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Abstract. We deduce and prove a general formula to approximate the change in frequency
of a mutant allele under weak selection, when this allele is introduced in small frequency
into a population which was previously at a fixation state. We apply the formula to autosomal
genes in partial selfing models and to autosomal as well as sex-linked genes in partial sib
mating models. It is shown that the fate of a rare mutant allele depends not only on the
selection parameters, the inbreeding coefficient and the reproductive values of the sexes in
sex-differentiated populations, but also on coefficients of relatedness between mates. This
is interpreted as a kin selection effect caused by inbreeding per se.

1. Introduction

An approximate adaptive topography for partially inbred populations evolving un-
der weak selection was proposed some time ago by Wright (1942). This topography
is a function of the population state which involves, apart from the selection pa-
rameters, Wright’s fixation index, F, also called the inbreeding coefficient, and
the reproductive values of the sexes in the case of a sex-differentiated population.
Without sex differences, the adaptive topography proposed is F times the mean
fitness of inbred individuals plus (1 − F)/2 times the mean fitness of outbred in-
dividuals. Such an adaptive topography was first designed to predict the change in
the frequency of any given gene, this change being given by the derivative of this
topography with respect to an increase in the frequency of this gene alone. This
will be refered to as Wright’s formula.

In the case of a partial selfing population undergoing weak selection, it has been
shown (Nagylaki, 1992, 1997) that, at least after enough generations have passed
and as long as the population is far enough from equilibrium, the population evolves
so that to go upward the adaptive topography proposed by Wright. In the case of a
partial sib mating population without sex differences, the change in the frequency
of a mutant allele, after enough generations have passed and as long as the mutant
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allele is rare, does not completely agree with Wright’s formula, as pointed out by
Pollak (1995). Actually, in this case, Wright’s adaptive topography has to be mul-
tiplied by (1 + r), where r is the coefficient of correlation between the frequencies
of the mutant allele in two mates, in order to yield a correct approximation for
the change in frequency of the mutant allele in the population. Nevertheless, since
the missing multiplicative factor is always positive, Wright’s formula still correctly
predicts the increase or decrease of gene frequencies, as long as the terms neglect-
ed in the approximation remain smaller. Thererofe, in this case, we can say that
Wright’s formula is qualitatively valid, although it is not quantitatively valid.

In Pollak’s (1995) paper, there are claims that are made without formal proofs.
Moreover, it is of interest to know whether or not Wright’s formula remains gen-
erally valid to predict the increase or decrease of gene frequencies in populations
with inbreeding, that is, qualitatively valid. Finally, there is a need to interpret the
effect of inbreeding on the change of gene frequencies that makes quantitatively
invalid Wright’s formula.

In this paper, we deduce and prove a general formula to approximate the change
in frequency of a mutant allele under weak selection, when introduced in small fre-
quency into a population which was previously at a fixation state. This can be
used to study the fate of the mutant allele when rare and get conditions for its in-
vasion or extinction. It is assumed that the population state can be described by a
n-dimensional vector whose entries represent the frequencies of group types
(actually, genotypes or mating types) carrying the mutant allele and that the linear
approximation for the transformation of this vector near the origin from one gen-
eration to the next is given by a non-negative matrix which is smooth enough with
respect to the intensity of selection and whose at least some power is positive. The
formula is applied to autosomal genes in a partial selfing model and autosomal as
well as sex-linked genes in a partial sib mating model. Exact conditions for invasion
of a rare mutant allele are deduced. We address the question of the quantitative and
qualitative validity of Wright’s formula in such models and we discuss the effect
of inbreeding from a kin selection perspective.

2. Framework and basic results

We are interested in the fate of a mutant allele under weak selection, when introduced
in small frequency into an infinite population at fixation. Let x = (x1, x2, . . . , xn)

be a frequency vector describing the population state such that x = 0, that is, the
state with zero everywhere, corresponds to the fixation of a particular gene. Actu-
ally, x1, x2, . . . , xn will represent frequencies of types, genotypes or mating types,
carrying the mutant allele. Let T be the transformation for the population state from
one generation to the next, assuming discrete non-overlapping generations, such
that x′ = T (x) denotes the frequency vector in the next generation, given that it
is x in the current generation. Assume that T is smooth enough with respect to x
in the neighborhood of the fixation state x = 0. Let M(s) be the matrix of linear
approximation of the recurrence equations defined by T near the fixation state, so
that

x′ = M(s)x + O(‖x‖2), (1)
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where ‖x‖ represents some norm of the vector x, s measures the intensity of se-
lection and O(‖x‖2) denotes a function in x such that ‖O(‖x‖2)‖/‖x‖2 remains
bounded as ‖x‖2 goes to 0. We will assume that the parameter s is positive and
small, which models weak selection, the limiting case s = 0 corresponding to neu-
trality. The matrix M(s) is necessarily non-negative and the leading eigenvalue of
this matrix will determine the fate of the mutant allele in the population if s is small
enough and as long as the mutant allele remains rare enough.

Suppose that the non-negative matrix M(s) is such that there exists some integer
k for which the matrix M(s)k displays only positive entries for every s ≥ 0, that
is, M(s) is primitive for every s ≥ 0. By the Perron-Frobenius theory (see, e.g.,
Gantmacher, 1959, Seneta, 1981), the greatest eigenvalue in modulus, denoted by
ρ(s), is simple, positive and strictly dominates the other eigenvalues in modulus.
Furthermore, there exist left and right eigenvectors associated to ρ(s), denoted by
ξ(s) and η(s) respectively, which exhibit only positive entries, and such positive
eigenvectors are necessarily associated to the leading eigenvalue ρ(s).

In absence of selection (s = 0), the Hardy-Weinberg law (see, e.g., Crow and
Kimura, 1970) will guarantee that the frequency of the mutant allele will be invari-
ant from one generation to the next. This frequency, denoted by p, will be given by
fTx = ∑

i fixi (T for transpose), where fi represents the frequency of the mutant
allele in the mutant type i for i = 1, . . . , n and f = (f1, . . . , fn). Therefore f will
be a positive left eigenvector for the eigenvalue 1, which entails ρ(0) = 1 with

ξ(0) = f . For s small, let
•
ρ(s) and

•
M(s) denote the derivatives of ρ(s) and M(s)

with respect to s. These derivatives exist if M(s) is smooth enough with respect to
s, which will be assumed. We are now ready to state a first result under the above
assumptions (proof in Appendix).

Result 1. The leading eigenvalue of M(s) for s small is approximated by

ρ(s) = 1 + •
ρ(0)s + O(s2),

where

•
ρ(0) = ξ(0)T

•
M(0)η(0)

ξ(0)Tη(0)
,

ξ(0) and η(0) being positive left and right eigenvectors of M(0) for the eigenvalue
1.

Actually, we can even go further and approximate the change in frequency of
the mutant allele when rare from one generation to the next (proof in Appendix).

