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Abstract

For mixed strategies in finite populations, long-term stability is defined with respect to the probability of fixation of a mutant.

Under weak selection, necessary and sufficient conditions are obtained using a diffusion approximation of the Wright–Fisher model

or exact solutions for the Moran model. These differ from the usual ESS conditions if the strategies affect fertility instead of

viability, leading to a game matrix depending on the population size, or if the mutant mixed strategy uses a new pure strategy. In this

case, the mutant deviation must not exceed some threshold value depending on the population size. In a diploid population, long-

term stability may not occur unless there is partial dominance. In the case of sex allocation, continuous stability of an even sex ratio

is ascertained. If sex allocation is random, an evolutionary decrease of the variance is predicted.

r 2005 Published by Elsevier Inc.
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1. Introduction

Conditions for evolutionary stability were originally
given by Maynard Smith and Price (1973) in the
framework of an infinite population. The first attempts
to incorporate the effect of a finite number of individuals
compared the fitness of a mutant to the fitness of a non-
mutant taking into account the possible interactions
between individuals given the exact composition of the
population or in simulating such populations till fixation
and looking at the outcome (Riley, 1979; Taylor and
Sauer, 1980; Schaffer, 1988; Maynard Smith, 1988; Fogel
et al., 1998). More recently, Rousset and Billiard (2000)
and Nowak et al. (2004) proposed explicit conditions
based on the probability of fixation of a mutant and this
raises new problems and challenges.

‘‘Roughly, an ESS is a strategy such that, if most of
the members of a population adopt it, there is no
e front matter r 2005 Published by Elsevier Inc.
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‘‘mutant’’ strategy that would give higher reproductive
fitness’’. It is in these terms that an evolutionarily stable
strategy was described for the first time in a context of
animal conflict (Maynard Smith and Price, 1973).
Assuming that the increase in frequency of a strategy
in an infinite population is proportional to its fitness, a
population fixed at an ESS, say I, should be stable at
least locally as stated by Maynard Smith (1974): ‘‘In a
population consisting entirely of individuals adopting
strategy I, rare variants arising by mutation which
adopted a different strategy J would not increase in
frequency, and hence the population would be stable
under mutation and selection’’. Actually, if n pure
strategies are segregating in the population and the
game is linear, a population state corresponding to an
ESS is locally stable, globally stable in the case of a
polymorphic state, in a continuous-time model known
as the replicator dynamics which can be viewed as an
approximation of a discrete-time model with weak
selection (Taylor and Jonker, 1978; Hofbauer et al.,
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1979; Zeeman, 1980; see, e.g., Hofbauer and Sigmund,
1988, 2003, for more details). However, in the biological
literature, an ESS has usually been understood as a
strategy that cannot be invaded by any mutant once
fixed in the population.

Maynard Smith (1981, 1982) expressed early his
concerns about the evolution to an ESS, particularly
in view of the genetic constraints inherent to diploid
populations. This is closely related to the question of
long-term stability. One of the first steps in this direction
was made by Eshel and Motro (1981) (see also Eshel,
1983, 1996) who introduced the concept of continuous
stability for a strategy given by a real parameter: ‘‘An
ESS will be called a continuously stable strategy (CSS)
if, whenever the entire population has a strategy which is
close enough to it, there will be a selective advantage to
some individual strategies which are closer to the CSS’’.
This evolutionary property alone is now known as
convergence stability (Christiansen, 1991) and is often
easier to show than the stability of the putative ESS
because a local linear analysis is often sufficient to
ascertain the former property but not necessarily the
latter.

A concept analogous to continuous stability but
applicable to exact genetic models and first introduced
in a context of sex ratio evolution has been termed
evolutionary genetic stability, EGS (Eshel and Feldman,
1982, 1984). The main characteristic of this property,
which is akin to convergence stability, is that a mutant
allele invades a population at an equilibrium close
enough to a phenotypic state corresponding to an ESS if
and only if it brings the population state closer to the
ESS at least initially after enough generations have
passed. The expectation is that the population will
eventually reach an equilibrium closer to the ESS before
a new mutant comes in and invades the population.
Then, there would be convergence to an ESS through a
succession of equilibria as new alleles are introduced.
Such an evolutionary scheme was proved in the case of a
linear game based on two-dimensional mixed strategies
determined at a single multiallele locus in a diploid
population (Lessard, 1984) and at least suggested by a
detailed study of the equilibrium structures for a wide
range of one-locus multiallele sex ratio determination
models (Karlin and Lessard, 1986; see also Lessard,
1989, 1990a, b, 2002, for some further results). This is in
support of what has been called the streetcar theory of
evolution in a context of multilocus models, which
claims that evolution proceeds by successive steps as
new mutants invade the population one at a time until a
final stop corresponding to a phenotypic equilibrium is
reached and remains stable against any mutation within
the same genetic structure (Hammerstein, 1996). In the
framework of constant viability selection, the final stop
is expected to correspond to the largest possible viability
value (Matessi and Di Pasquale, 1996), in agreement
with Fisher’s (1930) fundamental theorem of natural
selection commonly, but falsely (see, e.g, Ewens, 1989;
Lessard, 1997, and references therein), interpreted as the
increase of the mean fitness. In a more general ecological
setting, the subject is known as adaptive dynamics.

