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Received 28 October 2002

Available online 27 September 2004
Abstract

We consider family specific fitnesses that depend on mixed strategies of two basic phenotypes or behaviours. Pairwise interactions

are assumed, but they are restricted to occur between sibs. To study the change in frequency of a rare mutant allele, we consider two

different forms of weak selection, one applied through small differences in genotypic values determining individual mixed strategies,

the other through small differences in viabilities according to the behaviours chosen by interacting sibs. Under these two specific

forms of weak selection, we deduce conditions for initial increase in frequency of a rare mutant allele for autosomal genes in the

partial selfing model as well as autosomal and sex-linked genes in the partial sib-mating model with selection before mating or

selection after mating. With small differences in mixed strategies, we show that conditions for protection of a mutant allele are

tantamount to conditions for initial increase in frequency obtained in additive kin selection models. With particular reference to

altruism versus selfishness, we provide explicit ranges of values for the selfing or sib-mating rate based on a fixed cost–benefit ratio

and the dominance scheme that allow the spreading of a rare mutant allele into the population. This study confirms that more

inbreeding does not necessarily promote the evolution of altruism. Under the hypothesis of small differences in viabilities, the

situation is much more intricate unless an additive model is assumed. In general however, conditions for initial increase in frequency

of a mutant allele can be obtained in terms of fitness effects that depend on the genotypes of interacting individuals or their mates

and generalized conditional coefficients of relatedness according to the inbreeding condition of the interacting individuals.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is an attempt to explain evolutionary properties in family-structured populations with inbreeding from a
kin selection perspective. To this end, inbreeding caused by partial selfing or partial sib-mating and individual fitness
based on mixed strategies used in interactions between sibs will be considered. More precisely, the fitness of an
individual will depend upon the choice between two possible pure strategies (phenotypes or behaviours), which choice
is a probability distribution determined by the genotype of the individual, and by the corresponding choice of one of its
sibs chosen at random and interacting with it. Pairwise interactions are classical in ESS theory (Maynard Smith and
Price, 1973), but in this paper they will be restricted to occur only between individuals within the same sibship in order
to study the effect of inbreeding on kin selection theory. The resulting fitnesses can be interpreted as family specific
e front matter r 2004 Elsevier Inc. All rights reserved.
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genotypic fitnesses in the sense of Michod (1980), who considered both the partial selfing model and the partial sib-
mating model at an autosomal locus with two alleles, one of which coding for an altruistic behaviour (see also Michod
and Abugov, 1980, for the random mating case), allowing the genotypic fitnesses to vary from one family type to
another. Michod (1980) used numerical calculations and simulations to study local stability conditions at both fixation
states under the assumption that costs and benefits of altruistic acts combine additively or multiplicatively. Wade and
Breden (1981) also studied the partial sib-mating model with additive genotypic fitnesses but from a group selection
perspective.
Both Michod (1980) and Wade and Breden (1981) argued that inbreeding should facilitate the evolution of an

altruistic allele that enhances the fitness of kin at the expense of its carrier, although the first author gave an example of
extreme altruism in the multiplicative model for which the initial increase in frequency of a rare altruistic allele is not
made easier by more inbreeding. Actually, it was inferred that inbreeding should promote altruism by increasing the
between-family genetic variance while decreasing the within-family genetic variance. However, Uyenoyama (1984)
showed that, even in additive models, more inbreeding may apparently increase the within-family variance by
producing rare homozygotes at a higher frequency, resulting in more stringent conditions for the initial invasion of an
altruistic allele. Besides restricting her study to the additive model for altruism with mating schemes mixing selfing,
parthenogenesis or sib-mating with random mating, Uyenoyama (1984) assumed at least one of the following
additional conditions in order to avoid hidden non-additive effects: (a) the sexes are indistinguishable with respect to
fitness, (b) the relative frequencies of males within families are unaffected by selection, or (c) inbreeding females are
inseminated before selection. Conditions for initial increase in frequency and polymorphic equilibrium were reported
for all models but it was assumed that the heterozygote did not exhibit overdominance or underdominance in the
propensity to perform altruism. In this paper, we will focus on conditions for initial increase and assume either (a) or
(c) above but we will not restrict the analysis to additive models for fitness effects or cases of no dominance or complete
dominance in genotypic values.
Another issue is the appropriate definition for coefficients of relatedness in inbred populations to measure

the genetic relationship of an individual, possibly inbred, to another. The coefficient of relatedness of an individual
X to an individual Y, denoted by RX-Y, has been generally defined in populations with inbreeding as a covariance
ratio, actually the covariance between the frequency of a given allele in Y and a given genotypic value at the
same locus in X over the covariance between these two quantities in X (Michod and Hamilton, 1980; see also
Uyenoyama et al., 1981, for a definition in a context of multiple alleles at a single locus with the additive genotypic
value replacing the frequency of a given allele). In cases of inbreeding caused by partial selfing or partial sib-mating
and in the absence of selection, it has been shown that such a coefficient of relatedness reduces to a pedigree index
that does not depend on dominance or gene frequency (Lessard, 1990, 1992; see also Uyenoyama and Bengtsson,
1982), actually the coefficient of kinship between X and Y over the coefficient of kinship between X and itself, the
coefficient of kinship between X and Y, denoted by fXY, being defined as the probability that a gene chosen at
random in Y be identical by descent (i.b.d.) to a gene chosen at random at the same locus in X (Malécot, 1948).
Actually, in this case, this pedigree index gives the expected fraction of genes in Y i.b.d. to one or more genes in X at
the same locus and, if X is diploid, this fraction is the same given that X is inbred or given that X is outbred. This
pedigree index corresponds also to the coefficient of regression of the frequency of a given allele in Y to the
frequency of the same allele in X (Hamilton, 1972). In the symmetric case, with X and Y having the same ploidy at
the locus considered, this reduces to a coefficient of correlation, actually Wright’s (1922) coefficient of relationship.
The role and limitation of such coefficients to predict evolution in populations with inbreeding are addressed in
this paper.
In a previous paper (Lessard and Rocheleau, 2003), we studied the change in frequency of a rare mutant allele in

partially inbred populations in the case where the fitness of an individual depends only on its own genotype and we
ascertained two basic results that we shall use in the present paper. These allow an approximation for the change in
frequency of a mutant allele under weak selection, when introduced in small frequency into a structured infinite
population, which was previously at a fixation state. The weak selection hypothesis is rendered through a parameter s,
which measures the intensity of selection and which is assumed to be positive and small (s ¼ 0 corresponding to
selective neutrality). Also, it is supposed that the population state can be described by a vector whose entries represent
the frequencies of group types (in this paper, genotypes or mating types) carrying the mutant allele. Moreover, the
linear approximation for the transformation of this vector near the origin from one generation to the next is given by a
non-negative matrix M(s). This matrix M(s) is assumed to be smooth enough with respect to s and to have at least
some power that exhibits only positive entries. Under these hypotheses, the leading eigenvalue of M(s), denoted by l(s),
will determine the fate of the mutant allele as long as this allele remains rare enough in the population. We reproduce
below the two basic results (see, e.g., Taylor, 1985, 1989, for similar statements, and Lessard and Rocheleau, 2003, for
formal proofs).
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Result 1. For s small enough, the leading eigenvalue of M(s) is approximated by

lðsÞ ffi 1þ Ls; ð1Þ

where

L ¼
xð0ÞT M

�

ð0ÞZð0Þ

xð0ÞTZð0Þ
ð2Þ

with M
�

ð0Þ being the derivative of M(s) with respect to s evaluated at s ¼ 0, n(0) and g(0) being respectively left and right

(positive) eigenvectors of M(0) associated to the eigenvalue l and T denoting matrix transposition.

The approximation in Result 1 is valid up to terms of order s. The second result, which is more important from a
biological point of view, provides an approximation for the change in frequency of a rare mutant allele from one
generation to the next.