Result 2. Let p(k) be the frequency of a rare mutant allele at generation k in a
population previously at fixation. Under weak selection (s small enough) and for k

sufficiently large, but not too large in the case
•
ρ(0) > 0, the change in frequency

of the rare mutant allele is approximated by

�p(k) = p(k+1) − p(k) = •
ρ(0)p(k)s + smaller terms.
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Invasion or extinction of the mutant allele when rare will thus depend upon the

sign of
•
ρ(0). In effect, if

•
ρ(0) < 0, then ρ(s) < 1, for s sufficiently small, and

the mutant allele will eventually disappear in the population if its initial frequency

is small enough. Conversely, if
•
ρ(0) > 0, then ρ(s) > 1, for s sufficiently small,

and extinction is precluded, which means protection of the mutant allele in the
population (see, e.g., Lessard and Karlin,1982, and references therein). The case
•
ρ(0) = 0 is a degenerate case that would require a quadratic approximation for
ρ(s).

In the next sections, we apply Results 1 and 2 to genetic models with partial
inbreeding, namely partial selfing and partial sib mating, and deduce conditions for
the spread of a rare mutant allele.

3. Partial selfing model

Consider a single locus with two alleles, say A1 and A2, in an infinite diploid pop-
ulation undergoing discrete non-overlapping generations. Assume that every indi-
vidual of the population can reproduce, either by selfing with probability α (0 <

α < 1), or by random outcrossing with the complementary probability 1 − α. Let
P11, P12 and P22 denote the frequencies of the genotypes A1A1,A1A2 and A2A2,
respectively, in the population. Then, the frequencies of the alleles A1 and A2 are

p1 = P11 + 1

2
P12 and p2 = P22 + 1

2
P12.

Moreover, let the genotypes A1A1,A1A2,A2A2 have the respective selective
values w11 = 1 + h11s, w12 = 1 + h12s, w22 = 1 + h22s. Here, zygotic selection
is applied through viability differences, that is, the genotypic selective values are
proportional to the probabilities of survival from conception to maturity. It is as-
sumed that the selective values are not all equal. Let us recall that s is assumed to
be positive and small.

If P11, P12 and P22 designate the genotypic frequencies among the zygotes in
the current generation at the time of conception, then the genotypic frequencies
among the adults in the current generation, after selection but before mating, are

P ∗
11 = w11P11

w11P11 + w12P12 + w22P22
, P ∗

12 = w12P12

w11P11 + w12P12 + w22P22
,

P ∗
22 = w22P22

w11P11 + w12P12 + w22P22
.

After mating and reproduction, the genotypic frequencies among the zygotes in the
next generation are given by the equations

P ′
11 = α

[

P ∗
11 + 1

4
P ∗

12

]

+ (1 − α)

[

P ∗
11 + 1

2
P ∗

12

]2

,

P ′
12 = α

[
1

2
P ∗

12

]

+ 2(1 − α)

[

P ∗
11 + 1

2
P ∗

12

] [

P ∗
22 + 1

2
P ∗

12

]

,

P ′
22 = α

[

P ∗
22 + 1

4
P ∗

12

]

+ (1 − α)

[

P ∗
22 + 1

2
P ∗

12

]2

.
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Here, we assume Mendelian segregation of genes, no fertility differences between
the mating types and no gametic selection. It is useful to note that under these
assumptions, mating and reproduction do not change the allelic frequencies, that
is,

p′
1 = P ′

11 + 1

2
P ′

12 = P ∗
11 + 1

2
P ∗

12 = p∗
1,

and
p′

2 = 1 − p′
1 = 1 − p∗

1 = p∗
2 .

Figure 1 below summarizes the life cycle in the population and the notation used
for the genotypic and allelic frequencies. Of course, at each stage of the life cycle,
the genotypic and allelic frequencies sum up to 1.

current generation
︷ ︸︸ ︷

Zygotes selection−−−−−−→Adults

mating

and reproduction−−−−−−−−−−−→

next generation
︷ ︸︸ ︷

Zygotes selection−−−−−−→Adults

P11, P12, P22 P ∗
11, P

∗
12, P

∗
22 P ′

11, P
′
12, P

′
22 P ∗′

11, P
∗′
12, P

∗′
22

p1, p2 p∗
1, p∗

2 p′
1, p

′
2 p∗′

1 , p∗′
2

Fig. 1. Life cycle and notation for genotypic and allelic frequencies in the partial selfing
model.

Let us suppose that allele A1 is rare in the population. Developing the recur-
rence equations for P11, P12 near fixation of A2 (P11, P12 ∼= 0) yields the matrix
of linear approximation

M(s) =
[

α (1 + d11s)
α
4 (1 + d12s)

2(1 − α) (1 + d11s)
(
1 − α

2

)
(1 + d12s)

]

+ O(s2),

where d1j = h1j − h22, for j = 1, 2. One can easily deduce M(0) and calculate
its eigenvalues, which are

λ1 = 1, λ2 = α

2
.

As expected, we have ρ(0) = 1. Left and right positive eigenvectors associated to
this eigenvalue 1 are given respectively by

ξ(0)T = (2, 1) and η(0)T = (α, 4 (1 − α)) .

Now, using Result 1, we find that

•
ρ(0) = Fd11 + (1 − F) d12, (2)

where
F = α

2 − α
.

Here, F is the inbreeding coefficient at equilibrium in the partial selfing model
when there is no selection, that is, when s = 0 (Wright, 1921). Nagylaki (1997)
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confirmed that the above value of F can be used as an approximation in the case of
weak selection (see also Pollak and Sabran, 1992).

Equation (2) allows us to obtain necessary and sufficient conditions for non
extinction of A1 when it is rare and selection is weak. Recall that d1j = h1j − h22
for j = 1, 2. Therefore, d1j > 0 means that A1Aj is fitter than A2A2 for j = 1, 2.

Result 3. If selection is weak enough in the partial selfing model, allele A1 is pre-
served from extinction if and only if

(i) d12 > 0, d11 ≤ 0 and α < 2d12
2d12−d11

= α0, or
(ii) d12 < 0, d11 > 0 and α > α0, or

(iii) d12 ≥ 0 and d11 > 0.

This result agrees with those obtained by Nagylaki (1997) who achieved a
complete dynamical analysis of the partial selfing model under weak selection. For
studies of the partial selfing model under arbitrary selection parameters, see, e.g.,
Kimura and Ohta (1971) and Rocheleau and Lessard (2000).

4. Partial sib mating model

The complete study of the partial sib mating model with selection bears some dif-
ficulties due to the non-linearity of the transformation equations which must be
expressed in terms of the mating types. Again, consider a single autosomal lo-
cus with two alleles, A1 and A2, in an infinite diploid population undergoing
discrete non-overlapping generations. Let p1, p2 and q1, q2 be the allelic fre-
quencies in males and females, respectively. The frequencies of the genotypes
A1A1,A1A2,A2A2 are denoted by P11, P12, P22 in males and Q11, Q12, Q22
in females. Every individual is given a fixed probability β of sib mating and
the complementary probability 1 − β of random mating (0 < β < 1). As a
generalized version of the common non sex-differentiated selection model, we
shall assign different viability values depending upon the sexes. These values for
A1A1,A1A2,A2A2 will be f11 = 1 + u11s, f12 = 1 + u12s, f22 = 1 + u22s in
females and m11 = 1 + v11s, m12 = 1 + v12s, m22 = 1 + v22s in males. It is as-
sumed that the selective values are not all equal in at least one of the sexes. Figure
2 below schematizes the life cycle from one generation to the next.

current generation
︷ ︸︸ ︷
Adults

reproduction−−−−−−−−−−−→

next generation
︷ ︸︸ ︷

Zygotes selection−−−−−−→Adults
mating−−−−−→Adults

P11, P12, P22 P
(z)
11 , P

(z)
12 , P

(z)
22 P ∗

11, P
∗
12, P

∗
22 P ′

11, P
′
12, P

′
22

Q11, Q12, Q22 Q
(z)
11 , Q

(z)
12 , Q

(z)
22 Q∗

11, Q
∗
12, Q

∗
22 Q′

11, Q
′
12, Q

′
22

p1, p2, q1, q2 p
(z)
1 , p

(z)
2 , q

(z)
1 , q

(z)
2 p∗

1, p∗
2, q∗

1 , q∗
2 p′

1, p
′
2, q

′
1, q

′
2

Fig. 2. Life cycle and notation for genotypic and allelic frequencies in males and females
in the partial sib mating model.
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Table 1. Male×female mating types in the current generation and male×female couples of
sibs produced in the next generation.

