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Abstract Diffusion approximations are ascertained from a two-time-scale argument
in the case of a group-structured diploid population with scaled viability parameters
depending on the individual genotype and the group type at a single multi-allelic
locus under recurrent mutation, and applied to the case of random pairwise interac-
tions within groups. The main step consists in proving global and uniform convergence
of the distribution of the group types in an infinite population in the absence of selec-
tion and mutation, using a coalescent approach. An inclusive fitness formulation with
coefficient of relatedness between a focal individual J affecting the reproductive suc-
cess of an individual I , defined as the expected fraction of genes in I that are identical
by descent to one or more genes in J in a neutral infinite population, given that J
is allozygous or autozygous, yields the correct selection drift functions. These are
analogous to the selection drift functions obtained with pure viability selection in a
population with inbreeding. They give the changes of the allele frequencies in an infi-
nite population without mutation that correspond to the replicator equation with fitness
matrix expressed as a linear combination of a symmetric matrix for allozygous individ-
uals and a rank-one matrix for autozygous individuals. In the case of no inbreeding,
the mean inclusive fitness is a strict Lyapunov function with respect to this deter-
ministic dynamics. Connections are made between dispersal with exact replacement
(proportional dispersal), uniform dispersal, and local extinction and recolonization.
The timing of dispersal (before or after selection, before or after mating) is shown to
have an effect on group competition and the effective population size.
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1 Introduction

Ethier and Nagylaki (1980) provided key conditions for diffusion approximations of
discrete-time Markov chains with two time scales based on weak-convergence results
for perturbed operator semigroups (Kurtz 1975). They applied their results to popu-
lation genetics models for random drift at a multi-allelic locus under selection and
mutation in a finite diploid random-mating population. Considering three different
schemes for reproduction, namely, multinomial sampling, overlapping generations,
and general progeny distributions, they showed convergence in distribution to the
standard, Hardy–Weinberg, one-locus diffusion model for gene frequencies (Kimura
1964), provided that the mutation rates and the selection intensities are appropriately
scaled as the population size goes to infinity. The random-mating limit was also estab-
lished in the case of strong migration for a Wright–Fisher population geographically
structured into a fixed finite number of colonies, which exchange migrants accord-
ing to a fixed ergodic pattern as the sizes of the colonies go to infinity (Nagylaki
1980). A diffusion approximation was derived later on for migration and selection in
a population subdivided into an integer lattice of panmictic colonies, assuming a sym-
metric, finite-range migration pattern (Nagylaki 1989, 1996). In this case, mutation
and random drift were neglected, and space and time scaled with respect to the inten-
sity of selection so that the partial diffusion equation of the diffusion limit could be
obtained as the intensity of selection vanishes. The results were extended to a partially
selfing plant population (Nagylaki 1997).

More recently, Wakeley (2003) and Wakeley and Takahashi (2004) showed that the
conditions stated in Ethier and Nagylaki (1980) hold for models of the island type
(Wright 1931; Moran 1959) with demes keeping the same fixed finite size, N , and
individuals the same fixed uniform migration rate, m > 0, as the number of demes goes
to infinity. This was done in the context of two alleles under frequency-independent
viability selection in a haploid population reproducing according to a birth-and-death
process of the Moran type (Moran 1958) or a binomial sampling scheme of the Wright–
Fisher type (Fisher 1930; Wright 1931). In both cases, mutation was neglected and
migration was supposed to occur just after reproduction. In the latter, it was noticed
that the model can be applied to a diploid population with genic selection and gametic
migration. The main result was that, apart from a change in time scale, the many-deme
diffusion limit for the allele frequencies under selection and drift was identical to the
usual Wright–Fisher diffusion limit with genic selection in a large random-mating
population.

In the case of reproduction of the Wright–Fisher type, Wakeley (2003) result relied
on a conjecture which has been shown to be true (Lessard 2007). Actually, the con-
jecture reduces to saying that the probability of finding any given number of genes
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of a given type in a deme chosen at random in an equilibrium population made of an
infinite number of demes of N genes and in the absence of selection and mutation
can be expressed as a polynomial of degree N with respect to the frequency of the
given type in the whole population. This probability is ancillary to the exact prob-
ability distribution for the genetic configuration of a focal deme with respect to its
ancestral genes once they are in different demes. This distribution extends the Ewens
sampling formula for the infinitely-many-alleles model (Ewens 1972), owing to the
analogy between a migration event to a new deme and a mutation event to a new
allele.

The island model is an ideal framework to examine kin selection theory. Let us
recall that kin selection theory (Hamilton 1964) suggested that all effects on indi-
vidual reproductive success resulting from interactions between relatives should be
transferred to the individuals that caused them, weighted by coefficients of relatedness
to the individuals affected by them, originally defined as Wright (1922) coefficient of
relationship. This inclusive fitness was conjectured to play the same role as Darwin-
ian fitness in populations without interactions. Accordingly, with reference to Fisher
(1930) fundamental theorem of natural selection interpreted as the increase of the
mean fitness (see, e.g., Kingman 1961, for a proof in the case of one-locus multi-
allele viability selection in an infinite diploid random-mating population undergoing
discrete, non-overlapping generations; see also Ewens 1989; Lessard 1997, for other
interpretations under more general conditions), the mean inclusive fitness should tend
to maximize at least in random mating populations. In particular, altruism should
evolve if the coefficient of relatedness of donors to recipients exceeds the ratio of the
cost to a donor over the benefit to a recipient per donor, which is known as Hamilton’s
rule.

Adaptive topographies and covariance approaches to predict equilibrium and sta-
bility in additive models of sibling altruism in an infinite, random-mating population
seemed to support Hamilton’s rule in the case of no dominance for altruism propen-
sity (Uyenoyama and Feldman 1981; Uyenoyama et al. 1981), provided relatedness
is measured by a regression coefficient, as suggested by Hamilton (1970), instead of
a correlation coefficient. Evolution in family-structured populations can also be stud-
ied in the framework of fertility-viability selection, for which approximate adaptive
topographies have been established in the case of weak selection (Nagylaki 1987;
Lessard 1993).

Considering a wide range of group structures and local fitness functions, and assum-
ing an infinite, random-mating population, Karlin and Matessi (1983) showed that
Hamilton’s rule for initial increase in frequency and stability at fixation of an altruistic
allele holds if the penetrance of this allele is small, which is tantamount to conditions
of very weak selection.

Developing Price (1970, 1972) covariance formula for the change in gene frequency
from one generation to the next, Taylor (1989) predicted the initial increase or decrease
of a mutant allele coding for a small behavioral deviation based on an inclusive fitness
formulation using a covariance ratio under neutrality to measure relatedness between
a donor and a recipient (Michod and Hamilton 1980), and applied his findings to a
population organized into an infinite number of discrete patches within which inter-
actions occur at random. In the absence of inbreeding, the covariance ratio reduces to
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a pedigree index, namely, the expected fraction of genes in the recipient identical by
descent (IBD) to one or more genes in the donor, or twice Malécot (1946) coefficient
of kinship. This is not the case with inbreeding unless there is no dominance in gene
action or special relationships between allele frequencies, since then the covariance
ratio depends not only on identity-by-descent measures between pairs of genes car-
ried by two individuals at the same locus (Gillois 1965), but also on average allelic
effects in autozygous individuals (carrying IBD genes) and in allozygous individuals
(carrying non IBD genes). In such a case, it has been suggested to measure relatedness
by resorting to two pedigree indices corresponding to the situations where the donor
is autozygous and allozygous, respectively (Grafen 1985; Lessard 1992).

Group selection involving extinction and recolonization of demes (Lewontin 1965;
Levins 1970), or understood more generally as differential contribution of groups to
the whole population through differential growth or expansion (Wright 1970, and
references therein), plays a central role in population genetics to tackle evolutionary
problems. Group selection is closely related to kin selection theory (see, e.g., Maynard
Smith 1964; Eshel 1972; Boorman and Levitt 1973, 1980; Uyenoyama and Feldman
1980; Wade 1980). Kimura (1984), for instance, used the diffusion equation method
for a large deme size and a small migration rate in the case of an infinite number of
demes to describe the evolution of an altruistic trait through group selection. Assuming
inter-deme competition proportional to the frequency of an altruistic allele contained
in the deme, which induces a selective genic detrimental effect on its carrier within
the deme, he deduced the steady-state in the case of recurrent mutation and confirmed
Aoki (1982) condition on Wright (1922) fixation index for “group selection to prevail
over individual selection” when mutation is neglected. Note that this conclusion relies
on a decomposition of selection into an individual component within demes and a
group component between demes.

Assuming diffusion approximations supported by simulations under an island model
or a stepping-stone model, several authors (Cherry 2003a,b; Cherry and Wakeley 2003;
Whitlock 2003) studied the effects of dominance, inbreeding, hard versus soft selec-
tion, local frequency dependence and local extinction on the probability of fixation of
a mutant allele. Using a direct fitness approach for a continuous phenotype (Taylor and
Frank 1996), Roze and Rousset (2003, 2004), extending Rousset and Billiard (2000),
expressed this probability under those different effects in terms of probabilities of
genetic identity in the neutral model and partial derivatives of the fitness function
defined as the expected number of successful gametes, with respect to the phenotype
of the individual, the mean phenotype in the deme and the mean phenotype in the
whole population. Furthermore, extending a heuristic argument of Maruyama (1983)
to compute fixation probabilities and exploiting a separation of time scales, Rousset
(2006) examined the effect of isolation by distance in a haploid population. Earlier,
Taylor et al. (2000) had addressed the proper definition of inclusive fitness in predict-
ing the expected change in the frequency of a mutant allele in such a population with
either a deme structure or a one-dimensional stepping-stone structure.

