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a b s t r a c t

The first-order effect of selection on the probability of fixation of an allele, with respect to an intensity
of selection s > 0 in a diploid population of fixed finite size N , undergoing discrete, non-overlapping
generations, is shown to be given by the sum of the average effects of that allele on the coefficient of
selection in the current generation and all future generations, given the population state in the current
generation. This projected average allelic effect is a weighted sum of average allelic effects in allozygous
and autozygous offspring in the initial generation, with weights given in terms of expected coalescence
times, under neutrality, for the lineages of two or three gametes chosen at random in the same generation.
This is shown in the framework of multiple alleles at one locus, with genotypic values determining either
viability or fertility differences, and with either multinomial or exchangeable reproduction schemes. In
the limit of weak selection in a large population such that Ns tends to zero, the initial average allelic
effects in allozygous offspring and autozygous offspring have the same weight on the fixation probability
only in the domain of application of the Kingman coalescent. With frequency-dependent selection in a
linear-game-theoretic context with two phenotypes determined by additive gene action, the first-order
effect on the fixation probability is a combination of two effects of frequency-independent selection, one
in a haploid population, the other in a diploid population. In the domain of application of the Kingman
coalescent as the population size goes to infinity and Ns to zero, the first effect is three times more
important than the second effect. This explains the one-third lawof evolutionary dynamics in this domain,
and shows how this law can be extended beyond this domain.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The probability of eventual fixation of an allele has a long
history in population genetics theory. Very early, Fisher (1922)
raised the question of survival of a new mutant in a large,
monomorphic, diploid population in relation with the evolution
of dominance and used a branching process approach to estimate
the survival probability at twice the selective advantage of the
heterozygote over the prevailing homozygotewhen this advantage
is small enough (Fisher, 1930; see, e.g., Ewens, 2004). Much later,
Kimura (1962) deduced a formula for the probability of ultimate
fixation of a mutant allele in the limit of a large population size
based on the Kolmogorov backward equation applied to diffusion
approximations for discrete-time population geneticsmodels with
an appropriate choice of time unit and scaled selection parameters
(see, e.g., Crow and Kimura (1970)). Note that an exact formula
is available in the case of a fixed finite population size when
the transition matrix for the frequency of the mutant allele is a
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continuant (see, e.g., Ewens (2004, p. 90)), as occurs in the case
of the discrete-time version of the Moran model for a haploid
population (Moran, 1958).
The study of the fixation probability has recently regained

interest in relation with evolutionary stability concepts in a game-
theoretic perspective (see, e.g., Rousset and Billiard (2000), Proulx
and Day (2001), Nowak et al. (2004) and Wild and Taylor (2004)).
Let us mention in particular evolutionarily stable strategy (ESS;
Maynard Smith and Price, 1973), continuously stable strategy
(Eshel and Motro, 1981), which adds m-stability or convergence
stability (Taylor, 1989; Christiansen, 1991) to the ESS condition,
or otherwise, anti-evolutionarily stable strategy or polymorphic
evolutionarily attainable stable trait or evolutionary branching
singular point (Uyenoyama and Bengtsson, 1982; Christiansen,
1991; Metz et al., 1996), and neighbourhood invader strategy
(Apaloo, 1997). Such concepts can be considered with a payoff
function defined as the growth rate of amutant introduced in small
frequency into a monomorphic population (see, e.g., Bulmer and
Taylor (1980), Eshel and Feldman (1982), Lessard (1990, 2002), and
references therein). This can be viewed as an initial invasion fitness
or initial reproductive fitness, and this is the prevailing approach
for a population so large that it is assumed to be of infinite size.
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The dynamics of the population following the initial invasion of
a mutant has been the subject of numerous studies (Taylor and
Jonker, 1978; Hofbauer et al., 1979; Zeeman, 1980; Karlin and
Lessard, 1983; Lessard, 1984, 1989; Cressman, 1988; Hofbauer and
Sigmund, 1998, 2003, and references therein).
Considering the population size to be finite and mutation

non-recurrent, any mutant will go eventually to fixation or
extinction. In such a case, the payment function can alternatively
be defined as the probability of ultimate fixation of the mutant
given that it is represented once initially. This corresponds to
an initial replacement fitness or initial fixation fitness. Wild and
Taylor (2004) showed the equivalence of the current evolutionary
concepts for a continuous trait with both definitions of fitness at
least in a Moran population, when they apply at any level of the
mutant frequency for a small enough deviation of the mutant trait.
This includes the case of mixed strategies in linear games.
Studying the emergence of cooperation in the framework of the

repeated Prisoner’s dilemma (Trivers, 1971; Axelrod andHamilton,
1981) with two pure strategies, A (TFT for tit-for-tat) and B (AllD
for always defecting), and assuming random pairwise interactions
in a finite population with a Moran reproduction scheme, Nowak
et al. (2004) showed that a single A introduced into an all-B
population becomes fixed with a selective advantage, in the limit
of weak selection in a large population such that the intensity of
selection times the population size goes to zero, if the reproductive
payoff to A is greater than the reproductive payoff to B when
A has frequency 1/3. This has been called the one-third law of
evolutionary dynamics. It is valid for any pair of pure strategies
in a linear game that are the best replies to themselves, namely,
strict Nash strategies, and therefore strategies that can resist initial
invasion of the other, actually, initial invasion of any combination
of the two, in an infinite population. Moreover, it holds in the case
of a Wright–Fisher model of reproduction as well (Fisher, 1930;
Wright, 1931), under the same assumptions on the population size
and selection intensity (Lessard, 2005; Imhof and Nowak, 2006).
The following explanation for the one-third law has been

proposed (Ohtsuki et al., 2007a): in one invasion attempt up
to extinction or fixation in a neutral model, a single A-player
effectively interacts on average with B-players twice as often as
with A-players. The argument is based on the mean effective
sojourn times in the different population states. In the case of the
Moran model, the mean effective sojourn times correspond to the
mean numbers of visits, and they can be obtained exactly from
the mean sojourn times. In the case of the haploid Wright–Fisher
model, the argument relies on an analogy with the Moran model
and an approximation of the mean sojourn times in a large
population (Fisher, 1930, p. 90).
The one-third law also comes up in the case of pairwise

comparison updating (Traulsen et al., 2006) and with games on
cycles or graphs (Ohtsuki and Nowak, 2006; Ohtsuki et al., 2006,
2007b). Population subdivision, however, can weaken the one-
third law in cases of lowmigration rates or asymmetric population
structures (Ladret and Lessard, 2007, 2008).
Considering an exchangeable selection model for a haploid