Male × female Frequency Zygotes Male × female
mating type couples of sibs

(A1A1 × A1A1) x1 A1A1 (A1A1 × A1A1)

(A1A1 × A1A2) x2
1
2A1A1: 1

2A1A2
1
4 (A1A1 × A1A1): 1

4 (A1A1 × A1A2)
1
4 (A1A2 × A1A1): 1

4 (A1A2 × A1A2)

(A1A2 × A1A1) x3
1
2A1A1: 1

2A1A2
1
4 (A1A1 × A1A1): 1

4 (A1A1 × A1A2)
1
4 (A1A2 × A1A1): 1

4 (A1A2 × A1A2)

(A1A1 × A2A2) x4 A1A2 (A1A2 × A1A2)

(A2A2 × A1A1) x5 A1A2 (A1A2 × A1A2)

(A1A2 × A1A2) x6
1
4A1A1: 1

2A1A2: 1
4A2A2

1
16 (A1A1 × A1A1): 1

8 (A1A1 × A1A2):
1
8 (A1A2 × A1A1)

1
16 (A1A1 × A2A2): 1

16 (A2A2 × A1A1):
1
4 (A1A2 × A1A2)

1
8 (A1A2 × A2A2)): 1

8 (A2A2 × A1A2):
1

16 (A2A2 × A2A2)

(A1A2 × A2A2) x7
1
2A1A2: 1

2A2A2
1
4 (A1A2 × A1A2): 1

4 (A1A2 × A2A2)
1
4 (A2A2 × A1A2): 1

4 (A2A2 × A2A2)

(A2A2 × A1A2) x8
1
2A1A2: 1

2A2A2
1
4 (A1A2 × A1A2): 1

4 (A1A2 × A2A2)
1
4 (A2A2 × A1A2): 1

4 (A2A2 × A2A2)

(A2A2 × A2A2) x9 A2A2 (A2A2 × A2A2)

Clearly, at each stage of the life cycle, the frequencies of the genotypes and
alleles in males and females must sum up to 1. In a mated couple, we have to dis-
tinguish the sex of each member. Let x1, . . . , x9 designate the frequencies of the
mating types in the population, as illustrated in Table 1.

We shall now derive the recurrence equations for the frequencies of the mating
types from one generation to the next. The genotypic frequencies in the male and
female adults, respectively, of the current generation in terms of the frequencies of
the mating types are

P11 = x1 + x2 + x4, P12 = x3 + x6 + x7, P22 = x5 + x8 + x9,

and

Q11 = x1 + x3 + x5, Q12 = x2 + x6 + x8, Q22 = x4 + x7 + x9,

with P11 + P12 + P22 = 1 and Q11 + Q12 + Q22 = 1. The frequency of allele A1,
in the male and female adults, respectively, is

p1 = P11 + 1

2
P12 = x1 + x2 + x4 + 1

2
(x3 + x6 + x7)
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and

q1 = Q11 + 1

2
Q12 = x1 + x3 + x5 + 1

2
(x2 + x6 + x8) .

The adults of the current generation reproduce and the zygotes of the next gener-
ation are in the proportions indicated in Table 1. The genotypic frequencies of the
zygotes just after conception are

P
(z)
11 = Q

(z)
11 = x1 + 1

2
x2 + 1

2
x3 + 1

4
x6,

P
(z)
12 = Q

(z)
12 = 1

2
x2 + 1

2
x3 + x4 + x5 + 1

2
x6 + 1

2
x7 + 1

2
x8,

P
(z)
22 = Q

(z)
22 = 1

4
x6 + 1

2
x7 + 1

2
x8 + x9.

After selection, the genotypic frequencies among the zygotes in the population are
modified so that, before mating, they are given by

P ∗
11 = m11P

(z)
11

TM
, P ∗

12 = m12P
(z)
12

TM
, P ∗

22 = m22P
(z)
22

TM
,

Q∗
11 = f11Q

(z)
11

TF
, Q∗

12 = f12Q
(z)
12

TF
, Q∗

22 = f22Q
(z)
22

TF
,

where

TM = m11

(

x1 + 1

2
x2 + 1

2
x3 + 1

4
x6

)

+ m12

(
1

2
x2 + 1

2
x3 + x4 + x5 + 1

2
x6 + 1

2
x7 + 1

2
x8

)

+ m22

(
1

4
x6 + 1

2
x7 + 1

2
x8 + x9

)

,

TF = f11

(

x1 + 1

2
x2 + 1

2
x3 + 1

4
x6

)

+ f12

(
1

2
x2 + 1

2
x3 + x4 + x5 + 1

2
x6 + 1

2
x7 + 1

2
x8

)

+ f22

(
1

4
x6 + 1

2
x7 + 1

2
x8 + x9

)

.

Finally, the recurrence equations for the frequencies of the mating types from one
generation to the next, taking into account that a proportionβ of matings are between
sibs (see Table 1) and a proportion 1 − β occur at random, are
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x′
1 = (1 − β) P ∗

11Q
∗
11 + βf11m11

(
x1 + 1

4x2 + 1
4x3 + 1

16x6
)
/TFS,

x′
2 = (1 − β) P ∗

11Q
∗
12 + βf12m11

( 1
4x2 + 1

4x3 + 1
8x6

)
/TFS,

x′
3 = (1 − β) P ∗

12Q
∗
11 + βf11m12

( 1
4x2 + 1

4x3 + 1
8x6

)
/TFS,

x′
4 = (1 − β) P ∗

11Q
∗
22 + βf22m11

( 1
16x6

)
/TFS,

x′
5 = (1 − β) P ∗

22Q
∗
11 + βf11m22

( 1
16x6

)
/TFS,

x′
6 = (1 − β) P ∗

12Q
∗
12

+ βf12m12
( 1

4x2 + 1
4x3 + x4 + x5 + 1

4x6 + 1
4x7 + 1

4x8
)
/TFS,

x′
7 = (1 − β) P ∗

12Q
∗
22 + βf22m12

( 1
8x6 + 1

4x7 + 1
4x8

)
/TFS,

x′
8 = (1 − β) P ∗

22Q
∗
12 + βf12m22

( 1
8x6 + 1

4x7 + 1
4x8

)
/TFS,

x′
9 = (1 − β) P ∗

22Q
∗
22 + βf22m22

( 1
16x6 + 1

4x7 + 1
4x8 + x9

)
/TFS,

(3)

where

TFS = f11m11

(

x1 + 1

4
x2 + 1

4
x3 + 1

16
x6

)

+ (f12m11 + f11m12)

×
(

1

4
x2 + 1

4
x3 + 1

8
x6

)

+ (f22m11 + f11m22)

(
1

16
x6

)

+f12m12

(
1

4
x2 + 1

4
x3 + x4 + x5 + 1

4
x6 + 1

4
x7 + 1

4
x8

)

+ (f22m12 + f12m22)

(
1

8
x6 + 1

4
x7 + 1

4
x8

)

+f22m22

(
1

16
x6 + 1

4
x7 + 1

4
x8 + x9

)

.