In this paper, we will ascertain diffusion approximations for group-structured dip-
loid populations undergoing discrete, non-overlapping generations, with recurrent
mutation and viability parameters depending on the individual genotype and the
group type at a single multi-allelic locus. For the use of diffusion approximations in
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population genetics, we refer to Crow and Kimura (1970), Karlin and Taylor (1981),
Ewens (2004), and Lessard (2005a). A group will be made of a finite number of
mating pairs and the group size will be kept fixed as the number of groups tends to
infinity. In particular, the results will apply to family-structured populations. Dispersal
at any fixed rate will be assumed to take place either before viability differences within
groups, in which case selection will be soft, or after viability differences, and then
selection will be hard, since the groups will contribute equally to the next generation
in the former case and proportionally to the mean viabilities in the groups in the latter
(see, e.g., Christiansen 1975). In the latter case, uniform dispersal, with groups receiv-
ing the same number of migrants, proportional dispersal, with exact replacement of
all migrants, and local extinction and recolonization will be compared. The particular
case of random pairwise interactions within groups will be considered.

The diffusion approximations will result from Ethier and Nagylaki (1980) condi-
tions. The main preliminary step will be to prove that the frequencies of the group
types in the case of an infinite number of groups in the absence of selection and
mutation, which obey a non-linear system of recurrence equations, converge globally
and uniformly to stationary limits that depend only on allele frequencies and identity
measures. Since genes descending from the same ancestral gene will be identical by
state (IBS) and their allelic distribution given by the allele frequencies in the whole
population in the absence of mutation and selection, the key argument in the proof of
this lemma will be to partition the genes in a focal group according to the ancestral
genes t generations back and let t go to infinity. This shares some similarity with the
coalescent for partition structures (Kingman 1982), with the possibility of simulta-
neous coalescence events (Pitman 1999; Sagitov 1999) and mutation events (Griffiths
and Lessard 2005; Lessard 2007), but with migration playing the role of mutation and
without the usual condition of exchangeability.

The diffusion approximations obtained for the different models considered in this
paper in the case of a large number of small groups will make possible to address the
following questions: How does the diffusion approximations compare with the clas-
sical one-locus multi-allele diffusion for a panmictic population (Kimura 1964) and
the replicator equation for a deterministic game-theoretic model (Taylor and Jonker
1978)? What are the exact roles of individual competition, group competition and
inbreeding in the selection drift functions and diffusion functions? Are the selection
drift functions in agreement with an inclusive fitness formulation in a diploid popula-
tion and what are the appropriate coefficients of relatedness coming into play?

With respect to previous works in kin selection theory in a finite population as the
population size goes to infinity, the present treatment is more rigorous. Moreover, it
integrates kin selection in relation with individual selection and group selection into
the classical mathematical population genetics theory in a general multi-allele diploid
setting and the more recent evolutionary game theory.

In Sect. 2, the group-structured population with proportional dispersal after selec-
tion and recurrent mutation is described, and the key lemma on global and uniform
convergence in the case of an infinite number of groups in the absence of selection
and mutation is stated. The diffusion approximation method as the number of groups
becomes large is introduced in Sect. 3 and applied to the case of random pairwise
interactions within groups in Sect. 4. The effects of uniform dispersal after selection,
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dispersal before selection, dispersal after mating, and local extinction and recoloniza-
tion after selection are considered and compared in Sect. 5. The proof of the lemma
stated in Sect. 2 and some technical details in the proof of the diffusion approximation
are presented in Sects. 6 and 7. Concluding remarks and perspectives follow in Sect. 8.

2 Group population structure

We consider a group structure for a finite diploid population. The population is assumed
to be subdivided into a finite number D of groups made of a finite number N of mating
pairs. Therefore, with respect to a single autosomal locus at which L alleles A1, . . . , AL

are segregating, there is a finite number of group types. A group will be said to be of
type i if ordering arbitrarily the mating pairs in the group, the individuals in the mating
pairs and the genes at the given locus in the individuals yields the (4N )-dimensional
vector

Gi = (Gi,1, . . . , Gi,4N ), (2.1)

where Gi,ν is a specific allelic type among A1, . . . , AL , for i = 1, . . . , n, with
n = L4N .

We assume discrete, non-overlapping generations, and let zi = Di/D be the fre-
quency of the groups of type i , for i = 1, . . . , n, in the initial generation, t = 0.
Following reproduction, the frequency of the ordered genotype Ak Al among the off-
spring within a group of type i , assumed to be in infinite number, is given by xkl,i for
k, l = 1, . . . , L . The frequency of allele Ak among these offspring, which is also the
frequency of Ak in their N parental pairs assuming Mendelian segregation at meiosis,
is then

xk,i =
L∑

l=1

xkl,i . (2.2)

Note that the frequency of the ordered genotype Ak Al among the offspring in the
whole population is

xkl =
n∑

i=1

zi xkl,i , (2.3)

while the corresponding frequency of allele Ak , which is the same in all the offspring
and all their parents, is

xk =
n∑

i=1

zi xk,i . (2.4)

This allele frequency can also be represented as

xk = Ez(qk,I ), (2.5)
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where Ez designates an expectation with respect to the current distribution of the group
types, z = (z1, . . . , zn), and qk,I stands for the frequency of allele Ak in an offspring
I chosen at random, which is 1 if the ordered genotype of I is Ak Ak , 1/2 if it is Ak Al

or Al Ak for l �= k, and 0 otherwise.
In order to model kin selection, the viability of an offspring from conception to

maturity will be assumed to depend not only on its genotype but also on its group
type. It will take the general form

wkl,i = 1 + sσkl,i ≥ 0, (2.6)

for an Ak Al offspring in a group of type i . The parameter σkl,i = σlk,i represents a
scaled selection coefficient with respect to an intensity of selection s ≥ 0. In the case
s = 0, selection is neutral.

Selection changes the frequency of the ordered genotype Ak Al and the frequency
of allele Ak in a group of type i into

x∗
kl,i = wkl,i xkl,i

w̄i
(2.7)

and

x∗
k,i = wk,i xk,i

w̄i
, (2.8)

respectively, where

w̄i =
L∑

k,l=1

wkl,i xkl,i (2.9)

and

wk,i =
L∑

l=1

wkl,i xkl,i

xk,i
(2.10)

are the mean viability and marginal viability of allele Ak , respectively, in a group of
type i . The mean viability in a group of type i corresponds also to the relative size of
a group of type i after selection.

To incorporate migration, it is assumed that a fixed proportion of offspring in each
group, m > 0, disperse and are replaced with as many offspring chosen at random
among all migrant offspring. Following this dispersal, called proportional dispersal,
the relative sizes of the groups remain unchanged, but the frequencies of the ordered
genotype Ak Al and allele Ak in a group of type i are transformed into

x̃∗
kl,i = (1 − m)x∗

kl,i + mx∗
kl,• (2.11)
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and

x̃∗
k,i = (1 − m)x∗

k,i + mx∗
k,•, (2.12)

respectively, where

x∗
kl,• =

∑n
j=1 z j w̄ j x∗

kl, j

w̄
(2.13)

and

x∗
k,• =

∑n
j=1 z j w̄ j x∗

k, j

w̄
(2.14)

are the corresponding frequencies among all migrant offspring, with

w̄ =
n∑

i=1

zi w̄i (2.15)

being the mean viability in the whole population. This gives

x̃∗
k = (1 − m)x∗

k + mx∗
k,•, (2.16)

where

x∗
k =

n∑

i=1

zi x∗
k,i , (2.17)

for the frequency of Ak among all offspring in the population after selection and
migration.

Note that the frequency of allele Ak among all offspring in the population after
selection and migration can be written as

x̃∗
k = xk + (1 − m)Ez

{
Covi (wI , qk,I )

w̄i

}
+ m

Covz(wI , qk,I )

w̄
, (2.18)

where

Covz(wI , qk,I ) =
n∑

i=1

L∑

l=1

ziwkl,i xkl,i − w̄xk = sCovz(σI , qk,I ) (2.19)

and

Ez

{
Covi (wI , qk,I )

w̄i

}
=

n∑

i=1

zi

{
Covi (wI , qk,I )

w̄i

}
, (2.20)
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with

Covi (wI , qk,I ) =
L∑

l=1

wkl,i xkl,i − w̄i xk,i = sCovi (σI , qk,I ) (2.21)

and

w̄i = 1 + sσ̄i , (2.22)

where σ̄i = ∑L
k,l=1 σkl,i xkl,i is the mean scaled selection coefficient in a group of

type i , for i = 1, . . . , n. In the absence of selection (s = 0), migration has no effect
on the allele frequencies in the population, and then x̃∗

k = xk for k = 1, . . . , L .
Mutation is assumed to follow selection and migration with

ukl = sµkl ≥ 0 (2.23)

being the probability that each gene of type Ak , independently of all other genes,
mutates to a gene of type Al , for k, l = 1, . . . , L , so that µkl is a scaled mutation coef-
ficient with respect to an intensity of mutation s ≥ 0. Using the convention ukk = 0
for k = 1, . . . , L , and defining

u∗
kl =

(
1 −

L∑

k′=1

ukk′

)
δkl + ukl , (2.24)

with δkl being the Kronecker delta, that is, 1 if k = l, and 0 otherwise, for k, l =
1, . . . , L , the frequencies of the ordered genotype Ak Al and allele Ak in a group of
type i become

x∗∗
kl,i =

L∑

k′,l ′=1

u∗
k′ku∗

l ′l x̃
∗
k′l ′,i (2.25)

and

x∗∗
k,i =

L∑

k′=1

u∗
k′k x̃∗

k′,i , (2.26)

respectively, for k, l = 1, . . . , L . This gives

x∗∗
k = x̃∗

k − s
L∑

l=1

µkl x̃
∗
k + s

L∑

l=1

µlk x̃∗
l (2.27)

for the frequency of Ak in the whole population after selection, migration and muta-
tion, for k = 1, . . . , L . In the case s = 0, there is no selection nor mutation, and
x∗∗

k = x̃∗
k = xk for k = 1, . . . , L .
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The next generation, t = 1, is obtained by random mating and random sampling
of N mating pairs within each group. Therefore, the frequency of Ak in the next
generation will be

