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In the context of the finitely repeated Prisoner’s Dilemma with the possibility of cooperating or defecting

each time, the strategy tit-for-tat (TFT) consists in cooperating the first time and copying the strategy

previously used by the opponent the next times. Assuming random pairwise interactions in a finite

population of always defecting individuals, TFT can be favoured by selection to go to fixation following its

introduction as a mutant strategy. We deduce the condition for this to be the case under weak selection in

the framework of a general reproduction scheme in discrete time. In fact, we show when and why the one-

third rule for the evolution of cooperation holds, and how it extends to a more general rule. The condition

turns out to be more stringent when the numbers of descendants left by the individuals from one time-step

to the next may substantially differ. This suggests that the evolution of cooperation is made more difficult in

populations with a highly skewed distribution of family size. This is illustrated by two examples.

Keywords: coalescence times; cooperation; evolutionary stability; fixation probability; one-third law;

Prisoner’s Dilemma
1. INTRODUCTION
Nowak et al. (2004) have specified the conditions required

for natural selection to favour the emergence of

cooperation in a finite population from a game-theoretic

perspective (Maynard Smith & Price 1973; Maynard

Smith 1974). In the Prisoner’s Dilemma formulation of

the problem (Trivers 1971; Axelrod & Hamilton 1981;

Axelrod 1984), two players win if they both cooperate or

lose if they both defect, while a defector wins more against

a cooperator and a cooperator loses more against a

defector. If the players are chosen at random in a large

population of cooperators or defectors, then the mean

pay-off to a defector is always larger than the mean pay-off

to a cooperator whatever the frequency of the cooperators

is. If the game between the two players is repeated a given

number of times, then sequential strategies, such as

cooperating the first time and then doing what the

opponent did the previous time (tit-for-tat, TFT) or

always defecting (AllD), are possible. With only these two

pure strategies in use in the population and enough

repetitions of the game, the mean pay-off to TFT is larger

than the mean pay-off to AllD if and only if the frequency

of TFT in the population exceeds some threshold value

x�, 0!x�!1. This value corresponds to an unstable

equilibrium for the replicator dynamics with the pay-off

used as an additive change in fitness (e.g. Hofbauer &

Sigmund 1998, ch. 7). According to this scheme, the

frequency of TFT should go to fixation, and then, as a

result, every individual in the population will cooperate,

but only if the initial frequency of TFT is larger than x�.

On the other hand, the strategy TFT should go to

extinction if its initial frequency is less than x�. Even
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though x� decreases to 0 as the number of repetitions of

the game increases, this is an important barrier for the

evolution of cooperation in natural populations from the

first time it appears as a mutant strategy.

In a finite population, however, random drift can lead

TFT to fixation whatever its initial frequency is. Assuming

a discrete-time population of fixed size N, with one

individual replaced at a time according to the Moran

model (Moran 1958) and all individuals using AllD

initially, but one using TFT, Nowak et al. (2004) have

shown that selection favours TFT replacing AllD in a

sufficiently large population and for sufficiently weak

selection if x�!1/3. This has been called the one-third law.

Under this condition, the probability of fixation of TFT is

larger than its initial frequency, 1/N, which would be the

probability of fixation in the absence of selection. The

result has been shown to hold also for a population with

discrete non-overlapping generations, which follows the

Wright–Fisher model (Fisher 1930; Wright 1931) under

the same assumptions on population size and selection

intensity (Lessard 2005; Imhof & Nowak 2006).

In this paper, we consider a more general model of

reproduction and we show that the one-third law must be

extended to take into account the possibility of a highly

skewed distribution of family size as may be common in

plants, fungi and marine organisms (e.g. Eldon & Wakeley

2006, and references therein). In such a case, not only an

exact expression for the probability of fixation may be out

of reach, but also diffusion approximations may not be

available (Möhle 2001). We will resort to a direct

approach for Markov chains to compute the first-order

effect of selection on the probability of fixation of a single

mutant. The method has been used by Rousset (2003) in a

context of kin selection in subdivided populations with
This journal is q 2007 The Royal Society
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small differences in phenotypic values between individuals

(Rousset & Billiard 2000). In this context, the first-order

effect of selection can be expressed in terms of expected

coalescence times under neutrality for pairs of individuals.