Now, assuming that allele A1 is rare in the population (x1, x2, . . . , x8 ∼= 0),
the recurrence equations (3) yield the matrix of linear approximation M(s) (see
Appendix A.4), up to terms of order s and with the notation

df
1j = u1j − u22 and dm

1j = v1j − v22,

for j = 1, 2. The matrix M(0) is easily obtained and its eigenvalues in decreasing
order (calculated by Mathematica) are all positive and given by

λ1 = 1, λ2 = 2β +
√

4β2 + 16β

8
, λ3 = β

2
, λ4 = β

4
,

λ5 = 2β −
√

4β2 + 16β

8
, λ6 = λ7 = λ8 = 0.

Positive left and right eigenvectors, respectively, associated to the eigenvalue 1 are

ξ(0)T = (4, 3, 3, 2, 2, 2, 1, 1)

and

η(0)T =
(

β (2 + β)

16 (2 − β) (1 − β)
,

β

4 (2 − β)
,

β

4 (2 − β)
,

1

4
,

1

4
, 1,

5β2 − 20β + 16

4β (2 − β)
,

5β2 − 20β + 16

4β (2 − β)

)

.
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Result 1 permits us to obtain

•
ρ(0) = (1 + r)

[

F

(
df

11 + dm
11

2

)

+ (1 − F)

(
df

12 + dm
12

2

)]

, (4)

where

F = β

4 − 3β
and r = β

2 − β
= 2F

1 + F
.

The coefficient F is the inbreeding coefficient at equilibrium in the partial sib
mating model without selection as shown by Ghai (1969). The coefficient r is
known as the coefficient of relationship (Wright, 1922) and it represents the coeffi-
cient of correlation between two mated individuals relative to their frequencies of
A1 at the specified locus (see, e.g., Li, 1976). Since F > 0 and r > 0, the sign of
•
ρ(0) is completely determined by those of df

11, d
m
11, d

f
12 anddm

12.
If we assume equal selective values for the sexes (u11 = v11, u12 = v12 and

u22 = v22) and define d1j = df
1j = dm

1j for i, j = 1, 2, equation (4) reduces to

•
ρ(0) = (1 + r) [Fd11 + (1 − F) d12] . (5)

It should be noted that equation (5) agrees with one derived less rigorously by
Pollak (1995) for the same model.

A detailed analysis of equation (4) also allows us to determine necessary and
sufficient conditions under which invasion of allele A1 will occur under weak se-
lection when it is rare in the population. We define

hij = uij + vij

2
and d1j = h1j − h22,

for i, j = 1, 2. Therefore, as in the partial selfing model, d1j > 0 means that
A1Aj is fitter than A2A2, for j = 1, 2, if the fitness of a genotype is defined as the
average fitness of that genotype in females and males, giving the same weight to
the fitnesses in the two sexes.

Result 4. If selection is weak enough in the partial sib mating model for autosomal
genes, allele A1 is preserved from extinction if and only if

(i) d12 > 0, d11 ≤ 0 and β < 4d12
4d12−d11

= β0, or
(ii) d12 < 0, d11 > 0 and β > β0, or

(iii) d12 ≥ 0 and d11 > 0.

5. Partial sib mating model for sex-linked genes

In this model, we suppose that females possess two genes at the concerned locus
while males have only one. Thus, the female population is diploid at this locus
whereas the male population is haploid. Given two alleles, A1 and A2, we assign
selective values f11 = 1 + u11s, f12 = 1 + u12s, f22 = 1 + u22s to the female
genotypes A1A1,A1A2,A2A2 and selective values m1 = 1 + v1s, m2 = 1 + v2s

to the male genotypes A1,A2. These selective values are not all equal in at least
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Table 2. Mating types in the current generation and couples of sibs produced in the next
generation for a sex-linked locus.

Mating type Frequency Zygotes Couples of sibs
females males

(A1A1 × A1) x1 A1A1 A1 (A1A1 × A1)

(A1A2 × A1) x2
1
2A1A1: 1

2A1A2
1
2A1: 1

2A2
1
4 (A1A1 × A1): 1

4 (A1A1 × A2)
1
4 (A1A2 × A1): 1

4 (A1A2 × A2)

(A2A2 × A1) x3 A1A2 A2 (A1A2 × A2)

(A1A1 × A2) x4 A1A2 A1 (A1A2 × A1)

(A1A2 × A2) x5
1
2A1A2: 1

2A2A2
1
2A1: 1

2A2
1
4 (A1A2 × A1): 1

4 (A1A2 × A2)
1
4 (A2A2 × A1): 1

4 (A2A2 × A2)

(A2A2 × A2) x6 A2A2 A2 (A2A2 × A2)

one of the sexes. All possible mating types and their frequencies are depicted in
Table 2. The genotypic frequencies in the male and female adults, respectively, in
the current generation are given by

P1 = x1 + x2 + x3, P2 = x4 + x5 + x6,

and

Q11 = x1 + x4, Q12 = x2 + x5, Q22 = x3 + x6,

with P1 + P2 = 1 and Q11 + Q12 + Q22 = 1. Then, the frequency of allele A1 in
the male and female adults, respectively, is

p1 = P1 = x1 +x2 +x3 and q1 = Q11 + 1

2
Q12 = x1 +x4 + 1

2
(x2 + x5) .

After mating and reproduction of the adults in the current generation, the genotypic
frequencies in male and female zygotes, respectively, in the next generation are

P
(z)
1 = x1 + 1

2
x2 + x4 + 1

2
x5, P

(z)
2 = 1

2
x2 + x3 + 1

2
x5 + x6,

and

Q
(z)
11 = x1 + 1

2
x2, Q

(z)
12 = 1

2
x2 + x3 + x4 + 1

2
x5, Q

(z)
22 = 1

2
x5 + x6.

After selection among the zygotes, these genotypic frequencies become

P ∗
1 = m1P

(z)
1

TM
, P ∗

2 = m2P
(z)
2

TM
,

Q∗
11 = f11Q

(z)
11

TF
, Q∗

12 = f12Q
(z)
12

TF
, Q∗

22 = f22Q
(z)
22

TF
,
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where

TM = m1

(

x1 + 1

2
x2 + x4 + 1

2
x5

)

+ m2

(
1

2
x2 + x3 + 1

2
x5 + x6

)

,

TF = f11

(

x1 + 1

2
x2

)

+ f12

(
1

2
x2 + x3 + x4 + 1

2
x5

)

+ f22

(
1

2
x5 + x6

)

.