population extending the Moran and Wright–Fisher selection
models and the Cannings neutral model (Cannings, 1974), it
has been shown that the one-third law holds in the domain of
application of the Kingman coalescent (Kingman, 1982) in the
corresponding neutral model in the limit of a large population
size (Lessard and Ladret, 2007). Outside this domain, in the case
of a linear game with two strict Nash strategies, A and B, the
reproductive payoff to A must be greater than the reproductive
payoff to B when A has a frequency equal to some threshold
value smaller than 1/3 for a single A to get fixed with a selective
advantage in the limit of weak selection, which is a more stringent
condition than the one-third law. This makes cooperation less

likely to evolve in a finite population with a highly skewed
distribution of family size, for instance (Lessard, 2007).
In this paper, we will first recall the classical Wright–Fisher

multiallele viability model for a finite diploid population (Sec-
tion 2). We will use a direct Markov chain approach as proposed
by Rousset (2003) and ascertained by Lessard and Ladret (2007)
in the case of two alleles to get the first-order effect of selection
on the probability of fixation in a population of a fixed finite size
(Section 3). This effect will be expressed in terms of expected val-
ues of products of allelic frequencies under neutrality (Section 4),
and then in terms of expected coalescence times and initial al-
lelic frequencies (Section 5). We will consider next the first-order
effect of a two-phenotype linear game on the probability of
fixation in the case of additive gene action on the phenotypic
determination, which makes the model formally equivalent to a
linearly frequency-dependent haploid model (Section 6). We will
also consider the effect of fertility differences instead of viability
differences (Section 7) and relax the assumption of a multinomial
distribution for the contributions of the parents of any given gener-
ation (Section 8). Then,wewill show that, in general, the first-order
effect of selection on the probability of fixation is given by an aver-
age allelic excess in the coefficient of selection, or equivalently an
average allelic effect on the coefficient of selection, understood in
the classical sense (Fisher, 1930), but taking into account not only
the population structure in the current generation but also in all
future generations under neutrality (Section 9). This interpretation
provides a theoretical framework for studying the fixation proba-
bility in a small population under weak selection, and explains the
one-third law in the domain of application of the Kingman coales-
cent as the population size goes to infinity and its extension for
more general situations (Section 10). A rigorous justification of the
approach in the case of multiple alleles is included for complete-
ness (Appendix).

2. Wright–Fisher multiallele viability model

We consider n alleles, A1, A2, . . . , An, at a single autosomal
locus in a diploid population of N monoecious individuals
(2N genes) undergoing discrete, non-overlapping generations.
Every generation starts with male and female gametes in large
numbers, and female gametes are united at random with male
gametes to form a virtually infinite number of offspring. Then,
viability differences from conception tomaturity depending on the
genotype at the considered locus take place among the offspring.
This is followed by population size regulation: N mature offspring
are chosen at random to be the parents of the next generation.
These N parents produce large numbers of gametes of each sex
in equal proportions to start the next generation. Mendelian
segregation of gametes is assumed. This is the Wright–Fisher
multiallele viability model for a diploid monoecious population
(Fisher, 1930; Wright, 1931; see, e.g., Ewens, 2004, Chap. 3,
Nagylaki, 1992, pp. 248–253). See the next sections for other
models.
Let xi(t) be the frequency of Ai and xij(t) = xji(t) the frequency

of the ordered genotype AiAj at the beginning of generation t ≥ 0,
for i, j = 1, . . . , n. Random union of gametes implies
xij(t) = xi(t)xj(t) = xji(t), (1)
for i, j = 1, . . . , n.
Let the viability of AiAj, which is proportional to the probability

of survival from conception to maturity, be expressed in the form
wij = 1+ suij, (2)
for i, j = 1, . . . , n, where s ≥ 0 represents the intensity of
selection and uij = uji a coefficient of selection. Then, the frequency
of the ordered genotype AiAj after selection becomes

x̃ij(t) =
xij(t)(1+ suij)
1+ su(t)

, (3)
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for i, j = 1, . . . , n, where

u(t) =
n∑
i=1

n∑
j=1

xij(t)uij (4)

is the mean coefficient of selection in generation t ≥ 0. Note that
x̃ij(t) = x̃ji(t), for i, j = 1, . . . , n. This leads to

x̃i(t) =
n∑
j=1

x̃ij(t) =
xi(t)(1+ sui)
1+ su(t)

, (5)

for the frequency of allele Ai after selection, where

ui(t) =
n∑
j=1

xj(t)uij (6)

is the marginal coefficient of selection of Ai, for i = 1, . . . , n.
Note that this frequency will be the conditional expected value of
xi(t + 1), the frequency of Ai at the beginning of generation t + 1,
given x(t) = (x1(t), . . . , xn(t)).
Actually, in the Wright–Fisher model, the random variable

2Nxi(t + 1) will follow a conditional binomial distribution
of parameters 2N and x̃i(t). More generally, in this case, the
conditional distribution of the random vector 2Nx(t + 1) =
(2Nx1(t + 1), . . . , 2Nxn(t + 1)) will be multinomial with
parameters 2N and x̃1(t), . . . , x̃n(t), respectively.

3. Fixation probability under weak selection

For any fixed population size N , the frequency of allele Ai
will converge, in probability owing to the ergodic theorem and
therefore in mean by dominated convergence (see, e.g., Karlin and
Taylor (1975)), to the random variable

xi(∞) = xi(0)+
∑
t≥0

1xi(t), (7)

where 1xi(t) = xi(t + 1) − xi(t) is the change in the frequency
of allele Ai from generation t to generation t + 1, for i = 1, . . . , n
and t ≥ 0. The variable xi(∞) takes the value 1 if allele Ai becomes
ultimately fixed in the population, and 0 otherwise. Actually, the
probability of ultimate fixation of Ai can be expressed as

Ps(Ai) = Es[xi(∞)] = xi(0)+
∑
t≥0

Es[1xi(t)], (8)

where xi(0) represents the given initial frequency of Ai, while Ps
and Es denote probability and expectation, respectively, when the
intensity of selection is s ≥ 0. Conditioning on the allelic state
of the population in the previous generation to get the expected
change in the frequency of Ai in the current generation and using
the tower property of conditional expectation, this probability can
be written as

Ps(Ai) = xi(0)+
∑
t≥0

Es [Es[1xi(t)|x(t)]] , (9)

where x(t) = (x1(t), . . . , xn(t)) for t ≥ 0, and

Es[1xi(t)|x(t)] = x̃i(t)− xi(t). (10)

Owing to (5), this conditional expected change in the frequency of
Ai takes the form

Es [1xi(t)|x(t)] =
sxi(t) (ui(t)− u(t))

1+ su(t)
, (11)

which is such that

E0 [1xi(t)|x(t)] = 0. (12)

This reduces to the approximation

Es [1xi(t)|x(t)] ≈ sxi(t) (ui(t)− u(t)) , (13)

when selection is weak, that is, s ≥ 0 is small enough. Note that
ui(t) − u(t) represents the average excess of Ai in the coefficient
of selection in generation t ≥ 0, which is the same in the model
considered as the average effect, on the total measurement in the
population in generation t ≥ 0, of substituting a gamete of type Ai
in place of a gamete chosen at random (Fisher, 1930). Inserting this
expression into (9) yields