X D
k (1) = 1

D

n∑

i=1

Di∑

di =1

X D
k,i,di

(1), (2.28)

where X D
k,i,di

(1), for di = 1, . . . , Di and i = 1, . . . , n, are independent random
variables in the form

X D
k,i,di

(1) = 1

2N

2N∑

ν=1

qk,I ∗∗
ν (i), (2.29)

with I ∗∗
1 (i), . . . , I ∗∗

2N (i) representing 2N offspring chosen at random and indepen-
dently in a group of type i after selection, migration and mutation. For the expected
value, we have

Ez(X D
k (1)) =

n∑

i=1

zi x∗∗
k,i = x∗∗

k , (2.30)

which reduces to xk in the absence of selection and mutation. Therefore, in the limit
case of an infinite number of groups, the allele frequencies in the whole population
will not change if s = 0.

More generally, a group of type i will be transformed into a group of type j in
the next generation with some probability that depends on the intensity of selection
and the distribution of the group types in the current generation, Pi j (s, z). Then, the
frequency of the groups of type j in the next generation can be expressed as

Z D
j (1) = 1

D

n∑

i=1

Di∑

di =1

Z D
j,i,di

(1), (2.31)

for j = 1, . . . , n, where the random vectors (Di Z D
1,i,di

(1), . . . , Di Z D
n,i,di

(1)), for
di = 1, . . . , Di and i = 1, . . . , n, are independent and follow multinomial distri-
butions of parameters Di and Pi1(s, z), . . . , Pin(s, z), respectively. In particular, the
expected value is given by

Ez(Z D
j (1)) =

n∑

i=1

zi Pi j (s, z). (2.32)

Note that the recurrence equations

z j (t + 1) =
n∑

i=1

zi (t)Pi j (s, z(t)), (2.33)
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for j = 1, . . . , n, give the deterministic transformation for the frequencies of the
group types under the assumption of an infinite number of groups.

In matrix notation, we have the transformation

z(t + 1) = z(t)T P(s, z(t)), (2.34)

where z(t) = (z1(t), . . . , zn(t)) is a frequency vector, and P(s, z(t)) = (Pi j (s,
z(t)))n

i, j=1 is a stochastic matrix. If s = 0, then the iterates of this transformation
will converge to a limit that is a function of the allele frequencies in the population,
which remain constant over time. This result will provide a key argument for a diffu-
sion approximation in the case of a finite number of groups as this number tends to
infinity.

Lemma 1 Consider the recurrence system of equations

z j (t + 1) =
n∑

i=1

zi (t)Pi j (0, z(t)), (2.35)

for j = 1, . . . , n, or in matrix notation

z(t + 1) = z(t)T P(0, z(t)), (2.36)

for t ≥ 0, where z(t) = (z1(t), . . . , zn(t)) represents the frequency vector for the
group types in the case of an infinite number of groups and Pi j (0, z(t)) is the prob-
ability of transition from a group of type i to a group of type j in the absence of
selection and mutation, for i, j = 1, . . . , n. Let s jk be the number of genes of type Ak

in a group of type j and define s j = (s j1, . . . , s j L) with s jk ≥ 0 for k = 1, . . . , L
and

∑L
k=1 s jk = 4N, for j = 1, . . . , n. Then,

lim
t→∞ z j (t) = ẑ j (x), (2.37)

where

ẑ j (x) =
∑

0<r≤s j

c j (r)xr1
1 · · · · · xrL

L , (2.38)

for some non negative coefficients c j (r) for r = (r1, . . . , rL) �= (0, . . . , 0) with
0 ≤ rk ≤ s jk for k = 1, . . . , L and j = 1, . . . , n, and

xk =
n∑

i=1

zi (0)xk,i , (2.39)

for k = 1, . . . , L. Moreover, the convergence of z(t) as t goes to infinity is uniform
with respect to z(0).
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The coefficient c j (r) represents the number of ways that the genes in a group of
type j can have rk unrelated ancestral genes of type Ak , for k = 1, . . . , L . This rk

is between 1 and s jk for each type Ak represented in a group of type j . The types of
unrelated ancestral genes are independent and identically distributed with probability
distribution given by xk , for k = 1, . . . , L . The genes having the same ancestral gene
are IBD and therefore, in the absence of mutation, IBS. The proof of Lemma 1 is
relegated to Sect. 6.

3 Diffusion approximation

In this section, we shall apply a general diffusion approximation theorem for Markov
chains in the case of two time scales that is due to Ethier and Nagylaki (1980).

Let ZD(t) = (Z D
1 (t), . . . , Z D

n (t)) be the frequency vector for the group types
i = 1, . . . , n among D groups of N mating pairs at the beginning of some generation
t ≥ 0. The vector ZD(t) has all elements that are multiples of D−1 and belongs to the
simplex

�n =
{

z = (z1, . . . , zn) : zi ≥ 0, i = 1, . . . , n,

n∑

i=1

zi = 1

}
. (3.1)

Assume a frequency xkl,i and a viability in the form

wkl,i = 1 + σkl,i

4N D
, (3.2)

for offspring of genotype Ak Al in a group of type i , so that the scaled selection coeffi-
cient of Ak Al is σkl,i with respect to an intensity of selection given by the inverse of the
total number of genes, that is, s = (4N D)−1, for k, l = 1, . . . , L and i = 1, . . . , n.
Similarly, let

ukl = µkl

4N D
(3.3)

be the probability of mutation from Ak to Al in one generation, so that the scaled
mutation coefficient of Ak to Al is µkl with respect to an intensity of mutation s =
(4N D)−1, for k, l = 1, . . . , L .

Define

X D
k (t) =

n∑

i=1

Z D
i (t)xk,i , (3.4)

for k = 1, . . . , L , and

Y D
j (t) = Z D

j (t) − Ẑ D
j (t), (3.5)
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for j = 1, . . . , n, where

Ẑ D
j (t) =

∑

0<r≤s j

c j (r)(X D
1 (t))r1 · · · · · (X D

L (t))rL , (3.6)

with c j (r) defined in Lemma 1. Let us introduce the vectors XD(t) = (X D
1 (t), . . . ,

X D
L (t)) and YD(t) = (Y D

1 (t), . . . , Y D
n (t)). Note that XD(t) takes its values in the

simplex

�L =
{

x = (x1, . . . , xL) : xk ≥ 0, k = 1, . . . , L ,

L∑

k=1

xk = 1

}
. (3.7)

Consider

�X D
k = X D

k (1) − X D
k (0) (3.8)

and

�Y D
j = Y D

j (1) − Y D
j (0), (3.9)

for k = 1, . . . , L and j = 1, . . . , n, with ZD(0) = z, XD(0) = x, and YD(0) = y =
z − ẑ, where ẑ = ẑ(x) is given in Lemma 1.

The following conditions will hold:

I. Ez(�X D
k ) = bk(x, y)

4N D
+ o(D−1), (3.10)

II. Ez((�X D
k )(�X D

l )) = akl(x, y)

4N D
+ o(D−1), (3.11)

III. Ez((�X D
k )4) = o(D−1), (3.12)

IV. Ez(�Y D
j ) = c j (x, y) + o(1), (3.13)

V. Varz(�Y D
j ) = o(1), (3.14)

as D → ∞, uniformly in z, where

bk(x, y) = Covz(σI , qk,I ) − (1 − m)Covz(σJ , qk,I ) +
L∑

l=1

µlk xl −
L∑

l=1

µkl xk,

(3.15)

akl(x, y) = 2
{

Covz(qk,I , ql,I ) − (1 − m)2Covz(qk,I , ql,J )
}
, (3.16)
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and

c j (x, y) =
n∑

i=1

zi Pi j (0, z) − z j , (3.17)

with σI and qk,I being respectively the scaled selection coefficient and the frequency
of allele Ak in an offspring I chosen at random in the population before selection,
migration and mutation, and similarly for an offspring J chosen at random in the same
group as I . Explicitly, we have

Covz(σI , qk,I ) =
n∑

i=1

ziσk,i xk,i − σ̄ xk, (3.18)

Covz(σJ , qk,I ) =
n∑

i=1

zi σ̄i xk,i − σ̄ xk, (3.19)

Covz(qk,I , ql,I ) =
n∑

i=1

zi

(
xkl,i + δkl xk,i

2

)
− xk xl , (3.20)

Covz(qk,I , ql,J ) =
n∑

i=1

zi xk,i xl,i − xk xl , (3.21)

where σ̄i = ∑L
k=1 σk,i xk,i with σk,i = x−1

k,i

∑L
l=1 σkl,i xkl,i , and σ̄ = ∑n

i=1 σ̄i zi .
Condition I is obtained by expanding the expected change in the frequency of allele

Ak , given by (x∗∗
k − xk), with respect to D−1 using (2.18) and (2.27) with viabilities

and mutation rates in the form (3.2) and (3.3), respectively, and by noting that

Ez
{
Covi (σI , qk,I )