Result 2. Let p(k) be the frequency of a rare mutant allele at generation k in a population initially at fixation. Under weak

selection (s small enough) and for k sufficiently large (but not too large in the case L40 to ensure that p(k) remains small

enough), the change in frequency of the mutant allele from generation k to generation k þ 1 is approximated by

DpðkÞ ffi LpðkÞs: ð3Þ

The approximation in Result 2 ignores terms of order p(k)s2 or (p(k))2s and all other smaller terms. Owing to Results 1
and 2, the sign of the derivative of l(s) evaluated at s ¼ 0, denoted by L, will predict the fate of the mutant allele when
introduced in small frequency into the population: Lo0 will entail extinction, while L40 will imply protection. The
quantity L can be seen as a rate of increase (if positive) or decrease (if negative) for the frequency of a rare mutant allele
with respect to the frequency of this allele and the intensity of selection.
In this paper, to apply Results 1 and 2 presented above, two different forms of weak selection will be considered: one

applied through small differences in genotypic values determining individual mixed strategies and one through small
differences in fitness parameters according to the pure strategies chosen by interacting individuals. Section 2 describes
the consequences of these hypotheses on the genotypic fitnesses. In particular, it is shown that the first form of weak
selection is formally equivalent to the second form with an additive model for the fitness parameters. However, general
effects on genotypic fitnesses including multiplicative effects can be taken into account under the second form of weak
selection. Under either form of weak selection, no hypothesis about the propensity for an individual to adopt either of
the pure strategies as complete dominance or no dominance is made.
In the next sections, some specific models with regular systems of mating that create inbreeding are considered.

Section 3 is devoted to the study of the partial selfing model under the two aforementioned forms of weak selection. In
the case of inbreeding caused by partial sib-mating, selection at an autosomal locus is considered first: in Section 4,
selection takes place before mating as in a classical viability model while, in Section 5, selection occurs after mating but
before reproduction. This latter assumption corresponds to a multiplicative fertility model. When there is inbreeding,
this assumption is not expected to lead to the same recurrence equations and results than the assumption of selection
before mating (see, e.g., Pollak, 1995; Caballero, 1996), contrary to what occurs in the case of random mating (see, e.g.,
Karlin, 1968). This assumption is also considered in the case of selection at a sex-linked locus in Section 6. For all
models considered, the rate of change L for the frequency of a rare mutant allele is expressed in terms of coefficients of
relatedness, whose definition is extended, and interpreted in a kin selection perspective. In the case of altruism that
imposes specific inequalities between the fitness parameters and under the assumption of small differences in strategy
parameters, conditions for protection of an altruistic allele according to the value of a cost–benefit ratio are given in
Section 7. The meaning of the results is discussed in Section 8. All the recurrence equations and technical details are
deferred to Appendix A.
2. Family specific fitnesses based on individual strategies

We consider a special type of family specific fitnesses (see, e.g., Michod, 1980, and references therein). Suppose that
an individual can choose between two possible phenotypes or behaviours, called pure strategies and represented by 1
and 2. In a kin selection context for instance, it might be an altruistic behaviour versus a selfish behaviour. In a diploid
population with two alleles, A1 and A2, segregating at an autosomal locus, an individual of genotype AiAj either
chooses strategy 1 with probability hij (=hji) or strategy 2 with complementary probability 1� hij . Then, the genotypic
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value hij corresponds to a mixed strategy. As usual, there is complete dominance if h12 ¼ h11 or h22, underdominance if
h12oh11 and h22, overdominance if h124h11 and h22, and no dominance if h12 ¼ ðh11 þ h22Þ=2.
Furthermore, random pairwise interactions between individuals are assumed but they occur only between

individuals within the same sibship. As a mere consequence, this implies that the fitness of an individual will depend
not only upon its own genotype but also upon the genotype of one of its sibs chosen at random, which in turn depends
upon the genotypes of their parents. More explicitly, sibships are assumed to be of infinite size and the fitness of an
AiAj individual within a sibship produced by parents of genotypes AiAk and AjAl, denoted by fij:ik� jl (=fij:jl� ik), takes
the form

f ij:ik�jl ¼ hij ½hik�jlm11 þ ð1� hik�jlÞm12
 þ ð1� hijÞ½hik�jlm21 þ ð1� hik�jlÞm22
; ð4Þ

where hik�jl designates the probability that a sib chosen at random adopts strategy 1 and ð1� hik�jlÞ the probability
that it chooses strategy 2, while the parameter muvX0 (u, v=1, 2) denotes the fitness of an individual adopting strategy u

when in interaction with a sib adopting strategy v. In general, m12am21 unless stated otherwise. Notice that we have
the equalities

h11�11 ¼ h11; h11�12 ¼
1
2 h11 þ

1
2 h12;

h11�22 ¼ h12; h12�12 ¼
1
4

h11 þ
1
2

h12 þ
1
4

h22;

h12�22 ¼
1
2

h12 þ
1
2

h22; h22�22 ¼ h22: ð5Þ

On the other hand, the special relation

m11 � m12 ¼ m21 � m22; ð6Þ

which can also be written as

m11 � m21 ¼ m12 � m22; ð7Þ

defines an additive model with respect to the fitness parameters. In such a model, the increments or decrements in fitness
following changes in the pure strategies chosen by interacting individuals combine additively. If they would rather
combine multiplicatively for instance, so that

m11

m12
¼

m21

m22
ð8Þ

or equivalently

m11

m21
¼

m12

m22
; ð9Þ

then we would be in the presence of a multiplicative model. Such relations will not be assumed in the following unless
stated otherwise.
Fitnesses analogous to (1) can be defined in a context of a sex-linked locus (or equivalently, for a haplo-diploid

population). If females are diploid and males haploid at the concerned locus, then the possible genotypes for females
are given by A1A1, A1A2, A2A2, whereas for males, they are A1 and A2. A female of genotype AiAj either chooses
strategy 1 with probability hij or strategy 2 with complementary probability 1�hij, while a male of genotype Ai either
chooses strategy 1 with probability hi or strategy 2 with complementary probability 1�hi. By analogy with Eq. (4), the
female and male fitnesses are expressed as

f ij:ik�j ¼ hij½hik�jm11 þ ð1� hik�jÞm12
 þ ð1� hijÞ½hik�jm21 þ ð1� hik�jÞm22
 ð10Þ

and

f i:ik�j ¼ hi½hik�jm11 þ ð1� hik�jÞm12
 þ ð1� hiÞ½hik�jm21 þ ð1� hik�jÞm22
; ð11Þ

respectively, where

h11�1 ¼
1
2

h11 þ
1
2

h1; h12�1 ¼
1
4

h11 þ
1
4

h12 þ
1
4

h1 þ
1
4

h2; h22�1 ¼
1
2

h12 þ
1
2

h2;

h11�2 ¼
1
2

h12 þ
1
2

h1; h12�2 ¼
1
4

h12 þ
1
4

h22 þ
1
4

h1 þ
1
4

h2; h22�2 ¼
1
2

h22 þ
1
2

h2:
ð12Þ

This is assuming a one-to-one sibship sex-ratio and pairwise interactions between sibs irrespective of sex. Other
assumptions could easily be incorporated. For the sake of convenience, we let the allele designated by i in (10) and (11)
be the one transmitted by the mother. A more precise but cumbersome notation might have been used to identify
clearly the origin of the alleles, since the female fitness fij:ik� j is not generally equal to fij:jk� i (the same fact prevails for
the male fitnesses).



ARTICLE IN PRESS
S. Lessard, G. Rocheleau / Theoretical Population Biology 66 (2004) 287–306 291
To approximate the change in frequency of a mutant allele when rare in the population, weak selection will be
assumed in order to apply the aforementioned Results 1 and 2. A first form of weak selection is obtained in the case of
small differences in strategy parameters.