Ps(Ai) ≈ xi(0)+
∑
t≥0

Es [sxi(t) (ui(t)− u(t))] , (14)

for the probability of ultimate fixation of Ai, which in turn can be
approximated as

Ps(Ai) ≈ xi(0)+ s
∑
t≥0

E0 [xi(t) (ui(t)− u(t))] , (15)

where E0 designates expectation under neutrality, that is, when
s = 0.
The above treatment suggests that the derivative of Ps(Ai)with

respect to s, evaluated at s = 0 is given by

P ′0(Ai) =
∑
t≥0

E0 [xi(t) (ui(t)− u(t))] . (16)

Actually, this is ascertained if the derivative of the sum in (8) is
the sum of the derivatives in a neighborhood of s = 0. This will
be the case if the sum of the derivatives converges uniformly in a
neighborhood of s = 0. A proof is given in the Appendix under the
condition that the one-step transition probabilities of the Markov
chain x(t), for t ≥ 0, and their derivatives with respect to s ≥ 0
are continuous at s = 0.
Finally, expressing ui(t) and u(t) in terms of the allelic

frequencies, the first-order effect of selection on the probability of
ultimate fixation of Ai can be written as

P ′0(Ai)

=

∑
t≥0

E0

[
xi(t)

(
n∑
j=1

xj(t)uij −
n∑
j=1

n∑
k=1

xj(t)xk(t)ujk

)]
, (17)

which can be rearranged into the form

P ′0(Ai) =
∑
t≥0

E0[x2i (t)(1− xi(t))]uii +
n∑
j=1
j6=i

E0
[
xi(t)xj(t)

]
uij

−

n∑
j=1
j6=i

E0
[
xi(t)x2j (t)

]
ujj − 2

n∑
j=1
j6=i

E0
[
x2i (t)xj(t)

]
uij

−

n∑
j=1
j6=i

n∑
k=1
k6=i,j

E0
[
xi(t)xj(t)xk(t)

]
ujk

 , (18)

with indices i, j, k all different.

4. Expectation of products of allele frequencies

In order to express the expected value of a product of allele
frequencies in generation t ≥ 0 under neutrality with respect to
the initial allelic frequencies, let us introduce the probability p(t)kl
that k gametes chosen at random in generation t ≥ 0 descend from
exactly l ancestral gametes in generation 0 under neutrality.
First, consider two gametes, labeled 1 and 2, chosen at random

in generation t ≥ 0. Then, the expected value of xi(t)xj(t) gives the
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probability that gametes 1 and 2 are of types Ai and Aj, respectively.
This will be the case, for i 6= j, if and only if the corresponding
ancestral gametes in generation 0 are distinct, which occurs with
probability p(t)22 , and these are of types Ai and Aj, respectively, which
has probability xi(0)xj(0) under neutrality. Therefore, we have

E0[xi(t)xj(t)] = p
(t)
22 xi(0)xj(0), (19)

for i 6= j. Note that this entails

E0[xi(t)(1− xi(t))] = p
(t)
22 xi(0)(1− xi(0)), (20)

since 1− xi(t) =
∑
j6=i xj(t), for t ≥ 0.

Next, consider three gametes chosen at random in generation
t ≥ 0 and label them arbitrarily 1, 2 and 3. Then, the expected
value of x2i (t)(1− xi(t)) gives the probability that gametes 1 and 2
are of type Ai and gamete 3 of any other type. Conditioning on the
number of the ancestral gametes in generation 0 and noting that
these are chosen at random under neutrality, we get

E0[x2i (t)(1− xi(t))] =
(
xi(0)(1− xi(0))

2

)
×

[
2xi(0)p

(t)
33 + p

(t)
22 − p

(t)
33

]
. (21)

Indeed, with probability p(t)33 , the ancestral gametes are all distinct
and they are of the required types with probability x2i (0)(1 −
xi(0)). On the other hand, with probability p

(t)
22 − p

(t)
33 , the ancestral

gametes of gametes 1 and3 are distinct andone of them is ancestral
also to gamete 2, the ancestral gametes being of the required types
with probability xi(0)(1− xi(0)) divided by 2.
Similarly, for three labeled gametes in generation t ≥ 0 to be

of two different types, one of type Ai and two of type Aj different
from Ai, for instance, there must be either 2 or 3 ancestral gametes
in generation 0 of the corresponding types and, in the case of 2
ancestral gametes, the two lineages that have coalesced must be
associated to type Aj. This leads to

E0[xi(t)x2j (t)] =
(
xi(0)xj(0)
2

)[
2xj(0)p

(t)
33 + p

(t)
22 − p

(t)
33

]
, (22)

for i 6= j. Symmetrically, we have

E0[x2i (t)xj(t)] =
(
xi(0)xj(0)
2

)[
2xi(0)p

(t)
33 + p

(t)
22 − p

(t)
33

]
, (23)

for i 6= j.
Finally, the onlyway for three gametes in generation t ≥ 0 to be

of different types, say Ai, Aj and Ak, is that their ancestral gametes
in generation 0 are all distinct and of the corresponding types. In
other words, we have

E0[xi(t)xj(t)xk(t)] = p
(t)
33 xi(0)xj(0)xk(0), (24)

for i, j, k all different.

5. Effect of selection on fixation probability

We are now prepared to express the first-order effect of
selection on the probability of ultimate fixation in terms of the
initial allelic frequencies and the mean coalescence times∑
t≥0

p(t)22 = E0(T2) (25)

and∑
t≥0

p(t)33 = E0(T3). (26)

The times T2 and T3 represent the numbers of generations
backward in time, under neutrality, for the first coalescence of
lineages starting from two and three gametes, respectively, to
occur.
Plugging the expressions of the expected products of allele

frequencies found in the previous section into Eq. (18) and
summing over t ≥ 0 yield

P ′0(Ai) =
(
xi(0)(1− xi(0))

2

)[
2xi(0)E0(T3)+ E0(T2)− E0(T3)

]
uii

+

n∑
j=1
j6=i

xi(0)xj(0)E0(T2)uij −
n∑
j=1
j6=i

xi(0)xj(0)

×

[
2xi(0)E0(T3)+ E0(T2)− E0(T3)

]
uij

−

n∑
j=1
j6=i

(
xi(0)xj(0)
2

)[
2xj(0)E0(T3)+ E0(T2)− E0(T3)

]
ujj

−

n∑
j=1
j6=i

n∑
k=1
k6=i,j

xi(0)xj(0)xk(0)E0(T3)ujk. (27)

Some algebraic manipulations lead to

P ′0(Ai) = xi(0)
[
E0(T3)(ui(0)− u(0))

+

(
E0(T2)− E0(T3)