The main problem with long-term evolution in an
infinite population is that the population may not reach
an equilibrium closer to a putative ESS following
invasion by a mutant: the population may cycle or go
back and forth to the same equilibria, monomorphic or
polymorphic, isolated or not. Some of these difficulties
can be circumvented by considering a population of
finite size. In the absence of recurrent mutation in such a
population, every mutant will go to either extinction or
fixation. Therefore, long-term evolution can be studied
in terms of probabilities of fixation instead of fitnesses
or stability conditions. In such a context, a selective
advantage is associated to a probability of fixation
greater than the initial frequency, which corresponds to
the probability of fixation obtained under neutrality. If
mutants are introduced one at a time, the polymorphic
states are only transient and the fixation states
correspond to steps of evolution.

Another interesting aspect of considering a finite size
is that it allows to study the evolution of variability
within a population. In an infinite population, an ESS
often corresponds to a polymorphic equilibrium mani-
fold: there may be several types of strategies represented
at different frequencies at equilibrium. What counts is
the population state not the individual strategies. This is
not the case with fluctuations in numbers which may, in
the long run, favor mixed strategists over pure strate-
gists in a polymorphic population, for instance, as
exemplified by simulations with Dove, Hawk and Half-
Dove-Half-Hawk strategists made by Maynard Smith
(1988):‘‘I conclude that in a small finite population a
mixed strategy is a more likely outcome than a genetic
polymorphism’’. The reason given for this,‘‘if frequen-
cies fluctuate, pure strategies lose more on the swings
than they gain on the roundabouts’’, can also explain
the selective advantage of homeostatic females produ-
cing exactly the same numbers of sons and daughters
over Mendelian females producing sons and daughters
at random according to a binomial distribution (Taylor
and Sauer, 1980). All this suggests an evolutionary
tendency toward a reduction in variability.

In this paper, we deduce the probability of fixation of
a mutant allele for a variety of selection models with
interactions between individuals and ask when this
probability is smaller or larger than the corresponding
probability under neutrality in order to predict the
direction of evolution according to a maximum like-
lihood principle. We consider first a linear game among
offspring in the haploid Wright–Fisher model (Section
2) and then a linear game among adult individuals in the
same model (Section 3). The effect of diploidy is
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considered next (Section 4). Going back to a haploid
population but in a context of sex allocation, the
evolution of the mean (Section 5) and the variance
(Section 6) is studied. This is followed by a discussion
about the meaning of our results (Section 7).
2. Long-term stability in the Wright–Fisher model

We consider the Wright–Fisher model for a haploid
population of size N and we assume viability differences
as a result of pairwise contests between individuals using
mixed strategies. More precisely, suppose two types of
individuals or alleles, type A and type B, associated with
the mixed strategies pA and pB, respectively, these being
frequency vectors whose components give the probabil-
ities of using some pure strategies in a contest against an
opponent. Let x ¼ k=N be the frequency of type A

among the adult individuals of a given generation. After
reproduction, every adult individual producing an
equally large number of offspring, pairwise contests
take place at random among the offspring. These
interactions have additive effects on survival so that
the relative viabilities of type A and type B offspring,
respectively, take the form

f AðxÞ ¼ 1 þ
d

N
pT

AMp (1)

and

f BðxÞ ¼ 1 þ
d

N
pT

B Mp (2)

for some game matrix M and some parameter d, where
T denotes a transpose vector, p represents the mean
strategy in the current generation, that is,

p ¼ xpA þ ð1 � xÞpB ¼ xðpA � pBÞ þ pB (3)

and d=N measures the intensity of selection. Following
selection, the frequency of type A among the offspring is

xf AðxÞ

xf AðxÞ þ ð1 � xÞf BðxÞ
¼ x þ

dxð1 � xÞ

N
ðpA � pBÞ

T Mp

þ Oð1=N2Þ, ð4Þ

where Oð1=N2Þ denotes a function of order 1=N2. The
next generation is obtained by drawing N individuals at
random and independently in this population. Then, the
frequency of type A in the next generation has mean
x þ mðxÞ=N þ Oð1=N2Þ and variance vðxÞ=N þ Oð1=N2Þ

with

mðxÞ ¼ dxð1 � xÞðpA � pBÞ
T Mp (5)

and

vðxÞ ¼ xð1 � xÞ. (6)