Assumption A.

hij ¼ h þ cijs ðhi ¼ h þ cis; for males at a sex-linked locusÞ: ð13Þ

The parameter s is positive and small and measures the intensity of selection, while 0oho1 is a reference value. Notice
that there are no constraints on the parameters cij and ci except the symmetry condition cij ¼ cji for all i, j. When allele
A1 is rare, the differences

d11 ¼ c11 � c22; d12 ¼ c12 � c22 ð14Þ

and

d1 ¼ c1 � c2 ð15Þ

in males at a sex-linked locus, will come into play. These are rates of strategy changes from one genotype to another
with respect to an increase in the intensity of selection. Notice that d11 and d12 are of the same sign in the case of no
dominance.

Under Assumption A, the following quantities will be considered:

KðhÞ ¼ h2m11 þ hð1� hÞðm12 þ m21Þ þ ð1� hÞ2m22;

AðhÞ ¼ hðm11 � m21Þ þ ð1� hÞðm12 � m22Þ;

BðhÞ ¼ hðm11 � m12Þ þ ð1� hÞðm21 � m22Þ: ð16Þ

We can interpret KðhÞ as the mean fitness in the population when all individuals use the same mixed strategy h. In such
a population, the rate of increase in the fitness of an individual with respect to an initial increase in the probability for
this individual to adopt strategy 1 is given by AðhÞ, while the rate of increase in the fitness of an individual with respect
to an initial increase in the probability for a sib interacting with this individual to adopt strategy 1 is given by BðhÞ.
Initially increasing the probability of using strategy 1 is beneficial (detrimental) to the individual doing it when AðhÞ is
positive (negative) and beneficial (detrimental) to a sib interacting with this individual if BðhÞ is positive (negative). We
are in a context of altruism, strategy 1 corresponding to an altruistic behaviour and strategy 2 to a selfish one, when
AðhÞ is negative and BðhÞ positive. Notice that, when the model is additive, we have AðhÞ ¼ A and BðhÞ ¼ B, where

A ¼ m11 � m21 ¼ m12 � m22 ð17Þ

and

B ¼ m11 � m12 ¼ m21 � m22 ð18Þ

do not depend on h.
A second form of weak selection is obtained in the case of small differences in fitness parameters.

Assumption B.

mij ¼ 1þ uijs: ð19Þ

Again, the parameter s is positive and small and measures the intensity of selection. In general, we have uijauji when
iaj, unless stated otherwise. Under Assumption B, the following quantities will come into play:

aðhijÞ ¼ hijðu11 � u21Þ þ ð1� hijÞðu12 � u22Þ;

bðhijÞ ¼ hijðu11 � u12Þ þ ð1� hijÞðu21 � u22Þ: ð20Þ

This time, aðhijÞ represents the rate of increase in the fitness of an individual with respect to initial increases in the
intensity of selection and the probability for this individual to adopt strategy 1 when the individual with which it
interacts uses strategy hij , while bðhijÞ gives the rate of increase in the fitness of an individual using strategy hij with
respect to initial increases in the intensity of selection and the probability for a sib interacting with this individual to
adopt strategy 1. Similarly, to include the haplo-diploid case, we define

aðhiÞ ¼ hiðu11 � u21Þ þ ð1� hiÞðu12 � u22Þ;

bðhiÞ ¼ hiðu11 � u12Þ þ ð1� hiÞðu21 � u22Þ:
ð21Þ
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Under Assumption B, the rates of increase in fitness of interacting sibs depend on their exact genotypic values unless
the model is additive, in which case aðhijÞ ¼ aðhiÞ ¼ a and bðhijÞ ¼ bðhiÞ ¼ b for all i and j, where

a ¼ u11 � u21 ¼ u12 � u22 ð22Þ

and

b ¼ u11 � u12 ¼ u21 � u22 ð23Þ

do not depend on the genotypic value. Then, up to terms of order s, the family specific genotypic fitness defined in Eq.
(4) is approximated by

f ij:ik�jl ffi m22 þ ½hija þ hik�jlb
s; ð24Þ

which is in the same form as the corresponding approximation in the case of Assumption A given by

f ij:ik�jl ffi KðhÞ þ ½cijAðhÞ þ cik�jlBðhÞ
s; ð25Þ

where cik�jl is defined with respect to cij , cil , ckj and ckl in the same way as hik�jl with respect to hij, hil , hkj and hkl in Eq.
(5). Similar approximations hold for the fitnesses in Eqs. (10) and (11) in the haplo-diploid case. Therefore, there is a
direct correspondence between Assumption B in the additive case and Assumption A. Moreover, if b ¼ 0, the model
reduces to the case of no interaction between sibs.
3. Partial selfing: selection at an autosomal locus before mating

Consider a single autosomal locus with two alleles, A1 and A2, in an infinite diploid, hermaphrodite population
undergoing discrete, non-overlapping generations. Assume that every individual of the population can reproduce with
single insemination, either by selfing with probability a (0oao1), or by random outcrossing with complementary
probability 1� a. Let P11, P12 and P22 designate the frequencies of the genotypes A1A1, A1A2 and A2A2, respectively,
among the adults of the current generation, after selection but before mating. Following mating, reproduction and
selection according to the fitnesses defined in (4), the genotypic frequencies in the population among the adults of the
next generation are described by the recurrence equations given in Appendix A.2.

3.1. Small differences in strategy parameters

Suppose that allele A1 is rare and that weak selection is applied through Assumption A. Using the fitnesses (4) with
the mixed strategies hij in the form (13) in the recurrence equations for P11, P12 near fixation of A2 (P11, P12ffi0), one
obtains a matrix of linear approximation whose value and derivative at s=0 are given in Appendix A.2. Then, applying
Result 1 and rearranging terms yield

L ¼
1

KðhÞ
½RI!I AðhÞ þ RI!SBðhÞ
½Fd11 þ ð1� F Þd12
; ð26Þ

where

RI!I ¼ 1; RI!S ¼
1þ a
2

; F ¼
a

2� a
: ð27Þ

Here, F is the inbreeding coefficient at equilibrium in the partial selfing model when there is no selection, that is, when
s ¼ 0 (Wright, 1921). This is in agreement with Nagylaki (1997), who confirmed that the above value of F can be used
as an approximation in the case of weak viability selection (see also, e.g., Holsinger et al., 1984; Rocheleau and
Lessard, 2000, for other studies on viability selection in partial selfing models). Moreover, RI-I is the coefficient of
relatedness of an individual I with itself, whereas RI-S is the coefficient of relatedness of an individual I with a sib S,
both calculated in the absence of selection.
Since KðhÞ in (26) is always positive, the increase in frequency of a rare mutant allele, which occurs when L40,

depends upon the product of two factors in agreement with studies of kin selection models without inbreeding
previously made by Uyenoyama and Feldman (1981) and Uyenoyama et al. (1981): a structural factor and a viability-
analogous factor. The structural factor takes into account the changes in fitness produced by the diverse interactions
between sibs, while the viability-analogous factor refers to the adaptive topography proposed by Wright (1942) for
partially inbred populations under weak selection in classical viability models. In the partial selfing model, the
structural factor corresponds to the rate of increase AðhÞ in the fitness of a randomly chosen individual I with respect to
an initial increase in the probability for this individual to use strategy 1, plus the rate of increase BðhÞ that such a
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change in I induces in the fitness of a sib S with which it interacts, weighted by the coefficient of relatedness of I to S,
since this contribution of I to the reproductive success of S can only be inherited through genes transmitted by S. On
the other hand, the viability-analogous factor is given by a weighted average of the increases (or decreases) in the
probability of using strategy 1 induced by the substitution of a gene of type A1, and all genes i.b.d. to this one, for a
gene of type A2 when A1 is rare in the population. These changes for inbred individuals and outbred individuals are d11
and d12, respectively, and are weighted by the inbreeding coefficient F and its complementary 1� F , respectively.
3.2. Small differences in viabilities