Assuming a probability β of sib mating and 1 − β of random mating (0 < β < 1),
the recurrence equations for the frequencies of the mating types from one generation
to the next are

x′
1 = (1 − β) Q∗

11P
∗
1 + βf11m1

(

x1 + 1

4
x2

)

/TFS,

x′
2 = (1 − β) Q∗

12P
∗
1 + βf12m1

(
1

4
x2 + x4 + 1

4
x5

)

/TFS,

x′
3 = (1 − β) Q∗

22P
∗
1 + βf22m1

(
1

4
x5

)

/TFS,

x′
4 = (1 − β) Q∗

11P
∗
2 + βf11m2

(
1

4
x2

)

/TFS,

x′
5 = (1 − β) Q∗

12P
∗
2 + βf12m2

(
1

4
x2 + x3 + 1

4
x5

)

/TFS,

x′
6 = (1 − β) Q∗

22P
∗
2 + βf22m2

(
1

4
x5 + x6

)

/TFS,

where

TFS = f11m1x1 + 1

4
(f11 + f12) (m1 + m2) x2 + f12m2x3 + f12m1x4

+1

4
(f12 + f22) (m1 + m2) x5 + f22m2x6.

Near the fixation state of allele A2, the matrix of linear approximation M(s),
ignoring terms of order s2 or smaller and using the notation dm

1 = v1 − v2 and
df

1j = u1j − u22, for j = 1, 2, reads as











β
(
1 + d f

11s + dm
1 s

)
β

4

(
1 + d f

11s + dm
1 s

)
0 0 0

0 β

4

(
1 + d f

12s + dm
1 s

)
0 β

(
1 + d f

12s + dm
1 s

)
β

4

(
1 + d f

12s + dm
1 s

)

(1 − β)
(
1 + dm

1 s
) ( 1−β

2

) (
1 + dm

1 s
)

0 (1 − β)
(
1 + dm

1 s
) ( 2−β

4

) (
1 + dm

1 s
)

(1 − β)
(
1 + d f

11s
) ( 2−β

4

) (
1 + d f

11s
)

0 0 0

0
( 2−β

4

) (
1 + d f

12s
) (

1 + d f
12s

)
(1 − β)

(
1 + d f

12s
) ( 2−β

4

) (
1 + d f

12s
)












The matrix M(0) is easily deduced and its eigenvalues (calculated by Mathematica),
in decreasing order, are

λ1 = 1, λ2 = 2β +
√

4β2 + 16β

8
, λ3 = β

2
, λ4 = 2β −

√
4β2 + 16β

8
, λ5 = −1

2
.
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Positive left and right eigenvectors of M(0) associated to the eigenvalue 1 are given
by

ξ(0)T = (3, 2, 1, 2, 1) and η(0)T =
(

β

4 (1 − β)
, 1,

4 − 3β

2β
,

1

2
,

4 − 3β

β

)

.

Result 1 yields

•
ρ(0) =

(
2

3
+ 1

3
rY→X

)[
Fdf

11 + (1 − F) df
12

]
+
(

1

3
+ 2

3
rX→Y

)

dm
1 , (6)

where

F = β

4 − 3β
, rY→X = β

2 − β
and rX→Y = β

4 − 3β
.

Again, F represents the inbreeding coefficient in females at equilibrium in absence
of selection. The coefficient rY→X represents the coefficient of regression of the
frequency of A1 genes carried by the male of a mated couple (Y) on the frequency
of A1 genes carried by the female of this couple (X), when there is no selection
and the population is at equilibrium. The coefficient rX→Y is defined analogously.
It must be noted that when females and males are both diploid at the given locus,
then

r = rY→X = rX→Y = β

2 − β
.

Proof of this assertion and derivation of the regression coefficients are found in the
Appendix. One should observe that the dissymmetry of the recurrence equations is

reflected into the expression of
•
ρ(0). In effect, the contribution of each sex is weight-

ed by its corresponding coefficient of regression. The fractions 2
3 and 1

3 correspond
to reproductive values of females and males, respectively, and are proportional to
the contributions of the two sexes at the sex-linked locus in question.

A detailed analysis of equation (6) gives the following result, where

d12 = 2

3
(u12 − u22) + 1

3
(v1 − v2) and d11 = 1

2
(u11 − u22) + 1

2
(v1 − v2) .

Result 5. If selection is weak enough in the partial sib mating model for sex-linked
genes, allele A1 is preserved from extinction if and only if

(i) d12 > 0, d11 ≤ 0 and β < 3d12
3d12−d11

= β1, or
(ii) d12 < 0, d11 > 0 and β > β1, or

(iii) d12 ≥ 0 and d11 > 0.

6. Discussion

Result 1 provides a general criterion for determining the fate of a mutant allele
introduced into a population at fixation when selection is weak enough and the
mutant allele is rare enough. If the derivative with respect to the intensity of selec-
tion, denoted by s, of the leading eigenvalue ρ(s) of the linearized transformation
for the population state near fixation, represented by the matrix M(s), is positive
at s = 0, then the mutant allele is preserved from extinction. On the contrary, if
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this derivative is negative, then the mutant allele goes extinct. In the degenerate
case where this derivative would be 0, a quadratic analysis would be required (see,
e.g., Lessard and Karlin, 1982). The expression given in Result 1 for this derivative
evaluated at s = 0 can be traced back to Taylor (1985) in a context of sex allocation
when a mutant strategy, say a sex ratio m + s, is confronted to a resident strategy,
say a sex ratio m. In this context, a derivative equal to zero when s = 0 character-
izes an evolutionary equilibrium strategy m. In general, when the matrix M(s) is
non-negative and M(s)k is positive for some integer k, this derivative is equal to 0 at
s = 0 if and only if the derivative of the characteristic polynomial of M(s) at s = 0
is 0 (see, e.g., Taylor and Bulmer, 1980). Actually, the sign of the derivative of the
leading eigenvalue is then the same as the sign of the derivative of the characteristic
polynomial (Courteau and Lessard, 2000). In practice, this property facilitates the
application of Result 1 to decide about the invasion or extinction of a rare mutant
gene since the characteristic polynomial is generally easier to compute than the
leading eigenvalue.

Result 2 on the change in frequency of a rare mutant allele from one generation
to the next may seem obvious as outlined by Taylor (1989), but a careful analysis has
to be performed. The main difficulty lies on the fact that the frequency of the mutant
allele, p, is not generally the component of the population state in the direction of
the leading left eigenvector for the matrix M(s) unless s = 0. We must also make
sure that the terms of order different from ps in the change of the gene frequency
after enough generations have passed are smaller than ps (this excludes functions
of order sp2 or ps2 for instance) and do not depend on the number of generations
that have elapsed, as long as the mutant allele is rare enough and selection is weak
enough. We have shown that this is the case under mild regularity conditions.

Results 1 and 2 have been deduced in a framework of an infinite population
described by genotype frequencies or mating type frequencies, but this framework
can be extended to a more general situation of a population structured into mating
groups. Then, we would have to take into account the relative contributions of the
groups and the relative contributions of the sexes in the expression of the gene
frequencies.