In our context of a linear game with two pure strategies,

the expected coalescence times for up to three individuals

will have to be considered. Then, we will see that the one-

third law holds only in the domain of application of

Kingman’s (1982) coalescent (Möhle 2000), and that the

condition for TFT to be favoured by weak selection is

generally more stringent.
2. MODEL
Consider two strategies, A and B, with the 2!2 game

matrix

M Z
a b

c d

 !
; ð2:1Þ

where a and b represent the pay-offs to A, and c and d the

pay-offs to B, in interaction with A and B, respectively.

Assume aOc and dOb, which means that A and B are the

best replies to themselves, or evolutionarily stable

strategies in Maynard Smith & Price’s (1973) terminology.

Suppose random pairwise interactions in a haploid

population of constant size N. If the numbers of A and B

players in the population are i and NKi, respectively, then

the mean pay-offs to A and B are

uA Z a
iK1

NK1
Cb

NKi

NK1
ð2:2Þ

and

uB Z c
i

NK1
Cd

NKiK1

NK1
; ð2:3Þ

respectively. Assume that these pay-offs have additive

effects on the fitnesses of A and B, which are expressed as

fA Z 1C suA ð2:4Þ

and

fB Z1C suB; ð2:5Þ

respectively. These fitnesses measure the relative success

in reproduction. The parameter s stands for the intensity

of selection and it is assumed to be positive and small. The

case sZ0 corresponds to neutrality.

Time is discrete and an expected fraction g of the

population is replaced from one time-step to the next. The

case gZ1 corresponds to non-overlapping generations as

in the Wright–Fisher model (Fisher 1930; Wright 1931).

At the other extreme, we have gZ1/N in the case of single

birth–death events as in the Moran model (Moran 1958).

Let the frequency of A at a given time-step be xZi/N.

At the next time-step, this frequency will have an expected

value x in the fraction of the population that is not replaced

and an expected value xfA= �f in the fraction that is replaced,

where

�f Z xfA C ð1KxÞfB ð2:6Þ

is the mean fitness. Then, the change in frequency of A,

denoted by Dx, will have a conditional expected value

EsðDxjxÞZgxð fAK �f Þ
�
�f : ð2:7Þ

Note that the whole conditional distribution of Dx

depends not only on the selection pressure but also on

the reproduction scheme.
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3. FIXATION PROBABILITY UNDER WEAK
SELECTION
Suppose that A is a mutant strategy represented once at

time tZ0 and let xt be the frequency of A at time tZ0, 1,

2, .. As a result of the combined effects of selection and

drift, the frequency of A will converge to a random variable

xN which will take the value 1 with some probability p(s),

and 0 with the complementary probability 1Kp(s), where

p(s) is the probability of fixation of A as a function of the

intensity of selection. Note that p(0)Z1/N, which is

the same as x0, the initial frequency of A. As a matter of

fact, one of the individuals at tZ0 will be the ancestor of

the whole population in the long run and, if no selection

takes place, it will be one individual chosen at random at

tZ0 by symmetry.

Following Rousset (2003), we write the limit frequency

of A in the population as

xNZ x0 C
X
tR0

Dxt ; ð3:1Þ

where

Dxt Z xtC1K xt ð3:2Þ

is the change in frequency of A from time t to time tC1.

Taking the expectation on both sides of the equality and

using the fact that the expectation of a conditional

expectation is the expected value, we get

EsðxNÞZEsðx0ÞC
X
tR0

EsðEsðDxtjxtÞÞ: ð3:3Þ

For s small enough, equation (2.7) leads to the

approximation

EsðDxtjxtÞzsxtð1K xtÞða0 Ca1xtÞ; ð3:4Þ

where

a0 Z
gN

NK1
bKd C

dKa

N

� �
ð3:5Þ

and

a1 Z
gN

NK1
ðaKbKcCd Þ: ð3:6Þ

Then, equation (3.3) yields as approximation for the

probability of fixation

pðsÞz
1

N
C sða0d0 Ca1d1Þ; ð3:7Þ

where

d0 Z
X
tR0

E0ðxtð1K xtÞÞ ð3:8Þ

and

d1 Z
X
tR0

E0 x2
t ð1K xtÞ

� �
: ð3:9Þ

Here, E0 is used for the expected value in the neutral

model, which differs only by terms of order s from the

expected value Es in the selection model.