This time, we shall use fitnesses (4) with muv in the form (19). Substituting these values into the recurrence equations
and developing these further near fixation of A2 give the same matrix of linear approximation at s ¼ 0 as previously
but a different derivative of this matrix at s ¼ 0 (see Appendix A.2). Applying Result 1 and rearranging terms yield

L ¼ Dð1Þ
II aðh22Þ þ Dð1Þ

IS bðh11Þ þ
Dð3Þ

IS

2
bðh12Þ

" #
ðh11 � h22Þ

þ Dð7Þ
II aðh22Þ þ Dð5Þ

IS bðh11Þ þ Dð7Þ
IS þ

Dð8Þ
IS

2

 !
bðh12Þ

" #
ðh12 � h22Þ; ð28Þ

where

Dð1Þ
II ¼ a

ð2�aÞ ; Dð7Þ
II ¼

2ð1�aÞ
ð2�aÞ ;

Dð1Þ
IS ¼

að1þ3aÞ
4ð2�aÞ ; Dð3Þ

IS ¼ Dð5Þ
IS ¼

að1�aÞ
2ð2�aÞ ;

Dð7Þ
IS ¼

ð1�aÞð2þ2a�a2Þ
2ð2�aÞ2

; Dð8Þ
IS ¼

2ð1�aÞ2

ð2�aÞ2
:

ð29Þ

These are Gillois’ (1965) condensed identity coefficients in the partial selfing model (as shown in Rocheleau, 2003). In
general, for two individuals X and Y, the coefficient Dð1Þ

XY is the probability that the two genes of X be i.b.d. to the two
genes of Y, Dð2Þ

XY the probability that the two genes of X be i.b.d. and the two genes of Y be i.b.d. but the genes of X not
i.b.d. to the genes of Y, Dð3Þ

XY the probability that the two genes of X be i.b.d. to one and only one gene of Y, Dð4Þ
XY the

probability that the two genes of X be i.b.d. and the two genes of Y not i.b.d. to one another and to any gene of X, Dð5Þ
XY

the probability that one and only one gene of X be i.b.d. to the two genes of Y, Dð6Þ
XY the probability that the two genes

of Y be i.b.d. and the two genes of X not i.b.d. to one another and to any gene of Y, Dð7Þ
XY the probability that each gene

of X be i.b.d. to one and only one gene of Y, Dð8Þ
XY the probability that one and only one gene of X be i.b.d. to one and

only one gene of Y, and Dð9Þ
XY the probability that none of the genes of X and Y be i.b.d. to another.

Introducing the coefficient R
x;y
X ;Y!Z defined as the expected fraction of genes in Z that are i.b.d. to x genes in X and y

genes in Y given that x genes in X are i.b.d. (2 if X is inbred or 1 is X is outbred), the above expression can be written
into the form

L ¼ R2;2
I ;I!I aðh22Þ þ R2;2

I ;S!Sbðh11Þ þ R2;1
I ;S!Sbðh12Þ

h i
F ðh11 � h22Þ

þ R1;1
I ;I!I aðh22Þ þ R1;2

I ;S!Sbðh11Þ þ R1;1
I ;S!Sbðh12Þ

h i
ð1� F Þðh12 � h22Þ: ð30Þ

In the case of small differences in viabilities, the number of genes in the sib that are i.b.d. to one (if the individual is
outbred) or two (if the individual is inbred) genes in the individual with which it interacts and its genotypic value come
into play. We may wonder why only the genotypic value h22 of the sib comes into play in the effect of a strategy change
in the individual on its own fitness while it is the only one that does not in the effect of such a change on the fitness of
the sib. Actually, the first effect is obtained by keeping the genotypic value of the sib equal to the reference value h22
and the second by considering changes with respect to this value.
In general, the above coefficients of relatedness given that the individual is inbred or outbred are different. However,

the above expression for L takes the form of the previous one for the case of small differences in strategies, that is,

L ¼ ½RI!I a þ RI!Sb
½F ðh11 � h22Þ þ ð1� F Þðh12 � h22Þ
; ð31Þ

in the case of an additive model with a and b defined in Eqs. (22) and (23), since

R2;2
I ;I!I ¼ R1;1

I ;I!I ¼ 1 ð32Þ
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and

R2;2
I ;S!S þ R2;1

I ;S!S ¼ R1;2
I ;S!S þ R1;1

I ;S!S ¼ RI!S ð33Þ

as shown in Lessard (1992) using a different notation. Notice that a similar form is obtained if allele A1 is dominant,
with a replaced by aðh22Þ and b by bðh11Þ, since then bðh12Þ ¼ bðh11Þ.
4. Partial sib-mating: selection at an autosomal locus before mating

Again, consider a single autosomal locus with alleles A1 and A2 in an infinite diploid population undergoing discrete,
non-overlapping generations. This time, every individual mates and reproduces with a sib chosen at random with
probability b or with an individual chosen at random in the whole population with complementary probability 1�b
(0obo1). The genotypic frequencies after selection but before mating, P11, P12, P22, are defined as in the partial selfing
model. Nonetheless, the genotypic frequencies are no longer sufficient to describe the complete dynamics of the model
from one generation to the next.
Let x1, x2, x3, x4, x5, x6 designate the frequencies of the mating types A1A1�A1A1, A1A1�A1A2, A1A1�A2A2,

A1A2�A1A2, A1A2�A2A2, A2A2�A2A2, respectively, in the previous generation. Then, the genotypic frequencies
among the adults of the current generation after selection according to the fitnesses in (4) can be expressed with respect
to these frequencies and the frequencies of the mating types in the current generation can be described by recurrence
equations given in Appendix A.3.
Notice that, with selection taking place before mating, the contribution of a mated couple in mated sibs in the next

generation is proportional to the mean fitness of its female offspring, assuming that all females are fertilized. If the
mated couple is of type A1A2�A1A2, for instance, the mean fitness of the offspring, male or female, is
ð1=4Þf 11:12�12 þ ð1=2Þf 12:12�12 þ ð1=4Þf 22:12�12, represented by �f 4, and the contribution in mated sibs of genotype
A1A2, for instance, will be proportional to �f 4 times the square of ð1=2Þf 12:12�12= �f 4, which gives ð1=4Þf 212:12�12=

�f 4. On
the other hand, the contribution in randomly mated individuals, male or female, is proportional to the mean fitness of
the offspring.
Developing the recurrence equations near fixation of allele A2 (x1, x2,y,x5ffi0), the matrix of linear approximation

and its derivative at s ¼ 0 can easily be obtained under the Assumption A or B (see Appendix A.3). We get the same
results as previously but with the coefficients

RI!I ¼ 1; RI!S ¼
1

2� b
; F ¼

b
4� 3b

; ð34Þ

in the case of Assumption A, and the coefficients

Dð1Þ
II ¼

b
ð4� 3bÞ

;

Dð7Þ
II ¼

4ð1� bÞ
ð4� 3bÞ

;

Dð1Þ
IS ¼

bð2þ bÞ
ð2� bÞð4� bÞð4� 3bÞ

;

Dð3Þ
IS ¼ Dð5Þ

IS ¼
4bð1� bÞ

ð2� bÞð4� bÞð4� 3bÞ
;

Dð7Þ
IS ¼

8ð1� bÞð32� 24bþ 2b2 � b3Þ

ð2� bÞð4� bÞð4� 3bÞ2ð8þ bÞ
;

Dð8Þ
IS ¼

64ð1� bÞ2ð8� 4b� b2Þ

ð2� bÞð4� bÞð4� 3bÞ2ð8þ bÞ
; ð35Þ

in the case of Assumption B. The coefficient F is the inbreeding coefficient at equilibrium in the partial
sib-mating model without selection (see, e.g., Karlin, 1968), and similarly all the other coefficients have
the same meanings as previously but in the context of inbreeding caused par partial sib-mating (as checked in
Rocheleau, 2003).
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5. Partial sib-mating: selection at an autosomal locus after mating