Application of Results 1 and 2 to autosomal genes in partial selfing or partial sib
mating populations, confirms some previous results obtained in the case of weak
selection (see, e.g., Pollak and Sabran, 1992, and Nagylaki, 1997, for the case of
partial selfing, and Pollak, 1995, for the case of partial sib mating). In random
mating populations, a rare mutant allele at an autosomal locus invades a population
at fixation if and only if the mutant heterozygote has a selective advantage over
the resident homozygote (d12 > 0). With partial selfing or partial sib mating, this
condition may be neither sufficient, in the case where the mutant homozygote is
less fit than the resident homozygote (d11 < 0), nor necessary, in the case where
the mutant homozygote is fitter than the resident homozygote (d11 > 0), in both
cases if the selfing or sib mating rate is large enough. In that case, the threshold
value is higher for the rate of sib mating than for the rate of selfing, and this is so
since sib mating creates less inbreeding than selfing at the same rate. The effect of
inbreeding on autosomal genes is to produce more homozygotes in the population
and, as its level increases, it can overcome the fitness effect of overdominance or
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underdominance of the heterozygotes, but not the effect of directional selection, on
the fate of a mutant allele. In the case of dominance of the resident allele (d12 = 0),
a necessary and sufficient condition for invasion of a mutant allele is that the mutant
homozygote is fitter than the resident homozygote (d11 > 0).

In sex-differentiated populations with partial sib mating, all the above results
apply with the fitness of a genotype being defined as an average of the fitnesses of
that genotype in females and males. In the case of autosomal genes, this average
gives the same weight to each of the sexes. In the case of sex-linked genes, the
weighting of the fitnesses in females and males differs in the calculation of d12
and d11. In the former, the fitnesses in females weigh twice the fitnesses in males,
while in the latter, they weigh the same. The reason is that, in outbred individuals,
each of the two genes in females counts as much as the gene in males, but in inbred
individuals, both count as one since they are the same by descent.

The approximation for the change in frequency of a mutant allele when rare
in a population undergoing weak selection does not always agree with Wright’s
(1942) formula. Although this formula proves to be quantitatively valid in the case
of partial selfing, it turns out that it is only qualitatively valid in the case of aut-
osomal genes in partial sib mating populations. This confirms a finding of Pollak
(1995). Actually, it is likely that Wright’s formula is quantitatively valid only for a
few particular cases like partial selfing. It is also likely that it is qualitatively valid
only in symmetric cases as illustrated by our result on sex-linked genes in partial
sib mating populations. In this case, the formula is neither quantitatively nor qual-
itatively valid. This happens because, in sex-differentiated populations, the correct
approximation under the assumption of weak selection involves not only the in-
breeding coefficient and the reproductive values of the sexes, but also coefficients
of regression of the frequency of the mutant allele in one mate on the frequency in
the other, all calculated as if there were no selection.

In the case of autosomal genes, the coefficients of regression reduce to coef-
ficients of correlation, which are symmetric, while the reproductive values of the
sexes are equal to 1

2 since both sexes contribute equally to future generations. Con-
sidering this case without sex differences in a partial sib mating population and
making the reasonable assumption, among others, that the inbreeding coefficient
F can be calculated ignoring selection if selection is weak enough as in a partial
selfing population, Pollak (1995) gets a correct approximation for the change in
frequency of a rare allele, denoted by A, and explains the presence of the coeffi-
cient of correlation between two mates relative to their frequencies of A, denoted
by m, as follows: “. . . because full sibs are more likely to have the same alleles than
a random pair of individuals, a positive correlation between mates is induced in
their frequencies of A. This results in a second increase within a generation in the
frequency of A, which is m times as large as that from viability selection.”

In the case of sex-linked genes, the reproductive values of the females and males
are 2/3 and 1/3, respectively, since the contribution of females to future generations
is twice that of the males. Moreover, an individual who carries a rare mutant allele
and who survives to reproduce will contribute to the reproduction of its mate and
this will cause a second change in the frequency of the mutant allele, weighted by
the reproductive value of the sex of the mate times the coefficient of regression
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of the frequency of the mutant allele in the mate on the corresponding frequency
in the individual. Assuming weak selection, this coefficient is approximated by
the expected fraction of genes in the mate that are identical by descent to one or
more genes in the individual. Such a coefficient, called a coefficient of relatedness,
has been encountered in kin selection models (see, e.g., Hamilton, 1970, Lessard,
1992). What is interesting here is that a classical viability selection model without
interactions between kin affecting viability can be put into the framework of kin
selection theory, which is still controversial, when there is inbreeding. The reason
is that there are interactions between kin that affect their reproductive success and
these take place at mating.

Appendix

A.1. Proof of Result 1

For a better understanding of our analysis, we state the Perron-Frobenius theorem
for primitive matrices (see, e.g., Seneta, 1981, or Gantmacher, 1959, for a proof ).

Perron-Frobenius theorem. Suppose M is a n×n non-negative primitive matrix.
Then there exists an eigenvalue ρ such that:

(a) ρ is real, strictly positive and is a simple root of the characteristic equation of
M;

(b) ρ > |λ| for every eigenvalue λ �= ρ;
(c) associated to ρ are strictly positive left and right eigenvectors, ξ and η, which

are unique to constant multiples; in fact, ρ is the only eigenvalue of M which
admits strictly positive eigenvectors;

(d) as k → ∞, Mk

ρk → ηξT

〈
ξ,η

〉 , where 〈ξ,η〉 = ∑
i ξiηi .

Since the non-negative matrix M(s) is supposed to be primitive, by assertion (c) of
the Perron-Frobenius theorem, there exist strictly positive eigenvectors associated
to ρ(s), the greatest eigenvalue of M(s) in modulus. Let ξ(s)T = (ξ1(s), . . . , ξn(s))

and η(s)T = (η1(s), . . . , ηn(s)) be strictly positive left and right eigenvectors, re-
spectively, associated to ρ(s). For the sake of simplicity, assume that the scalar
product of these eigenvectors equals 1, that is, 〈ξ(s),η(s)〉 = ∑

i ξi(s)ηi(s) = 1.
More explicitly, we have

ξ(s)TM(s) = ρ(s)ξ(s)T

and
M(s)η(s) = ρ(s)η(s), (A.1)

where the superscript T denotes matrix transposition. Taking the derivative with
respect to s on both sides of the second equation in (A.1) (this is feasible since the
entries of M(s) are supposed smooth enough), we obtain

•
M(s)�(s) + M(s)

•
�(s) = •

ρ(s)�(s) + ρ(s)
•
�(s).
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Hence, multiplying on the left by ξ(s)T, we find

ξ(s)T •
M(s)�(s) + ξ(s)TM(s)

•
�(s) = •

ρ(s)ξ(s)T�(s) + ρ(s)ξ(s)T •
�(s). (A.2)

But, from the first equality in (A.1) and since ξ(s)Tη(s) = 1, equation (A.2) reduces
to •

ρ(s) = ξ(s)T •
M(s)�(s).

Developing ρ(s) in Taylor series around 0 yields

ρ(s) = ρ(0) + •
ρ(0)s + O(s2), (A.3)

with
•
ρ(0) = ξ(0)T

•
M(0)η(0).

It remains to show that ρ(0) = 1. To this end, we express the frequency of the
rare mutant gene in the population as p = fTx, where f denotes the vector of
the rare mutant gene frequency in the different mutant types and x is the vector
of the frequencies of the different types containing the rare mutant gene. With no
selection in the population, that is, when s = 0, there is invariance of the allelic
frequencies, that is, the allelic frequencies remain unchanged from one generation
to the next (this is the first part of the Hardy-Weinberg law). Formally, we have
p′ = fTx′ = fTx = p, and therefore, fTM(0)x = fTx, which yields

fTM(0) = fT, for all x ≥ 0.