The expected value of xt under neutrality is simply the

initial frequency of A, i.e.

E0ðxtÞZ
1

N
: ð3:10Þ

On the other hand, the expected value of x2
t corresponds to

the probability for two individuals chosen at random with

replacement in the population at time t to be both of type

A. With probability 1/N, the individuals are the same and

they will be of type A with probability 1/N under neutrality
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for the same reason as described previously. With

probability 1K(1/N ), the individuals are different and

they will be of type A, if they have a common ancestor at

time tZ0 and if this ancestor is of type A. The probability

of the former event is the probability for the coalescence

time of two lineages, denoted by t2, to be less or equal to t,

while the probability of the latter event under neutrality is

1/N. Conditioning on the number of different individuals

and using the identity P0(t2%t)Z1KP0(t2Ot), where P0 is

used for the probability under neutrality, we find that

E0ðx
2
t ÞZ

1

N
1K 1K

1

N

� �
P0ðt2O tÞ

� �
: ð3:11Þ

Similarly, the expected value of x3
t corresponds to the

probability for three individuals chosen at random with

replacement in the population at time t to be all of type A.

These will be 1, 2 or 3 different individuals with

probability 1/N 2, (3/N )(1K(1/N )) or (1K(1/N ))(1K
(2/N )), respectively, and they will be of type A under

neutrality with probability 1/N times the probability for

the coalescence time of one, two or three lineages,

represented by t1Z0, t2 or t3, respectively, to be less or

equal to t under neutrality. This leads to

E0ðx
3
t ÞZ

1

N
1K

3

N
1K

1

N

� �
P0ðt2O tÞ

�

K 1K
1

N

� �
1K

2

N

� �
P0ðt3O tÞ

�
:

ð3:12Þ

Using the fact that E0ðtkÞZ
P

tR0P0ðtkO tÞ, for kZ1 and 2,

we deduce easily that

d0 Z
1

N
1K

1

N

� �
E0ðt2Þ ð3:13Þ

and

d1 Z
1

N
1K

1

N

� �
1K

2

N

� �
E0ðt3Þ

K
1

N
1K

1

N

� �
1K

3

N

� �
E0ðt2Þ: ð3:14Þ

It remains to calculate the expected values of t2 and t3
under neutrality.
4. EXPECTED COALESCENCE TIMES UNDER
NEUTRALITY
Let pij be the probability under neutrality that i individuals

chosen at random without replacement at time tC1 come

from j ancestors at time t. Of course, these probabilities for

jZ1, ., i sum up to 1 for every i. The expected time back

it takes under neutrality to find the most recent common

ancestor to two individuals is

E0ðt2ÞZ
1

1K p22

: ð4:1Þ

On the other hand, conditioning on the first time back that

the number of ancestors diminishes, the most recent

common ancestor to three individuals under neutrality

will be found after an expected time

E0ðt3ÞZ
1

1K p33

C
p32

1K p33

E0ðt2Þ: ð4:2Þ
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Note that we have the following relationship

1K p33 Z 3p21K2p31: ð4:3Þ

On the left-hand side, we have the probability that at least

two individuals among three at time tC1 have a common

ancestor at time t. Labelling the three individuals with 1, 2

and 3, this is the probability that 1 and 2, or 1 and 3, or 2

and 3 have a common ancestor. The probability of each of

these events is p21, while the probability of the intersection

of any two is p31, which is also the probability of the

intersection of all the three. The expression on the right-

hand side follows from a standard inclusion–exclusion

argument for the probability of the union of three events.