In the case of partial sib-mating with selection after mating but before reproduction, we have the recurrence
equations given in Appendix A.4. This time, the contribution of a mated couple in mated sibs in the next generation is
proportional to the square of the mean fitness of its offspring. If the mated couple is of type A1A2�A1A2, for instance,
its contribution in mated sibs of genotype A1A2 will be proportional to �f

2

4 times the square of ð1=2Þf 12:12�12=
�f 4, which

gives ð1=4Þf 212:12�12. On the other hand, its contribution in randomly mated individuals is proportional to the mean
fitness of its offspring as in the case of selection before mating.
5.1. Small differences in strategy parameters

Under Assumption A, we get

L ¼
1

KðhÞ
½ðRI!I þ RI!IM ÞAðhÞ þ ðRI!S þ RI!SM ÞBðhÞ
½Fd11 þ ð1� F Þd12
; ð36Þ

where F, RI!I , RI!S are the same as previously and

RI!IM ¼ RI!SM ¼
b

2� b
: ð37Þ

All these coefficients represent coefficients of relatedness of an individual I to an individual interacting with I;
subscript IM stands for its mate, S for one of its sibs and SM for the mate of one of its sibs.
The difference between the structural factors in the case of selection after mating versus those in the case of selection

before mating stems from the fact that an individual does not reproduce in the former case not only when it does not
survive but also when its mate does not survive and vice versa; then, selection will affect not only the reproductive
success of each individual separately but also the reproductive success of its mate, which mate can bear some genetical
relationship with the individual, possibly being one of its sibs. In addition, an individual will influence not only the
reproductive success of the sib with which it interacts and to which it is related, but also the reproductive success of the
mate of that sib, which mate can be genetically related to the individual, possibly being another of its sibs.
Besides the coefficients of relatedness to individuals alone weighting the effects of selection before mating, the effects

of selection after mating are weighted by coefficients of relatedness to their mates. Actually, the coefficient of AðhÞ

corresponds to twice the fraction of genes in an individual and its mate that are i.b.d. to genes in the individual, which
can be represented by RI!I ;IM , and similarly, the coefficient of BðhÞ is twice the fraction of genes in a sib and its mate
that are i.b.d. to genes in the individual, represented by RI!S;SM . These can be viewed as coefficients of relatedness of
an individual to mated couples.
5.2. Small differences in viabilities

Under Assumption B, we have

L ¼

2
2�b

� �
aðh22Þ þ

2ð1þbþb2Þ
ð2�bÞð4�bÞ

� �
bðh11Þ

þ
ð1�bÞð2þbÞ2

2ð2�bÞð4�bÞ

� �
bðh12Þ þ

bð1�bÞ
2ð4�bÞ

� �
bðh22Þ

2
64

3
75F ðh11 � h22Þ

þ

2
2�b

� �
aðh22Þ þ

bð8þ4bþb2Þ
8ð2�bÞð4�bÞ

� �
bðh11Þ

þ
ð8þb2�b3Þ
2ð2�bÞð4�bÞ

� �
bðh12Þ þ

bð4�3bÞ
8ð2�bÞ

� �
bðh22Þ

2
64

3
75

�ð1� F Þðh12 � h22Þ: ð38Þ

This takes the form

L ¼

R2;2
I ;I!I þ R2;2

I ;I!IM

� �
aðh22Þ þ R2;2

I ;S!S þ R2;2
I ;S!SM

� �
bðh11Þ

þ R2;1
I ;S!S þ R2;1

I ;S!SM

� �
bðh12Þ þ R2;0

I ;S!SM

� �
bðh22Þ

2
64

3
75F ðh11 � h22Þ
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þ

R1;1
I ;I!I þ R1;1

I ;I!IM

� �
aðh22Þ þ R1;2

I ;S!S þ R1;2
I ;S!SM

� �
bðh11Þ

þ R1;1
I ;S!S þ R1;1

I ;S!SM

� �
bðh12Þ þ R1;0

I ;S!SM

� �
bðh22Þ

2
64

3
75ð1� F Þðh12 � h22Þ; ð39Þ

where

R2;2
I ;I!IM ¼ b Dð1Þ

IS þ
1

2
Dð3Þ

IS

� �
;

R2;2
I ;S!SM ¼ b2 Dð1Þ

IS þ
3

16
Dð3Þ

IS þ
3

16
Dð5Þ

IS þ
1

16
Dð7Þ

IS þ
1

32
Dð8Þ

IS

� �
;

R2;1
I ;S!SM ¼ b2

3

16
Dð3Þ

IS þ
3

16
Dð5Þ

IS þ
1

8
Dð7Þ

IS þ
1

16
Dð8Þ

IS

� �
;

R2;0
I ;S!SM ¼ b2

1

16
Dð7Þ

IS þ
1

32
Dð8Þ

IS

� �
;

R1;1
I ;I!IM ¼ b Dð5Þ

IS þ Dð7Þ
IS þ

1

2
Dð8Þ

IS

� �
þ ð1� F Þ;

R1;2
I ;S!SM ¼ b2

3

16
Dð3Þ

IS þ
3

16
Dð5Þ

IS þ
1

8
Dð7Þ

IS þ
1

16
Dð8Þ

IS

� �
;

R1;1
I ;S!SM ¼ b2 Dð2Þ

IS þ
1

4
Dð3Þ

IS þ
5

8
Dð4Þ

IS þ
1

4
Dð5Þ

IS þ
5

8
Dð6Þ

IS

�

þ
1

4
Dð7Þ

IS þ
1

4
Dð8Þ

IS þ
1

4
Dð9Þ

IS

�

þ bð1� bÞ F2 þ
5

4
F ð1� F Þ þ

1

4
ð1� F Þ

2

� �
;

R1;0
I ;S!SM ¼ b2

1

16
Dð3Þ

IS þ
1

8
Dð4Þ

IS þ
1

16
Dð5Þ

IS

�

þ
1

8
Dð6Þ

IS þ
1

8
Dð7Þ

IS þ
3

16
Dð8Þ

IS þ
1

4
Dð9Þ

IS

�

þ bð1� bÞ
1

4
F ð1� F Þ þ

1

4
ð1� F Þ

2

� �
ð40Þ

using the coefficients in Eq. (35) and

Dð2Þ
IS ¼

bð1� bÞð32� 24bþ 2b2 � b3Þ

ð2� bÞð4� bÞð4� 3bÞ2ð8þ bÞ
;

Dð4Þ
IS ¼ Dð6Þ

IS ¼
4bð1� bÞ2ð8� 4b� b2Þ

ð2� bÞð4� bÞð4� 3bÞ2ð8þ bÞ
;

Dð9Þ
IS ¼

16ð1� bÞ3

ð4� bÞð4� 3bÞ2
: ð41Þ

The above expressions are obtained by conditioning on the event that the mate of S (or I) is a sib (probability b) and its
parents are sibs (probability b) or not (probability 1� b). To the coefficients of relatedness in Eq. (30) must be added
the corresponding coefficients for mates when selection occurs after mating. This explain the presence of terms b(h22)
with non-null coefficients in Eq. (39).
When the model is additive, Eq. (39) reduces to

L ¼ ½ðRI!I þ RI!IMÞa þ ðRI!S þ RI!SM Þb


�½F ðh11 � h22Þ þ ð1� F Þðh12 � h22Þ
; ð42Þ

using Eqs. (22) and (23), which is in the same form as Eq. (36).
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6. Partial sib-mating: selection at a sex-linked locus after mating

Now, consider a sex-linked locus (or equivalently, a haplo-diploid population) for which females are diploid while
males are haploid. The frequencies of genotypes A1A1, A1A2 and A2A2 among females in the current generation after
selection are written Q11, Q12, Q22, respectively, and the corresponding frequencies for genotypes A1 and A2 among
males P1 and P2, respectively. Let x1, x2, x3, x4, x5, x6 be the frequencies of the mating types A1A1� A1, A1A2 � A1,
A2A2 � A1, A1A1 � A2, A1A2 � A2, A2A2 � A2, respectively, in the prevous generation. Using the fitnesses given in
Eqs. (10) and (11), the genotypic frequencies among females and among males, respectively, in the next generation
after selection are given by the recurrence equations in Appendix A.5.