} = Covz(σI , qk,I ) − Covz(σJ , qk,I ), (3.22)

where I and J are two offspring chosen at random in the same group.
Moreover, using the representation (2.28) for the allele frequencies, we find that

Ez((�X D
k )(�X D

l )) = Covz(X D
k (1), X D

l (1)) + Ez(�X D
k )Ez(�X D

l ), (3.23)

where

Covz(X D
k (1), X D

l (1)) = 1

4N 2 D

n∑

i=1

2N∑

ν,µ=1

zi Covz(qk,I ∗∗
ν (i), ql,I ∗∗

µ (i)), (3.24)

with I ∗∗
1 (i), . . . , I ∗∗

2N (i) being 2N offspring chosen at random in a group of type i
after selection, migration and mutation. The product of the expected changes in the
frequencies of Ak and Al is a function o(D−1) owing to condition I. On the other
hand, we have

Covz(qk,I ∗∗
ν (i), ql,I ∗∗

µ (i)) = 0, (3.25)
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for all µ �= ν, while

Ez(qk,I ∗∗
ν (i)) = (1 − m)xk,i + mxk + o(1) (3.26)

and

Ez(qk,I ∗∗
ν (i)ql,I ∗∗

ν (i)) = (1 − m)

(
xkl,i +δkl xk,i

2

)

+ m

(
xkl +δkl xk

2

)
+ o(1). (3.27)

Then, we get

Covz(X D
k (1), X D

l (1)) = 1

2N D

{
n∑

i=1

zi

(
xkl,i + δkl xk,i

2

)
− xk xl

}

− (1 − m)2

2N D

{
n∑

i=1

zi xk,i xl,i − xk xl

}
+ o(D−1),

(3.28)

which is equivalent to condition II.
When y = 0, that is, z = ẑ(x), the function akl(x, y) in condition II takes a simple

form.

Lemma 2 For every x = (x1, . . . , xL) in �L , we have

akl(x, 0) = (1 − f I )xk(δkl − xl), (3.29)

for k, l = 1, . . . , L, where

f I = (1 − m)2

4Nm(2 − m) + (1 − m)2 (3.30)

is the inbreeding coefficient of an offspring I chosen at random before migration,
namely, the probability for the two genes of I to be IBD, in the case of an infinite
number of groups without selection nor mutation.

Proof We have

akl(x, 0) = 2
{

Covẑ(qk,I , ql,I ) − (1 − m)2Covẑ(qk,I , ql,J )
}
, (3.31)

where I and J are two randomly chosen offspring in the same group before migration.
The distribution ẑ = ẑ(x) for the group types is the equilibrium distribution in the
case of an infinite number of groups without selection nor mutation and with constant
allele frequencies given by x.
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Then, we find

Covẑ(qk,I , ql,J ) = f I J xk(δkl − xl), (3.32)

where f I J is the probability that two genes chosen randomly and independently, one
in I and one in J , are IBD. An analogous formula holds if J is replaced with I .
Therefore, we get

akl(x, 0) = 2{ f I I − (1 − m)2 f I J }xk(δkl − xl). (3.33)

Moreover, the identity measures f I I and f I J are related by the equations

f I I = 1

2
+ 1

2
(1 − m)2 f I J , (3.34)

f I J = 1

2N
fI I +

(
1 − 1

2N

)
(1 − m)2 f I J , (3.35)

from which

2{ f I I − (1 − m)2 f I J } = 2{1 − f I I } = 1 − f I , (3.36)

where f I is the probability for the two genes of I to be IBD, as given in the statement
of Lemma 2.

The above lemmas and conditions will ascertain the convergence result below (see
Sect. 7 for the remaining details of the proof).

Proposition 1 Consider the vector of allele frequencies XD([4N Dτ ]) at time τ ≥ 0
in number of 4N D generations in a diploid population subdivided into D groups of
N mating pairs with scaled selection coefficient σkl,i with respect to an intensity of
selection (4N D)−1 for an offspring of genotype Ak Al in a group of type i , a fixed
proportion m > 0 of offspring in each group replaced by migrants each generation
after selection as a result of proportional dispersal, and scaled mutation coefficient
µkl for Ak to Al with respect to an intensity of mutation (4N D)−1, for i = 1, . . . , n
and k, l = 1, . . . , L, where [4N Dτ ] designates the integer part of 4N Dτ . Then, as
D → ∞, the process XD([4N Dτ ]) converges in distribution to a diffusion X(τ ) in
�L whose generator is

L = 1

2

L∑

k,l=1

akl(x, 0)
∂2

∂xk∂xl
+

L∑

k=1

bk(x, 0)
∂

∂xk
, (3.37)

with diffusion functions akl(x, 0) given in Lemma 2, for k, l = 1, . . . , L, and drift
functions

bk(x, 0) = σk(x) + µk(x), (3.38)
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where

µk(x) =
L∑

l=1

µlk xl −
L∑

l=1

µkl xk, (3.39)

and

σk(x) = Covẑ(σI , qk,I ) − (1 − m)Covẑ(σJ , qk,I ), (3.40)

with I and J being two offspring chosen at random in the same group before migration
and ẑ = ẑ(x) being given in Lemma 1, are respectively the mutation and selection
drift functions for allele Ak, both with respect to the allele frequency vector x, for
k = 1, . . . , L. Moreover, ZD([τD])−ẐD([τD]) converges in probability to 0 whenever
τD → ∞, where ZD([τD]) is the vector of the group type frequencies at time τD in
the model with D groups and ẐD([τD]) the corresponding equilibrium vector in the
model with an infinite number of groups, without selection nor mutation, and with
allele frequency vector given by XD([τD]).

4 Intra-group pairwise interactions

In this section, we suppose a scaled selection coefficient in the previous model deter-
mined by the individual genotype and the group type in the form

σkl,i = hkl + v̄i , (4.1)

where

v̄i =
L∑

k,l=1

vkl xkl,i , (4.2)

with symmetric parameters hkl = hlk and vkl = vlk , for k, l = 1, . . . , L and i =
1, . . . , n. This models random pairwise interactions occurring between the offspring
within the same group and having additive effects on fitness. More precisely, the scaled
selection coefficient of an offspring is a sum of two different effects: one that depends
on its own genotype and one that depends on the genotype of an offspring chosen at
random in the same group. Then, we have

Covẑ(σI , qk,I ) = Covẑ(hI , qk,I ) + Covẑ(vJ , qk,I ) (4.3)

and

Covẑ(σJ , qk,I ) = Covẑ(h J , qk,I ) + Covẑ(vJ , qk,I ), (4.4)

for two offspring I and J chosen at random in the same group after migration.
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Conditioning on the number of genes in J having ultimately the same ancestral
gene as the gene chosen at random in I in the case of an infinite number of groups,
without selection nor mutation, and using the fact that unrelated ancestral genes are
independent under the distribution ẑ for the group types yield (Lessard 1992, see also
Grafen 1985)

Covẑ(h J , qk,I ) = Covẑ(h J , qk,J |Jallo)γJ I + Covẑ(h J , qk,J |Jauto)δJ I , (4.5)

where γJ I is the probability for a gene chosen at random in I to be IBD to one and
only one gene in J , and δJ I the probability for a gene chosen at random in I to be
IBD to both genes in J . In the former event, J is allozygous (abbreviated by allo),
while in the latter, J is autozygous (abbreviated by auto). In the case J = I , we have
δI I = f I and γI I = (1 − f I ). Direct calculation leads to

Covẑ(h J , qk,J |Jallo) = xkh•
k(x), (4.6)

where

h•
k(x) =

L∑

l=1

hkl xl −
L∑

l,m=1

hlm xl xm (4.7)

is the average effect of Ak on the genotypic value h in an allozygous offspring, and

Covẑ(h J , qk,J |Jauto) = 2xkh••
k (x), (4.8)

where

h••
k (x) = hkk − ∑L

l=1 hll xl

2
(4.9)

is the average effect of Ak on h in an autozygous offspring (see, e.g., Lessard 1992,
1997, and references therein, for more details).

Finally, defining the relatedness coefficients

ρ•
J→I = γJ I

γJ J
, ρ••

J→I = δJ I

δJ J
, (4.10)

which are the expected fractions of genes in I that are IBD to one or more genes in J
at the same locus, given that J is allozygous or autozygous, respectively, Proposition 1
yields the following result.

Corollary 1 With scaled selection coefficient for genotype Ak Al in a group of type i
in the form σkl,i = hkl + v̄i , for k, l = 1, . . . , L and i = 1, . . . , n, the selection drift
function for Ak in Proposition 1 can be expressed as

σk(x) = Covẑ(hI , qk,I ) − (1 − m)Covẑ(h J , qk,I ) + mCovẑ(vJ , qk,I ), (4.11)
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where

Covẑ(h J , qk,I ) = xk
{
(1 − f J )ρ•

J→I h•
k(x) + 2 f J ρ••

J→I h••
k (x)

}
, (4.12)

and similarly for the other covariances, with h•
k(x) and h••

k (x) being the average effects
of Ak on the genotypic value h in allozygous and autozygous individuals, respectively,
with respect to the allele frequency vector x, while f J is the inbreeding coefficient of
J , and ρ•

J→I and ρ••
J→I are relatedness coefficients of J to I given that J is allozygous

and autozygous, respectively, J and I being two offspring chosen at random in the
same group before migration in an infinite population without selection nor mutation.