2

)
(uii − u(0))

]
, (28)

where

ui(0) =
n∑
j=1

xj(0)uij (29)

is the initial marginal coefficient of selection of Ai in allozygous
offspring,

u(0) =
n∑
i=1

xi(0)ui(0), (30)

the initial mean coefficient of selection in allozygous offspring, and

u(0) =
n∑
i=1

xi(0)uii, (31)

the initial mean coefficient of selection in autozygous offspring.
It remains to calculate the expected values of the coalescence

times T2 and T3 under neutrality. Note that p
(t)
22 = p

t
22 and p

(t)
33 =

pt33, for t ≥ 0, where p22 and p33 designate the probabilities for
two and three gametes, respectively, to descend from two and
three ancestral gametes, respectively, one generation back in the
neutral model. Therefore, the coalescence times T2 and T3 under
neutrality are geometric randomvariableswithparameters p22 and
p33, respectively, whose expected values are

E0(T2) =
1

1− p22
(32)

and

E0(T3) =
1

1− p33
. (33)

Under the assumptions of the neutral Wright–Fisher model, we
have

p22 =
2N − 1
2N

(34)
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and

p33 =
(
2N − 1
2N

)(
2N − 2
2N

)
. (35)

This leads to

E0(T2) = 2N (36)

and

E0(T3) =
2N2

3N − 1
, (37)

from which

E0(T2)− E0(T3)
2

=
N(2N − 1)
3N − 1

. (38)

Therefore, for the Wright–Fisher model, (28) translates into

P ′0(Ai) =
2N2xi(0)
3N − 1

×

[
(ui(0)− u(0))+

(
1−

1
2N

)(
uii − u(0)

)]
. (39)

This result implies that the ultimate fixation of allele Ai, given the
initial allelic state of the population, is favored by weak selection,
that is, P ′0(Ai) > 0, which ensures that Ps(Ai) > P0(Ai) for s > 0
small enough, if and only if

(ui(0)− u(0))+
(
1−

1
2N

)(
uii − u(0)

)
> 0. (40)

Note that, for a large population, the factor 1/(2N) can be
neglected. In this case, the initial average excess of Ai in autozygous
offspring,uii−u(0), is as important as the initial average excess ofAi
in allozygous offspring, ui(0)−u(0), for the occurrence of ultimate
fixation of Ai to occur.

6. Frequency-dependent selection model

In this section, we will consider the case with additive allelic
effects on the coefficient of selection that depend linearly on the
allelic state of the current generation. Actually, we will consider a
two-phenotype multiallele model in the context of evolutionary
game theory (Maynard Smith and Price, 1973; Maynard Smith,
1974) as in Lessard (1984) for an infinite diploid population,
but with semidominance for the phenotypic determination, weak
selection and population size regulation.
Assume two phenotypes, 1 and 2, and suppose that an AiAj

offspring is of phenotype 1 with probability vij = (hi + hj)/2 and
of phenotype 2 with the complementary probability 1 − vij, for
i, j = 1, . . . , n. Assume random pairwise interactions between the
offspring in the same generation and let

M =
(
m11 m12
m21 m22

)
(41)

be the payoffmatrix,withmkl representing the selection coefficient
of an offspring of phenotype k in interaction with an offspring of
phenotype l, for k, l = 1, 2. Then, the coefficient of selection of
genotype AiAj in generation t ≥ 0 is found to be

uij(t) = m22 + (m21 −m22)h(t)+
(
hi + hj
2

)
[m12 −m22

+ (m11 −m12 −m21 +m22)h(t)], (42)

where

h(t) =
n∑
i=1

hixi(t) (43)

is the current frequency of phenotype 1. This gives

ui(t) = m22 + (m21 −m22)h(t)+

(
hi + h(t)
2

)
[m12 −m22

+ (m11 −m12 −m21 +m22)h(t)], (44)

for the marginal coefficient of selection of allele Ai, which leads to

ui(t)− u(t) =
(
hi − h(t)

) (
−a+ bh(t)

)
, (45)

for the average excess of allele Ai in the coefficient of selection,
where

a =
m22 −m12

2
,

and

b =
m11 −m21 −m12 +m22

2
. (46)

Note that this corresponds to the average excess in a haploid
population with hi and 1 − hi being the probabilities for an Ai
offspring to be of phenotypes 1 and2, respectively, for i = 1, . . . , n,
and (mkl/2) being the selection coefficient for an offspring of
phenotype k in interaction with an offspring of phenotype l, and
k, l = 1, 2.
Taking the expected value, under neutrality, of the average

excess of Ai in generation t ≥ 0 multiplied by xi(t) and regrouping
the frequencies of the same alleles yield

E0 [xi(t) (ui(t)− u(t))]
= −ahiE0[xi(t)(1− xi(t))] + bh2i E0[x

2
i (t)(1− xi(t))]

+ (bhi + a)
n∑
j=1
j6=i

hjE0[xi(t)xj(t)] − b
n∑
j=1
j6=i

h2j E0[xi(t)x
2
j (t)]

− 2bhi
n∑
j=1
j6=i

hjE0[x2i (t)xj(t)]

− b
n∑
j=1
j6=i

n∑
k=1
k6=i,j

hjhkE0[xi(t)xj(t)xk(t)]. (47)

Summing over t ≥ 0 and using the results of Section 4 give

P ′0(Ai) = xi(0)
[
(−aE0(T2)+ bh(0)E0(T3))(hi − h(0))

+ b
(
E0(T2)− E0(T3)

2

)
(h2i − h2(0))

]
, (48)

for the first-order effect of selection on the probability of ultimate
fixation of allele Ai, where

h(0) =
n∑
j=1

hjxj(0) (49)

and

h2(0) =
n∑
j=1

h2j xj(0). (50)

Under the assumptions of the Wright–Fisher model, this result
reduces to

P ′0(Ai) = 2Nxi(0)

[(
−a+

bNh(0)
3N − 1

) (
hi − h(0)

)
+ b

(
N − 1

2

3N − 1

)(
h2i − h2(0)

)]
, (51)
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which gives the approximation

P ′0(Ai) ≈ 2Nxi(0)

[(
−a+

bh(0)
3

) (
hi − h(0)

)
+
b
3

(
h2i − h2(0)

)]
, (52)

when N is large.