A diffusion approximation for the frequency of A with
mðxÞ as drift parameter and vðxÞ as diffusion parameter
is obtained by taking N generations as unit of time and
letting N go to infinity (see, e.g., Ewens, 2004). In
particular, this gives

PAðx0Þ ¼

R x0
0 cð yÞ dyR 1

0 cð yÞ dy
(7)

for the probability of fixation of A starting from an
initial frequency x0, where

cð yÞ ¼ exp �2

Z y

0

mðxÞ

vðxÞ
dx

� �
. (8)

Assuming d small, we get the approximation

cð yÞ � 1 � d½y2ðpA � pBÞ
T MðpA � pBÞ

þ 2yðpA � pBÞ
T MpB�, ð9Þ

from which PAðx0Þ is approximated by

x0 þ
dx0ð1 � x0Þ

3
½ð1 þ x0ÞðpA � pBÞ

T MðpA � pBÞ

þ 3ðpA � pBÞ
T MpB�. ð10Þ

A necessary and sufficient condition for this probability
to be less than x0, the probability of fixation under
neutrality, at least for every pA different from pB but
close enough to pB, is

ðpA � pBÞ
T MpBp0 (11)

and, in case of equality,

ðpA � pBÞ
T MðpA � pBÞo0. (12)

But if the above condition holds, it actually holds for all
pAapB, and this means that pB is an ESS for the game
matrix M (Maynard Smith and Price, 1973; Maynard
Smith, 1974). If this is the case with an equality in (11)
for all pAapB, which must occur if pB has all positive
components, then the probability of fixation of A is
always less than x0 unless pA ¼ pB. On the other hand, if
pB is an ESS but there is a strict inequality in (11) for
some pAapB, then necessarily pB exhibits some null
components and pA has at least one positive component
corresponding to a null component of pB. In such a case,
pA may have to be close enough to pB to ensure a
probability of fixation of A smaller than x0 since the left-
hand term in (12) may be positive and larger than 3=ð1 þ

x0Þ times the left-hand term in (11) in absolute value,
which gives an upper bound for the distance between pA

and pB that depends on x0.
With a 2 	 2 game matrix M ¼ kmijk satisfying

ðm11 � m12 � m21 þ m22Þo0, for instance, the strategy
pB ¼ ð pn; 1 � pnÞ, where

pn ¼
m22 � m12

m11 � m12 � m21 þ m22
(13)

(but 0 if the right-hand member of the equation is
smaller than 0, that is, if m22 � m1240, and 1 if it is
larger than 1, that is, if m11 � m2140) is an ESS such
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that the probability of fixation of an allele A coding for
any other strategy is less than the initial frequency of
that allele. Such an ESS can be found, e.g., in Maynard
Smith (1982, p. 16). On the contrary, if ðm11 � m12 �

m21 þ m22Þ40 and m22 � m1240, for instance, the
strategy pB ¼ ð0; 1Þ is an ESS and the probability of
fixation of A associated to the alternative strategy pA ¼

ð p; 1 � pÞ with initial frequency x0 is

x0 þ
dpx0ð1 � x0Þ

3
½ pð1 þ x0Þðm11 � m12 � m21 þ m22Þ

� 3ðm22 � m12Þ�, ð14Þ

which is less than x0 if and only if

po
3ðm22 � m12Þ

ð1 þ x0Þðm11 � m12 � m21 þ m22Þ
. (15)
3. Pairwise contests affecting fertility selection

In the Wright–Fisher model, we can also incorporate
pairwise contests between adult individuals resulting in
fertility differences. Assuming a large number of
contests having small additive effects on the number of
offspring produced, still supposed to be large, but not
allowing contests of individuals against themselves, the
relative fertilities of types A and B, respectively, when x

is the frequency of A among N adult individuals, are
given by

f AðxÞ ¼ 1 þ
d

N � 1
pT

AM p �
pA

N

� �
(16)

and

f BðxÞ ¼ 1 þ
d

N � 1
pT

B M p �
pB

N

� �
. (17)