6.1. Small differences in strategy parameters

Under Assumption A, we get the result

L ¼
1

KðhÞ

RI!I ;IMAðhÞ

þð1
2
RI!S;SM þ 1

2
RI!B;BMÞBðhÞ

� �
½Fd11 þ ð1� F Þd12
 þ

1

KðhÞ

RJ!J ;JMAðhÞ

þð1
2
RJ!S;SM þ 1

2
RJ!B;BMÞBðhÞ

� �
d1;

ð43Þ

where

RX!Y ;YM ¼
pðY Þ

3
RX!Y þ

pðYMÞ

3
RX!YM ð44Þ

with pðY Þ and pðYMÞ denoting the ploidy of Y and YM, respectively (1 if haploid, 2 if diploid) and

RI!I ¼ RJ!J ¼ 1; RI!IM ¼
b

2�b ; RJ!JM ¼
b

4�3b ; F ¼
b

4�3b ;

RI!S ¼
3�b

2ð2�bÞ ; RJ!S ¼ 1
4�3b ; RI!SM ¼

b
2�b ; RJ!SM ¼

bð2�bÞ
4�3b ;

RI!B ¼ 1
2�b ; RJ!B ¼

2�b
4�3b ; RI!BM ¼

bð3�bÞ
2ð2�bÞ ; RJ!BM ¼

b
4�3b :

ð45Þ

Here I stands for a female, J for a male, S for a sister, B for a brother and YM for the mate of Y. The interpretation of
the coefficients involved in the sex-linked case is analogous to the one in the autosomal case: RX!Y ;YM represents the
fraction of genes in an individual Y and its mate YM that are i.b.d. to genes in an individual X. Of course, at a sex-
linked locus with diploid females and haploid males, this is 2/3 the fraction of genes in the female of the couple that are
i.b.d. to genes in X plus 1/3 the corresponding fraction in the male of the couple. The fraction 1/2 which appears in the
B(h) terms simply reflects the implicit hypothesis of equal numbers in females and males at each generation, so that half
of the interactions are produced by females and the other half by males.
Surprisingly, Eq. (43) can be written into the simpler form

L ¼
ð4� bÞ

ð2� bÞKðhÞ
AðhÞ þ

1þ b
2

� �
BðhÞ

� �

� F ðd11 þ d1Þ þ ð1� F Þ d12 þ
d1

2

� �� �
; ð46Þ

which is reminiscent of Eq. (26).

6.2. Small differences in viabilities

Under Assumption B, we have

L ¼
R2;2

I ;I!I ;IM ðaðh22Þ þ aðh2ÞÞ þ R2;2
I ;S!S;SMbðh11Þ þ R2;1

I ;S!S;SMbðh12Þ

þR2;1
I ;B!B;BMbðh1Þ þ R2;0

I ;B!B;BMbðh2Þ

2
4

3
5F ðh11 � h22Þ

2

þ
R1;1

I ;I!I ;IMðaðh22Þ þ aðh2ÞÞ þ R1;2
I ;S!S;SMbðh11Þ þ R1;1

I ;S!S;SMbðh12Þ

þR1;0
I ;S!S;SMbðh22Þ þ R1;1

I ;B!B;BMbðh1Þ þ R1;0
I ;B!B;BMbðh2Þ

2
4

3
5 ð1� F Þðh12 � h22Þ

2

þ
R1;1

J ;J!J;JM ðaðh22Þ þ aðh2ÞÞ þ R1;2
J;S!S;SMbðh11Þ þ R1;1

J ;S!S;SMbðh12Þ

þR1;0
J;S!S;SMbðh22Þ þ R1;1

J;B!B;BMbðh1Þ þ R1;0
J ;B!B;BMbðh2Þ

2
4

3
5 ðh1 � h2Þ

2
; ð47Þ
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where F is the same as previously and

R2;2
I ;I!I ;IM ¼ R1;1

I ;I!I ;IM ¼
4�b

3ð2�bÞ ; R2;2
I ;S!S;SM ¼

4þbþb2

6ð2�bÞ ;

R2;1
I ;S!S;SM ¼

ð1�bÞð2þbÞ
6ð2�bÞ ; R2;1

I ;B!B;BM ¼
ð1þbÞð2þbÞ
6ð2�bÞ ;

R2;0
I ;B!B;BM ¼

bð1�bÞ
2ð2�bÞ ; R1;2

I ;S!S;SM ¼
bð4þbÞ
24ð2�bÞ ;

R1;1
I ;S!S;SM ¼

12�4bþb2

12ð2�bÞ ; R1;0
I ;S!S;SM ¼

bð4�3bÞ
24ð2�bÞ ;

R1;1
I ;B!B;BM ¼

2þbþb2

6ð2�bÞ ; R1;0
I ;B!B;BM ¼

bð5�3bÞ
6ð2�bÞ ;

R1;1
J;J!J ;JM ¼

4�b
3ð4�3bÞ ; R1;2

J ;S!S;SM ¼
bð4þbþb2Þ

6ð2�bÞð4�3bÞ ;

R1;1
J;S!S;SM ¼

ð1�bÞð4þ2bþb2Þ
3ð2�bÞð4�3bÞ ; R1;0

J ;S!S;SM ¼
bð1�bÞ
6ð2�bÞ ;

R1;1
J;B!B;BM ¼

4�2bþb2

3ð2�bÞð4�3bÞ ; R1;0
J ;B!B;BM ¼

2bð1�bÞ
3ð2�bÞð4�3bÞ :

ð48Þ

Here, R
x;y
X ;Y!Z;W represents the fraction of genes in Z and W that are i.b.d. to x genes in X and y genes in Y given that x

genes in X are i.b.d. (2 if X is diploid and inbred or 1 if X is diploid and outbred or haploid). If the model is additive,
then Eq. (47) is analogous in structure to Eq. (43) and takes the simple form

L ¼
ð4� bÞ
ð2� bÞ

a þ
1þ b
2

� �
b

� �

� F ðh11 � h22 þ h1 � h2Þ þ ð1� F Þ h12 � h22 þ
h1 � h2

2

� �� �
; ð49Þ

where a and b are defined in Eqs. (22) and (23).
7. Models for altruism

Suppose that strategy 1 corresponds to an altruistic behaviour in a standard context of a kin selection model. Then it
seems natural to assume the following inequalities:

m11om21; m12om22 ð50Þ

and

m114m12; m214m22: ð51Þ

These inequalities clearly imply that AðhÞo0 and BðhÞ40. Thus, following, e.g., Karlin and Matessi (1983), �A(h) can
be viewed as the cost for an individual who increases its probability of performing an altruistic act (donor) and B(h) as
the benefit for an individual who profits from such an increase in a sib interacting with it (recipient). Then, under
Assumption A, it is possible to restate our results in this particular context. Table 1 schematically gives conditions on
the proportion g of inbred matings (the probability of selfing or sib-mating each generation) to have protection ðL40Þ
of a rare mutant allele A1 in all the partial inbreeding models considered. These are classified according to ranges of
values for the cost–benefit ratio

r ¼ �
AðhÞ

BðhÞ
ð52Þ

and the signs of strategy differences D11 and D12 as defined below.
For the partial selfing model at an autosomal locus,

g ¼ a;D11 ¼ d11; D12 ¼ d12;

g0 ¼ 2r � 1 and g1 ¼
2D12

2D12 � D11
: ð53Þ

For the partial sib-mating model with selection at an autosomal locus before selection,

g ¼ b; D11 ¼ d11; D12 ¼ d12;

g0 ¼
2r � 1

r
and g1 ¼

4D12

4D12 � D11
: ð54Þ
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Table 1

Conditions for protection of a rare mutant allele A1 in the partial inbreeding models under Assumption A (see text for definitions of D11, D12, g0 and
g1)