This implies that λ = 1 is one of the eigenvalue of M(0). But, since f has strictly pos-
itive entries by definition and that a strictly positive eigenvector is necessarily one
associated to the greatest eigenvalue ρ(0), this implies that ρ(0) = 1. Moreover,
by part (c) of the Perron-Frobenius theorem, we have that ξ(0), the left eigenvector
of M(0), is a multiple of the vector f. It will be assumed throughout, without loss of
generality, that ξ(0) = f and

∑
i ξi(s) = ∑

i fi , for every s ≥ 0. This completes
the proof of Result 1.

A.2. Proof of Result 2

As in the proof of Result 1, M(s) is non-negative and primitive. In the complex
vector space Cn, one can always represent the matrix M(s) in a Jordan canonical
form, that is,

M(s) = P(s)J(s)P(s)−1.

Let λ1(s), λ2(s), . . . , λn(s) be the eigenvalues (not necessarily distinct) of M(s).
Let

P(s) = [
ϕ1(s),ϕ2(s), . . . ,ϕn(s)

]
,

P(s)−1 = [
ψ1(s),ψ2(s), . . . ,ψn(s)

]T
.

By the Perron-Frobenius theorem, the right (and the left) eigenvector associat-
ed to the greatest eigenvalue in modulus ρ(s) of M(s) forms a one-dimensional
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subspace of Cn. Without loss of generality, let λ1(s) = ρ(s),ϕ1(s) = η(s) and
ψ1(s) = ξ(s). Then, we can write

M(s) = [
η(s),ϕ2(s), . . . ,ϕn(s)

]
[

ρ(s) 0
0 B(s)

]
[
ξ(s),ψ2(s), . . . ,ψn(s)

]T
,

where B(s) is a (n − 1) × (n − 1) matrix formed of Jordan blocks associated to
the eigenvalues of M(s) different from ρ(s). Because the column vectors of P(s)
form a basis of the whole space, we can express each vector x �= 0 of the space as
a linear combination of these vectors. Actually, we have

x = c1η(s) +
∑

i≥2

ciϕi (s), (A.4)

where c1 = ξ(s)Tx, ci = ψi (s)
Tx, for i = 2, . . . , n, and at least one of the ci is

different from 0.
In the following, we shall use, for each s > 0 fixed, the norm ‖ · ‖ defined by

‖x‖ = ∑
i ξi(s) |xi | for every vector x. The norm of the matrix M(s) is defined as

‖M(s)‖ = sup
x �=0

‖M(s)x‖
‖x‖ (A.5)

Note that
‖Mk(s)x‖ ≤ ‖Mk(s)‖‖x‖, (A.6)

for every vector x and every integer k ≥ 1. We also have the following lemma.

Lemma 1. For any integer k ≥ 1,
∥
∥Mk(s)

∥
∥ = ρk(s).

Proof of lemma 1. Let k = 1. Using equation (A.5), we obtain

‖M(s)‖ = sup
x �=0

∑
i ξi(s)

∣
∣
∣
∑

j mij (s)xj

∣
∣
∣

‖x‖

≤ sup
x �=0

∑
i ξi(s)

∑
j mij (s)

∣
∣xj

∣
∣

‖x‖

= sup
x �=0

∑
j

∑
i ξi(s)mij (s)

∣
∣xj

∣
∣

‖x‖

= sup
x �=0

∑
j ρ(s)ξj (s)

∣
∣xj

∣
∣

‖x‖

= ρ(s)sup
x �=0

‖x‖
‖x‖

= ρ(s).

Moreover, letting x = �(s) in equation (A.6) gives

ρ(s) = ‖ρ(s)�(s)‖ = ‖M(s)�(s)‖ ≤ ‖M(s)‖‖�(s)‖ = ‖M(s)‖,
since ‖�(s)‖ = 1. The rest of the proof is easily achieved by induction on k.

A crucial result ensues from Lemma 1 and is provided below.
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Lemma 2. For x ≥ 0, x �= 0 sufficiently close to 0, we have ‖x′‖ < ‖x‖ if ρ(s) < 1
and ‖x′‖ > ‖x‖ if ρ(s) > 1.

Proof of lemma 2. Taking the scalar product with ξ(s) on both sides of equation
(1) yields

‖x′‖ = ρ(s)‖x‖ + O(‖x‖2).

If ρ(s) < 1, then it suffices to choose ‖x‖ sufficiently small so that O(‖x‖2) <

(1 − ρ(s))‖x‖ to have ‖x′‖ < ‖x‖. If ρ(s) > 1, then ‖x′‖ > ‖x‖ as soon as ‖x‖
is small enough to have O(‖x‖2) > (1 − ρ(s))‖x‖. This completes the proof of
Lemma 2.

Now, let x(k) > 0 denote the vector of frequencies in the kth generation. Then,
iterating equation (1) gives

x(k) = Mk(s)x(0) + Mk−1(s)O
(∥
∥x(0)

∥
∥2
)

+ Mk−2(s)O
(∥
∥x(1)

∥
∥2
)

+ · · ·

+O
(∥
∥x(k−1)

∥
∥2
)

. (A.7)

But the above expression can be simplified, as stated in the following result.

Lemma 3. If ρ(s) < 1, then x(k) = Mk(s)x(0) + O(
∥
∥x(0)

∥
∥2

), for x(0) sufficiently

close to 0, where the function O(
∥
∥x(0)

∥
∥2

) does not depend upon the value of k. On

the other hand, if ρ(s) > 1, then x(k) = Mk(s)x(0) + O(
∥
∥x(k−1)

∥
∥2

), for x(k−1)

sufficiently close to 0.

Proof of lemma 3. First, let us examine the case ρ(s) < 1. We shall show that the
sum

S = Mk−1(s)O(
∥
∥x(0)

∥
∥2

) + Mk−2(s)O(
∥
∥x(1)

∥
∥2

) + · · · + O(
∥
∥x(k−1)

∥
∥2

) (A.8)

in equation (A.7) is a function of order
∥
∥x(0)

∥
∥2

and does not depend upon the value
of k. Using Lemma 1 and Lemma 2, we have that

‖S‖
∥
∥x(0)

∥
∥2

≤
∥
∥Mk−1(s)

∥
∥
∥
∥
∥O(

∥
∥x(0)

∥
∥2

)

∥
∥
∥+∥

∥Mk−2(s)
∥
∥
∥
∥
∥O(

∥
∥x(1)

∥
∥2

)

∥
∥
∥+· · ·+

∥
∥
∥O(

∥
∥x(k−1)

∥
∥2

)

∥
∥
∥

∥
∥x(0)

∥
∥2

= ρk−1(s)

∥
∥
∥O(

∥
∥x(0)

∥
∥2

)

∥
∥
∥

∥
∥x(0)

∥
∥2 + ρk−2(s)

∥
∥
∥O(

∥
∥x(1)

∥
∥2

)

∥
∥
∥

∥
∥x(1)

∥
∥2

∥
∥x(1)

∥
∥2

∥
∥x(0)

∥
∥2 + · · ·

+

∥
∥
∥O(

∥
∥x(k−1)

∥
∥2

)

∥
∥
∥

∥
∥x(k−1)

∥
∥2

∥
∥x(k−1)

∥
∥2

∥
∥x(0)

∥
∥2 ≤ ρk−1(s)c+ρk−2(s)c+· · ·+c ≤ c

1 − ρ(s)
,
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for some constant c, as soon as
∥
∥x(0)

∥
∥2

is small enough. On the other hand, if

ρ(s) > 1, the function in (A.8) can be shown to be of order
∥
∥x(k−1)

∥
∥2

as long as
∥
∥x(k−1)

∥
∥2

is small enough. This clearly shows that (A.8) depends upon k only in
the case ρ(s) > 1. This completes the proof of Lemma 3.

