�gt�1�1

; ð20Þ

which reduces to

YT
t¼1

1� ð1� uÞrt
N ½rt �

N rt

� ��1

: ð21Þ

Multiplying (16) with (19) and (21) and dividing by k!,
which is the number of ways that the mutant types can be
labeled, the probability of the sample configuration for
the labeled types, denoted by p(n; n1, . . . , nk), is found to
be

n!

k!
Q

k
i¼1 ni !

uN

1� u

� �kX
ðri;t Þ

YT
t¼1

ð1� uÞrt N ½rt11�Qk
i¼1 Sri;t ri;t11

N rt � ð1� uÞrt N ½rt �

" #
;

ð22Þ

where ðri;tÞ is an array of nonnegative integers satisfying
ri,t $ ri,t11 for i ¼ 1, . . . , k and t $ 1 with ri,1 ¼ ni and

ri;ti ¼ 1 . ri;ti11 ¼ 0 for some ti for all i and
rt ¼

P
i ri;t .

P
i ri;t11 ¼ rt11 as long as rt $ 1, which

occurs for t ¼ 1, . . . , T.

PROOF OF THE CONJECTURE

Suppose a neutral Wright–Fisher model for a pop-
ulation of N genes at a single locus without mutation but
in which each gene in each generation, with probability
m and independently of all others, comes from a large
surrounding population where two alleles A and B are
segregating and maintained at equilibrium frequencies
x and 1� x, respectively. In the population of size N, it is
as if a mutation event to a novel type would occur with
probability u ¼ m per gene per generation and that the
novel type would be either in class A with probability x
or in class B with the complementary probability 1 � x.

In the Wright–Fisher population at stationarity, the
number of genes in class A can be expressed as

NA ¼ N1I1 1 . . . 1 NK IK ; ð23Þ

where K is the number of types in the population, N1, . . . ,
NK are the numbers of times that these types once
labeled from 1 to K are represented in the population,
and I1, . . . , IK are independent random variables that
take the value 1 with probability x and 0 otherwise. Given
that K ¼ k, the numbers N1, . . . , Nk are exchangeable
random variables and the sum I1 1 . . . 1 Ik follows a
binomial distribution with parameters k and x. There-
fore, the probability of having j genes in class A in the
Wright–Fisher population at stationarity is

TABLE 1

Notation and inequalities for the numbers of genes of the different types (i ¼ 1, … , k) at the beginning
of the successive steps of gene loss (t ¼ 1, … , T )

1 . . . t t 1 1 . . . ti ti 1 1 . . . T

n1 . . . r1,t $ r1,t11 . . . r1;ti $ r1;ti11 . . . r1,T $ 0
� � � � � �
� � � � � �
� � � � � �
ni . . . ri,t $ ri,t11 . . . 1 . 0 . . . 0 ¼ 0
� � � � � �
� � � � � �
� � � � � �
nk . . . rk,t $ rk,t11 . . . rk;ti $ rk;ti11 . . . rk,T $ 0

n . . . rt . rt11 . . . rti . rti11 . . . rT . 0

The number of mutations at step t, represented by mt, is the number of types i such that ri,t ¼ 1 and ri,t11 ¼ 0
and satisfies

P
t mt ¼ k.

Figure 1.—Example of types 1, 2, 3, 4, 5 repre-
sented 3, 1, 2, 1, 4 times at step t and 1, 0, 2, 0, 3
times at step t 1 1 as a result of mutation events,
represented by dots, and coalescence events.
Note that the coalescence event between the
gene of type 4, prior to the mutation event,
and one of the genes of type 5 has no effect on
the sample configuration.
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nj ¼
XN
k¼1

Xk

l¼0

k
l

� �
xl ð1� xÞk�l PðN1 1 . . . 1 Nl ¼ j ;K ¼ kÞ; ð24Þ

where, using the sampling formula of the previous
section for the whole population (n ¼ N ), we have

PðN1 1 . . . 1 Nl ¼ j ;K ¼ kÞ ¼
X

n1; . . . ;nk$1
n11 . . . 1 nl ¼ j

pðN ; n1; . . . ; nkÞ: ð25Þ

We conclude that

nj ¼
XN
l¼0

al x
l ; ð26Þ

where the coefficients a0, a1, . . . , aN depend on m, j,
and N.