Signs of strategy differences Cost–benefit ratio

rp1=2 1=2oro1 rX1

D1140, D1240 All g g4g0 No g
D11o0, D12o0 No g gog0 All g
D11o0, D1240 gog1 minðg0; g1Þogomaxðg0; g1Þ g4g1
D1140, D12o0 g4g1 gominðg0; g1Þ or g4maxðg0; g1Þ gog1
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For the partial sib-mating model with selection at an autosomal locus after mating,

g ¼ b; D11 ¼ d11; D12 ¼ d12;

g0 ¼ 2r � 1 and g1 ¼
4D12

4D12 � D11
: ð55Þ

For the partial sib-mating model with selection at a sex-linked locus after mating,

g ¼ b; D11 ¼
1

2
d11 þ

1

2
d1;

D12 ¼
2

3
d12 þ

1

3
d1; g0 ¼ 2r � 1

and g1 ¼
3D12

3D12 � D11
: ð56Þ

Notice that the threshold level g0 for the proportion of inbred matings increases as the cost–benefit ratio r increases,
taking the value 0 when r ¼ 1

2
and 1 when r ¼ 1, while the threshold level g1 increases as the ratio �D12=D11 increases,

from 0 to 1 as this ratio goes from 0 to infinity.
The conditions in Table 1 ensure that the structural and viability-analogous factors in the expression of L are of the

same sign. As g increases, increasing the value of the inbreeding coefficient F and the weight of the B(h) term compared
to that of the A(h) term, the sign of the structural factor passes from the sign of A(h) (negative) to the sign of B(h)
(positive), while the sign of the viability-analogous factor passes from the sign of D12 to the sign of D11, these signs
being positive if allele A1 codes for more altruism in the heterozygote A1A2 and the homozygote A1A1, respectively,
with respect to the homozygote A2A2, and negative otherwise. From Table 1, we conclude that more inbreeding
favours the evolution of altruism when D12 and D11 are of the same sign, which is the case if there is dominance of one
of the alleles or no dominance at all, but not necessarily when D12 and D11 are of opposite signs, in which case the
protection of A1 requires an intermediate value between 0 and 1 for the level of inbred matings if there is
overdominance but an extreme value either close to 0 or 1 if there is underdominance.
Analogous results can be obtained under Assumption B in the case of an additive model. Then, the cost–benefit ratio

becomes r ¼ �a=b with a and b defined in Eqs. (22) and (23) while the parameters Dij are now defined using the
differences hij�h22 and hi�h2 instead of dij and di for all i and j.
Moreover, to get conditions for the protection of allele A2, it suffices to permute alleles A1 and A2. Of course, the

protection of both alleles means a protected polymorphism.
8. Discussion

We have studied family specific fitnesses based on mixed strategies following Michod (1980). Here, a mixed strategy
refers to a probabilistic choice among a set of pure strategies or behaviours adopted by an individual when interacting
with another individual. In this paper, we have restricted ourselves to two possible pure strategies and to pairwise
interactions between individuals within the same sibship. Despite the fact that the fitness of an individual is determined
both by the genotype of the individual and the genotype of one of its sibs chosen at random, the whole distribution of
such pairs of genotypes is not necessary to obtain an expression for such a fitness: it suffices to condition on the mating
type of the parents (see, e.g., Michod, 1982, for an introduction to kin selection theory). Detailed expressions in the
diploid case as well as their analogues in the haplo-diploid case are provided in Section 2.
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Two hypotheses of weak selection, bearing either on the strategy parameters or the fitness parameters, have been
considered, in order to apply a formula ascertained in Lessard and Rocheleau (2003) for the change in frequency of a
rare mutant allele. In that paper, inbreeding models with partial selfing in diploid populations or partial sib-mating in
diploid or haplo-diploid populations, all with constant selective values, were studied and the results interpreted from a
kin selection perspective, although there were no fitness interactions as such between kin. In the present paper, we have
considered pairwise interactions between kin affecting fitness, either before mating or after mating, to study in details
the factors and coefficients that determine the initial fate of a mutant allele as reported in Sections 3–6.
Under the hypothesis of small differences in strategy parameters, or small differences in fitness parameters but then

assuming an additive model, it has been shown that the rate of change in the frequency of a mutant allele, denoted by
L, can be expressed as a product of two factors: a structural factor and a viability-analogous factor (named so
following studies for models with random mating by Uyenoyama and Feldman (1981), and Uyenoyama et al., 1981).
This is in agreement with Uyenoyama (1984) at least in the case of the additive model with partial sib-mating. As we
have seen, this particular form of L in this case is a result of special relationships between identity coefficients given in
Eqs. (32) and (33). Such relationships hold also in models with partial selfing, insemination being single or multiple, as
shown in Lessard (1992), but apparently not in such models with female assemblies as those considered in Uyenoyama
(1984). This could explained why Michod and Hamilton’s (1980) covariance ratio to measure relatedness may depend
in this case on gene frequency, selfing proportion and the dominance relationships among genotypes. This could also
explain why a higher level of selfing may not necessarily favour in such a case the evolution of a mutant allele coding
for altruism even in the absence of overdominance or underdominance.
Under Assumption A of small differences in genotypic values around some mixed strategy h, the genotypic fitnesses

within families are tantamount to fitnesses in additive kin selection models with additive increments or decrements A(h)
and B(h) as defined in Eq. (16). In the particular context of altruism, the coefficient �A(h) can be viewed as the cost of
performing an altruistic act incurred by the donor and the coefficient B(h) as the benefit bestowed to the recipient of
such an altruistic act. In this context, we have deduced explicit restrictions on the proportion of inbred matings, g, for
protection of a mutant allele A1 segregating with a resident allele A2, which can be written in terms of the strategy
differences D11 and D12 for the homozygote A1A1 and the heterozygote A1A2, respectively, with respect to the
homozygote A2A2, which are present in the viability-analogous factor, and the cost–benefit ratio r ¼ �AðhÞ=BðhÞ,
which comes from the structural factor.
In view of Table 1, we can assess that a small cost–benefit ratio (actually, rp1=2) tends to favour the evolution of

altruism while a large cost–benefit ratio ðrX1Þ tends to disfavour such an evolution, although this rule is not of general
validity. For instance, in completely random mating populations ðg ¼ 0Þ, a small cost–benefit ratio will lead to an
increase in the frequency of a rare mutant allele if and only if the mutant heterozygote performs more altruism than the
resident homozygote ðD1240Þ. However, the condition D1240 is no longer sufficient (nor necessary) to maintain a rare
allele A1 when there is inbreeding. In fact, if the mutant homozygote performs less altruism than the resident
homozygote ðD11o0Þ, the rare mutant allele cannot be maintained unless the proportion of inbred matings in the
population is lower than a given threshold that depends on the model considered ðgog1Þ, and this threshold diminishes
as D12 gets smaller compared to D11 in absolute value. On the other hand, when D12o0, a mutant homozygote
enhancing altruism compared to the resident homozygote ðD1140Þ can guarantee the protection of the mutant allele
A1 as long as the proportion of inbred matings is sufficiently high ðg4g1Þ.
Here, as in classical viability models, inbreeding acts as an evolutionary force which can overcome the effects of

differential change in strategy by producing more or less homozygotes, depending upon the proportion of inbred
matings in the population. In order to overcome the negative effect induced by the mutant homozygote performing less
altruism than the resident homozygote, inbreeding paradoxically might act as if it was favouring the mutant
heterozygote exhibiting overdominance by producing just enough homozygous individuals. This is achieved by keeping
the proportion of inbred matings relatively small enough. In the case of underdominance, on the contrary, the
proportion of inbred matings must be kept high enough.
A more interesting case is provided by intermediate values for the cost–benefit ratio ð1=2oro1Þ, since then

restrictions on the proportion of inbred matings g to have protection involve not only a threshold g1 depending on
strategy differences, but also a threshold g0 depending on r, both depending on the model considered. These
restrictions can lead to various different conditions under which a rare mutant allele A1 can be protected. To illustrate
this, consider the case of underdominance where the mutant homozygote has a slight advantage over the resident
homozygote (D11 positive, but near 0, and D12o0). Then, with a cost–benefit ratio barely higher than 1