7. Multiallele fertility model

Consider the multiallele model of Section 2, but with fertility
differences after population size regulation instead of viability
differences before regulation. More precisely, let the parameter
wij = 1 + suij = wji measure the relative quantity of gametes
produced by a parent of genotype AiAj, for i, j = 1, . . . , n (see,
e.g., Moran (1962, pp. 144–152), for such a model). Note that this
relative quantity is assumed to be the same for male gametes and
female gametes so that the fertility of each parent as a male is
the same as its fertility as a female. Moreover, the proportion of
male and female gametes provided by each parent to start a new
generation will depend not only on its own genotype, but also
on the genotypes of the other parents contributing to the same
generation. Mendelian segregation is assumed so that a gamete
produced by an AiAj parent is of type Ai with probability 1/2 and of
type Aj with probability 1/2. As before, male and female gametes
are united at random to form a large number of offspring, among
which N are sampled at random to become the parents of the next
generation.
Numbering the parents of generation t + 1 from 1 to N , each

one will be of ordered genotype AiAj with probability xi(t)xj(t), for
i, j = 1, . . . , n, independently of all the others. If Nij(t) designates
the number of AiAj parents of generation t + 1, then the random
vector N(t) = (Nij(t); i, j = 1, . . . , n) will have a conditional
multinomial distribution with parameters N and xi(t)xj(t), for
i, j = 1, . . . , n, respectively, given x(t) = (x1(t), . . . , xn(t)).
Moreover, the frequency of Ai at the beginning of generation t + 1
will be

x̃i(t + 1) =

n∑
j=1

(
Nij(t)+Nji(t)

2

) (
1+ suij

)
N + s

n∑
k=1

n∑
l=1
Nkl(t)ukl

. (53)

We find that, up to terms of order s,

Es [1xi(t)|x(t)] ≈ sxi(t)
(
1−

1
N

){ n∑
j=1

xj(t)uij

−

n∑
k=1

n∑
l=1

xk(t)xl(t)ukl

}
, (54)

using the facts that

Es
[
Nij(t)|x(t)

]
= Nxi(t)xj(t),

Es
[
Nij(t)2|x(t)

]
= Nxi(t)xj(t)(1− xi(t)xj(t))+ N2xi(t)2xj(t)2,

Es
[
Nij(t)Nkl(t)|x(t)

]
= N(N − 1)xi(t)xj(t)xk(t)xl(t), (55)

for i, j, k, l = 1, . . . , n, (i, j) 6= (k, l). The only difference with the
viability model is that the intensity of selection is reduced by a
factor (1− 1/N).

8. Exchangeable multiallele viability model

Let us make the assumptions of the multiallele viability model
of Section 2, except that the N mature offspring chosen at random
in any given generation to be the parents of the next generation,
arbitrarily numbered 1, . . . ,N , produce gametes in proportions
ν1, . . . , νN , respectively. These proportions are only supposed to
be exchangeable random variables, satisfying 0 ≤ νl ≤ 1, for l =
1, . . . ,N , and

∑N
l=1 νl = 1, which entails an expected value equal

to 1/N for each proportion. Moreover, their joint distribution is the
same in every generation, independently of everything else. The
Wright–Fisher multiallele viability model (Fisher, 1930; Wright,
1931; see, e.g., Ewens, 2004) corresponds to the particular case
νl = 1/N , for l = 1, . . . ,N . The more general exchangeable model
is an extension of the Cannings neutral model (Cannings, 1974) to
incorporate selection.
In the general exchangeable model, the vector of allele

frequencies at the beginning of generation t ≥ 1, that is, x(t+1) =
(x1(t + 1), . . . , xn(t + 1)), can be expressed as

x(t + 1) =
N∑
l=1

νl(t)zl(t), (56)

where νl(t) is the proportion of gametes produced by parent l
of generation t + 1 and zl(t) = (zl,1(t), . . . , zl,n(t)) with zl,i(t)
representing the frequency of Ai in this parent, for i = 1, . . . , n
and l = 1, . . . ,N . These random variables take the values 1, 1/2
and 0with probabilities x̃ii(t), 2x̃i(t)−2x̃ii(t) and 1−2x̃i(t)+ x̃ii(t),
respectively, and independently for l = 1, . . . ,N . This gives x̃(t) =
(x̃1(t), . . . , x̃n(t)) as the conditional expected value of x(t + 1),
given x(t) = (x1(t), . . . , xn(t)), which does not depend on the
joint distribution of ν1, . . . , νN .
On the other hand, the probability that two gametes descend

from two ancestral gametes one generation back in the neutral
model is

p22 =
N∑
k=1

N∑
l=1
l6=k

E0[νkνl] +
1
2

N∑
k=1

E0[ν2k ]. (57)

Using the fact that ν1, . . . , νN are exchangeable and sum up to 1,
we find that

p22 = 1−
N
2
E0[ν21 ]. (58)

Similarly, three gameteswill descend from three ancestral gametes
one generation back with probability

p33 =
N∑
k=1

N∑
l=1
l6=k

N∑
m=1
m6=k,l

E0[νkνlνm] +
3
2

N∑
k=1

N∑
l=1
l6=k

E0[ν2k νl], (59)

which yields, after some algebraic manipulations,

p33 = 1−
(
3N
2

)
E0[ν21 ] +

(
N
2

)
E0[ν31 ]. (60)

Note that

1− p33
3(1− p22)

= 1−
E0[ν31 ]
3E0[ν21 ]

, (61)

while

E0(T2)− E0(T3)
2E0(T3)

=
1− p33
2(1− p22)

−
1
2
, (62)

where T2 and T3 designate the numbers of generations back for the
first coalescence of lineages starting from two and three gametes,
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Fig. 1. Possible genealogical structures for three gametes in generation t ≥ 0, a focal gamete Ai and a typical gamete Aj originating from distinct ancestral gametes in
generation 0, and a third gamete (Ai , Aj or Ak) united with either the focal gamete (a, c, e) or the typical gamete (b, d, f) to form an offspring. The structures (a, b), (c, d) and
(e, f) have probabilities p(t)33 , (p

(t)
22 − p

(t)
33 )/2 and (p

(t)
22 − p

(t)
33 )/2, respectively.

respectively. Therefore, we have

E0(T2)− E0(T3)
2E0(T3)

≈ 1, (63)

if and only if

1− p33
3(1− p22)

≈ 1, (64)

which holds if and only if

E0[ν31 ]
E0[ν21 ]

≈ 0. (65)

This means that the initial average excesses in the selection
coefficient in autozygous and allozygous offspring will have
approximately the same weight for the fixation probability
whenever the probability of coalescence of three lineages can
be neglected compared to the probability of coalescence of any
two out of three. This condition corresponds to the domain of
application of the Kingman coalescent in the limit of a large
population size (Kingman, 1982; Möhle, 2000).