Note that

ρ•
J→I = ρ••

J→I = f J I

f J J
, (4.13)

when N = 1, which corresponds to a partial sib-mating model (Lessard 1992). This is
also the case in the limit of N large and m small such that M = 8Nm is kept constant,
since then the Ewens sampling formula (Ewens 1972) with migration playing the role
of mutation and identity by descent that of identity by state (see, e.g., Lessard 2007,
and references therein) tells us that the probability for a third gene chosen at random
to be IBD to at least one of the previous two genes chosen at random is given by

2

2 + M
= 1

1 + 4Nm
= f J I

f J J
, (4.14)

independently of the IBD status of the two previous genes.

5 Other population assumptions

In this section, we consider other assumptions about the different factors of evolution
in the previous model and their ordering.

5.1 Uniform dispersal after selection

One of the main assumptions of the previous model is that the number of migrant
offspring entering a group is equal to the number of migrant offspring leaving the
group. Under this proportional dispersal, the group size is unaffected by migration.
An alternative assumption is that each group receives the same number of migrant
offspring as a result of uniform dispersal of migrants among all groups. Then, the
relative size of a group of type i after migration of a proportion m > 0 of offspring
will be (1 − m)w̄i + mw̄, where w̄i is its relative size before migration, which cor-
responds to the mean viability in a group of type i , and w̄ is the mean viability in all
groups. Moreover, the frequency of the ordered genotype Ak Al in a group of type i
after selection and migration becomes
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x̃∗
kl,i = (1 − m)w̄i x∗

kl,i + m
∑n

j=1 z j w̄ j x∗
kl, j

(1 − m)w̄i + mw̄
. (5.1)

Summing over l = 1, . . . , L and developing with respect to the intensity of selection
yield

x̃∗
k,i = (1 − m)xk,i + mxk + s

⎧
⎨

⎩(1 − m)σk,i xk,i + m
n∑

j=1

z jσk, j xk, j

⎫
⎬

⎭

− s {(1 − m)σ̄i + mσ̄ } {(1 − m)xk,i + mxk
} + o(s). (5.2)

Then, multiplying by zi and summing over i = 1, . . . , n give

x̃∗
k = xk + s

{(
n∑

i=1

ziσk,i xk,i − σ̄ xk

)
− (1 − m)2

(
n∑

i=1

zi σ̄i xk,i − σ̄ xk

)}
+ o(s),

(5.3)

for the frequency of allele Ak in the whole population after selection and migration.
The other arguments in the proof of Proposition 1 can be applied mutatis mutandis.
Therefore, we have the following result.

Proposition 2 Under the assumptions of Proposition 1 but with uniform dispersal,
so that a fixed proportion m > 0 of offspring disperse uniformly among all groups
each generation after selection, the same conclusion holds but with the selection drift
function for Ak given by

σk(x) = Covẑ(σI , qk,I ) − (1 − m)2Covẑ(σJ , qk,I ), (5.4)

in the general case, and by

σk(x) = Covẑ(hI , qk,I ) − (1 − m)2Covẑ(h J , qk,I ) + m(2 − m)Covẑ(vJ , qk,I )

(5.5)

in the particular case of Corollary 1, for k = 1, . . . , L.

5.2 Dispersal before selection

With dispersal of offspring before selection, there is no difference between uniform
dispersal and proportional dispersal. Following such a dispersal, the genotype and
allele frequencies in the population remain the same and the groups keep the same
relative sizes. Only the frequencies within the groups are changed. If xkl,i and xk,i

represent the genotype and allele frequencies, respectively, in a group of type i after
migration, for k, l = 1, . . . , L and i = 1, . . . , n, then the formulas for the changes due
to selection apply with m = 0. The covariances, however, are computed with respect
to the state of the population after migration. In particular, we have
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akl(x, 0) = 2
{
Covẑ(qk,I , ql,I )

} = (1 − f I )xk(δkl − xl), (5.6)

with I being an offspring chosen at random after migration in an infinite population
without selection nor mutation. Note that the inbreeding coefficient f I is then the same
for I chosen after migration or before migration. Finally, we conclude the following.

Proposition 3 Under the assumptions of Proposition 1 but with dispersal preceding
selection, so that a fixed proportion m > 0 of offspring disperse uniformly among all
groups each generation just after reproduction, the same conclusion holds, but with
the selection drift function for Ak given by

σk(x) = Covẑ(σI , qk,I ) − Covẑ(σJ , qk,I ) (5.7)

in the general case, and by

σk(x) = Covẑ(hI , qk,I ) − Covẑ(h J , qk,I ) (5.8)

in the particular case of Corollary 1, for k = 1, . . . , L, with I and J being two
offspring chosen at random in the same group after migration in an infinite popula-
tion without selection nor mutation.

Therefore, the only effect of dispersal before selection is to change the identity
measures between the individuals in the population.

5.3 Dispersal after mating

With dispersal of a proportion m > 0 of mating pairs before population regulation,
the changes in allele frequencies from one generation to the next have the same means
as the changes with dispersal of a proportion m > 0 of offspring after selection. How-
ever, the covariances are not the same, since qk,I ∗∗

ν (i) and ql,I ∗∗
µ (i) are not independent

random variables for ν �= µ with I ∗∗
ν (i) and I ∗∗

µ (i) in the same mating pair. In this
case, we have

Ez(qk,I ∗∗
ν (i)ql,I ∗∗

µ (i)) = (1 − m)xk,i xl,i + m
n∑

j=1

z j xk, j xl, j + o(1), (5.9)

from which

n∑

i=1

zi Covz(qk,I ∗∗
ν (i), ql,I ∗∗

µ (i)) = m(2 − m)

{
n∑

i=1

zi xk,i xl,i − xk xl

}
+ o(1). (5.10)

Incorporating these terms in the covariance of the allele frequencies in the whole pop-
ulation from one generation to the next and ignoring terms of order o(D−1), we find
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the approximation

Covz(X D
k (1), X D

l (1)) ≈ Covz(qk,I , ql,I ) − (1 − 4m + 2m2)Covz(qk,I , ql,J )

2N D
,

(5.11)

with I and J being two offspring chosen at random in the same group before selection,
mating and migration.

On the other hand, in an infinite population without selection nor mutation, the
identity measures f I J and f I I satisfy the relationships

f I I = 1

2
+ 1

2
f I J , (5.12)

f I J = 1

2N
fI I + 1

2N
fI J +

(
1 − 1

N

)
(1 − m)2 f I J , (5.13)

from which

2{ f I I − (1 − 4m + 2m2) f I J } = 1 − (1 − 8m + 4m2) f I , (5.14)

where f I = f I J .
We conclude the following.

Proposition 4 Under the assumptions of Proposition 1 and Corollary 1, or Proposi-
tion 2, but with m > 0 being the proportion of mating pairs dispersing after selection
and local mating, the same conclusions hold, except that the diffusion functions are
given by

akl(x, 0) =
{

1 − (1 − 8m + 4m2) f I

}
xk(δkl − xl), (5.15)

for k, l = 1, . . . , L, where

f I = 1

4Nm(2 − m) + (1 − m)2 (5.16)

is the inbreeding coefficient of an offspring I chosen at random before migration, in
an infinite population without selection nor mutation.

5.4 Local extinction and recolonization after selection

If m > 0 represents the probability of extinction of a group after selection, indepen-
dently of what happens to all other groups, and if all groups contribute in proportion
to their size to colonize any extinct group, even the extinct group itself, which will
not make any difference in the limit of a large number of groups, then the frequency
of the ordered genotype Ak Al in a group of type i after selection, recolonization, and
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mutation will be

x∗∗
kl,i =

L∑

k′,l ′=1

uk′kul ′l x
∗
k′l ′,i (5.17)

with probability (1 − m), and

x∗∗
kl,• =

L∑

k′,l ′=1

uk′kul ′l x
∗
k′l ′,• (5.18)

with probability m. Therefore, the frequency qk,I ∗∗
ν (i) of allele Ak in an offspring I ∗∗

ν (i)
chosen at random in such a group will take the value

x∗∗
k,i =

L∑

l=1

x∗∗
kl,i (5.19)

with probability (1 − m), and the value

x∗∗
k,• =

L∑

l=1

x∗∗
kl,• (5.20)

with probability m. This gives the same approximations for the expected values of
qk,I ∗∗

ν (i) and qk,I ∗∗
ν (i)ql,I ∗∗

ν (i) as before, given by Eqs. (3.26) and (3.27), respectively.
But this time, qk,I ∗∗

ν (i) and ql,I ∗∗
µ (i) are not independent random variables for every

ν �= µ (ν, µ = 1, . . . , 2N ), since either all offspring in the same group are migrants
or none of the offspring in the same group is a migrant. In this case, we have

Ez(qk,I ∗∗
ν (i)ql,I ∗∗

µ (i)) = (1 − m)xk,i xl,i + mxk xl + o(1), (5.21)

from which

n∑

i=1

zi Covz(qk,I ∗∗
ν (i), ql,I ∗∗

µ (i)) = m(1 − m)

{
n∑

i=1

zi xk,i xl,i − xk xl

}
+ o(1). (5.22)

Incorporating these terms in the covariance of the allele frequencies in the whole pop-
ulation from one generation to the next and ignoring terms of order o(D−1) yield the
approximation

Covz(X D
k (1), X D

l (1)) ≈ Covz(qk,I , ql,I ) + (1 − m)(2Nm − 1)Covz(qk,I , ql,J )

2N D
,

(5.23)

with I and J being two offspring chosen at random in the same group before selection,
extinction and recolonization.
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On the other hand, in an infinite population without selection nor mutation, the
identity measures f I J and f I I satisfy the relationships

f I I = 1

2
+ 1

2
(1 − m) f I J , (5.24)

f I J = 1

2N
fI I +

(
1 − 1

2N

)
(1 − m) f I J , (5.25)

from which

2{ f I I + (1 − m)(2Nm − 1) f I J } = (2 − m)(1 − f I ), (5.26)

where f I = 2 f I I − 1.
The changes in the allelic frequencies take the same form as previously and all the

other arguments for the diffusion approximation can be applied in the same way.