The frequency of A among the offspring is
xf AðxÞ=ðxf AðxÞ þ ð1 � xÞf BðxÞÞ and then the frequency
of A in the next generation obtained by random
sampling of N individuals has mean x þ mðxÞ=N þ

Oð1=N3Þ (we really mean a function of order 1=N3) and
variance vðxÞ=N þ Oð1=N2Þ, where

mðxÞ ¼
dNxð1 � xÞ

N � 1
1 �

d

N � 1
pMp

� �
ðpA � pBÞ

T Mp

	

�
pT

AMpA

N
þ

pT
B MpB

N



, ð18Þ

and vðxÞ ¼ xð1 � xÞ as before. Using these diffusion
parameters and proceeding as previously in neglecting
smaller terms when d is small enough, the probability of
fixation PAðx0Þ is found to be

x0 þ
dNx0ð1 � x0Þ

3ðN � 1Þ
ð1 þ x0ÞðpA � pBÞ

T MðpA � pBÞ

	

þ 3ðpA � pBÞ
T MpB �

3pT
AMpA

N
þ

3pT
B MpB

N



. ð19Þ
This can be written in the form

x0 þ
dNx0ð1 � x0Þ

3ðN � 1Þ

Nð1 þ x0Þ � 3

N � 2

� �
ðpA � pBÞ

T

	

	 ~MðpA � pBÞ þ 3ðpA � pBÞ
T ~MpB



, ð20Þ

where

~M ¼ M �
1

N
ðM þ MT Þ (21)

with T denoting matrix transposition. Hence, the
conclusion is the same as previously with the difference
that the game matrix is ~M instead of M and the
coefficients in (20) are changed.

The above argument is only heuristic since terms of
order 1=N are included in the drift parameter mðxÞ. In
order to make a more precise analysis, a Moran model
(see, e.g., Ewens, 1989, 2004, and references therein) can
be considered as in Nowak et al. (2004). In such a
model, at each time step, an individual is chosen with
probability proportional to its fertility and this indivi-
dual produces an offspring that replaces an individual
chosen at random. Then, the transition matrix for the
frequency of A is a continuant and, in such a case, a
standard procedure for Markov chains leads to an
explicit expression for the probability of fixation of A

(see, e.g., Ewens, 1989, 2004, Section 2.12). Given an
initial frequency of x0 ¼ k0=N for A, its probability of
fixation is given by

PAðk0=NÞ ¼

1 þ
Pk0�1

l¼1

Ql
i¼1

f Bði=NÞ

f Aði=NÞ

1 þ
PN�1

l¼1

Ql
i¼1

f Bði=NÞ

f Aði=NÞ

. (22)

Assuming d small and N fixed, we get an approximation
in the form of (19) but with d replaced by d=2. Such a
discrepancy between the Moran model and the Wright–
Fisher model is familiar (see, e.g., Ewens, 1989, 2004,
p. 121).

An analysis of the probability of fixation in the exact
Wright–Fisher confirming the approximation (19) for d

small enough and N large enough is also possible but the
arguments will be presented elsewhere.

With a 2 	 2 matrix M ¼ kmi;jk, Eqs. (13) and (15)
become

pn ¼
ðN � 2Þðm22 � m12Þ þ m21 � m12

ðN � 2Þðm11 � m12 � m21 þ m22Þ
(23)

and

po
3½ðN � 2Þðm22 � m12Þ þ m21 � m12�

½Nð1 þ x0Þ � 3�ðm11 � m12 � m21 þ m22Þ
, (24)

respectively, under corresponding conditions. Eq. (23) is
in agreement with the mixed ESS for the Hawk–Dove
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game given by Maynard Smith (1988) in the case m11 ¼

0 and m22 ¼ 1 and by Schaffer (1988) in the more
general case, while Eq. (24) extends a condition on the
population size and the fitness parameters given by
Nowak et al. (2004) for a Moran model that ensures that
a mutant pure strategy ( p ¼ 1) with initial frequency
x0 ¼ 1=N introduced into a population previously fixed
at another pure strategy will have a probability of
fixation less than 1=N. See also Wild and Taylor (2004)
for other stability concepts related to the probability of
fixation in a Moran model.
4. Long-term stability in a finite diploid population