Some algebraic manipulations lead to

E0ðt3Þ

E0ðt2Þ
Z 1C

p32

3ð1K p33Þ
: ð4:4Þ

This is the expected value of t3 under neutrality with E0(t2)

taken as the unit of time. Denoting this variable by t3, we

have

E0ðt3ÞZ1C
q32

3
; ð4:5Þ

where

q32 Z
p32

1K p33

ð4:6Þ

is the probability under neutrality for the number of

ancestors to three individuals to be two, the first time that

this number diminishes backward in time. Note that, with

the same time-scale, the coalescence time t2 for two

lineages has expected value E0(t2)Z1. This time-scale is

customary in exchangeable population models as the

Cannings (1974) neutral model, which includes both the

Wright–Fisher model and the Moran model under

neutrality (Möhle 2004).
5. REPLACEMENT OF STRATEGIES
Following Nowak et al. (2004), selection favours the

mutant strategy A replacing the resident strategy B if the

probability of fixation of A exceeds its initial frequency, i.e.

p(s)O1/N for sO0. If selection is weak enough, this will be

the case if and only if a0d0Ca1d1O0. Since a1O0 under

our assumptions and d0O0 by definition, the condition is

equivalent to

K
a0

a1

!
d1

d0

: ð5:1Þ

This becomes

dKbC aKd
N

aKbKcCd
!

q32

3
C

3K2q32

3N
: ð5:2Þ

Then, if the population size is large enough, this inequality

reduces to

x�!
q�32

3
; ð5:3Þ

where

x� Z
dKb

aKbKcCd
ð5:4Þ

corresponds to the unstable equilibrium frequency of the

pure strategy A for the replicator dynamics in an infinite

population (e.g. Hofbauer & Sigmund 1998, ch. 7), and
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q�32 is the conditional probability q32 evaluated in the limit

of a large population size. This probability may be strictly

less than 1 if some individuals leave substantially more

descendants than others from one time-step to the next.
6. EXAMPLES
Eldon & Wakeley (2006) have extended both the Moran

model and the Wright–Fisher model to allow for a highly

skewed distribution of family size as observed in some

marine organisms. This mode of reproduction might also

be important in social interactions, if there are opinion

leaders in small number who distribute their views with

high enough efficiency.

A modified neutral Moran model assumes that, at each

time-step, an individual chosen at random in the

population of size N produces either NjK1 offspring

with a probability NKb or one offspring with the

complementary probability 1KNKb. Moreover, these

offspring replace the same number of individuals in the

population but the parent. Note that the expected fraction

of the population replaced is

gZ
Nb CNjK2

NbC1
: ð6:1Þ

It is assumed that 2/N%j%1 and bR0. The case jZ2/N

corresponds to the standard Moran model (Moran 1958).

Under the above assumptions, we have

p31 ZNKb

Nj

3

 !

N

3

 ! ð6:2Þ

and

p32 ZNKb

Nj

2

 !
NKNj

1

 !

N

3

 ! C ð1KNKbÞ

NK2

1

 !

N

3

 ! :

ð6:3Þ

The limit of p32/( p31Cp32) as N goes to infinity takes the

value q�32Z1 if bO2, but the value

q�32 Z
3ð1KjÞ

3K2j
; ð6:4Þ

if b!2. This value decreases from 1 to 0 as j goes from 0

to 1. In the critical case bZ2, we have

q�32 Z
6Cj2ð3K3jÞ

6Cj2ð3K2jÞ
; ð6:5Þ

which decreases from 1 to 6/7 as j goes from 0 to 1.