Proposition 5 Under the assumptions of Proposition 1 and Corollary 1 but with
m > 0 being the probability for a group to go extinct after selection, independently of
all others, and to be recolonized proportionally by all groups, the same conclusions
hold but with diffusion functions given by

akl(x, 0) = (2 − m)(1 − f I )xk(δkl − xl), (5.27)

for k, l = 1, . . . , L, where

f I = (1 − m)

4Nm + (1 − m)
(5.28)

is the inbreeding coefficient of an offspring I chosen at random before extinction and
recolonization, in an infinite population without selection nor mutation.

According to Proposition 5, the only difference between the diffusion approxi-
mations with local extinction after selection and with proportional migration after
selection is a multiplicative factor in the diffusion term.

6 Proof of Lemma 1

Assume an infinite number of groups, neutral selection and no mutation, and take a
focal group at random in generation t ≥ 0. Consider the ancestral genes of the focal
group in the whole population in generation 0 obtained by tracing the history of the
genes of the focal group t generations back. The number of the ancestral genes is
necessarily between 1 and 4N . Some are carried by mating pairs in the focal group
and others by mating pairs in other groups. Let us label the focal group with 0 and
number arbitrarily the other groups that contain ancestral genes with the next positive
integers. Moreover, in each group, order arbitrarily the mating pairs, the individuals
in the mating pairs and the genes in the individuals. This labels the genes from 1 to
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4N in each group. Then, an ancestral gene can be represented by a couple of integers
α = (α1, α2), where 1 ≤ α1 ≤ 4N is a gene label and 0 ≤ α2 ≤ 4N is a group label.

Let A(t) be the set of ancestral genes of the focal group t generations back. The
ancestral process {A(t)}t≥0 is a Markov chain on a finite state space with initial state

A(0) = {(α1, 0) : α1 = 1, . . . , 4N }. (6.1)

With probability one, the ancestral set A(t) can be partitioned into three subsets. The
subset of ancestral genes in the focal group,

A0(t) = {αεA(t) : α2 = 0}, (6.2)

the subset of ancestral genes that are single in groups different from the focal group,

A1(t) = {αεA(t) : β2 �= α2 ≥ 1,∀β �= α, βεA(t)}, (6.3)

and the subset of ancestral genes that are in pairs in groups different from the focal
group,

A2(t) = {αεA(t) : ∃!β �= α, βεA(t), β2 = α2 ≥ 1}. (6.4)

With probability one, there are at most two ancestral genes in groups different from
the focal group, since every migrant carries two genes, and comes from a group chosen
at random among an infinite number of groups.

Let n0(t), n1(t), and n2(t) be the numbers of ancestral genes in A0(t), A1(t), and
A2(t), respectively, so that

n(t) = n0(t) + n1(t) + n2(t) (6.5)

is the total number of ancestral genes in A(t). With probability one, the number n0(t)
does not increase as t increases, since any migrant from another group chosen at
random almost surely does not carry ancestral genes of the focal group. Actually, this
number decreases to 0 with probability one as t increases as a result of coalescence
events (when two or more ancestral genes are copied from the same parental gene one
generation back) or migration events (when one or more ancestral genes are carried
by migrants one generation back), which occur with some positive probability as long
as there remain ancestral genes in the focal group. In the model considered, we have
the uniform bound

P(n0(t + 1) < n0(t)) ≥ m, (6.6)

as long as n0(t) ≥ 1, where m is the probability for a particular individual carrying
ancestral genes to be a migrant one generation back. Therefore, with probability one,

n0(t) ↓ 0 as t ↑ ∞. (6.7)

Then, the stopping time t0 = inf{t ≥ 0 : n0(t) = 0} is almost surely finite.
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Similarly, with probability one,

n2(t0 + t) ↓ 0 as t ↑ ∞. (6.8)

In this case, we have

P(n2(t0 + t + 1) ≤ n2(t0 + t)) = 1 (6.9)

and

P(n2(t0 + t + 2) < n2(t0 + t)) ≥ m, (6.10)

for all t ≥ 0, as long as n2(t0 + t) ≥ 2. The decrease in the last inequality occurs
with probability at least m in one generation in the model considered if there is at
least one group at time t0 + t , other than the focal group, that contains two ancestral
genes in different individuals, and then one of them in particular is a migrant one
generation back. Otherwise, it occurs in two generations, since it takes only one gen-
eration back for two ancestral genes in a single individual to be in different parental
individuals. Note that n2(t) is always even and bounded by 4N . Then, the stopping
time t2 = inf{t ≥ 0 : n2(t) = 0} is almost surely finite.

Actually, the stopping time t1 = inf{t ≥ 0 : n0(t) = n2(t) = 0} is almost surely
finite and, with probability one,

n1(t) ↑ n1(t1) as t ↑ ∞, (6.11)

where the variable n1(t1) represents the ultimate number of ancestral genes in different
groups other than the focal group. Therefore, with probability one,

n(t) → n(t1) as t → ∞. (6.12)

In other words, with probability one, the ancestral genes end up in different groups
other than the focal group after considering enough generations back, and then their
number remains fixed. The above arguments can be adapted to the case of dispersal
of mating pairs instead of individuals.

For each α in A(t), let ξα(t) � {1, . . . , 4N } be the subset of genes in the focal
group in generation t that have α as ancestral gene in generation 0. Then,

ξ(t) = {ξα(t) : αεA(t)} (6.13)

belongs to the set of partitions of S = {1, . . . , 4N }, represented by P(S), since

⋃

αεA(t)

ξα(t) = S (6.14)

and

ξα(t)
⋂

ξβ(t) = ∅, (6.15)
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for every β �= α in A(t). Note that the initial partition is

ξ(0) = {{1}, . . . , {4N }}. (6.16)

On the other hand, with probability one,

ξ(t) → ξ(t1) as t → ∞. (6.17)

This means that the partition ξ(t) does not change almost surely backward in time,
once all ancestral genes are in different groups other than the focal group. Let

p(ξ) = P(ξ(t1) = ξ), (6.18)

for every ξ in P(S), be the probability mass function of ξ(t1).
Note that z j (t) in Lemma 1 corresponds to the probability for a focal group chosen

at random in generation t to be of type j defined by

G j = (G j,1, . . . , G j,4N ), (6.19)

where G j,ν is the allelic type of gene ν in the focal group, for ν = 1, . . . , 4N and
j = 1, . . . , n. Let

η j = {η jk : k = 1, . . . , L}, (6.20)

where

η jk = {νεS : G j,ν is Ak}, (6.21)

be the partition of S determined by the allelic types in a group of type j , for j =
1, . . . , n. Denoting the type of the focal group in generation t by G(t), we have

z j (t) = P(G(t) = G j ), (6.22)

which can be decomposed into

z j (t) = P(G(t) = G j , t ≥ t1) + P(G(t) = G j , t < t1). (6.23)

First, we have

P(G(t) = G j , t < t1) ≤ P(t < t1), (6.24)

where

lim
t→∞ P(t < t1) = 0. (6.25)
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On the other hand,

P(G(t) = G j , t ≥ t1) = P(G(t) = G j |t ≥ t1)P(t ≥ t1), (6.26)

where

lim
t→∞ P(t ≥ t1) = 1 (6.27)

and

P(G(t) = G j |t ≥ t1) =
∑

ξεP(S)

P(G(t) = G j |ξ(t) = ξ, t ≥ t1)P(ξ(t) = ξ |t ≥ t1).

(6.28)

Since all genes that are copies of the same ancestral gene are of the same allelic type,
and ancestral genes that are in different groups other than the focal group in generation
0 are independently of allelic type Ak with probability given by its frequency in the
whole population in generation 0, given by xk , we have

P(G(t) = G j |ξ(t) = ξ, t ≥ t1) =
L∏

k=1

xrk
k , (6.29)

if ξ = {ξα : αεA(ξ)} is a finer partition of S than η j , denoted by ξ ≺ η j , with

A(ξ) =
L⋃

k=1

Ak(ξ), (6.30)

such that

η jk =
⋃

αεAk (ξ)

ξα, (6.31)

and Ak(ξ) contains rk elements, for k = 1, . . . , L . Of course, we must have

rk ≤ s jk, (6.32)

where s jk is the number of elements in η jk , for k = 1, . . . , L . Otherwise, the condi-
tional probability is 0. Moreover, we have

lim
t→∞ P(ξ(t) = ξ |t ≥ t1) = p(ξ). (6.33)

Then, we conclude that

lim
t→∞ P(G(t) = G j ) =

∑

0<r≤s j

c j (r)xr1
1 · · · · · xrL

L , (6.34)
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for r = (r1, . . . , rL) �= (0, . . . , 0), with 0 ≤ rk ≤ s jk for k = 1, . . . , L , where

c j (r) =
∑

ξ≺η j ,r j (ξ)=r

p(ξ), (6.35)

and r j (ξ) = (r j1(ξ), . . . , r j L(ξ)), with r jk(ξ) being the number of non void subsets
of ξ in η jk , for k = 1, . . . , L . Moreover, this convergence does not depend on the
distribution of the group types in generation 0.