Coming back to the Wright–Fisher model with mixed
strategies affecting viability selection with two alleles A

and B at a single locus segregating in the population but
assuming a diploid population of size N and random
mating, the frequency of A among the offspring before
and after selection passes from x to

x2f AAðxÞ þ xð1 � xÞf ABðxÞ

x2f AAðxÞ þ 2xð1 � xÞf ABðxÞ þ ð1 � xÞ2f BBðxÞ
, (25)

where

f AAðxÞ ¼ 1 þ
d

2N
pT

AAMp,

f ABðxÞ ¼ 1 þ
d

2N
pT

ABMp,

f BBðxÞ ¼ 1 þ
d

2N
pT

BBMp, ð26Þ

and

p ¼ x2pAA þ 2xð1 � xÞpAB þ ð1 � xÞ2pBB, (27)

or equivalently

p ¼ x2ðpAA � pABÞ þ ð2x � x2ÞðpAB � pBBÞ þ pBB, (28)

with pAA, pAB and pBB being the mixed strategies used by
AA, AB and BB individuals, respectively. The frequency
(25) can be written in the form x þ mðxÞ=ð2NÞþ

Oð1=N2Þ, where

mðxÞ ¼ dxð1 � xÞ½xðpAA � pABÞ

þ ð1 � xÞðpAB � pBBÞ�
T Mp. ð29Þ

Binomial random sampling of N individuals gives this
frequency as mean frequency and vðxÞ=ð2NÞ þ Oð1=N2Þ,
where vðxÞ ¼ xð1 � xÞ, as variance. The functions mðxÞ

and vðxÞ are the drift and diffusion parameters of the
diffusion approximation obtained by taking 2N as the
unit of time and letting N go to infinity. Assuming d
small and proceeding as previously, the probability of
fixation PAðx0Þ can be approximated as

x0 þ
dx0ð1 � x0Þ

30
½c1ðpAA � pABÞ

T MðpAA � pABÞ

þ c2ðpAB � pBBÞ
T MðpAA � pABÞ

þ c3ðpAA � pABÞ
T MðpAB � pBBÞ

þ c4ðpAB � pBBÞ
T MðpAB � pBBÞ

þ c5ðpAA � pABÞ
T MpBB

þ c6ðpAB � pBBÞ
T MpBB�, ð30Þ

where

c1 ¼ 3 þ 3x0 þ 3x2
0 þ 3x3

0,

c2 ¼ 2 þ 2x0 þ 2x2
0 � 3x3

0,

c3 ¼ 7 þ 7x0 þ 7x2
0 � 3x3

0,

c4 ¼ 8 þ 8x0 � 12x2
0 þ 3x3

0,

c5 ¼ 10 þ 10x0,

c6 ¼ 20 � 10x0. ð31Þ

All these coefficients are positive for 0ox0o1. A
necessary and sufficient condition for the above prob-
ability to be less than x0, for pAA and pAB close enough
to pBB but not both equal to pBB, is that

½c5ðpAA � pABÞ þ c6ðpAB � pBBÞ�
T MpBBp0 (32)

and, in case of equality, nTMno0 with n ¼ ðpAA �

pAB; pAB � pBBÞ and

M ¼
c1M c3M

c2M c4M

 !
. (33)

Assuming partial dominance, that is, pAB ¼ hpBB þ ð1 �

hÞpAA for some 0php1, the inequality (32) reduces to

½c5h þ c6ð1 � hÞ�ðpAA � pBBÞ
T MpBBp0, (34)

while nTMn becomes

½c1h2
þ ðc2 þ c3Þhð1 � hÞ þ c4ð1 � hÞ2�

	ðpAA � pBBÞ
T MðpAA � pBBÞ, ð35Þ

from which pBB has to be an ESS for the game matrix
M. This is also a sufficient condition in the general case
without the assumption of partial dominance at least
when x0 is small enough, M is a 2 	 2 matrix and pBB is
a positive two-dimensional vector: then we have always
an equality in (32) and

nTMn ¼ ½c1x
2
1 þ ðc2 þ c3Þx1x3 þ c4x

2
3�g

T Mgo0, (36)
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where n ¼ ðx1;�x1; x3;�x3Þ, g ¼ ð1;�1Þ and

4c1c4 � ðc2 þ c3Þ
2
¼ 15ð1 þ 2x0 � 13x2

0 þ 2x3
0 þ x4

0Þ40.