2, we have
min(g0, g1)=g1 close to 0 and max(g0, g1)=g0 close to 1, and the mutant allele is protected for either very small values
of g or very large values of g. In the case of overdominance, it is exactly the contrary.
As expected, the coefficients of A(h) and B(h) in the structural factors for the partial inbreeding models considered

with selection before mating are coefficients of relatedness between individuals as defined in Michod and Hamilton
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(1980). Under weak selection, the coefficient of relatedness of an individual X to an individual Y reduces to a pedigree
index given by the expected fraction of genes in Y i.b.d. to genes in X. With selection after mating, the unit of selection
becomes the mated couple and the coefficients that come into play measure relatedness between individuals and mated
couples, such a coefficient for an individual X to a couple made of an individual Y and its mate YM being defined as
the expected fraction of genes in Y and YM i.b.d. to genes in X. This corresponds to a weighted combination of the
coefficients of relatedness of X to Y and X to YM, the weights being the relative fractions of genes carried by Y and
YM, respectively.
In a previous paper (Lessard and Rocheleau, 2003), we studied partially inbred populations evolving under weak

selection but without interaction between kin. In that paper, we proposed an approximate adaptive topography to
predict the change in frequency of a mutant allele, which was quantitatively different from the one proposed by Wright
(1942) in the case of partial sib-mating, and even qualitatively different in the case of selection at a sex-linked locus.
Pollak (1995) had already noticed such a discrepancy with Wright’s formula in the partial sib-mating model at an
autosomal locus and provided an explanation based on the positive correlation between the frequencies of the mutant
allele in two mates under this type of mating. We confirmed this finding and showed that the disagreement with
Wright’s formula was even more important in the partial sib-mating model at a sex-linked locus (or equivalently,
haplo-diploid model). Because of the asymmetry induced by a sex-linked model, two regression coefficients for the
frequency of the mutant allele in one mate on the corresponding frequency in the other mate had to be used instead of
a correlation coefficient and the effect on the rate of change in the frequency of the mutant allele could not be reduced
to a positive multiplicative factor. But actually, the models of partial sib-mating that were considered both in Pollak
(1995) and Lessard and Rocheleau (2003) are in the class of models with selection occurring after mating as pointed
out by Caballero (1996). Therefore they do not fall in the range of application of Wright’s formula. Although
interactions between kin are not apparent, they do occur in mated couples whose reproduction depends on the
viabilities of both mates. We are in a context of kin selection (Hamilton, 1964) and the results can be interpreted in
terms of transfers of fitness changes from actors to beneficiaries weighted by coefficients of relatedness. Of course, this
is also the case when the viabilities themselves depend on sib interactions as in the present paper.
Under Assumption B of small differences in viabilities according to the pure strategies chosen by interacting sibs, the

rate of change L in the frequency of a mutant allele can be expressed as a sum of products of structural and viability-
analogous factors according to the number of genes i.b.d. in a given individual at the locus considered, and the number
of genes itself at a sex-linked locus, 1 or 2. Such a sum does not generally reduce to a single product unless the
viabilities follow the additive model. In each product, the viability-analogous factor depends only on strategy changes
following the substitution of one mutant gene, and all genes i.b.d. to this one, for a gene of the resident type, but it is
weighted by the inbreeding coefficient F, if the individual is diploid and inbred, or its complementary 1�F, if the
individual is diploid and outbred, compared to 1 if the individual is haploid. On the other hand, the structural factor is
a weighted sum of rates of increase in fitness in the individual and in the sib with which it interacts with respect to an
initial positive change in the strategy of the individual. These rates depend on the genotype of the sib and their weights
can be viewed as coefficients of relatedness conditional on the number of genes i.b.d. in the individual that extend
coefficients introduced in Lessard (1992). In the case of selection before mating, these are expected fractions of genes in
the sib (or the individual) that are i.b.d. to given numbers of genes in the individual and the sib (or the individual),
while in the case of selection after mating it is the expected fractions of genes in the sib (or the individual) and its
mate. These definitions may seem tautological, but we have to remind ourselves that the genes in the sib are not
necessarily i.b.d.
Appendix A

A.1. Notation

Under Assumption A:

a22 ¼ a2 ¼
AðhÞ

KðhÞ
; bij ¼ bi ¼

BðhÞ

KðhÞ
; dij ¼ dij ; di ¼ di:

Under Assumption B:

a22 ¼ aðh22Þ; bij ¼ bðhijÞ; dij ¼ hij � h22;

a2 ¼ aðh2Þ; bi ¼ bðhiÞ; di ¼ hi � h2:
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A.2. Partial selfing: selection at an autosomal locus before mating
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A.3. Partial sib-mating: selection at an autosomal locus before mating
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A.4. Partial sib-mating: selection at an autosomal locus after mating
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A.5. Partial sib-mating: selection at a sex-linked locus after mating
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2ðd11 þ d1Þða22 þ a2Þ þ ðd11 þ d12 þ d1Þðb11 þ b1Þ½ 
;

M22

�

ð0Þ ¼
b
16

2ðd12 þ d1Þða22 þ a2Þ þ ðd11 þ d12 þ d1Þðb12 þ b1Þ½ 
;

M24

�

ð0Þ ¼
b
2
ðd12 þ d1Þða22 þ a2 þ b12 þ b1Þ½ 
;

M25

�

ð0Þ ¼
b
16

2ðd12 þ d1Þða22 þ a2Þ þ ðd12 þ d1Þðb12 þ b1Þ½ 
;

M31

�

ð0Þ ¼
ð1� bÞ

2
d1ða22 þ a2Þ þ ðd11 þ d1Þb1½ 
;

M32

�

ð0Þ ¼
ð1� bÞ

8
2d1ða22 þ a2Þ þ ðd11 þ d12 þ d1Þb1½ 
;
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M34

�

ð0Þ ¼
ð1� bÞ

2
d1ða22 þ a2Þ þ ðd12 þ d1Þb1½ 
;

M35

�

ð0Þ ¼
ð1� bÞ

8
2d1ða22 þ a2Þ þ ðd12 þ d1Þb1½ 
 þ

b
16

2d1ða22 þ a2Þ þ ðd12 þ d1Þðb22 þ b1Þ½ 
;

M41

�

ð0Þ ¼
ð1� bÞ

2
d11ða22 þ a2Þ þ ðd11 þ d1Þb1½ 
;

M42

�

ð0Þ ¼
ð1� bÞ

8
2d11ða22 þ a2Þ þ ðd11 þ d12 þ d1Þb11½ 
 þ

b
16

2d11ða22 þ a2Þ þ ðd11 þ d12 þ d1Þðb11 þ b2Þ½ 
;

M53

�

ð0Þ ¼
ð1� bÞ

2
d12ða22 þ a2 þ b12Þ½ 
 þ

b
2
d12ða22 þ a2 þ b12 þ b2Þ½ 
;

M54

�

ð0Þ ¼
ð1� bÞ

2
d12ða22 þ a2Þ þ ðd12 þ d1Þb12½ 
;

M55

�

ð0Þ ¼
ð1� bÞ

8
2d12ða22 þ a2Þ þ ðd12 þ d1Þb12½ 
 þ

b
16

2d12ða22 þ a2Þ þ ðd12 þ d1Þðb12 þ b2Þ½ 
:
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