A similar neutral model with non-overlapping gener-

ations, in which casegZ1, assumes that, at each generation

with probability NKa, a single individual chosen at random

in the population has a probability j of being the parent

of each individual in the next generation compared with

(1Kj)/(NK1) for each of the other individuals. Otherwise,

this probability is 1/N for every individual. This is a

modified Wright–Fisher model, which reduces to the

standard Wright–Fisher model (Fisher 1930; Wright
Proc. R. Soc. B (2007)
1931) when jZ1/N. With these assumptions, we get

p31 Z
1

N2
1K

1

Na

� �
C

1

Na
j3 C

ð1KjÞ3

ðNK1Þ2

� �
ð6:6Þ

and

p32 Z
3

N
1K

1

N

� �
1K

1

Na

� �

C
3ð1KjÞ

Na
j

2 C
1Kj

NK1
K

ð1KjÞ2

ðNK1Þ2

� �
: ð6:7Þ

The previous result holds with bZaC1 if as1, while

q�32 Z
3Cj2ð3K3jÞ

3Cj2ð3K2jÞ
ð6:8Þ

in the critical case aZ1.
7. DISCUSSION
We have considered a linear game in a finite population

with a fraction of the population replaced at discrete time-

steps, which allows for any distribution of family size from

one step to the next. We have shown that the one-third law

proposed by Nowak et al. (2004) holds in the limit of large

population size, when the number of ancestors to three

individuals diminishes by one with certainty the first time

it diminishes backward in time, i.e. q�32Z1. Simple

algebraic manipulations lead to

q�32 Z 1K
f1ð3Þ

3K2f1ð3Þ
; ð7:1Þ

where

f1ð3ÞZ lim
N/N

p31

p21

: ð7:2Þ

Therefore, the one-third law holds when f1(3)Z0. This is

exactly the domain of application of the Kingman

coalescent (Möhle 2000) as well as of the Wright–Fisher

diffusion (Möhle 2001). In fact, the one-third law comes

up when only two lineages can coalesce at a time, and the

coalescence rate for three lineages is three times the

coalescence rate for two lineages.

In general, weak selection will favour a mutant strategy

that is the best reply to itself replacing a resident strategy

that is also the best reply to itself if the domain of

attraction of the mutant strategy in the replicator

dynamics for an infinite population starts at a frequency

x�!q�32=3. When q�32!1, which may occur with a highly

skewed distribution of family size, the condition on the

mutant strategy becomes more stringent. In the case of

TFTagainst AllD in the repeated Prisoner’s Dilemma, this

means more repetitions of the game.

The direct approach used in this paper to find the first-

order effect of frequency-dependent selection on the

probability of fixation of a single mutant in a finite

population is of general validity as long as the fitness

functions are linear with respect to the frequency of the

mutant as occurs with random pairwise interactions. The

same approach was used by Rousset (2003) in a context

formally equivalent to constant fitness functions applied to

kin selection in subdivided populations (Rousset &

Billiard 2000). Moreover, it can be extended to fitness

functions in a polynomial form of any degree kK1 that

would come into play, e.g. with random groups of k

interacting individuals. Then, the expected coalescence

times for up to kC1 individuals would have to be
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considered (Lessard & Ladret 2007). The approach is an

alternative and a complement to diffusion approximations

(Lessard 2005, and references therein) or more sophis-

ticated tools of stochastic calculus (Lambert 2006).

Finally, the concepts of adaptive dynamics that are used

to study long-term evolution of cooperation (Doebeli et al.

2004; Brännstrom & Dieckmann 2005; Hauert et al.

2006), such as evolutionarily stable strategy (Maynard

Smith & Price 1973), continuously stable strategy

(Eshel & Motro 1981), polymorphic evolutionarily

attractive state trait or evolutionary branching singular

point (Christiansen 1991; Metz et al. 1996), are based on a

payment function to a mutant in a resident population.

For an infinite population, the payment function is usually

defined as the growth rate of the mutant when it is rare

(Lessard 1990) and it corresponds to an invasion fitness.

For a finite population, the payment can be defined as the

probability of fixation of the mutant when it is represented

once in the population (Rousset & Billiard 2000; Proulx &

Day 2001; Nowak et al. 2004; Lessard 2005), and this

corresponds to a replacement fitness. Both measures have

been shown to be equivalent for evolutionary stability

concepts in the context of a 2!2 matrix game in a finite

population with mixed strategies allowed (Wild & Taylor

2004), but this might not be the case in general.
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