(37)

For x0 large enough however, the inequality in (37) is
reversed and then the inequality in (36) is not ensured
unless x1 and x3 are of the same sign, which means
partial dominance with h ¼ x1=ðx1 þ x3Þ. On the other
hand, if pBB has some null component, ð0; 1Þ for
instance, with a strict inequality in (11) for every
alternative strategy, then

½c5ðpAA � pBBÞ þ ðc6 � c5ÞðpAB � pBBÞ�
T MpBBo0 (38)

at least when c6 � c540, which occurs if x0o1=2, and
this is equivalent to (32) with a strict inequality. If
x041=2, then c6 � c5o0 and the inequality in (38), and
therefore the inequality in (32), may be reversed. This
will be the case in general with strategies of higher
dimension. For mixed strategies involving more than
two pure strategies however, (10) and (37) do not
guarantee nTMno0. Therefore, this condition may not
be satisfied for an ESS involving more than two
strategies.
5. Continuous stability of sex ratio with random drift

Suppose that the types in a Wright–Fisher model for a
haploid population determine the sex ratio, actually the
proportion of resources allocated to the male function
versus the female function, say rA for type A and rB for
type B. Then, the frequency of A in the offspring
produced by k individuals of type A and N � k of type B

in a given generation is

1

2

xrA

xrA þ ð1 � xÞrB

� �
þ

1

2

xð1 � rAÞ

xð1 � rAÞ þ ð1 � xÞð1 � rBÞ

� �
,

(39)

where x ¼ k=N. Putting rA ¼ rB þ d=N, we get an
expression in the form x þ mðxÞ=N þ Oð1=N2Þ with

mðxÞ ¼ dxð1 � xÞ
1 � 2rB

2rBð1 � rBÞ

� �
. (40)

With vðxÞ ¼ xð1 � xÞ, we find cð yÞ ¼ expð�2cyÞ, where

c ¼ d
1 � 2rB

2rBð1 � rBÞ

� �
(41)

and a probability of fixation

PAðx0Þ ¼
1 � expð�2cx0Þ

1 � expð�2cÞ
. (42)

In the case where rBa1=2, this probability is larger than
the initial frequency of A, x0, if and only if c is positive,
which means rBorAo1=2 or rB4rA41=2. If the
probability of fixation is used as payment function,
then the sex ratio 1=2 can be said to be convergence
stable (Christiansen, 1991), which is a necessary condi-
tion for continuous stability (Eshel and Motro, 1981;
Eshel, 1983).

In the case where rB ¼ 1=2, the above analysis
degenerates. But we can resort to the Moran model as
in Section 3 using the frequency in (39), denoted by
f AðxÞ, as the probability for a population of k

individuals of type A and N � k of type B to produce
an offspring of type A, which offspring replaces an
individual chosen at random, and 1 � f AðxÞ ¼ f BðxÞ as
the corresponding probability for type B. Then, assum-
ing da0 small, the probability of fixation of type A

starting from an initial frequency x0 is approximated by

x0 �
2d2x0ð1 � x0Þð1 þ x0Þ

3N
, (43)

which is always less than x0.
6. Evolution of sex ratio homeostasis

In order to study variability in sex ratio determina-
tion, we assume that the sex ratios of all individuals are
independent random variables taking values in the
interval ½�; 1 � �� for some small positive value �, to
avoid extinction and simplify the analysis, with the same
mean equal to 1=2 but with different variances, actually
s2

A for individuals of type A and s2
B for individuals of

type B. Letting X 1; . . . ;X k and Y 1; . . . ;Y N�k be the sex
ratios of k individuals of type A and N � k individuals
of type B, respectively, in a given generation, the
frequency of A in the offspring produced by these
individuals will be

1

2

Pk
i¼1X iPk

i¼1X i þ
PN�k

j¼1 Y j

( )

þ
1

2

Pk
i¼1ð1 � X iÞPk

i¼1ð1 � X iÞ þ
PN�k

j¼1 ð1 � Y jÞ

( )
. ð44Þ

This can be expressed as

1

2

x þ X

1 þ X þ Y

� �
þ

1

2

x � X

1 � X � Y

� �
¼

x � X ðX þ Y Þ

1 � ðX þ Y Þ
2

,

(45)

where

X ¼ 2x
1

k

Xk

i¼1

X i �
1

2

� �( )
,

Y ¼ 2ð1 � xÞ
1

N � k

XN�k

j¼1

Y j �
1

2

� �( )
. ð46Þ

Note that X and Y are independent random variables of
mean 0 and variances 4xs2

A=N and 4ð1 � xÞs2
B=N,
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respectively. Moreover, the higher moments of X and Y

are of smaller order, actually EðX 2l�1Þ and EðX 2lÞ are of
order 1=Nl , and the same for EðY 2l�1Þ and EðY 2lÞ, for
every lX2. Then, writing the above frequency as