7 Proof of Proposition 1

Note that XD(t)=�(ZD(t)) and YD(t)=�(ZD(t)), where�(z) = x = (x1, . . . , xL)

and �(z) = z − ẑ(x) = (z1 − ẑ1(x), . . . , zn − ẑn(x)) are defined by Eqs. (2.4) and
(2.38), respectively, for every z = (z1, . . . , zn) in �n . The applications � : �n → R

L

and � : �n → R
n are continuous, and the set

E = {(x, y)εR
L × R

n : x = �(z), y = �(z), zε�n} (7.1)

is compact. Moreover, the application (�,�) : �n → E is one-to-one and
�(�n) = �L . For every (x, y) in E , the difference equation

y(t + 1) − y(t) = c(x, y(t)), (7.2)

for t ≥ 0, with y(0) = y, and

c(x, y(t)) = z(t)T P(0, z(t)) − z(t), (7.3)

for z(t) = y(t)+ ẑ(x) in �n , is equivalent to the recurrence system in Lemma 1. Then,
(x, y(t)) belongs to E for all t ≥ 0, and y(t) converges to 0 as t → ∞, uniformly
with respect to (x, y(0)) = (x, y) in E . This ascertains the conclusion of Lemma 3.2
in Ethier and Nagylaki (1980).

On the other hand, the expression for akl(x, 0) given in Lemma 2, and the fact that
bk(x, 0) = ∑L

l=1 µlk xl ≥ 0 when xk = 0, guarantee that the closure of L defined
on C2(�L) generates a strongly continuous semigroup on C(�L) corresponding to a
diffusion process in �L (Ethier 1976).

Conditions I and II have already been checked in Sect. 3, and therefore it remains
to ensure that conditions III, IV and V are satisfied to apply Theorem 3.3 in Ethier and
Nagylaki (1980).

For the fourth moment of the change in the frequency of Ak , we have

Ez((�X D
k )4) = Ez((X D

k (1) − x∗∗
k )4) + 3(x∗∗

k − xk)Ez((X D
k (1) − x∗∗

k )3)

+ o(|x∗∗
k − xk |), (7.4)

where o(|x∗∗
k − xk |) = o(D−1). Using (2.28) and denoting the frequency of allele Ak

in any given group of type i at time t = 1 by X D
k,i (1), we deduce that
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Ez((X D
k (1) − x∗∗

k )3) = 1

D2

n∑

i=1

zi Ez((X D
k,i (1) − x∗∗

k,i )
3), (7.5)

which is a function o(D−1), since the random variables (X D
k,i,di

(1) − x∗∗
k,i ), for di =

1, . . . , Di and i = 1, . . . , n, are independent, centered at 0, and uniformly bounded
in absolute value by 2. For the same reason, we have

Ez((X D
k (1) − x∗∗

k )4) = 1

D3

n∑

i=1

zi Ez((X D
k,i (1) − x∗∗

k,i )
4)

− 1

D3

n∑

i=1

zi

[
Ez((X D

k,i (1) − x∗∗
k,i )

2)
]2

+ 1

D2

[
n∑

i=1

zi Ez((X D
k,i (1) − x∗∗

k,i )
2)

]2

, (7.6)

which is a function o(D−1). This establishes condition III.
Using Lemma 1, Eq. (3.6) for t = 1 can be rewritten in the form

Ẑ D
j (1) =

∑

0<r≤s j

c j (r)

(
L∏

k=1

(�X D
k + xk)

rk

)

= ẑ j (x) +
∑

0<v≤r≤s j

c j (r, v, x)

(
L∏

k=1

(�X D
k )vk

)
, (7.7)

for some uniformly bounded non negative coefficients c j (r, v, x), for r = (r1, . . . , rL)

and v = (v1, . . . , vL) �= (0, . . . , 0) satisfying 0 ≤ vk ≤ rk ≤ s jk , for k = 1, . . . , L
and j = 1, . . . , n. Therefore, recalling (2.32), we find that

Ez(�Y D
j ) =

n∑

i=1

zi Pi j (s, z) − z j −
∑

0<v≤r≤s j

c j (r, v, x)Ez

(
L∏

k=1

(�X D
k )vk

)
,

(7.8)

where s = (4N D)−1, and

Pi j (s, z) = Pi j (0, z) + o(1), (7.9)

as D goes to infinity. In order to get condition IV, it remains to show that

Ez

(
L∏

k=1

(�X D
k )vk

)
= o(1), (7.10)
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as D goes to infinity, for every 0 < v ≤ r ≤ s j . Note that

Ez

(
L∏

k=1

(�X D
k )vk

)
= Ez

(
L∏

k=1

(X D
k (1) − x∗∗

k )vk

)
+ o(1), (7.11)

since (x∗∗
k − xk) = o(1), for k = 1, . . . , L . Using the representation (2.28) for the

allele frequencies, the above product can be expressed as a mean of D
∑L

k=1 vk products
of
∑L

k=1 vk terms in the form (X D
k,i,di

(1) − x∗∗
k,i ), each one bounded in absolute value

by 2. Hence, all these products are bounded by 2
∑L

k=1 vk . We claim that at least D
of these products have an expected value 0. As a matter of fact, if vk > 0, then the
product of each term in the form (X D

k,i,di
(1)−x∗∗

k,i ), whose expected value is 0, with all

other independent terms in the form (X D
l, j,d j

(1)− x∗∗
l, j ) with the same ( j, d j ) different

from (i, di ) will have an expected value 0. We conclude that the mean of the expected
values of the products is of order D−1, and therefore a function o(1) as D goes to
infinity.

Finally, we have

Varz(�Y D
j ) = Varz(Z D

j (1) − Ẑ D
j (1)) ≤ 2Varz(Z D

j (1)) + 2Varz(Ẑ D
j (1)), (7.12)

where, owing to (2.31), (7.7) and (7.10),

Varz(Z D
j (1)) = 1

D

n∑

i=1

zi Pi j (s, z)(1 − Pi j (s, z)), (7.13)

with s = (4N D)−1, and

Varz(Ẑ D
j (1)) = Varz

⎛

⎝
∑

0<v≤r≤s j

c j (r, v, x)

(
L∏

k=1

(�X D
k )vk

)⎞

⎠,

=
∑

0<v≤r≤s j

∑

0<v′≤r′≤s j

c j (r, v, x)c j (r′, v′, x)

· Covz

(
L∏

k=1

(�X D
k )vk ,

L∏

k=1

(�X D
k )v

′
k

)
, (7.14)

which are both o(1) as D goes to infinity. This shows condition V.
Note that all functions o(1) and o(D−1) above are uniform in z, since all parameters

and all variables, which are finite in number, are uniformly bounded. This completes
the proof of Proposition 1.
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8 Concluding remarks and perspectives

The group structure model for a diploid population with migration of offspring after
selection considered in Proposition 1 encompasses, and extends, the classical one-
locus multi-allele viability model for a panmictic population, which corresponds to
the case of complete dispersal (m = 1, also known as the Levene model; Levene 1953)
and scaled selection coefficient depending only on the individual genotype (σkl,i = hkl

for genotype Ak Al in a group of type i for k, l = 1, . . . , L and i = 1, . . . , n). This
leads to the selection drift function for allele Ak given by

σk(x) = xkh•
k(x), (8.1)

where h•
k(x) = ∑L

l=1 hkl xl −∑L
l,m=1 hlm xl xm stands for the average effect of Ak on

the genotypic value h in allozygous individuals, with respect to the allele frequency
vector x = (x1, . . . , xL). Neglecting mutation and drift, which is equivalent to con-
sidering the limit of a pure selection model in an infinite population with the inverse
of the intensity of selection (1/s) as unit of time as the intensity of selection goes to 0,
leads to the replicator equation (Taylor and Jonker 1978; see Hofbauer and Sigmund
1998, 2003, and references therein)

ẋk = xk

(
(Hx)k − xT Hx

)
, (8.2)

for k = 1, . . . , L , with symmetric fitness matrix H = ‖hkl‖ and increasing strict
Lyapunov function xT Hx = ∑L

k,l=1 hkl xk xl .
With random pairwise interactions within groups having additive effects on viabil-

ity (σkl,i = hkl + v̄i ), and complete dispersal of offspring after selection (m = 1),
so that there is no inbreeding, the selection drift function for allele Ak according to
Corollary 1 is given by

σk(x) = xk(h
•
k(x) + ρ•

J→I v
•
k (x)), (8.3)

where ρ•
J→I = 2 f J I = 1/2 is the expected fraction of genes in I that are IBD to

genes in J with I and J being two offspring chosen at random in the same group
before dispersal in an infinite population without selection nor mutation. This leads to
a symmetric fitness matrix

A = ‖hkl + ρ•
J→I vkl‖. (8.4)

This is in agreement with an inclusive fitness formulation for kin selection (Hamilton
1964), a genotype Ak Al in an offspring J having an effect hkl on the fitness of J
itself and an effect vkl weighted by a coefficient of relatedness ρ•

J→I on the fitness
of an offspring I chosen at random in the same group. More importantly, this sup-
ports the conjecture of an increase of the mean inclusive fitness in the context of a
deterministic model with an infinite number of groups in the absence of inbreeding,
if mutation is neglected and selection is weak enough. The result can be extended to
a wider variety of group structures without inbreeding as those considered in Karlin
and Matessi (1983).
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Local mating and complete dispersal of mating pairs (m = 1) after selection intro-
duce inbreeding and local mate competition (Hamilton 1967). For a pure viability
model, that is, a viability model without interactions (σkl,i = hkl ), Proposition 4
yields

σk(x) = xk((1 − f I )h
•
k(x) + 2 f I h••

k (x)), (8.5)

where f I = 1/(4N ) is the inbreeding coefficient. This corresponds to a fitness matrix

A = ‖(1 − f I )hkl + f I hkk‖, (8.6)

which is not symmetric in general. However, evolutionary game theory (see, e.g.,
Hofbauer and Sigmund 1998, 2003, and references therein) tells us that an evolution-
arily stable strategy x = (x1, . . . , xL) for the game matrix A in Maynard Smith and
Price (1973) sense, that is, a Nash equilibrium such that ξ T Aξ = ξ T Hξ < 0, for
all ξ = (ξ1, . . . , ξL) with

∑L
i=1 ξi = 0 and ξi = 0 if xi = 0, is an asymptotically

stable rest point of the replicator dynamics. In the case of two alleles segregating in
the population, the replicator dynamics can be described by Wright (1942) adaptive
topography (see Nagylaki 1997, for a detailed stability analysis).