Let us write

n9j ¼
XN
l¼0

alðx9� x 1 xÞl ð27Þ

for the probability of having j genes in class A in the
Wright–Fisher population at stationarity when the fre-
quency of A in the surrounding population is x9 dif-
ferent from x. Then, the binomial formula

ðx9� x 1 xÞl ¼
Xl

i¼0

l
i

� �
xl�iðx9� xÞi ð28Þ

and a rearrangement of terms yield the expression

n9j ¼ nj 1
XN
i¼1

riðx9� xÞi ; ð29Þ

where

ri ¼
XN
l¼i

l
i

� �
al x

l�i : ð30Þ

This coefficient for i ¼ 1, . . . , N depends on N, j, m, and
x and the stated conjecture is established.

CONCLUDING REMARKS

The proof of the conjecture relies on the fact that the
probability of having a given number of genes in class A
in a haploid Wright–Fisher population of size N with a
backward migration probability of m per individual per
generation is a polynomial of degree N with respect to
the frequency of A among migrants that is kept con-
stant. Note that the proof does not require an exact
expression for p(N; n1, . . . , nk), which represents the
probability for the population at stationarity to have k
migrant ancestors labeled from 1 to k and having n1, . . . ,
nk descendants, respectively. However, the analogy with
an infinitely many alleles mutation model with a mu-
tation rate u ¼ m per gene per generation and the

importance of sampling formulas for drawing inferen-
ces about genetic and demographic parameters make of
interest such an expression for any sample size n, in
which case the probability is represented by p(n; n1, . . . ,
nk). The number of terms to sum up to compute this
probability corresponds to the number of ways that the
sampled genes can be lost backward in time by mutation
or coalescence and this number increases rapidly with
the sample size. Unless the population size N is large, all
these terms have to be considered.

If we let N go to infinity and u to zero and keep u ¼
2Nu constant, then only the arrays ðri;tÞ for the gene
losses with rt11 ¼ rt � 1 for t ¼ 1, . . . , n will contribute
to the probability of the sample configuration since

N ½rt11�

N rt � ð1� uÞrt N ½rt� ¼
2N rt11�rt11

rtðu 1 rt � 1Þ ð1 1 Oð1=N ÞÞ:

ð31Þ

There are n!=ð
Q

i ni !Þ such arrays with ri,t11¼ ri,t� 1 for
one and only one type i, denoted by it, for each t¼ 1, . . . ,
n. Then, using the identity Sr,r�1 ¼ r(r � 1)/2 for r $ 2
and S1,0 ¼ 1, we find that the probability is the same for
each array and that the probability for all arrays is

n!uk

k!
Q

k
i¼1 ni

� �Q
n
r¼1ðu 1 r � 1Þ: ð32Þ

This is the Ewens sampling formula for labeled types
(Ewens 1972; Karlin and Mcgregor 1972; see Ewens

2004, Section 3.6, for more details on its deduction from
a diffusion approximation, and Griffiths and Lessard

2005, for a combinatorial proof based on a coalescent
approximation).

The difference between the exact sampling formula
for a fixed population size and a fixed mutation rate and
the large-N, small-u approximation comes mainly from
the occurrence of simultaneous mutation or coalescence
events that cannot be neglected in the general case. This
is particularly relevant when N corresponds to a deme
size in a subdivided population, which can be quite
small (,10), and u to a migration rate from one deme to
any other, which can be very high (.10�1).

The exact formula has been deduced by considering
all generations backward in time and unconditional
transition probabilities for the sample configuration
from one generation to the previous one. An alternative
approach would be to consider only the generations
with a change by mutation or coalescence and condi-
tional transition probabilities given such a change, but
this approach would be equivalent and not simpler.
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