P ¼ x � X ðX þ Y Þ þ xðX þ Y Þ
2

� X ðX þ Y Þ
3
þ RðX ;Y Þ, ð47Þ

where

RðX ;Y Þ ¼
½x � X ðX þ Y Þ�ðX þ Y Þ

4

1 � ðX þ Y Þ
2

(48)

satisfies

0pRðX ;Y Þp
½x � X ðX þ Y Þ�ðX þ Y Þ

4

1 � ð1 � 2�Þ2
, (49)

it can be checked that the expectation of P is

EðPÞ ¼ x �
4xð1 � xÞs2

A

N
þ

4xð1 � xÞs2
B

N
þ Oð1=N2Þ,

(50)

while the variance of P, V ðPÞ, is of order 1=N2.
Therefore, the frequency of A at the beginning of the
next generation will have the same mean but the variance

EðPÞð1 � EðPÞÞ

N
þ 1 �

1

N

� �
V ðPÞ ¼

xð1 � xÞ

N
þ Oð1=N2Þ.

(51)

It can also be checked, using the representation (47) and
following a tedious but straightforward calculation, that
the fourth centered moment of the frequency of A is of
order 1=N2. All this justify a diffusion approximation
with mðxÞ ¼ 4xð1 � xÞðs2

B � s2
AÞ and vðxÞ ¼ xð1 � xÞ,

which gives a probability of fixation for A in the form
(42) with

c ¼ 4ðs2
B � s2

AÞ. (52)

This probability is larger than x0 if and only if s2
Aos2

B.
Therefore, a reduction of variance in sex ratio is expected.

Such a reduction of variance is in agreement with the
selective advantage of precise females over binomial
females for brood sex ratio in a structured population
with local mate competition (Taylor and Sauer, 1980;
Nagelkerke, 1996, see also Nishimura, 1993; Courteau
and Lessard, 1999, for the effects of the mean and
variance of brood size on the evolutionarily stable sex
ratio). Notice that a reduction of variance for brood size
in the case of individuals producing offspring randomly
with the same mean but different variances can be traced
back to Gillespie (1974). Actually, with different means
and different variances, there is a trade-off between the
mean and variance that can be extended to sex
allocation in a structured population (see, e.g., Proulx,
2000).
7. Discussion

Following Nowak et al. (2004), selection is said to
oppose a single mutant of type A replacing a wild type
B, or to protect B against replacement by A, in a finite
population of size N if the probability of fixation of A is
less than its initial frequency, that is, PAð1=NÞo1=N

(see, e.g., Bergman et al., 1995, for an earlier use of such
a condition). In this paper, we have shown that this is
the case under weak selection in the context of a linear
game in a haploid population, or a diploid population
with partial dominance, if the wild type corresponds to
an ESS and the mutant type corresponds (a) to any
alternative mixed strategy making use of the same pure
strategies as the ESS, or (b) to any mixed strategy close
enough to the ESS and making use of some new pure
strategies. Then, in the former case, we can say that the
ESS is globally internally protected against replacement
and, in the latter, locally externally protected. Note that
the property in the former case actually does not depend
on the initial frequency of the mutant type. How close to
the ESS the mutant strategy in the latter case must be
depends on the game matrix and the population size
mainly through the initial frequency of the mutant type.
Nowak et al. (2004) confronted two pure strategies and
deduced a condition on the population size and the
entries of the game matrix under which selection
opposes one of the strategies replacing the other. This
other strategy may or may not be an ESS since the two
strategies are not close to each other.

Assuming a Wright–Fisher model with offspring
produced in infinite numbers undergoing viability
differences as a result of a linear game occurring before
random sampling and described by a game matrix M,
the strategies that are protected against replacement are
the evolutionarily stable strategies with respect to the
game matrix M. These are also the strategies that are
protected against invasion in an infinite population. If
the linear game is among adult individuals following
random sampling and results in fertility differences, then
the evolutionarily stable strategies that come into play
are those defined with respect to the game matrix
~M ¼ M � ðM þ MT Þ=N, which accounts for the fact

that an individual cannot interact with himself. This is in
agreement with Maynard Smith (1988) and Schaffer
(1988) who found the strategies that have higher fitness
than any mutant in the Hawk–Dove game for N

individuals, but not with Thomas and Pohley (1981),
Hines (1987) and Hines and Anfossi (1990) who arrived
at different matrices.