Two other important results are provided below.

Lemma 4. If ρ(s) < 1, then x(k) = ∥
∥x(k)

∥
∥ (η(s) + O(s)), for k large enough. On

the other hand, if ρ(s) > 1, the above equality remains valid for k large enough
but not too large.

Proof of lemma 4. Let us write x(0) = ∥
∥x(0)

∥
∥ �(s) + [

x(0) − ∥
∥x(0)

∥
∥ �(s)

]
. Multi-

plying on the left by Mk(s) and using Lemma 3 in the case ρ(s) < 1, we find
that

x(k) = ρk(s)
∥
∥x(0)

∥
∥

[

η(s) + Mk(s)

ρk(s)

(
x(0)

∥
∥x(0)

∥
∥

− �(s)

)]

+ O(
∥
∥x(0)

∥
∥2

).

But it can be shown, using (A.4) and assertion (d) of the Perron-Frobenius theorem,
that

� = Mk(s)

ρk(s)

(
x(0)

∥
∥x(0)

∥
∥

− �(s)

)

→ 0, as k → ∞,

uniformly for x(0) ≥ 0, x(0) �= 0. Thus, there exists an integer N such that, for
k ≥ N , all the entries of � are smaller than s in absolute value. If we let

∥
∥x(0)

∥
∥ <

(
ρN(s)

)
s, then x(N) = ρN(s)

∥
∥x(0)

∥
∥ (�(s) + O(s)). Therefore,

∥
∥x(N)

∥
∥ = ρN(s)∥

∥x(0)
∥
∥ (1 + O(s)), which implies that x(N) = ∥

∥x(N)
∥
∥ (�(s) + O(s)). Finally, for

k ≥ N , we conclude that x(k) = ∥
∥x(k)

∥
∥ (�(s) + O(s)), since

∥
∥x(k−N)

∥
∥ ≤ ∥

∥x(0)
∥
∥ <

(
ρN(s)

)
s. The case ρ(s) > 1 is treated analogously, the difference being that k

must be large enough so that all the entries of � are bounded by s, but not too large
so that

∥
∥x(k)

∥
∥ <

(
ρN(s)

)
s. This completes the proof of Lemma 4.

Lemma 5. For s small enough, we have ‖x‖ = p (1 + O(s)).

Proof of lemma 5. For s small enough, x ≥ 0, x �= 0 and p = ∑
i fixi , we can

write

‖x‖ =
∑

i

ξi(s)xi =
∑

i

(fi + O(s))xi =p+O(s)

[ ∑
i xi

∑
i fixi

]

p=p (1 + O(s)) ,

since
∑

i xi

/∑
i fixi is the same for all multiples of x and continuous on the com-

pact set x ≥ 0, x �= 0, ‖x‖ = 1, and is therefore bounded. This completes the proof
of Lemma 5.

We are now ready to complete the proof of Result 2. Using Lemma 5, equation
(1) for s small enough can be expressed as

x′ = M(s)x + O(p2). (A.9)
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Therefore, recalling that �p is defined as the change in frequency of the rare mutant
gene from one generation to the next, we get

�p = p′ − p = fT(x′ − x) = fT (M(s) − I) x + O(p2). (A.10)

When s = 0, we know that �p = 0 and, consequently, we must have O(p2) = 0,
which implies that O(p2) in (A.10) is in fact a function O(p2)s, if it is assumed
smooth enough. Thus, using Lemma 5, equation (A.10) can be rewritten as

�p = fT (M(s) − M(0)) x + sO(p2)

= fT
( •

M(0)s + O(s2)
)

x + sO(p2)

= fT •
M(0)xs +

(

fTO(s2)
x

‖x‖
)

‖x‖ + sO(p2)

= fT •
M(0)xs + pO(s2) + sO(p2).

Finally, for values of k as defined in Lemma 4, we conclude from Lemma 5 that

p(k+1) − p(k) = fT •
M(0)x(k)s + p(k)O(s2) + sO(p(k)2

)

= fT •
M(0)

[∥
∥x(k)

∥
∥ (�(s) + O(s))

]
s + p(k)O(s2) + sO(p(k)2

)

= fT •
M(0)

[
p(k) (1 + O(s)) (�(0) + O(s))

]
s + p(k)O(s2)

+ sO(p(k)2
)

= fT •
M(0)�(0)p(k)s + p(k)O(s2) + sO(p(k)2

)

= •
ρ(0)p(k)s + p(k)O(s2) + sO(p(k)2

).

This completes the proof of Result 2.

A.3. Coefficients of regression for the partial sib mating models

Let X be the random variable that gives the frequency of A1 genes carried by the
female of a mated couple chosen at random in a diploid population. The random
variable Y is defined analogously for the male of the same mated couple. In the
following, we shall use the fact that the inbreeding coefficient F is the coefficient
of correlation between two uniting gametes, the value assigned to a gamete being
the number, 0 or 1, of gene A1 that it carries (Wright, 1922). If there is no selection
and the population is at equilibrium, this coefficient is equal to the probability that
the two uniting gametes are identical by descent (Malécot, 1948; see, e.g., Crow
and Kimura, 1970). In the partial sib mating model, it is known (Ghai, 1969) that
F = β

/
(4 − 3β) .

Autosomal genes When females and males are both diploid at the locus considered,
let X = (X1 + X2)/2 and Y = (Y1 + Y2)/2, where subscript 1 refers to a female
gamete and subscript 2 to a male gamete. Hence, the random variables X1, X2, Y1
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and Y2 take on values 1 or 0 depending upon the gene A1 is carried or not by the
corresponding gamete. By definition, we have that

r = Cov(X, Y )√
Var(X)

√
Var(Y )

= Cov(X1 + X2, Y1 + Y2)

Var(X1 + X2)
,

because Var(X) = Var(Y ), since the frequency of A1 at equilibrium is the same in
both female and male populations. Therefore, we infer that

r = 4Cov(X1, Y1)

2Var(X1) + 2Cov(X1, X2)
= 2F

1 + F
= rY→X = rX→Y = β

2 − β
,

since F = Cov(X1,X2)
Var(X1)

= Cov(X1,Y1)
Var(X1)

. In the above equation, rY→X is the coefficient
of regression of the frequency of A1 genes carried by the male of a mated couple
(Y ) on the frequency ofA1 genes carried by the female of this couple (X). Likewise,
rX→Y represents the coefficient of regression of the frequency of A1 genes carried
by the female of a mated couple (X) on the frequency of A1 genes carried by the
male of this couple (Y ).

Sex-linked genes This time, we define X = (X1 + X2)/2 and Y = Y1, so that

rY→X = Cov(X, Y )

Var(X)
= 2Cov(X1, Y1)

Var(X1) + Cov(X1, X2)
= 2F

1 + F
= β

2 − β
,

rX→Y = Cov(X, Y )

Var(Y )
= Cov(X1, Y1)

Var(Y1)
= F = β

4 − 3β
.
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