With dispersal before selection rather than after selection, complete or partial, there
is pure competition within groups and only the viability differences between the off-
spring in the same group come into play, even in the case of interactions within the
group. This corresponds to a situation of soft selection (Christiansen 1975) or local
resource competition (Clark 1978), which is caused by population regulation within
groups. In this case, Proposition 3 reveals a fitness matrix

A = ‖(1 − f J )(1 − ρ•
J→I )hkl + f J (1 − ρ••

J→I )hkk‖, (8.7)

with interactions stemming only from viability differences. This is in agreement with
Whitlock (2003) when the dispersal rate m is small and the group size N large, in
which case ρ•

J→I = ρ••
J→I = f J I / f J J . A similar effect of competition has already

been pointed out for family-structured populations (Lessard 2005b), which can also be
studied from approximate adaptive topographies in fertility-viability selection models
(Nagylaki 1987; Lessard 1993). Let us stress that the inbreeding coefficient f J in
Proposition 3, as well as the coefficients of relatedness ρ•

J→I and ρ••
J→I defined as the

expected fractions of genes in I that are IBD to genes in J given that J is allozygous or
autozygous, respectively, are computed after dispersal rather than before dispersal, in
an infinite population without selection nor mutation. Moreover, they are all different
from 0 if dispersal is incomplete.

Note that Wakeley (2003) model corresponds to dispersal before selection with
hI = 2γ ql,I for some mutant allele Al and some constant γ ≥ 0, in which case

σk(x) = (1 − f I )γ xk(δkl − xl), (8.8)

with inbreeding coefficient f I given in Lemma 2.
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Group selection comes into play with partial dispersal after selection (0 < m < 1),
which corresponds to the Deakin model; Deakin 1966). In the case of intra-group pair-
wise interactions and proportional dispersal, for instance, Corollary 1 of Proposition 1
yields a fitness matrix in the form

A = ‖(1 − f J )akl + f J bkk‖, (8.9)

with

akl = hkl − (1 − m)ρ•
J→I hkl + mρ•

J→I vkl (8.10)

and

bkk = hkk − (1 − m)ρ••
J→I hkk + mρ••

J→I vkk . (8.11)

These parameters represent the inclusive fitness of an individual J , allozygous with
genotype Ak Al or autozygous with genotype Ak Ak , respectively, in a group with indi-
vidual competition in a fraction 1 − m of the group, and group competition in the
complementary fraction m. Proposition 2 asserts that uniform dispersal of a fraction
m of offspring has the same effect as proportional dispersal of a fraction m(2 − m) =
1 − (1 − m)2 of offspring. Proposition 2 in the case of two alleles with fitness param-
eters in the form hkl = −cgkl and vkl = bgkl , for k, l = 1, 2, and some constants b
and c, corresponds to results given in Roze and Rousset (2003, 2004).

Dispersal after mating, proportional or uniform, have the same effect on the alle-
lic selection drift functions as dispersal of offspring after selection, proportional or
uniform, respectively. As ascertained in Proposition 4, the only difference is found in
the effect of the population structure on the diffusion functions for a random mating
population. While the population structure decreases these functions by a multiplica-
tive factor (1 − f I ), where f I is the inbreeding coefficient, in the case of dispersal
of offspring in agreement with Wakeley (2003) and Whitlock (2003), it decreases
less (or even increases if m > 1 − √

3/2) the same functions by a multiplicative
factor (1 − (1 − 8m + 4m2) f I ) in the case of dispersal of mating pairs. This sug-
gests an effective population size (2N D)/(1 − f I ) in the former case (Wright 1943),
and (2N D)/(1 − (1 − 8m + 4m2) f I ) in the latter, compared to 2N D for a random
mating population. Therefore, drift in a group-structured population is stronger with
dispersal of mating pairs than with dispersal of offspring, and even stronger than drift
in a random mating population if the dispersal rate is high enough. These will be the
only differences in the diffusion approximations in the absence of selection.

Group selection is often modeled with local extinction and recolonization. The
effect of these factors on the allelic selection drift functions is the same as proportional
dispersal after selection, if local extinction occurs after selection with probability
m > 0 equal to the dispersal rate, and all groups, including groups going extinct, con-
tribute to recolonization in the same proportions as their relative sizes after selection.
In this case, the population structure decreases the diffusion functions for a random
mating population by a multiplicative factor (2 − m)(1 − f I ), but with inbreeding
coefficient f I given in Proposition 5. This factor is smaller than the factor (1 − f I )
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for proportional dispersal with f I given in Lemma 2, leading to a larger effective
population size, if and only if 4Nm < 1. The effective population size given by
(2N D)/((2 − m)(1 − f I )) is in agreement with previous works under corresponding
assumptions at least in the case where the extinction probability is small (see, e.g.,
Slatkin 1977; Wade and McCauley 1988; Wakeley and Aliacar 2001; Rousset 2003;
Whitlock 2003).

Note that the diffusion approximation studied by Kimura (1984) concerns the den-
sity of the frequency of an altruistic allele among an infinite number of demes. It
assumes an island model with a large deme size even though a small deme size seems
to be more appropriate for extinction and recolonization, and genic selection at both
the individual and group levels, whose intensity is proportional to time. Group com-
petition is modeled by an extinction-recolonization rate that is a linear function of the
frequency of the altruistic allele. The model also incorporates mutation and dispersion
occurring before group competition and acting with the same intensity as selection.
Similar assumptions have been made for other diffusion equations modeling group
selection (see, e.g., Levins 1970; Boorman and Levitt 1973). Under such assumptions,
a two-time-scale argument cannot be applied, since there is no evolutionary force that
dominates the others. Moreover, the variability between groups, which is a neces-
sary ingredient for group selection to occur, is then a result of local isolation that is
maintained by weak migration.

On the other hand, a two-time-scale argument has been used for a population geo-
graphically structured into a fixed finite number of demes that exchange migrants
according to a fixed ergodic scheme as the deme sizes go to infinity (Nagylaki 1980).
Then, the limiting diffusion result relies on the fact that the allele frequencies within
the demes converge globally and uniformly to the same limits under the mixing effects
of migration, before these frequencies change under the evolutionary effects of selec-
tion and mutation. The result is a consequence of the Perron–Frobenius theory (see,
e.g., Gantmacher 1959, or Karlin and Taylor 1975) applied to a constant backward
migration matrix, at least in the case of soft viability selection determined by the indi-
vidual genotype. Actually, the limiting diffusion, known as the strong-migration limit,
is analogous to the one obtained for a panmictic population provided the effective
population size and the selection coefficients are appropriately defined with respect
to the deme sizes and the stationary distribution of the backward migration matrix,
which is not given by the relative deme sizes unless migration is conservative. Note
that, in this model, the variability in the genetic structure of the groups vanishes in the
limit of a large population.

The diffusion approximations ascertained in Propositions 1–5 hold for groups of
a fixed finite number of mating pairs, either going extinct and being recolonized by
offspring produced in the whole population with a fixed probability each generation,
or producing a fixed proportion of migrant offspring each generation that disperse in
the whole population. The variability between groups is maintained in this case by the
finite size of the groups as the number of groups tends to infinity. This can be seen as
an extension of individual selection, which arises from groups of single individuals
producing gametes that disperse in the whole population. The proofs rely on apply-
ing Ethier and Nagylaki (1980) diffusion result on two-time-scale Markov chains and
the main step has been to show global and uniform convergence of the distribution
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of the group types in an infinite population in the absence of selection and mutation.
The transformation of this distribution involves a stochastic matrix that depends on
the population state, and convergence to an equilibrium distribution resorts to a coa-
lescence approach (Kingman 1982; Pitman 1999; Sagitov 1999), extended to a single
deme in an infinite collection of demes of finite size with the possibility of multiple
simultaneous migration events and coalescence events. The equilibrium distribution
given in Lemma 1 is obtained by conditioning on the relatedness structure of the deme
at stationarity, that is, the number of ancestral genes and the multiple ways that their
descendants can be distributed within the deme. In the particular case of genic selection
and gametic migration, the genes in the deme are exchangeable and the relatedness
structure of the deme has a probability distribution given by an extension of the Ewens
sampling formula to an exact Wright–Fisher population with the mutation rate to a
new allele corresponding to the migration rate to a new deme (Lessard 2007).

The diffusion approximations in Propositions 1–5 are valid for general selection
coefficients in a group-structure model for a diploid population that depend on the
individual genotype and the group type. Interactions within groups, not necessarily
pairwise, may occur between parents and offspring, and have different effects, not
necessarily additive, according to sex, ploidy, or the degree of relatedness between the
interacting individuals. In such cases, however, extended coefficients of relatedness
as in Lessard and Rocheleau (2004) for family-structured populations may have to be
considered.
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