Nowak et al. (2004) studied a Moran model which
corresponds to our Wright–Fisher fertility model and
therefore leads to the same game matrix ~M. The Moran
model can be analyzed directly and more precisely than
the Wright–Fisher model for which we must resort to
diffusion approximations assuming a population size N
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large enough. Actually, the differences between the
fertility model and the viability model are of order too
small with respect to 1=N to be rigorously dealt with by
diffusion approximations. Nevertheless, different con-
clusions can be drawn heuristically using diffusion
approximations and checked later on in an exact model
as the Moran model. It is remarkable that the diffusion
approximations lead to the right conclusions even for N

small. It must be stressed that, in order to explain
evolutionary trends by successive replacements as new
alleles are introduced one at a time, fixation must occur
in a reasonable time and this supposes a very small
population size.

An interesting effect of diploidy is that protection of
an ESS against replacement, internal as well as external,
is not necessarily favored when the alternative strategy is
present at a high frequency. For instance, if the ESS is
the mutant strategy and is represented only once
initially, then its probability of fixation may be less
than its initial frequency. This is possible in the case of
overdominance with a heterozygote expressing a strat-
egy farther away from the ESS than the strategy
associated to the more common homozygote. As a
consequence, the evolution toward the ESS could be
delayed as long as there remains some overdominance.
Moreover, an ESS involving more than two pure
strategies may not be internally protected against
replacement by an alternative strategy at any frequency
unless there is partial dominance. Such results might
provide arguments in favor of the evolution of
dominance, ‘‘a tendency always at work in nature which
modifies the response of the organism to each mutant
gene in such a way that the wild type tends to become
dominant’’ (Fisher, 1928). This subject of historical
interest is controversial (Wright, 1929; Haldane, 1930)
and it still draws attention (see, e.g., Feldman and
Karlin, 1971; Mayo and Burger, 1997; Otto and
Bourguet, 1999; Bagheri-Chaichian and Wagner, 2002).

The evolution toward an even sex ratio was predicted
early by Fisher (1930), but it took several decades before
exact genetic models were analyzed. Actually, these were
among the first models to be checked for evolutionary
genetic stability, a concept introduced to suggest the
evolution toward an ESS in a genetic framework (Eshel
and Feldman, 1982), which roughly corresponds to
continuous stability in the absence of genetic constraints
or in haploid populations (Eshel and Motro, 1981). This
property for a continuous strategy is twofold: (a)
evolutionary stability (Maynard Smith and Price,
1973), which means resistance to invasion by any
mutant once fixed in the population, and (b) conver-
gence stability (named so following Christiansen, 1991),
or invasion of mutants that bring the population in the
direction of an ESS. Global convergence according to
such an evolutionary scheme assuming an infinite
population can be shown in some cases as linear games
based on two pure strategies and two-sex haploid
models (Lessard, 1984, 1990a) or suggested by the
equilibrium structures in other cases as sex ratio
determination models (Karlin and Lessard, 1986). For
finite populations, we get analogous concepts based on
replacement instead of invasion. Then, an even sex ratio
has been shown to be continuously stable with respect to
replacement in a haploid population. It is worth noting
that convergence stability has been shown using a
diffusion approximation of the Wright–Fisher model
while evolutionary stability has been deduced using a
Moran model. Actually, the diffusion approximation
degenerates when one of the strategies is the ESS and
then an exact model has to be considered.

In an infinite population, only the mean sex ratio
matters. If two types with the same mean sex ratio but
different variances are segregating in the population,
neither will have a selective advantage over the other
and both will be maintained in the population. More
than that, it is the mean population sex ratio that
matters so that a highly polymorphic state has to be
expected. On the contrary, a finite population will lead
not only to a fixation state in the long run but it will
discriminate in favor of less variance. This supports a
general principle of reduction for the variance whose
roots are found in Gillespie (1974) (see, e.g., Proulx,
2000, and references therein).

Finally, we have interpreted a probability of fixation
larger than the initial frequency as a selective advantage
and used it to deduce evolutionary properties of an ESS.
This makes sense if mutation is not recurrent. An
alternative approach applicable to this case is to use the
stationary distribution and to consider that a strategy
has a selective advantage if its mean frequency at
equilibrium is larger than the one under neutrality (see,
e.g., Kimura, 1984; Courteau and Lessard, 2004). There
is a relation between this approach as the mutation rate
goes to zero and the approach based on the probability
of fixation, and this has been exploited to study
subdivided populations (Rousset and Billiard, 2000;
Leturque and Rousset, 2002; Rousset, 2003).

The concept of ESS (Maynard Smith and Price, 1973)
has been one of the cornerstones to study various
aspects of evolutionary theory over the past three
decades and it might still be for some more to come.
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