9. Interpretation in term of projected average allelic effect

The term in brackets in (28) is the average excess of Ai in the
coefficient of selection in all generations t ≥ 0 for the multiallele

viability model of Section 2. This can be better understood with
the help of Fig. 1. Consider a focal gamete of type Ai in generation
t ≥ 0. We want to compare its marginal coefficient of selection
with the mean coefficient of selection in the same generation.
This mean will be the expected value of the marginal coefficient
for a typical gamete chosen at random in the same generation.
If this gamete has the same ancestral gamete in generation 0 as
the focal gamete, then its marginal coefficient will also be the
same. Therefore, it suffices to consider the case of distinct ancestral
gametes, whose probability is p(t)22 . Note that the typical gamete
will be of type Aj with probability xj(0). Then, a third gamete is
chosen at random in the same generation and united with either
the focal gamete or the typical gamete to form an offspring. With
probability p(t)33 , the three ancestral gametes in generation 0 are all
distinct and the genotype of the offspring is AiAk with probability
xk(0) in the former case and AjAk with probability xj(0)xk(0) in the
latter. On the other hand, with probability (p(t)22 − p

(t)
33 )/2, the third

gamete has the same ancestral gamete in generation 0 as the focal
gamete, and the genotype of the offspring is AiAi with probability
one in the former case and AiAj with probability xj(0) in the latter.
Finally, with probability (p(t)22 − p

(t)
33 )/2, the third gamete has the

same ancestral gamete in generation 0 as the typical gamete, and
then the genotype of the offspring is AiAj in the former case and
AjAj in the latter, with probability xj(0) in both cases. Then, the
difference between the expected coefficient of selection of the
offspring formed in generation t ≥ 0 with the focal gamete and
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the one of the offspring formed in the same generation with the
typical gamete is

a(t)i (0) = p
(t)
33

[
n∑
k=1

uikxk(0)−
n∑
j=1

n∑
k=1

ujkxj(0)xk(0)

]

+

(
p(t)22 − p

(t)
33

2

)[
uii −

n∑
j=1

ujixj(0)+
n∑
j=1

uijxj(0)

−

n∑
j=1

ujjxj(0)

]
. (66)

Summing over t ≥ 0 and using the symmetry condition uij = uji,
for i, j = 1, . . . , n, yield

ai(0) = E0(T3)(ui(0)− u(0))

+

(
E0(T2)− E0(T3)

2

)
(uii − u(0)) (67)

as the total average excess of Ai in the coefficient of selection. Note
that this can also be interpreted as the projected average effect, on
the coefficient of selection in all generations t ≥ 0, of substituting
a gamete of type Ai in place of a gamete chosen at random in
generation 0. This holds not only for theWright–Fisher multiallele
viability model, but also the corresponding fertility model and the
more general exchangeable model.
In the case of additive gene action on viability differences,

namely, a coefficient of selection in the form

uij = vi + vj, (68)

for i, j = 1, . . . , n, the total average excess of Ai reduces to

ai(0) = E0(T2)(vi − v(0)), (69)

where

v(0) =
n∑
j=1

vjxj(0). (70)

Note that this corresponds to the total average excess of Ai in a
haploid population with vj being the coefficient of selection of Aj,
for j = 1, . . . , n.
On the other hand, the two-phenotype linear game model

of Section 6 with additive gene action on the phenotypic
determination is formally equivalent to a selection coefficient of
Ai in interaction with Aj given by

uij =
m22
2
− ahi − chj + bhihj, (71)

for i, j = 1, . . . , n, where c = (m22−m21)/2. In general, uij 6= uji as
soon as hi 6= hj if a 6= c , that is,m12 6= m21, and then the symmetry
condition does not hold. Nevertheless, the average excess of Ai in
generation t ≥ 0 is still given by (66) and leads to

ai(0) = −a
[
E0(T2)(hi − h(0))

]
+ b

[
h(0)E0(T3)(hi − h(0))

+

(
E0(T2)− E0(T3)

2

)
(h2i − h2(0))

]
, (72)

for the projected average effect of Ai, in agreement with (48). Note
that this is a combination of a projected average effect in a haploid
populationwith−ahi as selection coefficient of Ai, for i = 1, . . . , n,
and a projected average effect in a diploid population with bhihj as
selection coefficient of AiAj, for i, j = 1, . . . , n.

10. Discussion

It has been shown that the first-order effect of viability or
fertility selection on the probability of ultimate fixation of an allele
in a diploid population of a fixed finite size, undergoing discrete,
non-overlapping generations is given by the average effect of such
an allele in the current generation on the coefficient of selection in
the present generation and all future generations. This projected
average allelic effect is the sum of the average allelic excesses in
the coefficient of selection in the initial generation and all future
generations, given the population state in the initial generation. It
is calculated over all possible histories of the population forward
in time in the absence of selection.
The projected average allelic effect is aweighted sumof average

allelic effects in allozygous and autozygous offspring in the initial
generation, with weights given by E0(T3) and (E0(T2)− E0(T3))/2,
respectively, where E0(T2) and E0(T3) are the expected times for
the lineages of two and three gametes, respectively, to coalesce
for the first time. These are calculated under neutrality, using the
property that gametes chosen at random in a given generation
have ancestral gametes in any generation backward in time that
are exchangeable, which means that, given their number, the
ancestral gametes are chosen at random. Such conditions hold
for exchangeable selectionmodels extending the neutral Cannings
model (1974) that are more general than the Wright–Fisher
viability model as shown in Section 8.
Note that (E0(T2) − E0(T3))/2 is the expected time that the

lineage of a focal gametewill spend being non ancestral to a typical
gamete chosen at random in the same generation, but ancestral
to another gamete chosen at random in the same generation. In
the case of a neutral Wright–Fisher model in the limit of a large
population size, and more generally in the domain of application
of the Kingman coalescent (Kingman, 1982), this is asymptotic
to E0(T3), which is asymptotic to (1/3)E0(T2). In such a case,
the average allelic effect in autozygous offspring in the initial
generation will be as important as the average allelic effect in
allozygous offspring for the probability of fixation under weak
selection.
The fertility model considered in Section 7 corresponds to what

is known as a multiplicative fertility scheme, with the relative
quantity of offspring produced by any pair of parents, one as
a male and the other as a female, given by the product of the
relative quantities of gametes producedbybothparents.Moreover,
we have assumed a monoecious diploid population in which the
relative quantity of gametes produced by a parent as a male is the
same as the one produced by a parent as a female, and depends
only on the genotype of the parent at a single locus. In an infinite
population, such a model is equivalent to a two-sex viability
model with equal viability parameters for males and females (see,
e.g., Karlin (1978) and Ewens (2004, p. 54–57)), which is like a
one-sex viabilitymodel. In a finite population, the first-order effect
of selection on the expected change in the frequency of an allele
differs only by apositivemultiplicative factor. Therefore, this is also
the case for the first-order effect on the probability of fixation of
that allele.
A linearly frequency-dependent selection model in a diploid

population with additive gene action is formally equivalent to a
similar model in a haploid population, which is itself equivalent to
a frequency-independent selection model in a diploid population,
but with genotypic selection parameters that are not necessarily
symmetric. In the case considered, this model is equivalent to a
combination of two frequency-independent symmetric selection
models, one in a haploid population and the other in a diploid
population. In the domain of application of the Kingman coalescent
as the population size goes to infinity, the first model has a first-
order effect on the fixation probability three timesmore important
than the second model.
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In the case of two alleles A1 and A2 coding for two pure
strategies, (1, 0) and (0, 1), in a 2 × 2 matrix game determining
the selection coefficient, the projected average effect of A1 is given
by (72) for i = 1 with h1 = 1, h2 = 0, h(0) = h2(0) = x1(0),
that is,

a1(0) = (1− x1(0))
[
− aE0(T2)+ bx1(0)E0(T3)

+ b
(
E0(T2)− E0(T3)

2

)]
, (73)

where a = (m22 −m12)/2 is the advantage of A2 against itself and
b = (m11 − m21 − m12 + m22)/2 the sum of the advantages of
A1 and A2 against themselves. If the initial frequency of A1 is small,
then this effect reduces to the approximation

a1(0) ≈ −aE0(T2)+ b
(
E0(T2)− E0(T3)

2

)
. (74)

In the case b > 0, which occurs when both pure strategies are
the best replies to themselves, weak selection favors a rare A1
replacing A2, in the sense that its fixation probability exceeds its
initial frequency, if

a
b
<
E0(T2)− E0(T3)
2E0(T2)

. (75)

The left-side member of this inequality is the unstable equilibrium
frequency of A1 in an infinite population, while the right-side
member reduces to 1/3 in the limit of a large population size in
the domain of application of the Kingman coalescent. In general, in
this domain and for any initial frequency of A1, we have

a1(0) ≈ (1− x1(0))E0(T2)
[
−a+

b
3
(1+ x1(0))

]
. (76)

This explains and extends the one-third law of evolutionary
dynamics (Nowak et al., 2004).
Note that the one-third law is meaningful for long-term

evolution only in a context of pure strategies. If all mixed strategies
0 ≤ h1, h2 ≤ 1 are allowed, then it is easy to check that weak
selection favors A1 replacing A2 in a finite population whenever
h2 < h1 < a/b or a/b < h1 < h2 in the case where a, b < 0,
and this means that h1 = a/b is convergence stable in this case
(see, Christiansen (1991), and references therein) with the fixation
probability as measure of fitness, in agreement with Wild and
Taylor (2004). Similarly, if a, b > 0, then the pure strategies 0 and
1 are convergence stable.
Note that frequency-dependent selection in a diploid popula-

tion without additive gene action would lead to consider the lin-
eages ofmore than three gametes, actually of at least five. The same
principles would apply, but the formulaswould bemore recondite.
Finally, let us stress that the present method is valid for

any finite number of alleles and any initial population state. It
supposes, however, that selection is much weaker than random
drift. Actually, it gives an approximation for the fixation probability
in a population of fixed finite size as the selection intensity goes
to zero. When the intensity of selection is of the same order of
magnitude as the inverse of the population size, the probability of
fixation of an allele given any initial allelic population state satisfies
a diffusion equation in the limit of a large population size (Kimura,
1964), but this equation is difficult to solve. The present direct
method offers an alternative tractable approachwhen the intensity
of selection is of order smaller than the inverse of the population
size.
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Appendix

We show that

T−1∑
t=0

d
ds
Es [1xi(t)] =

d
ds
Es [xi(T )− xi(0)] (77)

converges uniformly in a neighborhood of the intensity of selection
s ≥ 0, as T tends to infinity, where xi(t) represents the frequency
of allele Ai in generation t ≥ 0 with possible values k/(2N) for
k = 0, 1, . . . , 2N and i = 1, . . . , n, and1xi(t) = xi(t + 1)− xi(t).
Since Es [xi(T )− xi(0)] is a weighted sum of the T -step transition
probabilities of theMarkov chain x(t) = (x1(t), . . . , xn(t)), for t ≥
0, on a finite state space, with constant weights, it suffices to show
that the derivatives of these probabilities converge uniformly. This
will be shown under the assumption that the one-step transition
probabilities and their derivatives with respect to s are continuous
at s = 0. This is an extension of the proof given in Lessard
and Ladret (2007) for the case of two alleles segregating in the
population, that is, n = 2.
With n alleles, there are(
2N + n− 1
n− 1

)
(78)

possible allelic states for the population. This is the number ofways
that 2N indistinguishable balls can be placed into n distinguishable
cells. The chain has n absorbing states corresponding to the allele
fixation states; all other states are transient. Let

m =
(
2N + n− 1
n− 1

)
− n (79)

be the number of transient states. Ordering the states such that the
transient states come first, and the absorbing states last, the one-
step transition matrix takes the form

Ps =
[
Qs Rs
On×m I

]
, (80)

where Qs is the m × m matrix that contains the probabilities of
transition between the transient states, Rs the m × n matrix that
contains the probabilities of transition from the transient states to
the absorbing states, I the n × n identity matrix associated to the
absorbing states, and On×m a null matrix of size n× m. The T -step
transition matrix can be expressed as

P(T )s = P
T
s =

[
Q Ts

∑T−1

i=0
Q isRs

On×m I

]
. (81)

The derivation rule for a matrix product tells us that

dP(T )s
ds
=
dPTs
ds
=

T−1∑
t=0

Pts
dPs
ds
PT−t−1s . (82)
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This leads to

dP(T )s
ds
=

[
B(T )s C (T )s Rs + A

(T )
s
dRs
ds

On×m On×n

]
, (83)

where

A(T )s =
T−1∑
t=0

Q ts , (84)

B(T )s =
T−1∑
t=0

Q ts
dQs
ds
Q T−t−1s , (85)

C (T )s =
T−1∑
t=0

Q ts
dQs
ds

T−t−1∑
i=0

Q is . (86)

We will show uniform convergence to the matrix

dP(∞)s

ds
=

[
Om×m (I − Qs)−1 dQsds (I − Qs)

−1Rs + (I − Qs)−1 dRsds
On×m On×n

]
,

(87)

in some neighborhood of s ≥ 0.
Note that (I − Qs) is invertible, since 1 is not an eigenvalue of

Qs. Otherwise, there would exist an associated right eigenvector
v = (v1, . . . , vm) 6= (0, . . . , 0) = 0, so that

Q Ts v = v, (88)

for all T ≥ 1. This would contradict the ergodic theorem
for discrete-time Markov chains (see, e.g., Karlin and Taylor
(1975)) which stipulates that the T -step transition probabilities to
transient states tend to 0 as T goes to infinity and, therefore, that
limT→∞ Q Ts v = 0.
We shall use the maximum absolute row sum norm defined as

‖X‖ = max
1≤i≤l

l∑
j=1

|Xij|, (89)

for a squarematrix X of size lwith entries Xij for i, j = 1, . . . , l. This
norm is subadditive and submultiplicative, which means that, for
any two square matrices of the same size X and Y , we have

‖X + Y‖ ≤ ‖X‖ + ‖Y‖ (90)

and

‖XY‖ ≤ ‖X‖‖Y‖. (91)

Applying these properties to the difference between the matrices
given in (83) and (87), we get the inequality∥∥∥∥∥dP(T )sds − dP(∞)s

ds

∥∥∥∥∥ ≤ ∥∥B(T )s ∥∥
+

∥∥∥∥C (T )s − (I − Qs)−1 dQsds (I − Qs)−1
∥∥∥∥ ∥∥∥∥Om×m Rs
On×m On×n

∥∥∥∥
+
∥∥A(T )s − (I − Qs)−1∥∥ ∥∥∥∥Om×m dRs

ds
On×m On×n

∥∥∥∥ . (92)

Under the assumption that Ps and dPs/ds are continuous at s = 0,
this is also the case for the submatrices Rs and dRs/ds. Therefore,
there exists a neighborhood V1 of s = 0, in which∥∥∥∥Om×m Rs
On×m On×n

∥∥∥∥ ≤ α (93)

and∥∥∥∥Om×m dRs
ds

On×m On×n

∥∥∥∥ ≤ α, (94)

for some constant 0 < α <∞. In this neighborhood, we have∥∥∥∥∥dP(T )sds − dP(∞)s

ds

∥∥∥∥∥
≤
∥∥B(T )s ∥∥+ ∥∥∥∥C (T )s − (I − Qs)−1 dQsds (I − Qs)−1

∥∥∥∥α
+
∥∥A(T )s − (I − Qs)−1∥∥α. (95)

From (84)–(86) and the fact that

T−t−1∑
i=0

Q is = (1− Q
T−t
s )(1− Qs)−1, (96)

we deduce that

C (T )s = A
(T )
s
dQs
ds
(1− Qs)−1 − B(T )s Qs(I − Qs)

−1, (97)

from which we get∥∥∥∥C (T )s − (I − Qs)−1 dQsds (I − Qs)−1
∥∥∥∥

≤
∥∥A(T )s − (I − Qs)−1∥∥ ∥∥∥∥dQsds

∥∥∥∥ ∥∥(1− Qs)−1∥∥
+
∥∥B(T )s ∥∥ ‖Qs‖ ∥∥(I − Qs)−1∥∥ . (98)

Using this bound in (95), we find that∥∥∥∥∥dP(T )sds − dP(∞)s

ds

∥∥∥∥∥ ≤ ∥∥B(T )s ∥∥ (1+ ‖Qs‖ ∥∥(I − Qs)−1∥∥α)
+α

∥∥A(T )s − (I − Qs)−1∥∥(∥∥∥∥dQsds
∥∥∥∥ ∥∥(1− Qs)−1∥∥+ 1) . (99)

Under the assumption that Ps and dPs/ds are continuous at s = 0,
this is also the case for Qs, dQs/ds and (I − Qs)−1. Therefore, there
exists a neighborhood V2 ⊆ V1 of s = 0 where ‖dQs/ds‖ and∥∥(I − Qs)−1∥∥ are bounded by some constant 0 < β < ∞. Note
that ‖Qs‖ ≤ 1, since Qs is a submatrix of a transition matrix. Then,
in the neighborhood V2, we have∥∥∥∥∥dP(T )sds − dP(∞)s

ds

∥∥∥∥∥
≤
∥∥B(T )s ∥∥ (1+ βα)+ α ∥∥A(T )s − (I − Qs)−1∥∥ (β2 + 1) . (100)

Since

A(T )s =
T−1∑
t=0

Q ts = (I − Qs)
−1(I − Q Ts ), (101)

we find that∥∥A(T )s − (I − Qs)−1∥∥ ≤ ∥∥(I − Qs)−1∥∥ ∥∥Q Ts ∥∥ ≤ β ∥∥Q Ts ∥∥ , (102)

in the neighborhood V2. On the other hand, the decomposition

B(T )s =
bT/2c−1∑
t=0

Q ts
dQs
ds
Q T−t−1s +

T−1∑
t=bT/2c

Q ts
dQs
ds
Q T−t−1s

=

bT/2c−1∑
t=0

Q ts
dQs
ds
Q bT/2cs Q T−t−1−bT/2cs

+

T−1∑
t=bT/2c

Q bT/2cs Q t−bT/2cs
dQs
ds
Q T−t−1s , (103)
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for T ≥ 2, where bT/2c is the integer part of T/2, and the fact that
‖Qs‖ ≤ 1, lead to∥∥B(T )s ∥∥ ≤ ∥∥∥∥dQsds

∥∥∥∥ ∥∥Q bT/2cs

∥∥(bT/2c−1∑
t=0

∥∥Q ts ∥∥+ T−1∑
t=bT/2c

∥∥Q T−t−1s

∥∥)
≤ 2β

∥∥Q bT/2cs

∥∥∑
t≥0

∥∥Q ts ∥∥ , (104)

in the neighborhood V2. Combining these two results yields∥∥∥∥∥dP(T )sds − dP(∞)s

ds

∥∥∥∥∥ ≤ 2β (1+ αβ) ∥∥Q bT/2cs

∥∥∑
t≥0

∥∥Q ts ∥∥
+αβ

(
β2 + 1

) ∥∥Q Ts ∥∥ , (105)

for T ≥ 2 in the neighborhood V2.
The next step is to find a bound for ‖Q ts ‖. The ergodic theorem

tells us that Q t0 tends to Om×m, and consequently ‖Q
t
0‖ tends to 0,

as t tends to infinity. Therefore, there exists an integer T0 for which∥∥∥Q T00 ∥∥∥ < 1. (106)

Since the transition matrix Ps is continuous at s = 0, so is
∥∥∥Q T0s ∥∥∥,

and it is possible to find a neighborhood V3 ⊆ V2 of s = 0 in which∥∥Q T0s ∥∥ < γ , (107)

for some constant 0 < γ < 1.
Note that, for every integer k ≥ 0, there exists a unique positive

integer r(k) for which k = bk/T0cT0+ r(k). Writing bT/2c, t and T
in this form in (105) and using again the fact that ‖Qs‖ ≤ 1 result
in the inequality∥∥∥∥∥dP(T )sds − dP(∞)s

ds

∥∥∥∥∥ ≤ 2β (1+ βα) ∥∥Q T0s ∥∥bbT/2c/T0c∑
t≥0

∥∥Q T0s ∥∥bt/T0c
+αβ

(
β2 + 1

) ∥∥Q T0s ∥∥bT/T0c . (108)

Finally, in the neighborhood V3, we find the bound∥∥∥∥∥dP(T )sds − dP(∞)s

ds

∥∥∥∥∥ ≤ 2β (1+ βα) T01− γ
γ bbT/2c/T0c

+αβ
(
β2 + 1

)
γ bT/T0c. (109)

This is valid for T ≥ 2. Moreover, since 0 < γ < 1, the bound
tends to 0 as T tends to infinity.
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